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Abstract

The spherical shell and spherical zonal band are two elemental geometries that are often
used as benchmarks for gravity field modeling. When applying the spherical shell and
spherical zonal band discretized into tesseroids, the errors may be reduced or cancelled
for the superposition of the tesseroids due to the spherical symmetry of the spherical shell
and spherical zonal band. In previous studies, this superposition error elimination effect
(SEEE) of the spherical shell and spherical zonal band has not been taken seriously, and it
needs to be investigated carefully. In this contribution, the analytical formulas of the signal
of derivatives of the gravitational potential up to third order (e.g., V,V,, V., V,,, Vy_‘,, V..o
V> and V) of a tesseroid are derived when the computation point is situated on the polar
axis. In comparison with prior research, simpler analytical expressions of the gravitational
effects of a spherical zonal band are derived from these novel expressions of a tesseroid.
In the numerical experiments, the relative errors of the gravitational effects of the indi-
vidual tesseroid are compared to those of the spherical zonal band and spherical shell not
only with different 3D Gauss—Legendre quadrature orders ranging from (1,1,1) to (7,7,7)
but also with different grid sizes (i.e., 5° X 5°, 2° x 2°, 1° x 1°, 30’ x 30/, and 15’ x 15') at
a satellite altitude of 260 km. Numerical results reveal that the SEEE does not occur for
the gravitational components V, V,, V_, and V_, of a spherical zonal band discretized into

tesseroids. The SEEE can be found for the V,, and V,, whereas the superposition error

effect exists for the V. and V,,, of a spherical zonal band discretized into tesseroids on the
overall average. In most instances, the SEEE occurs for a spherical shell discretized into
tesseroids. In summary, numerical experiments demonstrate the existence of the SEEE of
a spherical zonal band and a spherical shell, and the analytical solutions for a tesseroid can
benefit the investigation of the SEEE. The single tesseroid benchmark can be proposed
in comparison to the spherical shell and spherical zonal band benchmarks in gravity field

modeling based on these new analytical formulas of a tesseroid.
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Article Highlights

e The comprehensive study of the spherical shell and spherical zonal band discretized
into tesseroids is reviewed

e The analytical expressions for the signal of derivatives of the gravitational potential up
to the third order of a tesseroid and a spherical zonal band are derived when the compu-
tation point is located on the polar axis

e The superposition error elimination effect of the spherical shell and spherical zonal
band discretized into tesseroids is numerically confirmed

1 Introduction

In gravity field modeling, spherical shells are frequently employed as a benchmarking tool
(Root et al. 2022). Generally, a spherical shell is the difference between two concentric
spheres with different radii. A spherical shell can serve as the benchmark for different
types of mass bodies, e.g., global spherical harmonics, tesseroid, triangle, and hexahedral
integrations (Root et al. 2022). The reason is that the gravitational effects of a spherical
shell have analytical solutions and they can be treated as reference values compared to the
computed values from discretizations with different mass bodies in a variety of numerical
experiments. In prior research, the analytical formulas of a spherical shell were derived
for the gravitational effects, e.g., gravitational potential (GP) (MacMillan 1930; Blakely
1995; Tsoulis 1999; Heck and Seitz 2007; Makhloof and Ilk 2008; Torge and Miiller 2012;
Grombein et al. 2013; Shen and Deng 2016; Uieda et al. 2016; Fukushima 2018; Soler
et al. 2019; Lin and Denker 2019; Qiu and Chen 2020; Lin et al. 2020; Karcol 2011, 2021;
Ouyang et al. 2022), gravity vector (GV, first-order derivatives of the GP) or gravitational
attraction (MacMillan 1930; Blakely 1995; Tsoulis 1999; Heck and Seitz 2007; Makhloof
and Ilk 2008; Grombein et al. 2013; Uieda et al. 2016; Marotta and Barzaghi 2017; Fuku-
shima 2018; Soler et al. 2019; Lin and Denker 2019; Qiu and Chen 2020; Lin et al. 2020;
Karcol 2011, 2021; Deng 2022; Root et al. 2022; Ouyang et al. 2022), gravity gradient
tensor (GGT, second-order derivatives of the GP) (Makhloof and Ilk 2008; Grombein et al.
2013; Uieda et al. 2016; Fukushima 2018; Lin et al. 2020; Qiu and Chen 2020; Deng 2022;
Ouyang et al. 2022), gravitational curvatures (GC, third-order derivatives of the GP) (Deng
and Shen 2018a, b, 2019; Deng 2022), certain nth-order derivatives of the GP (Deng et al.
2020), and first-order derivatives of the invariants of the gravity gradient tensor (Deng
et al. 2021). Note that the orders of differentiation for the GP, GV, GGT, and GC are 0, 1,
2, and 3.

Among several schemes for a spherical shell benchmark, a discretization using tesse-
roids has been a common strategy to investigate the numerical performance of the algo-
rithms to compute the tesseroid’s gravitational and magnetic effects in the gravity and mag-
netic fields. A whole spherical shell can be discretized into tesseroids along the coordinate
lines, i.e., in longitude, latitude (or colatitude), and radial directions. The relative errors
between the analytical gravitational or magnetic effects and the sum of the calculated grav-
itational or magnetic effects of the discretized tesseroids forming the entire spherical shell
are investigated by using different numerical approaches, e.g., Taylor series expansion with
different orders (Grombein et al. 2013; Shen and Deng 2016; Deng and Shen 2018a, b),
Taylor series expansion and kernel matrix equivalence method (Zeng et al. 2022), 3D or
2D Gauss-Legendre quadrature (GLQ) (Deng and Shen 2018b; Zhong et al. 2019; Deng
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et al. 2020, 2022), 3D or 2D adaptive discretization stack-based GLQ approach (Uieda
et al. 2016; Baykiev et al. 2016; Deng and Shen 2019; Lin and Denker 2019), conditional
split and double exponential quadrature method (Fukushima 2018), 2D density-based adap-
tive discretization GLQ method (Soler et al. 2019), variable-order GLQ approach (Qiu and
Chen 2020), combination of Taylor series expansion and GLQ method (Lin et al. 2020),
and combination of GLQ method with 2D adaptive discretization and discrete convolution
algorithm based on 1D fast Fourier transform (Ouyang et al. 2022). Note that most of the
above-mentioned studies focused on global errors of a whole spherical shell rather than the
local errors of the tesseroid for this commonly used strategy.

Moreover, the spherical zonal band has often been used in the literature as a geometri-
cal element to test and validate (or to benchmark) gravity field modeling algorithms. In
general, a spherical zonal band is the difference between two concentric spherical caps
with different spherical distances y; and y;, ; (Deng 2022), which is a volumetric element.
A spherical zonal band is a component of a spherical shell, i.e., it becomes a spherical
shell when its first spherical latitude equals zero and its second spherical latitude equals 7.
When the computation point is positioned on the polar axis, the analytical expressions for
a spherical zonal band can be derived for the gravitational effects, e.g., GP (Heck and Seitz
2007; Yang et al. 2022), GV (Heck and Seitz 2007; Lin and Denker 2019; Deng 2022),
GGT (Lin et al. 2020; Deng 2022), and GC (Deng 2022).

Analogously, a spherical zonal band can be discretized into tesseroids with respect to
the longitude and radial coordinates. In other words, a tesseroid can be treated as a sector
of a spherical zonal band. Recently, it was numerically confirmed that the computation
efficiency of this strategy was higher and its computation errors were smaller than those
of a spherical shell discretized using tesseroid (Deng 2022). The main reason is that the
shell consists of many zonal bands. This strategy can also be applied to investigate the
performance of different numerical methods for calculating the gravitational effects of the
tesseroid, e.g., Taylor series expansion (Heck and Seitz 2007; Wild-Pfeiffer 2008; Lin and
Denker 2019; Yang et al. 2022) and GLQ (Wild-Pfeiffer 2008; Lin and Denker 2019; Deng
2022) approaches. Generally, in previous numerical experiments, the global errors of the
total spherical zonal band were also evaluated rather than the local errors of the tesseroid.

The strategies of a spherical zonal band and spherical shell discretized into tesseroids
effectively calculate the global errors of the gravitational effects of the total spherical zonal
band and spherical shell. The numerical results from the two strategies have constraints
when employing the tesseroid with different numerical methods in practical applications.
In particular, the numerical results of the error analysis from the aforementioned differ-
ent numerical approaches by using the strategies of the spherical zonal band and spheri-
cal shell discretized into tesseroids can only be applied to global situations in the discre-
tized tesseroids forming the entire spherical zonal band and spherical shell (Heck and Seitz
2007; Wild-Pfeiffer 2008; Grombein et al. 2013; Shen and Deng 2016; Uieda et al. 2016;
Baykiev et al. 2016; Fukushima 2018; Deng and Shen 2018a, b, 2019; Zhong et al. 2019;
Lin and Denker 2019; Soler et al. 2019; Lin et al. 2020; Qiu and Chen 2020; Deng et al.
2020, 2022; Zeng et al. 2022; Yang et al. 2022; Deng 2022; Ouyang et al. 2022). However,
for local practical calculations, the numerical results from these global error assessments
do not apply. For example, in Section ‘Evaluation of the accuracy’ of Uieda et al. (2016),
the spherical shell was adopted to evaluate the computation accuracy of the GP, GV, and
GGT of the discretized tesseroids that comprise the entire spherical shell. The threshold
error 0.1% was only for the global error assessments of the whole spherical shell. When
using the tesseroids with the algorithm in Uieda et al. (2016) for local practical calcula-
tions, the conclusion derived from this global threshold error 0.1% cannot be applied. It
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should be re-evaluated for the specific local error assessments. Usually, they tend to under-
estimate error levels due to the superposition error elimination effect (SEEE) (Deng et al.
2022). The definition of the SEEE is the possibility that the symmetry of the global spheri-
cal shell with the discretized tesseroids might cancel out some errors from individual tesse-
roids (Deng et al. 2022). This SEEE was not noticed in the previous works. Careful inves-
tigation of the SEEE will help to make better use of tesseroids in the practical applications
of gravity field modeling. In reality, the spherical zonal band may also have the SEEE. The
SEEE is merely a hypothesis proposed in Deng et al. (2022) that has not yet been validated
by numerical experiments. Concerning the spherical zonal band and spherical shell discre-
tized into tesseroids, it is necessary to analyze the SEEE by comparing the global errors of
the spherical zonal band and spherical shell with the local errors of the individual tesse-
roid. Consequently, it is vital to examine the variation in the local errors of the individual
tesseroid in detail.

The challenge of evaluating the local errors of an individual tesseroid is to derive ana-
lytical expressions for the gravitational effects of a tesseroid. This is difficult because
since the concept of the tesseroid was proposed in Anderson (1976), subsequent studies
have used different numerical methods to calculate the gravitational effects of a tesseroid
(Kuhn 2003; Heck and Seitz 2007; Asgharzadeh et al. 2007; Wild-Pfeifter 2008; Tsoulis
et al. 2009; Grombein et al. 2013; Shen and Deng 2016; Uieda et al. 2016; Deng and Shen
2018b; Zhao et al. 2019; Soler et al. 2019; Lin et al. 2020; Zeng et al. 2022; Ouyang et al.
2022). The primary reason is that in the general formulas of the gravitational effects of a
tesseroid, the double integrals of the longitude and colatitude (or latitude) coordinates were
considered incapable of analytical integration in previous studies. However, some research
progress has brought a turning point to this challenge and provided the research idea for the
solution of this difficult problem. For example, the gravitational effects of a spherical zonal
band can be solved analytically if the computation point is located on the polar axis (Heck
and Seitz 2007; Marotta and Barzaghi 2017; Lin and Denker 2019; Deng 2022). Marotta
and Barzaghi (2017) derived the analytical gravitational acceleration of a tesseroid when
the computation point is located on the polar axis based on Sect. 5.2 of Turcotte and Schu-
bert (2002), see also Lin and Li (2022). Thus, the key idea is the special condition of the
computation point located on the polar axis.

This paper goes beyond the previous studies in that the analytical formulas of the gravi-
tational effects including the GP, GV, GGT, and GC of a tesseroid are derived when the
computation point is located on the polar axis. The formulas of the gravitational effects
of a spherical zonal band are also analytically derived. These new formulas of the gravita-
tional effects of a spherical zonal band are simpler in forms and more intuitive in methods
than those in Deng (2022). Moreover, the relative errors of the gravitational effects of a
single tesseroid are obtained to investigate the SEEE of the spherical zonal band and spher-
ical shell discretized into tesseroids.

The paper is organized as follows. Section 2 offers the theoretical aspects of this paper,
in which the analytical formulas of the GP, GV, GGT, and GC of a tesseroid are derived
in Sects. 2.1, 2.2, 2.3, and 2.4, respectively. Sections 2.5 and 2.6 derive the analytical for-
mulas of these gravitational effects of a spherical zonal band and spherical shell, respec-
tively. Numerical experiments are performed in Sect. 3, in which Sect. 3.1 presents the
basic setup. The influences of the 3D Gauss-Legendre quadrature orders and grid sizes on
the gravitational effects of the tesseroid, spherical zonal band, and spherical shell are inves-
tigated in Sects. 3.2 and 3.3, respectively. Section 3.4 compares the gravitational effects
of every individual tesseroid forming the whole spherical zonal band and spherical shell.
Finally, the main conclusions and outlook for future studies are summarized in Sect. 4.
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2 Theoretical Aspects
2.1 Analytical Formula of the GP of a Tesseroid

A tesseroid (see Fig. 1) is the mass body in the spherical or ellipsoidal coordinate system
defined by three pairs of longitudes, colatitudes (or latitudes), and radial distances (Ander-
son 1976). In previous studies (Kuhn 2003; Heck and Seitz 2007; Asgharzadeh et al. 2007,
Wild-Pfeiffer 2008; Grombein et al. 2013; Shen and Deng 2016; Uieda et al. 2016; Deng and
Shen 2018a, b, 2019), the gravitational effects of a tesseroid were often calculated numerically
because the integrals with respect to the longitude and colatitude (or latitude) in their expres-
sions are not considered to be integrated analytically. In this section, the analytical formula of
the GP of a tesseroid is derived when the computation point is located on the polar axis.
Generally, the formula of the GP (V) of a tesseroid is expressed in the spherical coordi-
nate system as (Anderson 1976; Blakely 1995; Kuhn 2003; Heck and Seitz 2007; Asgharza-
deh et al. 2007; Wild-Pfeiffer 2008; Shen and Deng 2016; Uieda et al. 2016; Deng and Shen

2019):
n A 0, r12
V(4.0.r) =Gp / / / " sino'do'dy'dr’ )
r A 0, !
[=\r2+ 2 = 2r cosy )
A7
r'7 Q

al /

X

Fig. 1 Illustration of a tesseroid in the spherical coordinate system revised from Fig. 3.8 of Anderson
(1976). AA= 4, — A, A0 =6, — 6, (or Ap = @, — @), and Ar = r, — r; are the longitude, colatitude (or
latitude), and radial dimensions of the tesseroid, in which A@ = Ag. P(4,0,r) (or P(A, @, r)) and Q(A',0', ")
(or Q(4, @', 1)) are the computation and integration points, respectively. There is the relation between the
colatitude 0 (or ") and latitude ¢ (or ¢’) of the computation point P (or integration point Q) as 6 + ¢ = 90°
(or 0" + ¢’ =90°). P(x, y, z) is in the local north-oriented frame system, where x, y, and z point to the north,
east, and radial up directions, respectively
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cosy =cos @ cosf +sinfsinb’ cos(A — 1) 3)

where G is the gravitational constant, p is the constant density of a homogeneous tesseroid,
and [ is the Euclidean distance between the computation point P(4, 8, r) and integration
point Q(A', 60’ 1) with their longitudes (4 and A'), colatitudes (@ and 6’), and geocentric
distances (r and 7). [4;, A,], [0, 6,], and [ry, r,] are the longitude, colatitude, and radial
boundaries of a tesseroid, i.e., the integration boundaries of the tesseroid are A’ = [4;, 4,],
0" =10,,6,], and ¥ = [r},1,])

When the computation point P is located on the polar axis, the colatitude of the compu-
tation point P is § = 0 or 8 = x. To simplify the derivation process, 8 = 0 is adopted as the
example for the situation of the computation point located on the polar axis. The derivation
progress with 8 = x is similar to that of § = 0 and there are small changes in the solution for
0 = z. Under this circumstance, the expression for the GP of a tesseroid with the triple inte-
gral form in Eq. (1) has the analytical solution. The detailed derivation is presented in Appen-
dix A. The analytical formula of the GP of a tesseroid when the computation point is located
on the positive part of the polar axis (i.e., @ = 0) is obtained as:

Gp(d, — A))
V= [Azzlzz ~Aplp = Ayl +Anly
Cy +1 Cp+1 @
+6len<u> + 6B, ln(ll—ll>]
Cph+1, Gy + 1y

where the expressions for the Ay, A5, Azp, Ajps By, By Cagy Cia, Coy, Cys Loy Ly, by, and 1
are listed in Table 8 in Appendix A. Note that the presented formula in Eq. (4) is singular
for the r = 0, see the more general solution in Karcol (2021).

2.2 Analytical Formula of the GV of a Tesseroid

Differentiating Eq. (1) with respect to the geocentric distance r of the computation point P,
the formula of the radial GV of a tesseroid is presented as (Heck and Seitz 2007; Asgharzadeh
et al. 2007; Uieda et al. 2016; Deng and Shen 2019):

aV(A,0,r
V.(4,0,r) = %
13 A 6, s A )
=Gp/ / / v — sin 0'de’dA’'dr’
r A 0, l
A, =rcosy —r (6)

Similarly, when the computation point is located on the polar axis, there exists the analyti-
cal solution for Eq. (5). The analytical expression for the GV (i.e.,V,, V,, and Vy) of a tesse-
roid is derived in Appendix B. The analytical solution for the radial GV of a tesseroid with
the colatitude of the computation point § = 0 is obtained as:

Gp(d, — 4y)
V,=- Tl [Dzzlzz = Dipliy = Dy lyy + Dyl
Cpy+1 Cyy +1 @
+3321n<u)+3311n(u)]
Cy+ 1, Ci+ 1
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where the expressions for the B,, B}, Cyy, Ci2, C51, Cyy5 I, L12, 151, and [} are referred to in
Table 8 and the expressions for the D,,, Dy,, D5, and D, are listed in Table 9 in Appendix
B.

Note that Marotta and Barzaghi (2017) derived the analytical formula of the gravitational
acceleration Agp in Appendix 2 when the computation point is located on the polar axis based
on Sect. 5.2 of Turcotte and Schubert (2002). The differences between the V,. in Eq. (7) in this
paper and Agp in Eq. (2) of Marotta and Barzaghi (2017) lie in that: (1) the usage of the r,, r,,
0,, and 0, in this paper corresponds to that of the R + h, R, 6’5, and 8’ in Marotta and Barzaghi
(2017); and (2) the Agp adds the minus symbol (i.e., —), whereas the V, has no minus symbol.
Despite these differences, the formula of the V, in Eq. (7) of this paper is the same as that of
Agp in Marotta and Barzaghi (2017) after the parameter exchange and absolute operation.

2.3 Analytical Formulas of the GGT of a Tesseroid

Differentiating Eq. (1) with respect to the geocentric distance r of the computation point twice,
the formula of the radial-radial GGT of a tesseroid is obtained as (Asgharzadeh et al. 2007;
Grombein et al. 2013; Uieda et al. 2016; Deng and Shen 2019):

2
V. (4,0, )_M

A 6 | ®
= Gp — = )sin@'do’dA'dr’
l3
A 0,

Analogously, Eq. (8) has the analytical solution when the computation point is located on
the polar axis. The derivation of the analytical solutions for the GGT of a tesseroid is pre-
sented in Appendix C. The analytical expression for the radial-radial GGT of a tesseroid
with 8 = 0 is obtained as:

Vrr
6r3 Iy L b by

Cy +1 C+1
+6321n<u) +6B, ln<M>]
Cip+l, Gy + 1y

Gp(4, — A1) [Ezz Eyp By " Eyy

(€))

where the expressions for the By, B}, Cyy, Ci2, C51, Cyy, 12, L2, 151, and [} are referred to in
Table 8 and the expressions for the E,,, E|,, E,;, and E; are listed in Table 10 in Appendix
C. Due to the common usage in the previous works (Uieda et al. 2016; Lin and Denker
2019; Lin et al. 2020), V.. is denoted as V_, in the following part.

Regarding the other components of the GGT, the components V,, and V,, are chosen to
derive their analytical expressions when the computation point is located on the polar axis,
because these three components V,,, V,,, and V_, of the GGT satisfy Laplace’s equation as
Vi +V,, + V= 0in theory. Laplace’s equation will be applied to confirm the correctness of
the derlved analytlcal expressions for the V., VW and V_, of a tesseroid.

The general formulas of the V,, and V,, of a tesser01d in Cartesian integral kernels are

expressed as (Grombein et al. 2013; Uieda et al. 2016; Deng and Shen 2019):

b oo
2 2 l
V(4,0,r) = Gp/ //1 /9 l5 5 ) sin@'d9’dA’ dr’ (10)
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A, =r[sin@cos @ —cosBsin6 cos(A’ — A)] (1)
A rb, SA 2 1
V,,(A,6,r) =Gp / / / 1—3) sin@'dg’dA’dr’ (12)
A Jo,
A, =r'sin @' sin(A - 1) (13)

When the computation point is located on the polar axis, Egs. (10) and (12) have the ana-

lytical solutions. The analytical expressions for the V., and

V,y are derived in Appendix C.

The analytical expressions for the V,, and V,,, with § = 0 are obtained as:

I, + C 1+ C
v Gp[le <22 22>+F11n(” 11)
Cpp

48 I+

L+ Cy

Lt 1223+ L+Ky H+ 1123+ Ji+ Ky, "
3l 3l
H,+L+/,+K, H +1;+J +K,
- r3l,, i, ]
v, = Gp[L21 <122+C ) L <IU+C11)
48 L+ Cyy Ly + Gy
Hy+M,,—J,+N,, H +M;,—-J +N,
3y B i, (5)
Hy+M, —J,+N,, H; +M, —J, +N
B r3l,, r3ly, ]

where the expressions for the C,,, C}5, C,y, Cyy, 1y, 115, 11, and [, are referred to in Table 8.
The expressions for the F,, F|, Hy, H, Ly, 115, I, 1,1, J5, J1» Ky, Ki5, Ky, and K are
listed in Table 11 in Appendix C. The expressions for the L,, L,, M5,, M5, My, My, Ny,
Nj,, Ny, and Ny, are presented in Table 12 in Appendix C. The differences of the sign
between F, and L,; F| and L,; I,, and M,,; I, and M,,; I,; and M,;; I,; and M,,; K,, and
Ny,; K, and N,,; K, and N,;; K, and N, should be noted.

2.4 Analytical Formulas of the GC of a Tesseroid

Differentiating Eq. (1) with respect to the geocentric distance r of the computation point at
three times, the formula of the radial-radial-radial GC of a tesseroid is obtained as (Deng
and Shen 2018a, b, 2019):

3
1.6 )_0V(10r)

A b,
=on [ [
n Je

Similarly, the analytical solution exists for Eq. (16) when the computation point is located
on the polar axis. The derivation of the analytical solution for the GC of a tesseroid is

rrr

15A P oo (16)

) sin9’de’d A’ dr’
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presented in Appendix D. The analytical formula of the radial-radial-radial GC of a tesse-
roid with 8 = 0 is obtained as:

Gp(l, = 4) 0y O, Oy Oy
V=== (D5 - 5 - e ) (17
2rt by ’ ’ by

where the expressions for the O,,, O;,, O,;, and Oy, are listed in Table 13 in Appendix D,

and the expressions for the I, [},, [,; and [;; are referred to in Table 8. Similarly, V,,, is

represented as V.. due to the common utilization in Deng and Shen (2018a, 2018b, 2019).
Analogously, these three components V., V,_, and V___ of the GC satisfy Laplace’s equa-

yyz? 2z
tion as V,,, + V,,, + V.. = 0. Thus, the analytical expressions for the V,,, and V|, of a tesse-

XXZ
roid are derived when the computation point is located on the polar axis.
Generally, the expressions for the V,,, and V, . of a tesseroid in Cartesian integral ker-

nels are presented as (Deng and Shen 2018b, 2019):

norhort ) ISAZA 3A
Vi (4.0, 1) = Gp / / / r’%# - 1_51> sin@’do’dA’dr’ (18)
I Ay 0,

n o orho o 15A%A,  3A
Vyye(4,0,1) = Gp / A /9 r’z(% - 1_5Z> sin@'de’dA'dr’ (19)
I 1 1

When the colatitude of the computation point is 8 = 0, there exist the analytical solutions
for Egs. (18) and (19). The detailed derivation process of the analytical expressions for the
Vi, and V. of a tesseroid is presented in Appendix D. The analytical expressions for the
V.. and V_with @ = 0 are obtained as:

XXZ. wz

_ Gp [P+ 0n+Ryp+Sy+T,
T 6t 3

by
Pp+0p+Rp+S,+T
- Iy’
20
Py + 0y +Ry + 5+ T, 20)
_ —
21
+ Py+0, +R +S5,+T,
l 3
11
Vo = Gp [sz—Q22+W22+522+T2
= 16 e
V= 0+ Wi +Sp+ T,
Ly’ 21
Vo =0 Wy + 5, + T
%
+ Vip=0n+ Wy +8,+T,
I’

where the expressions for the /5,, [,5, [, and /,; are referred to in Table 8, the expressions
for the Py, Py, Payy Pris O2ps Q12s Oo1s Qi1 Rags Ry Rops Rys Sy, S19s Sy Sy T, and T
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are listed in Table 14 in Appendix D, and the expressions for the V,,, Vi, V51, Vi1, Wy,
W5, W,,, and W, are presented in Table 15 in Appendix D. Note that there are the differ-
ences of the sign between P,, and V,,; P, and V,,; P,; and V,;; P;, and V|;; R,, and W,,;
R, and W ,; Ry, and W, ;s R, and W/,.

Regarding these expressions in Eqs. (4), (7), (9), (14), (15), (17), (20), and (21), the
situation € = 0 is considered. Other situations # = z and r = 0 are not considered, which
could be investigated based on the work of Karcol (2021).

2.5 Analytical Formulas of Gravitational Effects of a Spherical Zonal Band

Generally, a tesseroid can be treated as a sector of a spherical zonal band (see Fig. 2). In
other words, when the longitude A’ of the integration point Q integrates from 4, = 0 to
A, =2z for a tesseroid, a spherical zonal band is obtained. In this study, the analytical
solutions for the GP, GV, GGT, and GC of a spherical zonal band are derived based on
these analytical expressions for a tesseroid.

Letting 4, = 0 and 4, = 27 in Egs. (4), (7), (9), (14), (15), (17), (20) and (21), the ana-
lytical expressions for the GP (V*°), radial GV (V,?), GGT (VZZZb, V., and VyyZb), and GC

zb zb zb : : o
(V™ Vi, » and V) of a spherical zonal band when the computation point is located

on the positive part of the polar axis (i.e., § = 0) are obtained as:

zGp
yb = [A22122 —Aply = Ayl + Ayl
Coy +1 Cpy+1 @2)
+6321n(u) + 6B, ln(M)]
C12+l]2 CZI +121
2xGp
v, =— 3r2 [D22122 = Dipliy = Dyylyy + Dyylyy
Cp,+1 Cy +1 (23)
+3821n<u) + 3B, ln(u)]
C22 +122 Cll +lll
7b :”Gp[@_@_& Ey
@ 33 Ly Ly by 24)
o+ by Ci+ly
+6B,1 ( )+6Bll ( )]
12 112 C21 +l21
b_ 1 b
Vxxz _Vyyz
_7GprEy Ep Ey  Ey,
6r3 Ly 1l Uy Iy (25)
l C,+!1
+6ByIn (22 ) + 68, In (1) |
1+ Gy +1y
b zGp Oy Op Oy Oy
2z T4\ 3 73 73 26)
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Fig.2 Visualization of a P(4,60=0,r)
tesseroid (i.e., shadow part) and 2

a spherical zonal band revised
from Fig. 6 of Heck and Seitz
(2007). The computation point
P(A,0 = 0,r)is located on the
polar axis. Q(4', €', ') is the
integrating point. O is the center
of the sphere. A1, A0 =0, —0,,
and Ar = r, — r are the lon-
gitude, colatitude, and radial
dimensions of a tesseroid

V Vyy&
_zGp Xn+VYn+Zy Xpt+Yp+Zp
8 Ly’ Iy’ @n
_ X1+ Y+ 2, + Xy +Y,+7,
L’ I’

where the expressions for the Ay, Ay, Ay, Ajp, Bas By Co, Choy Copo Cryy oo, Loy Iy, 1,
Dy,, Dyy, Dy, Dy, Eyy, Epy, Eyy, Efy, Oy, O1y, Oy, and Oy are referred to in Tables 8, 9,
10, and 13. The expressions for the Xy, X5, X51, X11, Yoo, Y10, Y51, Y1, Z9y, Zy5, Z,y, and Z;
are listed in Table 16 in Appendix E.

The other GV (V,* and V,), GGT (V,,*, V., and V,.*), and GC (V,,,, V.., ", V.. ™",

zb zb zb zb
V\yx Vi s Ve s and V. %) components of a spherlcal zonal band are the Zero terms

ie., Vzb—vzb_ovzb—vzb—v ?=0,andV, Ff=V Ft=v F=v F=v F=

XX X X y
V. b= szy = 0. These behav1ors can be conﬁrmed in the l\y/Iathem:tlca co}cies GV }{}xVy
nb, GGT_VxyVxzVyz.nb, and GC_VxxxVxxyVxyzVyyxVyyyVzzxVzzy.nb at the link https:/
github.com/xiaoledeng/analytical-tesseroid-spherical-zonal-band.

In Appendix E, Laplace’s equation is applied to confirm the correctness of the derived
analytical expressions for the GGT and GC of a tesseroid and spherical zonal band. The
results reveal that these derived analytical expressions for a tesseroid and a spherical zonal
band are correct.

In the previous studies, the formulas of the spherical zonal band were derived by the
difference between two concentric spherical caps for the GP (V) (Papp and Wang 1996;
Heck and Seitz 2007; Lin and Denker 2019), radial GV (V,Zb) (Heck and Seitz 2007; Lin
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and Denker 2019; Deng 2022), radial-radial GGT (VZZZb) (Lin et al. 2020; Deng 2022), and
radial-radial-radial GC (VZZZZb) (Deng 2022). In theory, the numerical values of these pre-
vious formulas should be correspondingly equal to those of Eqs. (22), (23), (24), and (26),
respectively. The consistency of the analytical expressions for the gravitational effects of a
spherical zonal band between Deng (2022) and this paper is presented in Appendix F.

This study goes beyond the previous studies in that the analytical expressions for a
spherical zonal band are efficiently obtained from the analytical formulas of a tesseroid
by integrating the longitude of the integration point from O to 2z when the colatitude of
the computation point is # = 0. Meanwhile, the analytical expressions for the VMZ", VyyZb,

zb zb : : : zb __ zb zb _ zb
Vi » and V,,, ** are derived, in which V,,”> =V, ®and V, . * = V| .

2.6 Analytical Formulas of Gravitational Effects of a Spherical Shell

In general, a spherical shell can be discretized into tesseroids with respect to the longitude,
colatitude (or latitude), and radial directions. When the longitude of the integration point A’
integrates from 4, = 0 to 4, = 2z and its colatitude ¢’ integrates from 6, = 0 to 6, = = for
a tesseroid, a spherical shell is obtained. In other words, a spherical shell can be treated as
a hollow sphere. In this study, the analytical expressions for the GP, GV, GGT, and GC of
a spherical shell are derived based on these analytical expressions for a tesseroid when the
computation point is located on the polar axis.

Letting A, =0, 4, =2x, 0, =0, and 6, = z in Eqgs. (4), (7), (9), (14), (15), (17), (20)
and (21), the analytical expressions for the GP (V*"), GV (V.*M), GGT (V_*h, V_*", and

2z 2 Txx
V™, GC (V... V.., and V, ") of a spherical shell with 6 = 0 are obtained as:
472G
v =225y (28)
3r
4zG
A z p(r23_r13) (29)
3r?
8xGp
L=t ) (30)

_47er

Vil =V = — S =) (31
, 8xG
szzhh == A p(”z3 - r13) (32)
, g 4rG
Vxxzbh =Vyy;h = A P(r23 - r13) (33)

Note that these formulas in Egs. (28)—(33) can be applied to a wider range for the computa-
tion point due to the symmetry of the spherical shell.

It is obvious that the expressions in Eqgs. (28)—(33) are the same as the previous formu-
las of the spherical shell for the GP, radial GV (Tsoulis 1999; Vanicek et al. 2001, 2004;
Heck and Seitz 2007; Makhloof and Ilk 2008; Grombein et al. 2013; Lin and Denker 2019;
Lin et al. 2020), GGT (Makhloof and Ilk 2008; Lin et al. 2020), and GC (Deng and Shen
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2018a, b, 2019). Meanwhile, the two pairs of the three components of the GGT and GC
satisfy Laplace’s equation as V" + Vnyh +V,™=0 and V" + Vyy;h +V, " =0.
Thus, the consistencies among these gravitational quantities of a spherical shell can be
confirmed.

Analogously, regarding the other GV (V,*" and Vysh), GGT (V.*", V_*" and Vyzs”), and

xy ° Vxz >

GC (Vm‘Yh, Vxxy“h, nyz“h, V‘,yx“h, Vyvy“h, Vw‘?h, and Vm,”') components of a spherical shell,
sh __ sh __ sh __ sh™__ sh_ sh __y, sh __ sh __ sh __ sh __ sh

vi=vi=0,v," =V "=V "=0andV, "=V, "=V, "=V, F=V T=V_

= sz),“h = 0. These components are the zero terms. The Mathematica codes GV_VxVy.
nb, GGT_VxyVxzVyz.nb, and GC_VxxxVxxyVxyzVyyxVyyyVzzxVzzy.nb at the link https://
github.com/xiaoledeng/analytical-tesseroid-spherical-zonal-band can demonstrate these

characteristics.

3 Numerical Investigations
3.1 Setup of the Numerical Experiments

In the following numerical experiments, the basic numerical strategy is to compare the
relative errors between the calculated values and the reference values of the gravitational
effects. The difference from previous studies is that this paper investigates the relative
errors between the calculated values and reference values of the gravitational effects of a
single tesseroid, which helps to understand the superposition error (or elimination) effect
of a spherical zonal band and spherical discretized into tesseroids. By using tesseroids to
discretize a spherical zonal band and a spherical shell, there are no relative errors for the
zero terms of the GV, GGT, and GC components (V,, Vy, V., Voo, Vi, Vi Vi Vi Vi
Vyyy, V,..» and szy) in the numerical experiments. Thus, these zero terms are not considered
in the following experiments.

The general formula of the relative errors in log;, scale of the gravitational effects is

presented as:

Fcal
et 1 D (34)

where 6F means the relative errors in log,, scale of the gravitational effects (6V, 6V,, 6V,
oV, 5Vyfy, oV, 6V, and SVWZ) of the tesseroid, spherical zonal band, and spherical
shell. F™ represents the reference values of the gravitational effects of the tesseroid, spher-
ical zonal band, and spherical shell. F** denotes the calculated values of the gravitational
effects not only for a single tesseroid but also for the sum of every individual tesseroids

forming the whole spherical zonal band and spherical shell.

oF =log, <

Based on the analytical expressions for the GP (V), GV (V,), GGT (V,,, V,,, and V),
and GC (V,,, V..., and Viyd) of a tesseroid in Egs. (4), (7), (9), (14), (15), (17), (20), and

(21), the reference values of the gravitational effects of the tesseroid are obtained. Analo-
gously, the reference values of the gravitational effects of the spherical zonal band and
spherical shell are calculated by Eqgs. (22)—-(27) and Egs. (28)—(33), respectively.

To make the process of the calculated gravitational effects of the tesseroid complete,
the expressions for the GP, GV, GGT, and GC of a tesseroid in Cartesian integral ker-
nels are listed in Table 1, which are cited from Appendix 1 of Deng and Shen (2019). In
this paper, the calculated values of the gravitational effects of the tesseroid in Table 1
are obtained by using the 3D GLQ approach. The GLQ is a commonly used numerical
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method to calculate the integrals in the expressions for the gravitational and magnetic
effects of a tesseroid in previous studies (Ku 1977; Blakely 1995; Asgharzadeh et al.
2007, 2008, 2018; Wild-Pfeiffer 2008; Hirt et al. 2011; Li et al. 2011; Hinze et al. 2013;
Du et al. 2015; Rexer and Hirt 2015; Roussel et al. 2015; Uieda et al. 2016; Baykiev
et al. 2016; Deng and Shen 2018b, 2019; Soler et al. 2019; Zhao et al. 2019; Zhong
et al. 2019; Lin and Denker 2019; Lin et al. 2020; Qiu and Chen 2020, 2021; Deng et al.
2020, 2022). The general formula of the 3D GLQ to compute the GP, GV, GGT, and GC
of the tesseroid is presented as (Wild-Pfeiffer 2008; Hirt et al. 2011; Hinze et al. 2013;
Uieda et al. 2016; Deng and Shen 2018b):

ry (2} A
/ / / F(X. @' ' )dAdg'ar’
] (4] A

(A= 4) (02— AR

~ 8 Z Z 2 WfW‘p W, f /ll,qoj,rk)

i=1 j=1 k=1

(35)

where f ( N, ¢, r’) means the Cartesian integral kernels of the GP, GV, GGT, and GC in
Table 1. Wi’l, W;”, and W] are the weights and N*, N?, and N" are the integer orders for the
spherical longitude, latitude, and geocentric distance, respectively. f (/1 @, rk) denotes the
integral kernels of the GP, GV, GGT, and GC with the point (/ll, ®;, rk) The detailed for-
mulas of the WA W“’ W[, 4;, @;, and r; can be referred to in Eqs. (23) — (28) and Table 5 of
Deng and Shen (2018b)

The numerical values of the parameters for the computation point, tesseroid, spheri-
cal zonal band, and spherical shell are listed in Table 2. It should be noted that the val-
ues of the r, and r, for the tesseroid in Table 2 also apply for the spherical zonal band
and spherical shell. Regarding the calculated values of the gravitational effects of the
tesseroid, the latitudes (i.e., @, @', @, and @,) are applied, whereas the colatitudes (i.e.,
0,0, 0,, and 0,) are adopted to compute the reference values of the gravitational effects
of the tesseroid, spherical zonal band, and spherical shell. The height of the computa-
tion point is the GOCE-type satellite height 260 km (Grombein et al. 2013; Uieda et al.
2016; Deng and Shen 2018a, b), which can largely reduce the near-zone problem (Deng
and Shen 2018a, b; Deng et al. 2021; Deng 2022), i.e., large relative errors occur when
the computation point approaches the near surface of the mass body.

Table 1 Detailed expressions

tit; Ik
for the GP (V), GV (V,), GGT Quantity G [ [ Ji7 x
(V. Voo and V), and GC (V,__, (Expression)
Vs and Vyy) of a tesseroid dr'de’di

in Cartesiah integral kernels

with the computation point v 1
located on the polar axis, where V. A/ P
I=Vr2+r?=2rsing/, v, (BA2-P)/P
2}( = —r' cos (p’ ct())sf/l’ ;)A), V., (BA2—P)/P
,:rcowp sin(A' = ),
- r sing’ — r, and Viy (3A§ - PP
x = % cos 4 V... 3A,(5A% - 3P)/1
Ve 3A.(5A2 - 1)1
Vi 3AZ(5A§ -Pyr
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3.2 Influence of GLQ Orders on Gravitational Effects of the Tesseroid, Spherical
Zonal Band, and Spherical Shell

The chosen orders of the GLQ are important to the accuracy of the calculated gravitational
effects of a tesseroid. In previous studies, the computation errors generally reduced with the
increased orders of the GLQ, and the determination of the truncated GLQ orders was based
on the computation accuracy of the numerical strategy with a spherical shell discretized
into tesseroids, e.g., Uieda et al. (2016), Deng and Shen (2018b, 2019), Soler et al. (2019),
Zhao et al. (2019), and Deng et al. (2020). Different from the previous studies, a spherical
zonal band discretized into tesseroids is adopted in this section to investigate the influence
of the 3D GLQ orders on the GP, GV, GGT, and GC of the tesseroids. Moreover, the rela-
tive errors of the gravitational effects of a single tesseroid between the calculated values and
reference values are also studied. Note that the term ‘nodes’ of the GLQ in Deng and Shen
(2018b) and Deng et al. (2020, 2022) should be replaced by the ‘degrees’ or ‘orders’.

The numerical values of the basic parameters are referred to in Table 2. The computa-
tion point P is located on the polar axis with its longitude A = 0°, colatitude 8 = 0° (or
latitude @ = 90°), and geocentric distance r = 6,638, 137 m, which is 260 km above the
surface of the spherical shell. The colatitudes of the spherical zonal band are 8, = 10° and
0, = 11°. In other words, the grid size of the discretized tesseroids is 1° X 1° not only for
the spherical zonal band but also for the spherical shell. To calculate the reference val-
ues of the gravitational effects of a single tesseroid, the first tesseroid within the spherical
zonal band is chosen, i.e., the colatitude boundaries of this single tesseroid are the same
as those of the spherical zonal band as #; = 10° and 6, = 11° and its longitude boundaries
are A, = 0° and 4, = 1°. Regarding the calculated values of the gravitational effects of this
single tesseroid, its latitude boundaries are ¢, = 90° — A, = 79° and ¢, = 90° — 1, = 80°
and longitude boundaries are A, = 0°and 4, = 1°.

By using Eq. (34) for the single tesseroid, spherical zonal band, and spherical shell,
their relative errors of the gravitational effects in log,, scale with different 3D GLQ orders
from (1, 1, 1) to (7, 7, 7) are illustrated in Fig. 3. In addition, the values of these relative
errors are listed in Table 3.

In Fig. 3, the points for all GC components (i.e., Band_6V_ , Band_éV, ., and
Band_éVm; Shell_6V,___, Shell_6V,,., and Shell_SVyyz) almost overlap together at differ-
ent 3D GLQ orders for the spherical zonal band and spherical shell, i.e., their relative

Table 2 Numerical values of the parameters in numerical experiments

Parameter Notation ~ Magnitude Unit
Gravitational constant G 6.67428 x 107! m3 kg™! 572
Up geocentric distance of the tesseroid Ty 6, 378, 137 m
Down geocentric distance of the tesseroid r1 6,377, 137 m
Computation point’s height above the surface of the spherical £ 260, 000 m
shell
Latitude of the computation point P @ 90 °
Colatitude of the computation point P 0 0 °
Geocentric distance of the computation point P r=r,+h 6,638,137 m
Density of the tesseroid, spherical zonal band, and spherical P 2670 kg m™3
shell
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errors in log, scale are equal to each other in Table 3. The same rule can be found for all
GGT components (i.e., Band_6V_, Band_éV,,, and Band_éV}.y; Shell_6V_,, Shell_sV,,
and Shell_6V,)). In general, regarding the gravitational effects of the single tesseroid
and spherical zonal band, as the 3D GLQ orders increase, their relative errors decrease
and remain at a certain level of about [—11, —9]. The relative errors of the gravitational
effects of the spherical shell decline with the increased 3D GLQ orders. There is one
turning point for the situation of the §V with the 3D GLQ orders (3, 3, 3) not only
for the single tesseroid in Fig. 3a but also for the spherical zonal band in Fig. 3b. The
turning point means that the relative errors of the 6V at the 3D GLQ orders (3,3,3) are
smaller than those at the 3D GLQ orders from (4,4,4) to (7,7,7).

» (a) » (b)
« Tess 8V \ « Band_8V
-3 A Tess 8V, T —317% & Band_8V;iT
* Tess_8V,, \ « Band_38V,,
-4 \ v Tess Vit -4 ‘,,‘ v Band_&V+t
Tess_3V. A Band_3V.
— Yy \ — Yy
o -5 * Tess_ 8Vt o -5 : + Band_3V 4+
13 \ . Tess 8V, | S \ - Band_8V,,
; 6 Tess_8V,.i | ; 6 \ Band_8V,,;..|
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Fig.3 Illustration of the relative errors of the gravitational effects in log, scale for (a) a single tesseroid,

(b) a spherical zonal band, and (c) a spherical shell with the influence of the 3D GLQ orders from (1, 1, 1)
to (7,7, 7). The grid size of the discretized tesseroids is 1° X 1°
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Table 3 Values of the relative errors in log,, scale using different 3D GLQ orders (n, n, n) (1 <n <7) in
Fig. 3 by a grid size of 1° X 1° with one truncated decimal place

Quantity in figure 1 2 3 4 5 6 7
Tess_6V in Fig. 3a -4.3 -7.4 —-10.8 -10.4 -10.4 -10.4 -10.4
Tess_6V, in Fig. 3a -2.9 -6.0 -9.2 -9.7 -9.7 -9.7 -9.7
Tess_6V_, in Fig. 3a =29 -6.5 -8.8 -10.3 -10.3 -10.3 -10.3
Tess_6V,, in Fig. 3a -2.8 -6.2 -9.6 —10.1 —10.1 —10.1 —-10.1
Tess_sV,, in Fig. 3a =27 -5.8 -9.2 -9.9 -9.9 -9.9 -9.9
Tess_oV... in Fig. 3a -2.3 =52 -83 —10.1 —10.1 —10.1 —-10.1
Tess_6V,,. in Fig. 3a =23 =51 -8.2 -94 -94 -94 -94
Tess_5V,,, in Fig. 3a -2.3 =51 -8.0 -9.3 -9.3 -9.3 -93
Band_§V in Fig. 3b -4.3 -7.4 -10.8 -10.4 -10.4 -10.4 -10.4
Band_sV, in Fig. 3b =29 -6.0 -9.2 -9.7 -9.7 -9.7 -9.7
Band_6V_, in Fig. 3b =29 -6.5 -8.8 -10.3 -10.3 -10.3 -10.3
Band_sV,, in Fig. 3b -29 -6.5 -8.8 -10.3 -10.3 -10.3 -10.3
Band_¢éV,, in Fig. 3b -29 -6.5 -8.8 -10.3 -10.3 -10.3 -10.3
Band_6V._.. in Fig. 3b -23 =52 -83 —10.1 —10.1 —10.1 -10.1
Band_6V,,. in Fig. 3b 23 =52 -83 -10.2 —-10.2 -10.2 -10.2
Band_gV,,, in Fig. 3b -2.3 =52 -8.3 -10.2 -10.2 -10.2 -10.2
Shell_6V in Fig. 3¢ -3.8 -6.2 -84 -10.4 -12.2 -12.6 -12.6
Shell_éV, in Fig. 3¢ -2.4 -4.3 -6.2 -8.1 —10.0 -12.3 -12.6
Shell_6V__in Fig. 3c -0.9 -2.6 -4.3 -6.0 -8.0 -10.3 -11.9
Shell_éV,, in Fig. 3c -0.9 -2.6 -4.3 -6.0 -8.0 —10.3 -12.0
Shell_sV,, in Fig. 3¢ -0.9 -2.6 -4.3 -6.0 -8.0 -10.3 -12.0
Shellf&VL,zz in Fig. 3¢ 0.5 -0.9 2.4 —4.2 —6.1 -8.7 -9.6
Shell_6V,. in Fig. 3¢ 0.5 -0.9 2.4 —4.2 —6.1 —8.7 -9.6
Shell_6V,,in Fig. 3¢ 0.5 -0.9 2.4 —4.2 —6.1 -8.7 -9.6

z

Regarding the relative errors of the single tesseroid and spherical zonal band in Table 3,
the values of the 6V, 6V,, 6V, and 6V, are correspondingly equal to each other at differ-
ent 3D GLQ orders. These numerical results reveal that the superposition error (or elimina-
tion) effect does not exist for these gravitational components at different 3D GLQ orders.
Meanwhile, the relative errors in log,, scale of the gravitational components 6V,,, 6V,,,
oV,.., and zSV_‘,yz for a spherical zonal band are smaller than those for the single tesseroid at
different 3D GLQ orders. This means that the SEEE exists for these gravitational compo-
nents (i.e., 6V,,, 6V,,, 6V,,,, and 6V, ) when using the strategy of a spherical zonal band
discretized into tesseroids. However, at the 3D GLQ orders (3, 3, 3), there exists the abnor-
mal situation that the relative errors of the 6V,, and 6V, for a spherical zonal band are
larger than those for the single tesseroid. This may be due to the chosen place of the single
tesseroid, which will be investigated using the 3D GLQ orders (3, 3, 3) in the following
experiments.

Analogously, for the comparison of the single tesseroid and spherical shell, the relative
errors of the spherical shell are larger than those of the single tesseroid with the 3D GLQ

orders1 < n < 4forthe 6V and6V,,1 < n < Sforthe 6V,, and 6V, 1 < n < 6 for the 5V,

7z’

6V, and 6V, and 1 <n <7 for the 5V_,. When the 3D GLQ orders are 5 < n < 7 for
the 6V and 6V,, 6 < n < 7for the 6V,, and 6V,,, and n = 7 for the 6V, 6V,,., and 6V, , the
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relative errors of the spherical shell are smaller than those of the single tesseroid. These
results show that the 3D GLQ orders affect the superposition error (or elimination) effect
between the single tesseroid and spherical shell. Regarding the spherical shell in relation to
the single tesseroid, the superposition error effect exists for lower 3D GLQ orders, while
the SEEE is observable for higher 3D GLQ orders.

3.3 Influence of Grid Sizes on Gravitational Effects of the Tesseroid, Spherical Zonal
Band, and Spherical Shell

In practical applications, the chosen grid size of the tesseroid has an impact on the accu-
racy of its calculated gravitational effects. In other words, from the numerical aspect, the
grid size of the tesseroids to discretize the spherical zonal band and spherical shell affects
the relative errors of the gravitational effects of the single tesseroid, spherical zonal band,
and spherical shell. Based on Sect. 3.2, different grid sizes are adopted to investigate the
influence of the grid sizes on the gravitational effects of the single tesseroid, spherical
zonal band, and spherical shell in this section.

Due to the fact that the numerical experiment in this section is an extension of that in
Sect. 3.2, the numerical settings are the same as those in Sect. 3.2. In order to control the
effect of the 3D GLQ orders, the 3D GLQ orders are set as (3, 3, 3). The grid size of the
discretized tesseroids are extended from 1° X 1°to 5° X 5°,2° x 2°,30’ x 30/, and 15’ x 15,
The longitude boundaries of the corresponding single tesseroid are different as [0°, 5°] for
the 5° X 5°, [0°, 2°] for the 2° x 2°, [0/, 30] for the 30/ x 30/, and [0/, 15] for the 15’ x 15".

The relative errors of the gravitational effects in log,, scale with different grid sizes for
the single tesseroid, spherical zonal band, and spherical shell are shown in Fig. 4, in which
their values are listed in Table 4.

In Fig. 4 and Table 4, the relative errors overlap together for the two pairs of 6V, 6V,,,;
oV, ., (S\/yyZ for the spherical zonal band, and for the two pairs of 6V, 6V, 6V,,; 6V,

XXZ. y 272°
6V, 6V, for the spherical shell. Specifically, in Fig. 4a and Table 4, with the ifl)creased
grid size of the single tesseroid, the relative errors decrease first and then increase for the
GP (6V), GV (6V,), and GGT (6V,,, 6V,,, and 6V,,). Regarding the GC (6V,,,, 6V,,,, and
oV,,.) of the single tesseroid, their relative errors decrease as the grid sizes increase. In
Fig. 4b for the spherical zonal band, the relative errors of the 6V, 6V,, 6V, 6V,,, and 6V,
have the same rules as those for the single tesseroid in Fig. 4a. Regarding the 6V, 6V,
and 5VyyZ for the spherical zonal band, their relative errors decrease with the increased
grid sizes. In Fig. 4c for the spherical shell, the relative errors of all gravitational com-
ponents decrease with the increased grid sizes. Regarding some components (i.e., 6V,
oV, 6V, 6V, and 6Vyy) of the single tesseroid and the spherical zonal band, the smaller
the grid size initially, the smaller the calculation errors, but, once a certain threshold is
reached, the smaller the grid size, the larger the calculation errors. One possible expla-
nation is that after a certain threshold is reached, other factors generating the errors are
greater than the grid size effects, resulting in the appearance of other faults, e.g., the
effects of the GLQ orders.

For the comparison of the single tesseroid and spherical zonal band in Table 4,
the relative errors of the 6V, 6V,, 6V_, and 6V_, are correspondingly equal to each
other at different grid sizes. These numerical results show that the superposition
error (or elimination) effect does not exist for these components at different grid
sizes. Regarding the 6V, and 6V, their relative errors in log,, scale for the spheri-

cal zonal band are larger than those for the single tesseroid by the grid sizes of
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Fig.4 Visualization of the relative errors of the gravitational effects in log,, scale for (a) the single tesse-
roid, (b) a spherical zonal band, and (c¢) a spherical shell with the influence of the grid sizes as 5° X 5°,
2°x2°1° x 1°,30' x 30/, and 15’ x 15’. The applied 3D GLQ orders are (3, 3, 3). Other parameters are the
same as in Fig. 3

5°%x5°,2°%x2° 1°x 1° and 30’ x 30’. This indicates the existence of the superpo-

sition error effect. Regarding the grid size of 15’ x 15’ for the §V,, and 8V,,, their

relative errors in log,, scale for the spherical zonal band (i.e., —10.1 and —10.10)
are smaller than those for the single tesseroid (i.e., —9.8 and —10.06), which indi-
cates the existence of the SEEE. Similarly, by comparing the relative errors of the
6V, and 6V, between the single tesseroid and spherical zonal band, the SEEE hap-
pens for the 6V,,, and 6V, with the grid sizes 5° X 5°, 2° x 2°, 1° x 1°, and 30" x 30'.
Regarding the grid size 15’ X 15’, the superposition error effect exists for the 6V,

while the SEEE occurs for the 6V, .
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Table 4 Values of the points using different gird sizes in Fig. 4 with the 3D GLQ orders (3, 3, 3)

Quantity in figure 5° % 5° 2°%x2° 1°x1° 30" x 30/ 15 x 15
Tess_6V in Fig. 4a -6.9 -8.9 —-10.8 -104 -10.1
Tess_6V, in Fig. 4a =55 -7.6 -9.2 -9.8 -94
Tess_6V_. in Fig. 4a -53 =72 -8.8 -10.3 —-10.1
Tess_6V,, in Fig. 4a -59 -8.6 -9.6 -10.4 -9.8
Tess_6V,, in Fig. 4a -5.2 -74 -9.2 -10.34 ~ -10.3 —10.06 ~ —10.1
Tess_6V__ in Fig. 4a —4.4 —-6.6 -8.3 -9.5 —-10.0
Tess_6V,,, in Fig. 4a 437~ -44 -6.5 -8.2 -9.17~ -9.2 -9.18 % -9.2
Tess_6V,,, in Fig. 4a —4.3 -6.3 -8.0 —8.66 ~ —8.7 -8.67 ~ —8.7
Band_éV in Fig. 4b -6.9 -89 —-10.8 -10.4 —10.1
Band_é6V, in Fig. 4b =55 -7.6 -9.2 -9.8 -94
Band_éV_. in Fig. 4b =53 =72 -8.8 -10.3 -10.1
Band_sV,, in Fig. 4b =53 =72 -8.8 -10.3 -10.1
Band_sV,, in Fig. 4b -53 =72 -8.8 -10.31 = -10.3 —10.10 = —10.1
Band_6V__in Fig. 4b —-4.4 —-6.6 -8.3 -9.5 -10.0
Band_¢6V,. in Fig. 4b —-442~ —44 —-6.6 -8.3 -94 -9.0
Band_éVm in Fig. 4b —4.4 —-6.6 -8.3 -94 -9.0
Shell_6V in Fig. 4c —4.4 —6.6 -84 -10.3 -12.0
Shell_éV, in Fig. 4c -24 —4.8 -6.2 -8.2 -10.0
Shell_6V__ in Fig. 4c -1.0 -34 —4.3 -6.3 -8.1
Shell_§V,, in Fig. 4c -1.0 -34 —4.3 -6.3 -8.1
Shell_¢V, in Fig. 4c -1.0 -34 —43 -6.3 -8.1
Shell_6V_, in Fig. 4c 0.0 -0.9 —24 —4.5 —6.4
Shell_6V,,. in Fig. 4c 0.0 -0.9 —24 —4.5 —6.4
Shell_6V,,, in Fig. 4c 0.0 -0.9 —24 —4.5 —-6.4

Regarding the single tesseroid and spherical shell in Fig. 4a, c, and Table 4, the relative
errors of the GGT (6V,, 6V,,, and 5Vyy) and GC (6V_,, 6V,,., and 5Vyyz) for the spheri-
cal shell are larger than those for the single tesseroid at different grid sizes (i.e., 5° X 5°,
2°x2° 1°x 1°, 30" x 30/, and 15’ x 15’). Meanwhile, this rule can also be found for the
relative errors of the GP (6V) and GV (6V,) for the spherical shell with the grid sizes
5°%5° 2°x2° 1° x 1°, and 30’ x 30’. These numerical results indicate the existence of
the superposition error effect for the numerical strategy of a spherical shell discretized into
tesseroids. However, for the grid size 15’ x 15’ of the 6§V and §V,, the numerical results of
the relative errors between the single tesseroid and spherical shell reveal that the SEEE
happens in current situation.

3.4 Comparison of Gravitational Effects of Every Individual Tesseroid Forming
the Whole Spherical Zonal Band and Spherical Shell

In previous numerical experiments in Sects. 3.2 and 3.3, the location of the single tesseroid
was based on a specific tesseroid, i.e., the first tesseroid in the longitude direction at dif-
ferent grid sizes. To comprehensively investigate the superposition error (or elimination)
effect of the spherical zonal band and spherical shell discretized into tesseroids, the specific
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single tesseroid is extended to every individual tesseroid forming the whole spherical zonal
band and spherical shell. In other words, the relative errors of the gravitational effects (i.e.,
GP, GV, GGT, and GC) of every individual tesseroid forming the whole spherical zonal
band and spherical shell are studied in this section.

The numerical settings in this section are the same as those in Sect. 3.3. The 3D GLQ
orders are set as (3, 3, 3), and the grid size of the discretized tesseroids is 1° X 1°. This
simplifies the numerical experiment in this section, in which the effects of the 3D GLQ
orders and grid size are explored numerically in Sects. 3.2 and 3.3, respectively. The rela-
tive errors of the gravitational effects in log,, scale for each individual tesseroid forming
the whole spherical zonal band are illustrated in Fig. 5a. Note that these relative errors are
calculated based on the reference values and calculated values of each individual tesseroid.
After subtracting the relative errors of the gravitational effects in log,, scale for the spheri-
cal zonal band discretized using tesseroid (i.e., these values are listed in Table 4 with the
grid size 1° X 1°) based on the corresponding numerical values in Fig. 5a, their differences
of the relative errors in log,, scale of the gravitational effects are shown in Fig. 5b. Mean-
while, the statistical information of the values in Fig. 5 is listed in Table 5.

When calculating the relative errors of the gravitational effects for every individ-
ual tesseroid forming the whole spherical shell, the In(0) occurs for the reference val-
ues of the gravitational effects (e.g., V,V,, V_, V., and Vyy) with the colatitude of the
integration point 6§, = 0°. Thus, the relative errors of the gravitational effects with the
first number of the colatitude for the tesseroids forming the whole spherical shell are
dropped. The number of the colatitude for every individual tesseroid is [2, 180] with the
grid size 1° X 1°. Then, the relative errors of the gravitational effects in log,, scale for
each individual tesseroid totally forming the spherical shell along the colatitude direc-
tion with the first longitude profile are shown in Fig. 6a, where the first longitude profile
is chosen to reveal the variation in the relative errors. In this numerical experiment, the
first longitude is from 0° to 1° due to the grid size of 1° X 1°. Similarly, after subtracting
the relative errors of the gravitational effects in log,, scale for a spherical shell discre-
tized into tesseroids (i.e., these values are listed in Table 4 with the grid size 1° X 1°)

(a) (b)
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Fig.5 Illustration of (a) the relative errors of the gravitational effects in log,, scale for each individual
tesseroid totally forming the whole spherical zonal band; (b) the difference of the relative errors of the
gravitational effects in log,, scale between each individual tesseroid and a spherical zonal band discretized
into tesseroids. The x-axis means the counter of the individual tesseroid along the longitude direction. The
grid size of the discretized tesseroids is 1° X 1° and the 3D GLQ orders are (3, 3, 3)
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Table 5 Statistical information

of the values in Fig. 5, where Quantity in figure Min Max Mean STD RMS

Min, Max, Mean, STD, and RMS 5, 4/ g6 5 108 -108 —108 00 108

are the values of the minimum,

maximum, average, standard 6V, in Fig. 5a -92 -92 -92 00 9.2

derivation, and root mean square &V, in Fig. 5a - 8.8 - 8.8 - 8.8 0.0 8.8

with one truncated decimal place 8V, in Fig. 5a —97 -13 —91 0.4 9.1
8V, in Fig. 5a -9.7 -173 -9.1 04 9.1
6V, in Fig. 5a -83 -83 -83 0.0 8.3
6V, in Fig. 5a —10.1 -17.0 -82 0.3 8.2
8V, in Fig. Sa -103 -17.0 -82 0.3 8.2
6V in Fig. 5b 0.0 0.0 0.0 0.0 0.0
6V, in Fig. 5b 0.0 0.0 0.0 0.0 0.0
6V._. in Fig. 5b 0.0 0.0 0.0 0.0 0.0
6V, in Fig. 5b - 1.6 0.8 0.3 0.4 0.5
8V, in Fig. 5b - 1.6 0.9 0.3 0.4 0.5
6V, in Fig. 5b 0.0 0.0 0.0 0.0 0.0
6V, in Fig. 5b -13 1.8 -0.1 0.3 0.3
6V,,. in Fig. 5b -12 2.0 -0.1 0.3 0.3

yyz

based on the numerical results in Fig. 6a, their differences of the gravitational effects are
shown in Fig. 6b. The statistical information of the values in Fig. 6 is listed in Table 6.

Moreover, the relative errors in log,, scale of the gravitational effects for every indi-
vidual tesseroid forming the whole spherical shell are also calculated and their statisti-
cal values are listed in Table 7. After subtracting the relative errors of the gravitational
effects in log,, scale for a spherical shell, the differences of the relative errors in log,
scale of the gravitational effects are obtained, and their statistical values are also listed
in Table 7.

In Fig. 5a, the relative errors of the 6V, 6V,, 6V, and 6V, appear as distinct straight
lines, which indicates that their values are not affected by changes in longitude of each
individual tesseroid. Regarding the 6V,,, 6V, 6V, ., and 6V, , their relative errors exhibit
periodic changes as longitude changes. The period of change is about 180°. In Fig. 5b, the
differences of the 6V, 6V,, 6V_,, and 6V_, are about zero, which reveals that the superposi-
tion error (or elimination) effect does not exist for these components by using the strategy
of a spherical zonal band discretized into tesseroids. Regarding the 6V, 6V,,, 6V,,,, and
oV,,., their differences are related to the position of the individual tesseroid along the lon-
gitude direction. From Table 5, the mean values of the differences are about 0.3 for the 6V,
and 6V, and —0.1 for the 6V,,, and 6V,,.. These numerical values reveal that on the overall
average, the SEEE occurs for the 6V, and 6V, and the superposition error effect exists for
the 6V,,, and 6V,

In Fig. 6a, as the colatitude increases, all curves first drop sharply, then oscillates errati-
cally, and finally rise. In Fig. 6b, except for a small number of the values below zero at the
beginning, all subsequent values are greater than zero. These results reveal that the SEEE
occurs for the spherical shell discretized into tesseroids in the most cases. This effect can
be confirmed not only by the mean values of the differences in Table 6 as 1.8 for the 6V,
3.7 for the 6V,, 5.3 for the 6V, 4.8 for the 6V,,, 5.2 for the (SVW 6.9 for the 6V, 6V,
and 7.0 for the 6 Vyyz, but also by the mean values of the differences in Table 7 as 1.8 for the

oV, 3.7 for the 6V,, 5.3 for the 6V, 5.1 for the 6V, 6V,,, and 6.9 for the 6V, 6V,,., 6V,

w yy? 222° xxz° yz

@ Springer



Surveys in Geophysics (2023) 44:1125-1173 1147

(@) (b)

. - it N

I
IS

© o
=

_—
o
<

8
e ' =
= o
< NIV, 8 QS /, , |
5 b
2 B
RO | RSSR— Y Y ° 4
2 ¥ ) s ]
5 WP ; | I !
2 —104- ‘ ! ) ’y f ‘»' B
W i i k] >
—11 1] B WL I R } Feft B
;
-12 '
o
~13
-1
14
> 45" 135" 180" 2 45° 135° 180°

90° 90"
Colatitude Colatitude
Fig.6 Visualization of (a) the relative errors of the gravitational effects in log;, scale for each individual
tesseroid totally forming the spherical shell along the colatitude direction with the first longitude profile;
(b) the difference of the relative errors of the gravitational effects in log,, scale between each individual
tesseroid and a spherical shell discretized into tesseroids. The x-axis means the colatitude of the discretized
tesseroid. Other parameters are the same as in Fig. 5

Table 6 Statistical information

of the values in Fig. 6, where Quantity in figure Min Max Mean STD RMS

oiher information is the same it 5 in Fig. 6a ~120 -66 -102 08 102
5V, in Fig. 6a 117 =55 -99 08 9.9
8V...in Fig. 6 118 -36 -95 10 9.6
5V, in Fig. 6a 120 -39 -91 12 9.1
5V, in Fig. 6a 133 -55 -94 10 95
8V._.in Fig. 6a 126 —41 -94 11 9.4
5V, in Fig. 6 118  —41 -93 10 94
8V, in Fig. 6a 117 -50 -94 09 95
5V in Fig. 6b 18 37 18 08 2.0
5V, in Fig. 6b 07 55 37 08 38
8V...in Fig. 6b 07 75 5310 53
8V, in Fig. 6b 03 17 48 12 49
8V, in Fig. 6b 12 90 52 10 53
8V._.in Fig. 6b 17 101 69 11 7.0
8V, in Fig. 6b 16 93 69 10 7.0
8V, in Fig. 6b 25 93 70 09 7.1

z

4 Conclusions and Outlook

Previous studies investigated the gravitational effects of a tesseroid by different numeri-
cal approaches. Meanwhile, the integrals in the expressions for the gravitational effects
of a tesseroid were often considered not to be integrated analytically. In this contri-
bution, the analytical expressions for the gravitational effects (i.e., GP, GV, GGT, and
GC) of a tesseroid are derived when the computation point is located on the polar axis.
Based on the relation between the tesseroid and the spherical zonal band, the simpler
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Table 7 Statistical information

of the values for the relative Parameter Quantity  Min Max Mean STD RMS

errors m log,; scale of the Relative errors 6V -120 -6.6 -102 0.7 10.2

gravitational effects for every

individual tesseroid forming the v, -11.7 =55 -99 08 9.9

whole spherical shell and the oV, -11.8 =36 -95 1.0 9.6

differences of the relative errors SV 143 —-34 -93 1.1 94

in log, scale of the gravitational -

effects between every individual OVyy - 148 34 -93 11 94

tesseroid and the spherical shell oV, -126 -37 =93 12 9.4
6V, -144 -22 -93 1.1 9.4
Ve -149 -22 -93 11 94

Differences oV - 1.8 3.7 1.8 0.7 2.0

6V, -0.7 5.5 37 08 3.8
6V, -0.7 7.5 53 1.0 53
6V, -09 10.1 51 1.1 52
8V, -09 105 51 1.1 52
6V, 1.7 10.1 69 1.1 7.0
6V, -03 119 69 1.0 7.0
6V, -03 125 69 1.0 7.0

analytical expressions for the gravitational effects of a spherical zonal band are derived
in comparison with previous studies. In addition, the analytical expressions for the
gravitational effects of a spherical shell are presented based on the relation between the
tesseroid and the spherical shell.

These new analytical formulas of the GGT and GC of the tesseroid and spherical zonal
band are confirmed to be correct by using Laplace’s equation. Meanwhile, the consistency
of the analytical expressions for the gravitational effects of a spherical zonal band between
Deng (2022) and this paper is confirmed in Appendix F.

The influence of the 3D GLQ orders from (1, 1, 1) to (7, 7, 7) on the gravitational
effects of the single tesseroid, spherical zonal band, and spherical shell is investigated with
the grid size 1° X 1°. As the 3D GLQ orders increase, the relative errors of the gravitational
effects of the single tesseroid and spherical zonal band decrease and remain at a certain
level. For the spherical shell, the relative errors decline with the increased 3D GLQ orders.
Comparing the single tesseroid and spherical zonal band, the superposition error (or elimi-
nation) effect does not exist for these gravitational components (i.e., 6V, 6V,, 6V, and
oV, at different 3D GLQ orders. Regarding other gravitational components (i.e., 6V,
6Vyy, oV, and 6Vyyz), the SEEE mainly occurs. For the single tesseroid and spherical
shell, the 3D GLQ orders have an impact on the superposition error (or elimination) effect.
Specifically, the superposition error effect exists for lower 3D GLQ orders, and the SEEE
exists for higher 3D GLQ orders.

The influence of the grid sizes on the gravitational effects of the single tesseroid, spheri-
cal zonal band, and spherical shell is investigated with the 3D GLQ order (3, 3, 3). As
the grid sizes decrease from 5° X 5° to 15’ x 15/, the relative errors decline first and then
increase for the 6V, 6V,, 6V_, 6V, and (SV”, of the single tesseroid and spherical zonal
band. The relative errors decline with the finer grid sizes not only for the 6V, 6V,,,, and
oV,,, of the single tesseroid and spherical zonal band but also for all gravitational effects

Wz
(ie.,0V,06V,, 0V, 6V, 5Vy,, oV, 6V, and 5Vm) of the spherical shell. For the com-

2’

parison between the single tesseroid and spherical zonal band, the superposition error (or
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elimination) effect does not occur for these gravitational components (i.e., 6V, 6V,, 6V,
and 6V_,.) with different grid sizes. Regarding the 6V,, and 6V, the superposition error
effect exists with the grid sizes 5° x 5°,2° x 2°,1° x 1°, and 30’ x 30’ and the SEEE occurs
with the grid size 15’ X 15'. On the contrary, regarding the 6V, and 6V, , the SEEE hap-
pens with the grid sizes 5° x 5°, 2° x 2°, 1° x 1°, and 30’ x 30’. The superposition error
effect occurs for the §V,,, and 6V, with the grid size 15’ X 15'. Regarding the comparison
between the single tesseroid and spherical shell, numerical results show that the superposi-
tion error effect happens for the gravitational effects of the spherical shell discretized into
tesseroids with different grid sizes, except for the §V and 6V, with the grid size 15" x 15'.
The superposition error (or elimination) effect is investigated for the gravitational
effects of every individual tesseroid forming the whole spherical zonal band and spherical
shell with the grid size 1° X 1° and 3D GLQ orders (3, 3, 3). Numerical results show that
the superposition error (or elimination) effect does not exist for the 6V, 6V,, 6V, and 6V,
by using the strategy of a spherical zonal band discretized into tesseroids. Regarding the

OV 5Vyy, 6V, and & VyyZ of the spherical zonal band, the SEEE occurs for the 6V, and
6V, and the superposition error effect exists for the 6V, and 6V, on the overall average.

Regarding a spherical shell discretized into tesseroids, the SEEE occurs for this strategy in
most cases.

In short, these numerical experiments confirm the existence of the SEEE hypothesis.
When using the tesseroids in practical applications of gravity field modeling, the local
error assessment by using the analytical formulas of the GP, GV, GGT, and GC of a tesse-
roid of this paper will be performed necessarily in the future study. Due to the existence
of the SEEE and superposition error effect, the benchmark of a spherical zonal band and
a spherical shell discretized into small mass bodies should be employed with caution in
gravity field modeling in geodesy and geophysics. Their numerical results only pertain to
the global situation as a whole spherical zonal band or a whole spherical shell, not the local
one.

The new strategy of a reference tesseroid with respect to its calculated tesseroid can be
proposed in comparison with the commonly used strategies of a spherical zonal band and a
spherical shell discretized into tesseroids. The mathematical derivations using the spherical
coordinates 4, 6, and r in the paper can also be performed by using the spherical polar coordi-
nates & and y (Novék et al. 2017, 2019). Meanwhile, the coordinate system transformation of
the higher-order gravitational gradients will be investigated in the near future. In future stud-
ies, these new derived analytical formulas of the gravitational effects of a tesseroid can serve
as reference values for the evaluation of the calculated gravitational effects of the tesseroid by
using not only the above-mentioned numerical methods but also other numerical approaches,
e.g., spherical harmonics (Ramillien 2017; Baykiev et al. 2020; gprlék et al. 2020). Future
research will investigate the comparison of these numerical approaches to calculate the vol-
ume or surface integrals of the tesseroid. Compared with the spherical zonal band and spheri-
cal shell, the variation in the relative errors of the gravitational effects of the tesseroid can
be revealed from a more subtle perspective. The SEEE can be extended to an arbitrary mass
body that can be discretized into smaller mass bodies not only in the spatial domain but also
in the spectral domain. On the basis of this paper, the higher-order gravitational potential gra-
dient (e.g., the fourth-order gravitational potential gradient (Deng and Ran 2021) and first-
order derivatives of the invariants of the GGT (Deng et al. 2021)) of a tesseroid can also be
derived analytically when the computation point is located on the polar axis. Finally, based on
the results of this study in the gravity field, it can be extended to the magnetic field. In other
words, the analytical expressions for the magnetic effects of a tesseroid can be derived in the
magnetic field.
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Appendix A Derivation of the Analytical Expression for the GP
of a Tesseroid

When the computation point is located on the polar axis and 8 = 0, Eq. (3) becomes

cosy = cos @’
and substituting Eq. (36) into Eq. (2) yields:
P=r+r*=2r cos'
Differentiating Eq. (37) with respect to the 6’ yields:

21i =2rr sinf’
do’

After the simple mathematical transformation, Eq. (38) becomes:

sing'de’ = idl

rr’!

Substituting Eq. (39) into Eq. (1) yields:

b /2
V=0Gp / / / dld/l’dr
Ay #
= Gp / / / Zaida'dr
r A A r
G n A
i / / o {)Fdxdr
== 3
r A

Gp(dy = A) [7
_ Gptha = A) 1)/ Uy - 1)dr
r "

where [, = \/r2 + 7% = 2rr' cosh, and [, = \/r2 + 7% =211 cos 6.

In Eq. (40), / ' 1,dr' is obtained as:

/ \/r2 + 7% =271 cos 0, dr’

1
12

+ 677 sin® 6, cos 6, In (r’ —rcos, + \/r2 + 1'% = 2rr' cos 92>] i

"

[(r + 4% =21/ cos 0, — 312 cos 292) \/r2 + 2 = 2r7 cos 0,

r
and / —7'1,d7’ is obtained as:
r

1
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Table 8 Detailed expressions for

the Any, Ay, Ay, Aryy By, By, o, Parameter Expression

nec b A % 4 (1 = 3c0520;) — 2 cos
Ap, 4r,2 + r*(1 — 3cos 20,) — 2rr, cos 0,
Ay 4ry2 +r2(1 = 3¢c0s20,) — 2rr, cos 8,
Ay 4r,2 + r2(1 — 3c0s 26,) — 2rr; cos 6,
B, 13 sin” 6, cos 6,
B, 73 sin® 0, cos 6,
Cyy ry — rcosf,
Cp, ry —rcosf,
Cy ry —rcos b,
Ch ry —rcosé,

)
/ -7 \/r2 + 1'% =21 cos 0, dr’
i

= —% [(rz +47% =21/ cos 6, — 3r* cos 291)\/r2 + 7% —2rr' cos 6, (42)

+ 677 sin” 0, cos 8, In <r' —rcosf; + \/r2 + 1'% = 2rr cos 01)]

r

"1

After substituting Eqgs. (41) and (42) into Eq. (40), the analytical formula of the GP of a
tesseroid when the computation point is located on the polar axis is obtained in Eq. (4).

Appendix B Derivation of the Analytical Expression for the GV
of a Tesseroid

When the colatitude of the computation point is 8 = 0, substituting Eq. (36) into Eq. (6)
yields:

A, =rcosd —r (43)
and Eq. (37) can be transformed into:

2 2 _ 2
' cosd —r=—LELZL (44)

Substituting Eqgs. (39), (43) and (44) into Eq. (5) yields:
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Table 9 Detailed expressions for

the Dy, Dy, Dy, and D, for the Parameter Expression

radial GV (V) in Eq. (7) D, 7,2 + r*(3 cos? 0, — 2) + rr, cos 6,
D, 72 +1r2(3cos? 0, — 2) + rry cos 6,
Dy, 752 + 123 cos? 0, —2) + rry cos 0,
Dy, 2+ r2(3cos? 0, —2) + rry cos b,

rnoophkorho g2 2, 2 2
V,=Gp/ / / %(—l”—’)i,dku’dr’
r A I [ 2r
Ay I 2 _ 2
_ / / / PEAZ 1) gy
2r2 /1] I

” 45)
= "\ |Parar
a 2r2 ! I
G Ay — j, _ 2 2 _ 72
_ ﬂ(z )/ rr—r >—r'<ll—r r )]dr'
L L
In Eq. (45), 12 1 )dr becomes:
2
r7 5 I”2 _ r,z
/ r’(\/r2+r’ —2rr' cos 0, — )dr'
n 72+ 1'% = 2rr' cos 0,
= [%( — 272 4+ 7% + ' cos 0, + 317 cos 0,) \/r2 + 7% = 2rr' cos 6, (46)
—2r%sin 0, cos 6, In (r’ —rcosf, + \/r2 + 1% = 2r' cos 6’2>] K
n
g 72— r/2
and/ —r’(ll - )dr' becomes:
r 1
r 2 _ 12
/ —r'<\/r2+r’2—2rr’cos91 - U >dr’
g P2+ 1'% = 2rr' cos 0,
47)

= [— %( —2rz+r’2+rr’cosé’l +3r2005291)\/r2+r’2—2rr’cosl9l

)
+2r%sin 0, cos 6, In <r' —rcosf, + \/r2 + 1'% = 2rr' cos 01)] ;

1

After substituting Eqs. (46) and (47) into Eq. (45), the analytical formula of the radial
GV of a tesseroid when the computation point is located on the polar axis is obtained in
Eq. (7).

Regarding the analytical expressions for the V, and V, of a tesseroid, their derivations
are presented in the Mathematica code GV_VxVy.nb at the link https://github.com/xiaol
edeng/analytical-tesseroid-spherical-zonal-band.

@ Springer


https://github.com/xiaoledeng/analytical-tesseroid-spherical-zonal-band
https://github.com/xiaoledeng/analytical-tesseroid-spherical-zonal-band

Surveys in Geophysics (2023) 44:1125-1173 1153

Appendix C Derivation of the Analytical Expressions for the GGT
of a Tesseroid

When the colatitude of the computation point is 8 = 0, substituting Egs. (39), (43), and
(44) into Eq. (5) yields:

r- A 1 2
2 L 3. P+rr—v 1
V,=G ’2[— _—_— - —dldi’d /
" p/ /,11 ,/ll " 15( 2r Y- B
b b BB+ 2232 = 377 + 302 = P22
o [° [ [
=43 . 4

/ //1» 2(?‘2 _ 3?”2) ~ (7’2 /2)2]
s l B

G A=A 2 _ 3,02 2 J2\2
P(z 1)/ [312 2(rc = 3r )_(r r)]

aNdr (48)

h 1}
- 2 _ 12\2
_,,/[311_20 3% (r 3r ) ]}dr’
L L
g 212 — 32 2 _ a2\2
In Eq. (48),/ I [312 G 7 ) _ E ) ]dr’is calculated by
T, 2 2
r 2 _ 2,02 2 12\2
/ r'[3\/r2+r’2—2rr’c0892— 2 =3r) - =r) ]dr'
n \/r2+r’2—2rr’c0592 (\/rz+r’2—2rr’cosé'2)3

21+ 2P 4P = (P + 4 ) cos 0, — 232 + 1'7) cos 26, + 331 cos 36,
=3

2+ 1% = 2rr cos 0,

;
+ 617 sin” 6, cos 6, In (r' —rcosy +4/r2 + 1t =2 COS@Z)H ’
,

(49)

2 _ 2 2 _ 1272
and/ —r 311 ¢ l3r ) _ l; ) ]dr'is calculated by
1 1

2 2 22y
/ 2+ 1'% = 2rr' cos 01 A =37 - il ly)

3

2 [r4 + 2P A4t — (2 + 4P cos 0, — P2(32 + F'?) cos 26, + 313 cos 36,

3 /
2+ 1'% = 2rr' cos 0,
,
+ 613 sin® 6, cos 0, In (r’ —rcos@, +1/r2 +1'* = 21 cos 0 )] ’

"

]dr'

(50)
After substituting Eqgs. (49) and (50) into Eq. (48), the analytical formula of the
radial-radial GGT of a tesseroid when the computation point is located on the polar axis is
presented in Eq. (9).
Regarding the analytical expression for the V,, with the colatitude of the computation
point 8 = 0, Eq. (11) becomes
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Table 10 Detailed expressions for the E,,, E,,, E,|, and E|, for the radial-radial GGT (V,,) in Eq. (9)

Parameter Expression

E,, 4 120)% + 4t — rry(rF + 4r,2) cos 8, — r2(3r* + 1,2) c0s 20, + 373, cos 36,
E, 42 + 4t = e (rF + 4, %) cos 0, — r*(3r? + ;%) cos 20, + 3r3r, cos 36,
E,, 412 0? + 4t — rry(r? + 4r,2) cos 8, — 2 (3r% + 1,%) cos 26, + 3r3r, cos 36,
E) 42+ Art = (7 + 4r 2 cos 0) — r2(3r% + 1, 2) cos 20, + 3rr, cos 36,

Table 11 Detailed expressions for the F,, F|, H,, H,, L5, 1|5, I}, 111, J5, J1, Ky, K15, K5}, and K for the V,,
in Eq. (14)

Parameter Expression

F, —3cosb, [8(/12 — A)sin® 6, + 4 cos(2A — Ay — Ay)sin(A, — 4,)(5 — cos 292)]

Fy —3cos 0, [8(A, — Ay)sin® 6; + 4cos(2A — A, — 4,) sin(4, — 4,)(5 — cos 26))]

H, —40* + Py + 4N (4 — 4))

H, 40t + P+ Ay = A)

1% 277 [(3}’2 +1,%) cos 260, — 3rr, cos 392] [212 —2A; +sin2(4 = 4;) —sin2(4 — Az)]

I, 277 [(?ar2 + ;%) cos 260, — 3rr, cos 392] [212 —2A; +sin2(4 = 4;) —sin2(4 — Az)]

I 22 [(3r% + 1,%) c0s 20, — 3r7y 08 30, [24, — 24, +sin2(A — 4,) — sin2(A — 4,)]

I 22 [(3r% + %) cos 20, — 3rry cos 30, [24, — 24, +sin2(A — 4,) — sin2(A — 4,)]

Jp —4(137* + 13771, + 4r,*) cos(24 — 1, — Ay) sin(4, — 4,)

Ji —4(137* + 137272 + 4r,*) cos2A — 4, — Ay) sin(A, — 4,)

Ky 4rry €08 0, [(F% + 4r,2)(Ay — A) + (2517 + 4r,?) cos(24 — A, — Ay)sin(A, — 4))]

Ky, drry cos 0, [(F* + 4r ) (Ay — A + (257 + 4r?) cos(24 — Ay — Ay)sin(A, — Ay)]

K drry cos 0, [(* + 4r,2)(Ay — A + (2577 + 4r,?) cos(24 — Ay — Ay)sin(A, — Ay)]

Ky drry cos 0, [(* +4r ) (Ay — A) + (257 + 4r?) cos(24 — Ay — Ay)sin(A, — Ay)]
A, =—r'sin8 cos(A’ — A) (51)

Substituting Eqgs. (37) and (51) into Eq. (10) yields:

Table 12 Detailed expressions for the Ly, Ly, My, My, My, My, Ny, Nip, Ny, and Ny for the V), in Eq.
15) '

Parameter Expression

L, —3¢08 0, [8(4, — A;)sin® 0§, — 4cos(24 — 4, — 4,)sin(A, — 4,)(5 — cos 26,)]

L, —3c0s ) [8(4, — A;)sin” ), — 4cos(24 — 4, — A,)sin(A, — 4,)(5 — cos 26,)]

My, 212 [(3r% + 1,%) c0s 20, — 3r7y €08 36, | [24, — 24; — sin2(A — 4,) + sin2(A — 1)
M, 272 [(3r% + r,?) cos 20, — 3rry cos 36, [24, — 24, — sin2(A — 4;) + sin2(A — 1)
M, 272 [(3r% + 1,%) cos 20, — 3rr, cos 30, | [24, — 24, — sin2(A — 4,) + sin2(A — 4,)]
M, 272 [(3r% + %) cos 20, — 3rry cos 30, [24, — 24, — sin2(A — 4,) + sin2(A — 4,)]
Ny 4rry €08 0, [(% + 4r,2)(Ay — A) — (2517 + 4r,?) cos(24 — Ay — Ay)sin(A, — A))]
Nyy 4rry cos 0, [(F% + 4r ) (Ay — A) — (2517 + 4rP) cos(24 — A, — Ay)sin(A, — A))]
Ny 4rry cos 0, [(F7 + 4r,2)(Ay — A) — (2517 + 4r,?) cos(24 — Ay — Ay)sin(A, — A))]
Ny 4rry cos 0, [ +4r ) (Ay — A) — (2517 + 4rP) cos(24 — A, — Ay)sin(A, — A))]
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oot rh 3| — 7' sin@ cos(A' — A) :
Ve = Gp/ / / #? sin 0'[ [ ]5
n Jeo Ji (\/r2 + % = 2rr' cos 0’)
- ! 3 ] dA'de'dr’
(\/r2 +r'*=2rr' cos 9')

nooro 12 in !
=Gp / / r_sind - [ — 40P+ A + 81 cos 0/ 2
ro Jo 4(\/r2+r’2—2rr’cos0’)

)
—3/%sin? @' [24 — 24 + sin 2(A — /1’)]] do'dr’
A
norh r?sing’ 2
=Gp / / [6/ sin® @ sin(4, — 4,)cos(24 — A, — 4,)
o Jo 4(\/r2 + 1'% = 2rr' cos 0’)

— (A — A)@7 + 77 = 8rr cos 6 + 31 cos 29/)] de’dr’

n /
=Gp / { 4 S [rr’ [S(r2 +37) (4, — A cos
g 8r3(\/r2+r’2—2rr’cost9’)‘

= 377’ 0820 [24, — 24, + sin 2(A — 4,) — sin 2(4 — Az)]]

~2¢08(24 — A, — Ay)sin(A, — ) [4r* + 13727 + 4r'* — 1207 (% + %) cos 0]

0,
= 27297 +4r"%)(A, — /11)] } dr'
0
(52)
where in Eq. (52),
" r ’ 2 2
rr [S(r +37 )4y — 4)) cos 6,
o8B (\r2+ =2 00502)3
= 317 c08 260, [24, — 24, + Sin2(4 — A}) — sin2(A — /12)]]
—2¢08(24 = Ay — Ay)sin(Ay — A [4r* + 137277 + 4’ — 120 (P + 1"%) cos 6,
— 2729 + 47%) (4, — ,11)] dr
1 .
=% [ —3¢0s 0, [8(4, — 4;)sin® 0,
+4¢08(24 — 4, — Ay)sin(d, — 4,)(S — cos 20,)] In (r’ — rcos @y + /12 + 1% = 21" cos 92>
+ ! N L . (¢ T )
r3y/r2 + 1'% =21 cos 0,
+272[3r7 + #?)cos 260, — 3rr’ cos 30,|[24, — 24, +sin2(A — 4)) — sin2(4 — 4,)|
— 413 + 1372 + 47 Y cos(24 — Ay — Ay)sin(A, — A,)
n
+ 411’ cos 0, [ + 41" %)(Ay — Ap) + (257 + 41'%) cos(24 — Ay — Ay) sin(dy — /11)]]]
(53)
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n /
/ - d [rr’ [S(r2 + 3;”2)(12 — A;)cos 0,
" 8r3(\/r2+r’2—2rr’00591)3

—3rr cos 20, [2/12 =24 +sin2(A — A) —sin2(4 - /12)]]
— 200824 = A = Ay)sin(d, — AD[Art + 13727 + 47 =120 (2 + %) cos 0,

=279 +4r'*) (2, — /11)] dr’

1 .
= —&[— 3cos b, [8(12 — 4;)sin® 6,

+4cos(24 — Ay — Ay) sin(4, — 4,)(5 — cos 26,)] In (r/ —rcos@, +/r2 +r'* = 2rr cos 0, )

+ ! —40* + P+ 4, = A)

34/ + 1'% = 2rr cos 0,

+272 (3 + %) cos 260, — 3rr’ cos 30,][24, — 24, +sin2(4 — 4)) = sin2(4 — 4,)]
—4(13r* + 132 + 47 ) cos(24 — Ay — Ay) sin(A, — A))

+ 4117 c0s 0, [(P + 4" 7)(Ay — A) + (257 +4r"7) cos(2A — Ay — Ay)sin(A, — ,11)]”

n

r
1

(54)

After substituting Eqgs. (53) and (54) into Eq. (52), the analytical solution for the V., of a
tesseroid with the computation point located on the polar axis is obtained in Eq. (14).

Similarly, regarding the analytical solution for the V|, with the colatitude of the compu-
tation point § = 0, substituting Eqs. (13) and (37) into Eq. (12) yields:
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. . 2
ot ok 3(# sin @’ sin(A’ — A)
Vyy=Gp/ / / r’zsine’[ [ ] .
o Jo Ja (\/ 2+ 1'% = 2rr cos 9’)
1

- ] dA'de’ar’

(V2 + % =2 cosO’)3

6 12 ot
=Gp / / r_sinf [ — 42+ A + 81 cos 0 X
n 0, 4(

5
V2 +r? =2 0050’)

— 3% sin? 0/ [24 — 24" — sin2(4 — A’)]]

A’Z
de'dr’
Ay

nort #?sin@’ 22
=Gp —6r'"sin” 0’ sin(4, — A;)cos(2A — A; — 4,)
n 0, 4(

5
V2 + =2 cos@’)

— (A =A@ + > = 8r cos 0’ + 317 cos 29’)] do'dr’

n /
= Gp/ { il S [rr’ [8(}’2 + 3r’2)(A2 — ) cos &’
r 8r3(\/r2+r’2—2rr’c056’)*

—3rr' c0s20' (24, — 24) —sin2(A — 4)) + sin2(4 — /12)]]

+2¢08(Q24 — Ay — Ay)sin(A, — A [4r* + 137277 + 4’ — 120 (P + %) cos 0]

— 2729 + 4 %) (A, — /11)] }

0,
dr
gl
(55)
where in Eq. (55),

6] /
/ ! [rr' (867 + 34, = 4 cos 6
" 8r3(\/r2+r’2—2rr’cos6?2)3

= 31 08 260, |24, — 24, — Sin2(4 — A}) + sin 2(4 — ,12)]]
+2¢08(Q24 = A — Ay)sin(y — A [4r* + 13777 + 4’ — 120 (P + %) cos 6,

— 2779 + 474, — /11)] dr

1 )
=5 [ —3cos,[8(4, — 4;)sin’ 6,

—4cos(2A— A — Ay)sin(4, — 4)(5 — cos 202)] In (r' —rcos, + /72 +1'* = 2rr' cos 02)

+ ! — 40t 2 4y - A)

134/r2 + 1% = 2rr' cos 0,

+272[(3r2 + 1'?) 05 20, — 317" c05 360, [22, — 24, — sin2(A — 4;) + sin 2(4 — 4)|
F4(137* + 137277 + 47 cos(2A — 4, — A,)sin(4, — 4;)

r

+ 47 cos 0, [ + 47 (Ay = Ay) = 257 + 47%) cos(24 — Ay — Ay) sin(A, — /1,)]]]

a1

(56)
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n /
/ - d [rr’ [S(r2 + 3;”2)(12 — A;)cos 0,
" 8r3(\/r2+r’2—2rr’00591)3

= 317 0826, [24, — 24, — sin2(4 — A;) + sin 2(4 — ,12)]]
+2008Q224 = Ay = Ay)sin(d, — AD[Art + 13727 + 47 =120 + %) cos 0,

P2Or + 4?4, — /11)] dr’

1 .
= —&[— 3cos b, [8(12 — 4;)sin® 6,

—4cos(24 — Ay — Ay)sin(4, — 4;)(5 — cos 26,)] In (r/ —rcos@, +/r2 +r'* = 2rr cos 0, )

+ ! —40* + P+ 4, = A)

34/ + 1'% = 2rr cos 0,

+272 (3 + %) cos 260, — 3rr’ cos 30,][24, — 24, = sin2(4 — A)) +sin2(4 — 4,)]
F 4137 + 137277 + 47 cos(RA — 4, — Ay)sin(4, — 4;)

+ 4rr' cos 0, [(r2 + 4r’2)(l2 — 1) — (2572 + 4r'%) cos(24 — A = Ay)sin(4, — Al)]]

r
1

(57

After substituting Egs. (56) and (57) into Eq. (55), the analytical expression for the Viy of a
tesseroid is obtained in Eq. (15).

The other GGT components wa V.., and V,_of a tesseroid are derived and presented in
the Mathematica code GGT_VxyVxzVyz.nb at the link https://github.com/xiaoledeng/analy

tical-tesseroid-spherical-zonal-band.
Appendix D Derivation of the Analytical Expressions for the GC
of a Tesseroid

When the computation point P is located on the polar axis with its colatitude = 0, substi-
tuting Eqgs. (39), (43) and (44) into Eq. (16) yields:

&) Ay b 2 2 2 2 2 2
15, F+r-7r 9, F+r-r 1
V.=G ’2[— ——3————]—dldﬂ’d'
p///z,r ( 2 Vot 2w "

b PR+ 2= P [12252 52 + 2 - P2
3G” / / / ( [ ( )]dld/l’dr
i A

16
A _ 52 22 _ 3
3Gp/ / 51+3(r 57 )+r 621" + 577 (r r )] aA'dr’ (58)
A l B 5
SG Ay — A 2 _ 52 4 _ 202 /4 2 a2\3
P(z )/ [ 51+3(r 5V)+r 6r’r'* + 5r +(r r)]
L 3 5
2 Iy I
_ 5.2 2.2 /4 2 _ 12\3
_r/[_511+3(r 5r ) — 6r%r g + 57 + (r : ) ]}dr’
ll llk l].
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Table 13 Detailed expressions

for the Oy, Oy, Oy, and O, for Parameter Expression

the V,,, in Eq. (17) Oy, ry’ [9r2r2 +4ry% — 4r(r? + 3r,%) cos 8, + 3r%r, cos 202]
0y, 13 [972r) +4r® — 4r(? + 3r,?) cos 0, + 3171, cos 26,
0y, 1,3 (9777, +4r,® — 4r(G? + 3r,) cos 0 + 3171, cos 26 |
0, 2 [97%r) +4r® — 4r(? + 3r,?) cos 0; + 3r*r, cos 26 |

302 =57 -6 a5t (2 =)

L 1> L’

)
In Eq. (58), / ’ [ — 5L+ ]dr’ is obtained
r
as:

r 3 2_5/2
/ r’[—S\/r2+r’2—2rr’cos02+ (r r)
]

2+ 1'% = 2rr' cos 0,

2 4 2
= 6rtr’” +5¢ (r2 r )3 ]dr'
3 5
(\/r2 + 1'% = 2rr' cos 02) (\/r2 + 1'% = 2rr' cos 02)

453 [9r2r’ + 417 — 4r(r2 4+ 3r'%) cos 6, + 312 cos 26’2]

4]

r

3(\/r2 + 7% =27 cos 02)3

r 3 2_5/2 4 _ 272 14 2 _ 1273
and/ —r’[—511+ o )+r Orr_+5r +(r - )]dr’isobtainedas:

1 ll 113 115
&) 2 _ g2
/ —r'[—S\/r2+r’2—2rr’ cos 0, + 30" —5r)
n

2+ 1'% —2rr' cos 6,

4_62,2 5,4 r2—r’23
r r°r'c + 57 ( ) ]dr’
3 5
(\/r2+r’2—2rr’c0501) (\/r2+r’2—2rr’cosl91)

4 (972 +4r” — 4r(r? + 3r%) cos 0, + 3121’ cos 20|

(60)

n

r

3(\/}"2 +r? —2rr’cosl91)3

After substituting Egs. (59) and (60) into Eq. (58), the analytical expression for the radial-
radial-radial GC of a tesseroid when the computation point is located on the polar axis is
obtained in Eq. (17).

Regarding the analytical expression for the V. of a tesseroid with the colatitude of the

pevd

computation point = 0, substituting Egs. (37), (43) and (51) into Eq. (18) yields:
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roorb, Ay o in A ’_ 20,0 ’_
v, = Gp/ / / r’2[15[ 7' sin @ cos(/1[7 AP cosO' —r)
ry 0, A4

3(r’ cos 9’ - r)]

sin@’dA’'de’dr’

0, 32 (r— 1 0')sin 0’
=Gp / / e~ ' cos6')sin - [4(r2+r’2),1’—8rr’ cos§' A
0, P2+ 1'% =217 cos 0')

Ay
+5/ 7 sin2 ¢/ [2/1 — 2/ +5sin2(A - /1’)]] |A‘d9’dr’
1

0, 3/ o 9")sin @’
= Gp / / r(r =1’ cos @) sin [(/12 — 4@ = > = 817 cos 0’ + 51" cos 26')
o r2+ 7% = 2r1 cos @)

— 1072 5in 0/ cos(2A — A, — A) sin(Ay — il)]dﬁ’dr’

b /
- Gp/ { - d [18(r2 =574y — 4))
" 32V 2 + 117 = 251 cos 0/

3(r —1")?[22, = 24 +sin2(4 = 4)) = sin 2(4 — 4,))
2+ 1'% =21 cos 0)?
2 = ")[60? = 57*)(Ay — A) = 1002 + 3*) cos(24 — 4; — Ay)sin(Ay — 4))]

2+ 1% = 2r' cos 0’

/ /
— 15 +r'2)\/ 2’; Cos,f <\/1——2’Z cos g —1>[2/12—2/11
rr4r r’+r

+5sin2(A— ;) —sin2(A — /12)] =302 +37"%) cos(2A — 4, — Ay)sin(4, — /11)] }

HZ
dr’
9]

(61)
where in Eq. (61),
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"2 r 2 2
- 18(r° = 51" ) (4 — A1)
324 /r2 + % = 211 cos 6,

32 = 33|24y = 24y +5in2(A — A) —sin2(4 — 4,)]
+

(2 + 1'% = 271" cos 6,)2
. (2 = "H)[6(2 = 57*)(2y — A1) — 1002 + 31" cos(24 — Ay — Ay) sin(Ay — A1)

12 4+ 1% = 2r cos 6,

52 2rr' cos 0, 2rr' cos 0,
— 1502 + /1 - 1 - -1 [2/12—2,11
P2+ r? 72+ r?

+sin2(A— A;) —sin2(4 — /12)] =302 + 3¢ cos(24 — 4; — Ay)sin(, — /11)] dr’

= ! [6r2r’4 €0520, [24; — 241 +sin2(4 — 4)) — sin 2(A — 4,)]

16r4(\/r2 + 72— 2! 005192)3

. 6 2rr'cosB, 6 2rr' cos 0,
—cos(u—/ll—Az)smur,{l)[ﬁ -2 4 /%54 /1-—"2_16
P2 412 P2 412

2rr! cos 6 2rr! cos 6
+ 15y 1= 22— sl 15y 1 - T2 6|
2+ 2 2+
, 4 2rr! cos 0,
+2r7’ cos 6, [(/12 —apfsrtyf1- R
2+
2rr! cos 6 2rr! cos 6
+ 7541 - =2 — 24|+ 22% 54 /1 - —=2 —4||
72+ 2 72+ 2
2rr' cos 6
+ (P 4+ 17 o524 — Ay — Ay)sin(dy — A)[5774[1 - T—2
124772

1— 2rr' cos 0, _o4 ]]
T

2rr! (2] 2
=507+ (= a1 - % L 49 + 47 (Ay — /1,)]
P2+ 2

8l

+7s
12472

@ Springer

(62)



Surveys in Geophysics (2023) 44:1125-1173 1165

r
2 rl

[18(r2 =57y = A
32r4 /12 + 112 — 201 cos 6,

302 = 1324y — 24 +5in2(4 — Ay) — sin2(4 — 4y)]
+

(2 + 1'% = 2rr" cos >
(2 = "H)[62 = 57*) 2y — 4)) = 1002 +3r'%) cos(24 — Ay — Ay) sin(Ay — A1)
+
P2 4+ 1'% = 271" cos 6,

s 2rr' cos 0; 2rr' cos 0,
1502 + )41 - - —1[2,12—2/11

72+ r? 72+ 2

+sin2(1 — A;) — sin2(4 — ,12)] — 3002 +3r"%) cos(2A — A; — Ay)sin(4, — /11)] dr’

= ! [6r2r’4 0826, [245 — 2A) +sin2(A — 4;) — sin2(A — 4,)]

16r4(\/r2 + 7% =2 c030|)3

. 6 2rr' cos @) 6 2rr' cos 0,
—cos(2l—/11—/12)51n(/12—11)[5r - L5 1- "L _16
124712 12472
2rr! cos 0 2rr’ cos 0
w15y 1= 2 m sl 2 sy 1 - 2 6|
724 ' 2412
, 4 2rr' cos 0, 14 2rr' cos 0;
+ 2 cosGl[(Az—Al)[Sr (ki R PO S il WY1
2472 2 412

2rr' cos 0,

+2r77%54/1 -4

P2+ r?

2 . ) 2rr' cos 6,
+ (" +r7)cos(2A — Ay — Ay) sin(4, — /11)[5r - ——

247
+ 2 5”1-%-24”
12472
217 cos 0
=502+ 7P 0 = Ay 1= Tt 40 + 47 ,11)]
P2 412
(63)

After substituting Eqs. (62) and (63) into Eq. (61), the analytical expression for the V. of a
tesseroid is obtained in Eq. (20).
Moreover, substituting Egs. (13), (37), and (43) into Eq. (19) yields the expression for

the V,,, of a tesseroid with the colatitude of the computation point 6 = 0 as:

n
r

1
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nofl 15[ sind sin(A' — DG cos @’ — 1)
2
ve=Go [0 [T =

3(r’ cos 9’ - r)]

sin@’dA’'de’dr’

0, 32 (r— 1 0')sin 0’
= Gp / / e~ ' cos6')sin - [4(r2+r’2),1’—8rr’ cos 0
0, P2+ 1'% =217 cos 0')

Ay
+5/ 7 sin2 ¢/ [2/1 — 21" —sin2(A - /1’)]] |A‘d9’dr’
1

0, 3/ o 9")sin @’
= Gp / / r(r =1’ cos @) sin [(/12 — 4@ = > = 817 cos 0’ + 51" cos 26')
o r2+ 7% = 2r1 cos @)

+ 1077 sin? 0 cos(24 — A, — Ay) sin(A, — il)]dﬁ’dr’

b /
- Gp/ { - d [18(r2 =574y — 4))
" 32V 2 + 117 = 251 cos 0/

3(r —")?[22, = 24) = sin2(4 — 4)) +sin 2(4 — 4,))
2+ 1'% =21 cos 0)?
2 = ")[602 = 57*)(Ay — A) + 1002 + 3"*) cos(24 — 4; — Ay)sin(Ay — 4))]

2+ 1% = 2r' cos 0’

/ /
— 15 +r'2)\/ 2’; Cos,f <\/1——2’Z C"Slf —1>[2/12—2/11
rr4r r’+r

—sin2(A— ;) +sin2(A — /12)] +30(2 +37%) cos(2A — 4, — Ay)sin(4, — /11)] }

HZ
dr’
9]

(64)
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) r/ 2
/ - [18(r2 -5/ — A)
3274 /r2 + 12 = 211 cos 6,
3% — P23 [24, =24, = sin2(4 = A)) + sin2(4 — 4y)]
+
@2 + 12 = 2rr' cos 0,)?
(2 = )67 = 54y — A1) + 1002 + 3r'%) cos2A — Ay — Ay)sin(4, — 4)))
+
P24+ 7r'% = 2rr' cos 6,

2rr' cos 6 2rr' cos 6
_15(r2+r,2)\/1_ rr’ cos 6, \/1_ rr'cosd, [212_211

2 4 r'? 2+ r'?

—sin2(A — 4;) +sin2(4 — /12)] + 3002 + 3r’2) cos(2A — A, — 4,)sin(4, — Al)] dr

= ! [()rzr'4 €0826, (2, — 224, — sin2(A — A;) + sin 2(A — Ay)]

]6r4(\/r2 + 12 =271 cos 02)3

. 6 2rr'cos B, 6 2rr’ cos 0,

+cos(2A — A, — Ay sin(4, — Al)[Sr 1- "2 4 054 /1- "2 _ 16
2+ r? 2+ r?
2rr’ cos 0. 2rr’ cos 0,
15y 1= 222 s g 4154 [1- 222 g6 ]
2+ 2 2+ r?
2rr’ cos 0, 2rr’ cos 0,
#2077 0080, [(y = 2[5 1 = T2 4 5y [1- T2
2+ r'? 2+ 2
2rr’ cos 0,
+2r%7 5‘/1— |
2+ 2
2rr’ cos 0,
— (P +7%)cos(2A — A, — Ay)sin(4, — AD[5r4 [1-——2
2+ 2
2rr’ cos 0,
+25y1- St -4 ]]
242
2rr’ cos 0,
=502+, — A [1- 22 4 492 + 474, — /11)]
2+

n

s

(65)
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r
2 rl

[18(r2 =57y = A
32r4 /12 + 112 — 201 cos 6,

302 — 1324, — 24 —sin2(4 — Ay) +sin2(4 — 4y)]
+

(2 + 1'% = 2rr" cos >
(2 = "H)[62 = 57*)(2y = A1) + 1002 +3r'%) cos(24 — Ay — Ay) sin(Ay — A1)
+
P2 4+ 1'% = 271" cos 6,

s 2rr' cos 0; 2rr' cos 0,
1502 + )41 - - —1[2,12—2/11

72+ r? 72+ 2

—sin2(A — A;) +sin2(4 — ,12)] +3002 +3r%) cos(2A — A; — Ay)sin(4, — /11)] dr’

- ! [6r2r’4 00820, [24; — 24, — sin2(4 — A;) + sin 2(A — 4,)]

16r4(\/r2 + 7% =2 c030|)3

. 6 2rr' cos @) 6 2rr' cos 0,
+cos(2i—/11—/12)51n(/12—/11)[5r - L5 1- "L _16
124712 12472
2rr! cos 0 2rr’ cos 0
w15y 1= 2 m sl 2 sy 1 - 2 6|
724 ' 2412
, 4 2rr' cos 0, 14 2rr' cos 0;
+ 2 cosGl[(Az—Al)[Sr (ki R PO S il WY1
2472 2 412

2rr' cos 0,

+2r77%54/1 -4

P2+ r?

211 cos 0
— (2 + %) c0s@A — Ay — Ay)sin(hy — A[5r24[1 - 221

247
+ 2 5”1-%-24”
12472
217 cos 0
=502+ 7P 0 = Ay 1= Tt 40 + 47 ,11)]
P2 412
(66)

After substituting Eqs. (65) and (66) into Eq. (64), the analytical formula of the V,  is
obtained in Eq. (21).

Regarding other GC components (V,,,, Vm” nyz, Vyyx, Vyyy, V,..» and szy) of a tesseroid,
their derivation progresses are presented in the Mathematica code GC_VxxxVxxyVxyzVy-
yxVyyyVzzxVzzy.nb at the link https://github.com/xiaoledeng/analytical-tesseroid-spher

ical-zonal-band.

n
r

1
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Appendix E Laplace’s Equation for the GGT and GC of a Tesseroid
and Spherical Zonal Band

Regarding the expressions for the VW and VW of a spherical zonal band in Eq. (27),
the within expressions for the X,,, X5, X51, X1, Y0, Y12, Vo1, Y11y 20, Z15, Z,,, and Z, are
presented in Table 16.

In this study, the correctness of the analytical expressions for the GGT and GC of a
tesseroid and spherical zonal band is confirmed by using Laplace’s equation. In detail,
Laplace’s equations for the GGT and GC of a tesseroid and spherical zonal band can be

presented as:

Vit Vyy+V,=0 (67)
Ve # Ve # Vo, =0 (68)
V4V, +V. =0 (69)
Vi + VP4V =0 (70)

Theoretically, the expressions for the V,, in Eq. (14), V,, in Eq. (15), and V_, in Eq. (9); V,,,
in Eq. (20), V,,, in Eq. (21), and V_,, in Eq. (17); V,,” in Eq. (25), V, Zh in Eq. (25), and
V.. ? in Eq. (24) V.. 2 inEq. (27),V,, ”® in Eq. (27), and V_? in Eq. (26) satisfy the above

yyz 22z

Laplace S equatlons in Egs. (67), (68), (69), and (70), respectively. These processes are
presented in the Mathematica code (AppendixE.nb) at https://github.com/xiaoledeng/analy

tical-tesseroid-spherical-zonal-band, in which the sums of three quantities (i.e., V,,, V}y,

andV_;V .V, ,andV,_;V 2,V » and 'V, Doy PV ? andV,__ ) are equal to zero.

22> T xxz> Vyyz? oo dd yw o’ XXz 2 tyyz 2zz

Table 16 Detailed expressions

Parameter  Expression
for the Xy, X15. Xops X112 Ypu Yo P

fﬁé ‘}// " zbZZIZI;dZ ‘]/2 %ﬁ ]l’nagz Z(12]7f)0r X 4'r24(9r'2 + 4r22 + 372 cos 20,)

where the exprewons for the Xpp 4,4 (9r% + 4r,2 + 3r% c0s 26,)

UQ?, U,,,U,,, and U, are referred Xy, 4,497 + 41,2 + 3% cos 20,)

to in Table 14
Xy 4r, 4972 +4r,% + 372 cos 20))
Yy 211y €08 0,5 Upy + 1, (5Uy, — 24) + 21,2 (5Uy, — )]
Yy, 2rry c0s 0, [Sr* U, + 1, *(5U, — 24) + 2771 25U, — 4)]
Yy 2rry cos 0, [Sr* Uy, + 1,*(5Uy; — 24) + 21,2 (5Uy, — 4)]
Yy 2rry cos 0, [Sr*Uy, + 1 *(5Uy, — 24) + 2771 25U, — 4)]
Zy, =507 + 1,2’ Uy,
Z, =50 + U,
Zy =507 + 1,3 Uy,
Zy, -5+ 1)U,
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Appendix F Consistency of the Analytical Expressions for Gravitational
Effects of a Spherical Zonal Band Between Deng (2022) and this Paper

The old formulas of the GP, radial GV, radial-radial GGT, and radial-radial-radial GC of
a spherical zonal band can be obtained by substituting Egs. (3), (5), (7), and (9) in Deng
(2022) into Eq. (18) in Deng (2022). The new formulas of the GP, radial GV, radial-radial
GGT, and radial-radial-radial GC of a spherical zonal band are derived in Egs. (22), (23),
(24), and (26) in this paper. It can be seen that these new formulas are simpler in forms and
more intuitive in methods than the old ones.

To reveal the consistency between the new and old formulas of the gravitational effects
of a spherical zonal band, the Mathematica code (AppendixF.nb) is provided at https://
github.com/xiaoledeng/analytical-tesseroid-spherical-zonal-band. In the AppendixF.nb, the
analytical differences between the new and old formulas of the GP, radial GV, radial-radial
GGT, and radial-radial-radial GC of a spherical zonal band are equal to zero, which con-
firms the consistency of the analytical expressions.
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