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Abstract
Based on a brief review of forward algorithms for the computation of topographic gravi-
tational and magnetic effects, including spatial, spectral and hybrid-domain algorithms 
working in either Cartesian or spherical coordinate systems, we introduce a new algorithm, 
namely the CP-FFT algorithm, for fast computation of terrain-induced gravitational and 
magnetic effects on arbitrary undulating surfaces. The CP-FFT algorithm, working in the 
hybrid spatial-spectral domain, is based on a combination of CANDECOMP/PARAFAC 
(CP) tensor decomposition of gravitational integral kernels and 2D Fast Fourier Transform 
(FFT) evaluation of discrete convolutions. By replacing the binomial expansion in clas-
sical FFT-based terrain correction algorithms using CP decomposition, convergence of 
the outer-zone computation can be achieved with significantly reduced inner-zone radius. 
Additionally, a Gaussian quadrature mass line model is introduced to accelerate the com-
putation of the inner zone effect. We validate our algorithm by computing the gravitational 
potential, the gravitational vector, the gravity gradient tensor, and magnetic fields caused 
by densely-sampled topographic and bathymetric digital elevation models of selected 
mountainous areas around the globe. Both constant and variable density/magnetization 
models, with computation surfaces on, above and below the topography are considered. 
Comparisons between our new method and space-domain rigorous solutions show that 
with modeling errors well below existing instrumentation error levels, the calculation 
speed is accelerated thousands of times in all numerical tests. We release a set of open-
source code written in MATLAB language to meet the needs of geodesists and geophysi-
cists in related fields to carry out more efficiently topographic modeling in Cartesian coor-
dinates under planar approximation.
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Article Highlights

• A new algorithm is presented for the efficient computation of terrain-induced gravita-
tional and magnetic fields on arbitrary surfaces

• Tensor decomposition instead of the classical binomial expansion is used to achieve 
optimal approximations of the integral kernel functions

• The new method is validated by comparing with space-domain rigorous solutions using 
various densely-sampled digital elevation models

1 Introduction

The calculation of the gravitational potential (GP), the gravitational vector (GV), the grav-
ity gradient tensor (GGT), and magnetic fields on a surface describing the measurement 
positions from varying terrain with constant or variable density/magnetization is a clas-
sical problem in geophysics and geodesy (Pedersen et  al. 2015). In geophysical study, 
for ground-based, airborne or near-seabed measurements, observations are made on an 
undulating surface above the local topography or bathymetry. Therefore, it is desirable 
to remove terrain-induced gravitational and magnetic effects from observed data in order 
to isolate the anomalies to be investigated (Plouff 1976; Grauch 1987; Hildenbrand et al. 
1993; Bouligand et al. 2014), or to interpret the anomalous sources that contain the terrain 
as a whole (Parker and Huestis 1974; Macdonald et al. 1983; Tontini et al. 2008; Searle 
et al. 2019). In both cases, an efficient algorithm for computing topographic gravitational 
and magnetic effects on arbitrary undulating surfaces plays a central role.

In geodesy, topographic global gravity field models of the Earth (Grombein et al. 2016; 
Rexer et al. 2016; Ince et al. 2020), obtained by forward calculation of the gravity effect 
caused by some global topographic models, such as the 1 arc-sec resolution Earth2014 
model (Hirt and Rexer 2015), are organized and updated at the International Centre for 
Global Earth Models (ICGEM) (Ince et al. 2019). They are useful in spectral augmentation 
of global gravity models based on satellite and terrestrial gravity measurements (Hirt et al. 
2013; Rexer 2017; Zingerle et al. 2020; Ince et al. 2020), in filling the gaps where actual 
gravity observations are limited or unavailable (Pavlis et  al. 2012), and also in deriving 
global Bouguer and isostatic gravity anomaly maps (Balmino et al. 2012).

Generally speaking, there are three major algorithms for computing terrain-induced 
gravitational and magnetic fields, including space-domain (or spatial-domain) algorithms, 
spectral-domain algorithms (sometimes called Fourier-domain algorithms in local studies 
under planar approximation), and hybrid space-spectral domain algorithms. Each of them 
can be further subdivided into several different types according to the specific forward 
computation required in either local, regional or global modeling.

Space-domain algorithms are based on the superposition principle of gravitational and 
magnetic fields. Usually the topographic source is decomposed into a bunch of mass elements, 
including polyhedron (Werner and Scheeres 1997; Holstein 2003; Jekeli and Zhu 2006; Tsou-
lis 2012; D’Urso and Trotta 2017; Ren et al. 2018; Zhang and Chen 2018; Holzrichter et al. 
2019; Saraswati et al. 2019), rectangular prism (Bhattacharyya 1964; Nagy et al. 2000; Garcia-
Abdeslem 2005; Jiang et al. 2018; Karcol 2018; Fukushima 2020), spherical/spheroidal/ellip-
soidal prism (tesseroid) (Asgharzadeh et al. 2007; Du et al. 2015; Roussel et al. 2015; Baykiev 
et al. 2016; Grombein et al. 2016; Uieda et al. 2016; Deng and Shen 2018; Fukushima 2018; 
Lin et al. 2020), mass line and mass point (Heck and Seitz 2007; Wild-Pfeiffer 2008), and the 
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contributions for each element are calculated and summed together. Depending on the attenu-
ation character of Newton’s integral kernel with distance, it is numerically more advantageous 
to use a combination of multiple mass elements for forward simulation than to use a single 
one. Simpler mass elements, such as the mass line and mass point, accompanied usually by 
DEMs with reduced spatial resolution, can be applied for far-zone effect computation to accel-
erate the forward process. More complex elements, such as the polyhedron and the rectangular 
prism, accompanied by high-resolution DEMs, provide more accurate near-zone effect which 
are critical to maintain the high frequency part of the true results (Tsoulis et al. 2009; Cella 
2015; Benedek et al. 2018; Hirt et al. 2019; Yang et al. 2020). Although GPU and parallel pro-
gramming techniques can be applied to improve the speed of computation (Moorkamp et al. 
2010; Zhang et al. 2015), space-domain algorithms are still computationally expensive for for-
ward modeling over large areas using detailed DEMs.

Spectral-domain algorithms refer to Fast Fourier Transform (FFT) based algorithms for 
local terrain modeling in Cartesian coordinate system, and spherical harmonic transform (SHT) 
based algorithms for global modeling in spherical coordinate system. The former, to which 
this work is closely related, shall be discussed later. The latter, when applied for the modeling 
of gravitational and magnetic fields on a sphere (with constant radius) due to finite amplitude 
topography, can be understood as the spherical analog to the Cartesian result of Parker (1973). 
This algorithm and its extensions have been extensively used in calculating topographic gravi-
tational field models caused by terrestrial planets (Rummel et al. 1988; Martinec et al. 1989; 
Balmino 1994; Wieczorek and Phillips 1998; Ramillien 2002; Featherstone et al. 2013; Hirt 
and Kuhn 2014; Tenzer et al. 2015; Wieczorek 2015; Sprlak et al. 2018; Ince et al. 2020). By 
combining with upward and downward continuation techniques, the algorithm can also be 
extended to the computation of gravitational fields on the rugged surfaces of planetary bodies 
(Balmino et al. 2012; Hirt 2012; Bucha and Janák 2014; Rexer et al. 2016; Bucha et al. 2019b).

Despite its popularity in topographic potential modeling, it has been proved mathemati-
cally that regardless of the smoothness of the density and topography, spherical harmonic 
series converges exactly in the closure of the exterior of the Brillouin sphere, and con-
vergence below the Brillouin sphere occurs with probability zero (Costin et al. 2022). A 
great many recent numerical experiments also support this conclusion (Hirt and Kuhn 
2017; Bucha and Sansò 2021; Sprlak and Han 2021). Divergence of the series occurs at 
higher degrees for large-sized, near-spherical planets such as the Earth and the Moon, 
but may occur at much lower degrees for medium and small-sized, non-spherical, irregu-
larly shaped asteroids, comets and moons (Hu and Jekeli 2015; Reimond and Baur 2016; 
Bucha and Sansò 2021). Convergence behavior can be improved, especially for computa-
tion points lie between the Brillouin sphere and the Brillouin spheroid/ellipsoid, by apply-
ing spheroidal/ellipsoidal harmonic series instead (Garmier et al. 2002; Claessens and Hirt 
2013; Wang and Yang 2013; Rexer et al. 2016; Sprlak et al. 2020). However, this does not 
fundamentally change the divergent nature of the series. Alternatively, a combination of 
external/internal spherical harmonic series expansions may be a feasible scheme (Górski 
et al. 2018; Bucha and Sansò 2021; Sprlak and Han 2021), but still adds lots of additional 
computation spheres, each with a different set of harmonic coefficients, and extra interpola-
tion when forward results are required on an arbitrary undulating surface.

Hybrid space-spectral domain algorithms, compared with the previous two, have bet-
ter performance in balancing the contradiction between numerical accuracy and efficiency. 
They rely on a combination of FFT/SHT and space-domain rigorous formula in solving 
local/global terrain modeling problems, respectively. The FFT-based hybrid algorithm, to 
which this work belongs, shall be discussed in detail later. To implement the SHT-based 
hybrid algorithm for global terrain modeling, as far as we know, there are two approaches. 
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One is to decompose the topography using the residual terrain modeling (RTM) technique 
(Hirt et al. 2019), the other is to modify Newton’s integral kernel within a certain spheri-
cal distance (Bucha et al. 2019a; Bucha and Kuhn 2020). The essential idea of both two 
methods is to decompose the target forward field into two parts, one of which contains 
only low frequency (long-wavelength) constituents. Since gravitational computation can 
be expressed as the convolution of the DEM and Newton’s integral kernel, this can be done 
either by using a low-pass filtered DEM (e.g., the RTM technique) (Hirt et al. 2019), or a 
modified band-limited convolution kernel (Bucha et al. 2019a). In this way, divergence of 
the spherical harmonic series can be controlled within acceptable limits even at the planet’s 
surface. The residual terrain, or the near-zone effects, which contain extremely rich high-
frequency components, are evaluated rigorously by some space-domain solutions, such as 
the polyhedron or the rectangular prism. Since the space-domain evaluation is required 
only within a certain spherical distance for each computation point, the speed advantage of 
spectral domain method can be well preserved. Reported values for the space-domain inte-
gration radius are about 15 km for the Moon (Bucha and Kuhn 2020), and 40 km for the 
Earth (Hirt et al. 2019), these may be sufficient for global modeling using low-resolution 
DEMs, but are still computationally too expensive for local terrain modeling with high-
resolution DEMs.

FFT-based algorithms, to which this work belongs, are suitable for topographic mode-
ling in Cartesian coordinates under planar approximation. To our knowledge, there are four 
types of FFT-based algorithms applicable for the computation of terrain-induced gravity or 
magnetic fields on an undulating surface. Two of them based on 2D FFT, and the other two 
on 3D FFT, depending on whether the analytical or the discrete kernel spectrum is used 
(Sanso and Sideris 2013, page 462): 

1. The first 2D FFT algorithm is a simple extension of Parker’s method using the analyti-
cal kernel spectrum (Parker 1973). By combining forward modeling on a horizontal 
plane above the topography and downward continuation using Taylor series expansion, 
forward results on a draped surface can be calculated efficiently (Pedersen et al. 2015; 
Wu 2021). However, in this way only a low-pass filtered version of the true terrain effect 
can be obtained due to the unstable downward continuation process.

2. The second 2D FFT algorithm, which is based on the discrete kernel spectrum and bino-
mial expansion (Forsberg 1984, 1985), is more popular in geodetic studies for computing 
gravimetric terrain corrections. FFT here no longer serves as the numerical counterpart 
(rectangle or trapezoidal quadrature rule) of the continuous Fourier transform, but as a 
tool for the accurate evaluation of Toeplitz matrix–vector multiplications after embed-
ding into a circulant matrix–vector multiplication system (Wu 2018). Despite that this 
algorithm has been studied and improved by many authors, it still requires a large part 
of space-domain computation to ensure convergence of the spectral part due to the 
limitation of using binomial expansions (Sideris 1984; Li and Sideris 1994; Martinec 
et al. 1996; Parker 1996; Tsoulis 2001; Goyal et al. 2020).

3. Analogously, the first 3D FFT algorithm is to use the 3D analytical spectrum of the 
Newton’s kernel (Tontini et al. 2009). The topographic source is first decomposed into 
a 3D grid of rectangular prisms, after which 3D FFTs are applied to calculate gravity or 
magnetic fields also on a 3D regular grid. Forward values on arbitrary surfaces can be 
obtained through interpolation. The method suffers from spectral leakage and truncation 
errors (Wu and Tian 2014). Improved version of the algorithm is introduced in Zhao 
et al. (2018) based on the Gauss-FFT algorithm (Wu 2016).
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4. The second 3D FFT algorithm, which is based on the discrete kernel spectrum, applies 
3D FFTs to evaluate 3D discrete convolutions (Sanso and Sideris 2013, page 468, 473). 
The zero-padding technique applied to eliminate edge effects is in fact mathematically 
equivalent to the Toeplitz-circulant matrix embedding process (Zhang and Wong 2015; 
Wu 2018; Chen and Liu 2019; Hogue et al. 2020; Vatankhah et al. 2022). The advan-
tage of using a 3D FFT algorithm is that 3D variable density or magnetization can be 
incorporated easily. However, since regular 3D grids are used both in decomposing 
the topographic source and in defining computation coordinates, and topographic or 
observation height values are somehow arbitrary, usually it requires a very small grid 
step in the vertical direction (e.g., 5 m or even less) to guarantee the modeling accuracy 
at the expense of increased storage and computational efforts.

In this study, we introduce a CP-FFT algorithm, a new hybrid spatial-spectral domain 
algorithm working in Cartesian coordinates, for fast and accurate computation of terrain-
induced gravitational and magnetic effects on arbitrary undulating surfaces. We start by 
analyzing the key idea of the classical FFT-based terrain correction algorithm, based 
on which we make a significant step by embedding the CP tensor decomposition into 
the approximation of the terrain correction convolution kernel. Next we extend our new 
method to all gravitational components commonly applied, and to magnetic field modeling 
through the Poisson’s relation. Finally, we test our algorithm using topographic and bathy-
metric datasets around the globe by comparing to space-domain rigorous solutions. We 
release a set of open source codes written in MATLAB language to scientists working in a 
related field.

2  Algorithm Formulations

2.1  The Classical Terrain Correction Algorithm

We denote r = (x, y, z) as the computation point, r̃ = (x̃, ỹ, z̃) as the running integration 
point, and R = |r − r̃| is the Euclidean distance between the computation and the inte-
gration point. The coordinate system is chosen with positive x pointing north, positive y 
pointing east, and positive z pointing downward. Suppose we have the topographic height 
function z̃ = h(x̃, ỹ) , the computation required on an undulating surface z = H(x, y) , the 
integration is carried out over the rectangular area Ω = [X1,X2] × [Y1, Y2] , with topo-
graphic masses outside this region ignored, then the gravitational terrain correction can be 
written as (Goyal et al. 2020):

where G is Newton’s gravitational constant, � is the constant topographic density, and 
L =

√
(x − x̃)2 + (y − ỹ)2 is the planar Euclidean distance.

By expanding the term 
[
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with NB the order of expansion, we have:

in which the variables L, H and h can be separated, recasting the expression into a weighted 
summation of a series of continuous convolutions:

with (i1, i2, i3) representing all combinations of integer powers of H, h and L after Eq. 3 is 
full expanded, �(i1,i2,i3)

 the corresponding coefficients, and the symbol ∗ indicating continu-
ous convolutions of two functions.

After discretizing the integration region Ω using a regular grid of mass line or mass 
prism elements, the continuous convolution-type integrals reduce to discrete convolutions 
(Li and Sideris 1994), which can then be evaluated accurately and efficiently by combining 
circulant embedding of Toeplitz matrix–vector multiplications with FFT-based algorithms 
(Vogel 2002; Zhang and Wong 2015; Wu 2018; Chen and Liu 2019).

Although this binomial expansion method works perfectly well for a mildly varying 
topography, it has been clearly demonstrated in many previous works that its convergence 
depends strictly on the condition |||

H−h

L

||| ≤ 1 (Tsoulis 2001; Goyal et al. 2020), meaning that 
the slope of every line connecting a computation point and an integration point should not 
exceed 45◦ , which is a strong restriction that can be easily violated by steeply varying topo-
graphic models in most mountainous areas of the Earth.

Denoting the integral kernel function in Eq. 1 as:

the divergence problem has been partially solved by using a separating radius RFFT to 
divide the terrain correction integration into two zones (Tsoulis 2001; Goyal et al. 2020):

with the inner zone effect ĝtc
z
 computed using space-domain rigorous solutions, and the 

outer zone effect ḡtc
z
 evaluated using the FFT-based procedure described above. However, 

there remain unresolved issues with this combined approach: (1) to ensure convergence, 
usually a large radius RFFT is required, leading to time-consuming evaluation of the inner 
zone effect using space-domain solutions; (2) the algorithm is designed only for the gz 
component, whether it can be effectively extended to the forward modeling of other GP, 
GV, GGT components and magnetic fields still needs further investigations. These prob-
lems become particularly prominent when various gravitational and magnetic components 
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are required from large-scale, high-resolution topographic or bathymetric models. In the 
following, we introduce a new CP-FFT method to overcome these deficiencies.

2.2  Improved Terrain Correction Algorithm Using CP Tensor Decomposition

The key idea behind terrain correction computation is the approximation of the integral 
kernel Ktc

gz
(L,H, h) using a summation of products of single-variable functions A(L), B(H) 

and C(h). Taylor series expansions (including the binomial expansion), even with optimally 
chosen parameters (Li and Sideris 1994), have been proved invalid in mountainous areas 
when densely-sampled DEMs (e.g., < 100 m resolution) are used (Tsoulis 2001; Goyal 
et al. 2020). Combining space-domain solution to evaluate a circular region surrounding 
each computation point with a large radius ( RFFT ) will slow down the entire process signif-
icantly. Here we introduce an alternative approach based on CANDECOMP/PARAFAC 
(CP) tensor decomposition of the terrain correction kernel function.

As shown in Fig. 1a, first the 3D kernel function Ktc
gz
(L,H, h) is sampled on a rectilinear 

grid covering the region of interest:

with:

whereas s = Lmax

Lmin

1

NL−1 is the common ratio of the geometric sequence Li , and ΔH =
Hmax−Hmin

NH−1
 , 

Δh =
hmax−hmin

Nh−1
 are the common differences of the arithmetic sequences Hj and hk , respec-

tively. A geometric sampling (linear sampling in the log space) is used for the L variable 
considering the rapid decay of the kernel function with respect to increasing distance 
between the source and the computation point.

Next the 3D array Ktc
gz
(Li,Hj, hk) obtained from discrete sampling is approximated using 

CP decomposition of rank NCP as (see Fig. 1a):

then function values Ktc
gz
(L,H, h) at an arbitrary position within the region of interest can be 

obtained through a simple linear interpolation. Note that the linear interpolation is imple-
mented in the log space for the L variable for improved numerical accuracy.

The function cp_als in the MATLAB Tensor Toolbox (Brett et al. 2021), which com-
putes an estimate of the best rank-N CP model of a tensor using the well-known alternating 
least-squares algorithm (Kolda and Bader 2009), is used to obtain a discrete approximation 
of our kernel function. Figure 1 compares approximation errors by using CP tensor decom-
position of rank 50 (Fig. 1c, f) and those from binomial expansion of order 6 with 48 terms 
(Fig. 1d, g) in a region of interest [L,H, h] ∈ [1, 300] × [0, 10] × [0, 10] km3 , representing a 
typical 2◦ × 2◦ DEM dataset of the most mountainous area on the Earth. A small separating 
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radius RFFT = 1 km is applied. It can be clearly observed that while the binomial expansion 
fails when |||

H−h

L

||| > 1 , with errors well above the 100 level, the CP decomposition has errors 
below the 10−2 level in the entire region of interest.

Applying the CP decomposition, we have the outer zone effect reformulated as:

with the convolution-type integrals Cn(h) ∗ An(L) evaluated efficiently using FFTs, An(L) 
set to zero when L < RFFT , and Bn(H) moved outside the convolution integral since it is a 

(10)ḡtc
z
(x, y,H) ≈ G𝜌

NCP∑
n=1

𝜆nBn(H)
[
Cn(h) ∗ An(L)

]
,

Fig. 1  a Illustration of the CP decomposition of the 3D kernel function Ktc
gz
(L,H, h) (redrawn from 

Kolda and Bader 2009, Fig. 3.1). The function Ktc
gz

 is approximated using both CP decomposition of rank 
NCP = 50 ( NL = NH = Nh = 100 ) and binomial series of order NB = 6 (with 48 terms) in the region 
of interest [L,H, h] ∈ [1, 300] × [0, 10] × [0, 10] km3 . The 3D true function values are shown in b (in 
log10 |Ktc

gz
| scale), with errors ( log10 |�| ) of the CP decomposition and binomial series shown in c and d, 

respectively. The 1D true function values are shown in e by choosing a fixed value of H = 2 km and 6 dif-
ferent values of L ∈ [1, 300] km. The corresponding errors for CP decomposition and binomial series are 
shown in f and g, respectively
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simple function of computation coordinates (x, y). In this way, convergence can be guar-
anteed even for a small separating radius RFFT , which greatly speeds up the calculation of 
the inner zone effect using space-domain solutions. We call this new approach the CP-FFT 
algorithm.

2.3  CP‑FFT for GP, GV, GGT Components with Laterally Variable Density

The CP-FFT algorithm can be easily extended to other gravitational components, and to 
the case of laterally variable density distributions. Considering the complete Bouguer 
effect of a DEM (here the “Bouguer plate” has a finite dimension equal to extension of the 
source DEM), for the constant density case, it can be obtained immediately from the ter-
rain correction as:

where gΩ
z

 represents the gz effect caused by a rectangular prism with horizontal dimen-
sion equal to the integration area Ω , and vertical extension [H,  0] changes according to 
the position of the computation point. For the more general case when horizontal density 
variations are allowed, however, it becomes more complicated to start from the terrain cor-
rection formulation. In this case, the complete Bouguer effect can be computed directly as:

Solving the integration within the brackets leads to a new kernel function:

Applying CP decomposition to Kcb
gz

 we arrive at:

Here An(L) , Bn(H) and Cn(h) represent a CP decomposition of Kcb
gz

 (Eq.  13). Obviously, 
they change according to different kernel functions. The density function 𝜌(x̃, ỹ) is com-
bined with Cn(h) since both are functions of source coordinates (x̃, ỹ) . For brevity, we sum-
marize kernel functions and their corresponding CP-FFT expressions for other gravita-
tional components in Appendix 1.

2.4  Magnetic Terrain Effects

Once we have obtained the anomalous GGT:
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the magnetic terrain effects can be obtained immediately through the Poisson’s relation 
(Pedersen et al. 2015):

where �0 = 4� × 10−7 H/m is the magnetic permeability of free space, Be is the anomalous 
magnetic field along the direction ê , � is the constant terrain density, M̂ and M are the unit 
direction and magnitude of the assumed homogeneous magnetization. In this case, only 6 
GGT components need to be calculated by using the symmetric property of �.

For a general case when the magnetization vector M changes arbitrarily throughout the 
region: M =

(
Mx(x̃, ỹ),My(x̃, ỹ),Mz(x̃, ỹ)

)
 , which usually happens when both induced and 

remnant magnetizations are present (Liu et al. 2018), we have:

with B = (Bx,By,Bz) the anomalous magnetic vector that can be computed as:

Here TMx

xx  , TMx

yx  and TMx

zx  represent the GGT components Txx , Tyx and Tzx induced by a distri-
bution of density 𝜌(x̃, ỹ) equivalent to the magnetization component Mx(x̃, ỹ) , respectively. 
Other quantities can be understood analogously. In this case, a total of 9 GGT compo-
nents (induced by 3 different variable density sources) need to be evaluated to compute the 
anomalous magnetic field.

2.5  Accelerating Inner Zone Computation Using a Gaussian Quadrature Mass Line 
(GQML) Model

The CP-FFT algorithm derived above offers a fast and stable computation of the outer zone 
effect. However, even for a small separating radius of RFFT = 2 km, a direct evaluation of 
the analytical prismatic solution (Nagy et al. 2000) may still be time-consuming for com-
puting high-resolution DEMs (e.g., 90 m resolution or higher). A numerical quadrature 
solution based on the trapezoidal and Simpson’s rules that is sufficiently accurate with 
respect to the exact analytical prismatic solution, but which can reduce the computation 
time by almost 50 per cent is introduced in Goyal et al. (2020). Here we apply a Gaussian 
quadrature mass line (GQML) model with variable order according to different horizontal 
distances between the computation point and the integration element. The GQML model 
is simply to carry out the 3D volume integrals of the gravitational kernels using analyti-
cal integration along the vertical dimension, and 2D Gaussian quadrature along the two 
horizontal dimensions. The idea is similar to the algorithm used in Goyal et al. (2020), we 
made a modification by applying Gaussian quadrature instead of trapezoidal or Simpson 
quadratures, and extended to all gravitational components.

(16)Be =
𝜇0

4𝜋

M

G𝜌
ê
T
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,
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.
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Figure 2 shows details of the GQML model for each computation point (indicated by 
a red star) for a typical mid-latitude SRTM v4.1 DEM data with spatial resolution a = 90 
m (along south-north direction), and b = a cos(30◦) ≈ 80 m (along west-east direction). 
Depending on the distance R from the center of a grid cell to the computation point, the 
closest zone with R < R1 = a is calculated using directly the rigorous prismatic analyti-
cal solution (yellow rectangles, normally only 3 prisms needs to be calculated). Gauss-
ian quadrature of orders NGQ = 42 = 16 , NGQ = 22 = 4 and NGQ = 12 = 1 are used to 
approximate the prismatic analytical solution in the near zone R ∈ [R1,R2) = [a, 3a) 
(dark blue), intermediate zone R ∈ [R2,R3) = [3a, 10a) (blue), and distant zone 
R ∈ [R3,RFFT ) = [10a,RFFT ) (light blue), respectively. The region with R ≥ RFFT = 2 km 
is computed by the CP-FFT algorithm (red zone).

Figure  3 shows changes in relative errors |�| of the Gaussian quadrature mass line 
(GQML) model in approximating the analytical prismatic solution of gz with respect to 
several parameters, including (1) the distance/length ratio L/a, (2) height/length ratio of 
the prism c/a, and (3) order of the GQML NGQ . It can be observed that by choosing the 

Fig. 2  Gaussian quadrature mass line (GQML) approximation of the mass prism model
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parameters described above, generally a relative error of |�| ≤ 10−3 can be guaranteed for 
prismatic bodies with various geometries (a height/length ratio of c∕a = 100 represents a 
prism with length 90 m and height 9000 m, while a height/length ratio of c∕a = 0.1 repre-
sents a prism with length 90 m and height 9 m, the width of the prism is fixed as b ≈ 80 m 
as has been mentioned above).

Numerical behavior of the GQML approximation for other gravitational components, 
including the GP, the other two GV components, and the GGT components are similar. 
Smaller relative errors are obtained for the GP component (generally below 10−4 ), and 
larger relative errors |𝜖| > 10−2 occur for GGT components only when the magnitude of 
the referenced value is very small ( < 10−3 E ̈otvös), thus is negligible in a practical mod-
eling procedure. Based on these numerical results, we have chosen the same set of GQML 
model parameters for all gravitational components.

3  Numerical Examples and Results

We test the numerical performance of our CP-FFT method by using space-domain mass 
line (Li and Sideris 1994) or mass prism solutions (Nagy et al. 2000) as the precise refer-
ences. The l2-norm relative error E2 is applied as an overall estimation of the numerical 
accuracy (Wu 2021). Computational time costs tref  and tcp for both methods, together with 
the acceleration ratio � = tref∕tcp , are provided for verification of numerical efficiency. It 
should be noted that the computer code for space-domain solutions have also been properly 
optimized to achieve maximum speed. The experiments are carried out on a platform with 
Intel Core i7 − 9850H 2.6 GHz and 64 GB RAM, and implemented in MATLAB R2020b 
software.

Numerical experiments are arranged as follows: (1) In Sect. 3.1, we use a simple mass 
line model (SML) to test the accuracy and efficiency of our CP-FFT method for outer-zone 
computation, as for the inner-zone computation, both methods apply the space-domain 
mass line solution. Based on the numerical results obtained in Sect. 3.1, we carry out fur-
ther numerical tests in Sect. 3.2 and provide empirical choice for parameters of our algo-
rithm for different topographic models. (2) In Sect. 3.3, we take a step further to include a 
Gaussian quadrature mass line (GQML) model for inner-zone computation, and compare 
our method to the more rigorous rectangular prism solution. Therefore, numerical approxi-
mations are made for both inner/outer-zone calculations. Computation surfaces, both on, 
above and below the topography are tested. (3) In Sects. 3.4 an 3.5, numerical examples are 
designed to demonstrate the validity of our algorithm for computing terrain-induced terres-
trial and airborne gravitational effects, including all GP, GV and GGT components, and for 
magnetic terrain effects, with variable density/magnetization taken into account.

3.1  Simple Mass Line (SML) Model Tests

First we test our new algorithm using a simple mass line (SML) model, where each pris-
matic grid cell is approximated using a single mass line at its center. Four patches of 
2◦ × 2◦ SRTM v4.1 data with 3�� × 3�� resolution (Jarvis et al. 2008), including Himalayas, 
Andes, European Alps and Australian Alps, are used as the input topographic data source. 
Planar approximations are applied by letting Δx = 3��� , Δy = 3��� cos(�m) , where �m is 
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Fig. 3  Change in relative errors |�| with respect to distance/length ratio L/a, height/length ratio of the prism 
c/a, and different orders NGQ of the Gaussian quadrature mass line (GQML) model in approximating the 
analytical prismatic solution of gz
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the mean latitude of the patch and � is the arcseconds-to-kilometres conversion factor for a 
sphere of radius Re = 6378.137 km. A constant density � = 2670 kg/m3 is assumed.

We apply CP decomposition to the terrain correction kernel Ktc
gz

 (Eq. 5), the complete 
Bouguer effects are calculated by adding to the terrain correction effects the contribution 
of a “regional prism” (see Eq.  11). Parameters of the CP-FFT algorithm are chosen as 
NL = NH = Nh = 100 , RFFT = 2 km, and NCP = 50 . Gravity values are calculated right 
above the topography. As shown in Fig. 4, almost identical forward results are obtained, 
with maximum absolute errors (MAEs) below 1 mGal, root mean square (RMS) errors 
below 0.15 mGal, and E2 errors below 0.1% for all selected mountainous regions. More 
statistical details of the results are summarized in Table 1. The space-domain solution takes 
more than 20 days to complete the whole calculation (4 patches, each with source grid 
2400 × 2400 , computation grid 2160 × 2160 ). The CP-FFT algorithm, on the other hand, 
costs only about 9 minutes (acceleration 𝜏 > 3000 ), proving its huge advantage in compu-
tational efficiency.

3.2  Empirical Choice for the Parameters of the CP‑FFT Algorithm

Although we have chosen parameters of the CP-FFT algorithm as RFFT = 2 km and 
NCP = 50 in all numerical tests implemented above, it should be noted that for a DEM 
with less change in height values, a lower rank of CP decomposition ( NCP ) and a smaller 
separating radius ( RFFT ) may be adequate to provide forward results with sufficiently high 
accuracy in less computation time.

Figure  5 shows changes in maximum absolute errors (MAE) and root mean square 
(RMS) errors (in mGal) with respect to different separating radius and increasing CP 
decomposition ranks for the modeling of the gravitational component gz caused by the 
chosen 4 test areas around the globe with different topographic elevation differences: (a) 
Himalayas (about 9 km), (b) Andes (about 6 km), (c) European Alps (about 4.5 km) and 
(d) Australian Alps (about 2 km). The numerical results can be summarized as follows: 

i) Increasing the separating radius ( RFFT ) always improves accuracy, albeit at the compu-
tational expense of more time-consuming space-domain inner zone evaluation.

ii) Ideally, convergence should be guaranteed no matter what RFFT is chosen. However, 
it can be observed in Fig. 5 that when RFFT is chosen small comparing to the overall 
height change in the DEM, e.g., RFFT = 1 km for the Himalayas region, convergence of 
the algorithm slow down significantly. This may be caused by the intrinsic difficulty in 
approximating the gravitational kernel for near-field effect using CP decomposition.

iii) Increasing the rank of CP decomposition ( NCP ) generally also improves the accuracy, 
however, the accuracy no longer improves after a certain threshold is reached. Besides, 
due to the randomness of the CP decomposition, some irregular jumps of the MAE and 
RMS errors can be observed, but the overall trend is not affected.

iv) The results in Fig. 5 can serve as a reference for parameter selection criterion of the CP-
FFT algorithm for computing terrain-induced gravitational fields in other mountainous 
regions. We recommend a selection of RFFT =

max(h)−min(h)

4
 , and NCP = 50 , for which 

MAE below 1 mGal, and RMS below 0.1 mGal can be achieved.

To explore more convergence characteristics of the CP-FFT method, we carried out 
further numerical tests using an extreme value of the parameter RFFT = 0.05 km in the 
Himalayas test area. In this case, even the nearest mass line element (at a distance about 
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0.08 km) is excluded from the inner-zone calculation for each computation point, which 
means we now have a pure FFT algorithm over the entire region. We also choose three 
different values of NLHh = 100 , 200, 300, where NLHh = NL = NH = Nh is the dimension 
of the CP decomposition, to test the effect of this parameter on the final accuracy.

Figure 6 shows error level changes as the rank of CP decomposition NCP increases from 
100 to 1000, and dimension of the CP decomposition NLHh increases from 100 to 300. We 
summarize the numerical results as follows: 

 (i) Ideally, for the same computation area, larger values of NL , NH , Nh would provide 
more accurate results. However, numerical tests show that the approximation accu-
racy reaches a certain limit when the values of NL , NH , Nh are large enough. After 
that, further increasing the value cannot effectively reduce the error, but brings more 

Fig. 4  DEMs (first column, unit in km) and the corresponding forward results of gcb
z

 (in mGal) over 4 
selected mountainous areas around the globe using space-domain rigorous solution of mass lines (second 
column) and the CP-FFT algorithm (third column). Test areas include Himalayas (first row), Andes (sec-
ond row), European Alps (third row) and Australian Alps (fourth row). Blue rectangles indicate calculation 
areas, red lines indicate two profiles (A and B) crossing the highest peaks of each test area
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computation. The inherent randomness of the CP decomposition function cp_als 
brings some uncertainty, larger parameters do not necessarily give better results, it 
may even reduce the accuracy in some cases.

 (ii) The pure FFT method converges rather slowly, even by using a large value of 
NCP = 1000 , we still have MAEs and RMS errors above 1 mGal in all cases. This 
suggests that by applying the current CP decomposition algorithm, we still can 
not obtain an accurate global approximation of the gravitational kernel. Therefore, 
inner-zone computation using space-domain solution is still necessary to guarantee 
a sub-mGal level accuracy in the most mountainous areas of the Earth.

We also made a rough estimate of the computation time of our CP-FFT algorithm as a 
function of grid sizes, CP decomposition rank, and the separating radius based on the 
results obtained above. As shown in Fig. 7, computation time increases linearly with NCP , 
and quadratically with RFFT , the relation can be estimated as:

where N̂ = (Nx + Ñx)(Ny + Ñy) is the size of the 2D FFT implemented in calculating the 
outer-zone effect, Ñx × Ñy is the size of the topographic source grid, Nx × Ny is the size of 
the computation grid, Δx × Δy is the dimension of a grid cell, and NxNy

ΔxΔy
R2
FFT

 is proportional 
to the number of mass lines required in evaluating the inner-zone effect for an SML model.

The estimated values for c0 , c1 and c2 given by a least square fitting are: c1 ≈ 5.2 × 10−9 , 
c2 ≈ 1.6 × 10−8 , and c0 ≈ 2.5 on our platform. We mention that for the GQML model 

(21)t = c0 + c1N̂ log(N̂)NCP + c2

NxNy

ΔxΔy
R2
FFT

,

Table 1  Descriptive statistics of the topography height values, the forward results of gcb
z

 calculated using 
both the mass line analytical solution (reference) and the CP-FFT algorithm, with the corresponding differ-
ences between the two algorithms over 4 selected test areas shown in Fig. 4. Elevation values in km (posi-
tive upward), gcb

z
 values in mGal

Test area Quantity Min Max Mean RMS E2

Himalayas Elevation 0.179 8.806 3.840 4.180 0.030%
Reference −320.771 758.460 405.823 441.030
CP-FFT −320.978 757.914 405.735 440.965
Difference −0.617 0.275 −0.088 0.130

 Andes Elevation 0.869 6.868 3.848 4.000 0.010%
Reference 109.469 688.475 424.215 437.389
CP-FFT 109.469 688.386 424.173 437.349
Difference −0.152 0.011 −0.042 0.044

 European Alps Elevation 0.032 4.550 1.285 1.586 0.025%
Reference −13.722 404.283 133.753 164.066
CP-FFT −13.783 404.161 133.714 164.034
Difference −0.142 0.011 −0.038 0.040

Australian Alps Elevation 0.156 2.220 0.759 0.864 0.010%
Reference 15.558 229.732 84.155 95.329
CP-FFT 15.541 229.706 84.146 95.321
Difference −0.040 0.000 −0.009 0.010
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implemented in the following, the computation amount does not change for the outer-zone 
evaluation, however, the number of mass lines required for the inner-zone computation 
would be approximately 1 to 3 times larger than that of the SML model. Therefore, a rough 
estimation of cGQML

2
≈ 2cSML

2
 can be applied for time estimation of a CP-FFT algorithm 

combined with a GQML approximation of the mass prism model.

3.3  Gaussian Quadrature Mass Line Model Tests

Next we evaluate the analytical prismatic solution (Nagy et  al. 2000) as the precise 
reference, and combine our CP-FFT algorithm with a Gaussian quadrature mass line 
(GQML) model to speed up the inner zone computation with controlled accuracy. Each 
prismatic grid cell is now approximated using multiple mass lines formulating a 2D 
Gaussian quadrature. Depending on the attenuation of the gravitational fields with dis-
tance, the order of the Gaussian quadrature is chosen as NGQ = 16 , 4, and 1 in the near, 

Fig. 5  Error level changes with respect to increasing rank of CP decomposition NCP and different separating 
radius RFFT (in km) for the modeling of gz field induced by the chosen 4 test areas: a Himalayas, b Andes, c 
European Alps and d Australian Alps. MAE stands for maximum absolute error, RMS stands for root mean 
square error
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intermediate and distant zone, respectively, to guarantee a relative error of |�| ≤ 10−3 
(see Fig. 2).

As shown in Fig. 8, gcb
z

 effects of the Himalayas test area are calculated and compared 
on 8 different observation heights parallel to the topography with distance 
D = 0, 500, 1000, 2000,−500,−1000,−2000,−5000 m (positive/negative D indicate com-
putation surface above/below the topography). The CP-FFT method is implemented using 
directly the CP decomposition of the Kcb

gz
 kernel (Eq. 13). The prism-summation (PS) solu-

tion is computed only along two profiles (A and B in Fig. 4) for reference due to the enor-
mous computational costs. Almost identical forward results are obtained, with MAEs 
below 2 mGal, RMS errors below 0.5 mGal, and E2 errors below 0.2% for all chosen obser-
vation heights. More statistical details can be found in Table 2. The space-domain solution 
takes more than 16 hours computing results simply on two profiles, while the CP-FFT 
algorithm takes only about 36 minutes computing all 8 observation surfaces (acceleration 
𝜏 > 20000 ), showing its capability for high-efficiency computation of terrain-induced 
gravitational fields on arbitrary undulating surfaces.

Similar comparisons are made for the Tcb
zz

 component on two profiles crossing the highest 
peak of the European Alps test area at various heights D = 1, 5, 10, 50, 100, 500, 1000, 5000 
m above the topography. As shown in Fig. 9, again, almost identical forward results are 
obtained, with MAEs below 2 E ̈otvö s, RMS errors below 1 E ̈otvö s, and E2 errors below 
0.3% for all chosen observation heights. More statistical details can be found in Table 3. 
The space-domain solution takes about 4.5 hours computing results simply on two pro-
files, while the CP-FFT algorithm takes only about 1 hour computing all 8 observation 
surfaces. Here an acceleration ratio of 𝜏 > 5000 is achieved. Comparing with the time costs 
for computing gcb

z
 , space-domain solution accelerates about 3 times due to simpler expres-

sions (Nagy et al. 2000), while the CP-FFT solution slows down slightly due to increased 
complexity of the analytical mass line expressions (see Appendix 1, J1 and J2 expressions).

Fig. 6  Error level changes with respect to increasing rank of CP decomposition NCP using a pure FFT algo-
rithm in the Himalayas test area. Here RFFT = 0.05 km is chosen to completely avoid the analytical calcula-
tion of the inner-zone effect. MAE stands for maximum absolute error, RMS stands for root mean square 
error
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3.4  GP, GV and GGT Modeling with Laterally Variable Density

We now test our CP-FFT algorithm for a complete modeling of GP, GV, GGT compo-
nents caused by a large DEM with laterally variable density. As shown in Fig. 10, the area 
bordered by latitude 35◦ N to 40◦ N and longitude 110◦ W to 102◦ W, which was applied in 
the Colorado 1-cm geoid computation experiment (Wang et  al. 2021) for a comparison 
study of numerous geoid computation methods used by different groups around the world, 
is adopted here for numerical validation.

The input topographic dataset is the SRTM v4.1 DEM with a spatial resolution of 3′′ 
and a total grid size of 9601 × 6001 . The input 3′′ resolution laterally variable density grid 
is obtained from linear interpolating the 30′′ resolution UNB_TopoDens model (Sheng 
et al. 2019), which is transformed from the Global Lithology Model (GLiM) (Hartmann 
and Moosdorf 2012) by assigning probable surface density values to the lithologies based 
on geological data. The density value varies between a minimum of 1000 kg/m3 , indicating 
lakes within the area, and a maximum of 2854 kg/m3 , slightly above the normally applied 
mean topographic density value 2670 kg/m3 (see Fig. 10b). It should be noted that since 
vertical variation of density is not considered, the laterally variable density model used 
here is more to validate our algorithm than as a better approximation to the real density 
distribution.

Fig. 7  Time costs of the CP-FFT algorithm estimated as a function of the rank of CP decomposition NCP 
and the separating radius RFFT , with estimation errors and associated statistics (minimum, maximum and 
root-mean-square) shown in the histogram
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As shown in Fig. 10a, a subset of 7991 gravity observations, with 3906 terrestrial ones 
and 4085 airborne ones (randomly picked with generally equal distance), are selected from 

Fig. 8  Forward results of gcb
z

 on two profiles crossing the highest peak of the Himalayas test area with mul-
tiple computation heights D. a Elevation changes along the two profiles (red lines A and B in Fig. 4, first 
row). Forward results using both the rigorous prism-summation (PS) method (red and blue solid lines) and 
the CP-FFT method (yellow and cyan dash-dot lines) are compared on 8 different observation heights (only 
4 are shown here) parallel to the topography with a distance D, with b D = 0 m representing the topog-
raphy itself, c D = 2000 m simulating typical flight heights for airborne surveys, and d D = −500 m, e 
D = −5000 m indicating underground computation profiles. Statistical details for all 8 computation heights 
are summarized in Table 2



1195Surveys in Geophysics (2023) 44:1175–1210 

1 3

the gravity datasets used in the Colorado geoid computation experiment (Wang et al. 2021). 
For the terrestrial gravity dataset, only observations above the input DEM (with terrain 
clearance D = Hcal − hDEM ≥ 0 ) are kept. Nevertheless, we still get D values vary from 0 
m to a maximum of 535 m, which is clearly unrealistic for land gravity observations. These 
may be caused by height errors from either the DEM or the gravity dataset, we leave these 
unchanged to cover forward modeling situations when airborne surveys are carried out on 
a typical height of several hundred meters above topography in flat areas (Pedersen et al. 
2015). For airborne observations, terrain clearance D changes vastly from about 1300 m to 
6400 m, which is more than adequate to cover most practical airborne modeling situations.

The calculation surface Hcal (see Fig.  10d) is constructed as follows: first the terrain 
clearance values D of the picked 7991 gravity observations are interpolated to a regular 
grid identical to the DEM dataset using a nearest-neighbor method (see Fig.  10c), then 
the calculation surface is obtained from Hcal = hDEM + D , where hDEM denotes the DEM 
height of the grid point, and D is the interpolated terrain clearance value at the grid point.

The CP-FFT method is applied for the computation of all GP, GV and GGT compo-
nents on the undulating calculation surface. Due to the increased horizontal extents 

Table 2  Descriptive statistics of the forward results of gcb
z

 in Fig.  8. Comparisons are made on 8 differ-
ent observation heights parallel to the topography, with D = 0 m representing the topography itself, 
D = 500, 1000, 2000 m above the topography, and D = −500,−1000,−2000,−5000 m below the topogra-
phy. Gravity values in mGal

Observation height Quantity Min Max Mean RMS E2

D = 0 m Reference 174.547 755.716 490.052 504.841 0.070%
CP-FFT 174.523 756.010 490.178 504.950
Difference −1.673 1.465 0.127 0.351

D = 500 m Reference 199.132 727.314 493.247 506.871 0.083%
CP-FFT 199.613 728.520 493.532 507.163
Difference −0.922 1.222 0.285 0.418

D = 1000 m Reference 197.607 703.028 492.451 505.534 0.077%
CP-FFT 197.715 703.646 492.775 505.871
Difference −0.301 0.913 0.323 0.391

D = 2000 m Reference 183.740 664.455 487.122 499.713 0.061%
CP-FFT 183.892 664.756 487.276 499.885
Difference −0.565 0.711 0.154 0.306

D = −500 m Reference 40.453 742.655 388.925 409.459 0.064%
CP-FFT 40.631 741.810 388.919 409.476
Difference −0.913 1.023 −0.006 0.264

D = −1000 m Reference −81.798 717.877 284.952 314.925 0.085%
CP-FFT −81.949 717.390 285.141 315.132
Difference −0.487 0.876 0.188 0.267

D = −2000 m Reference −313.969 618.074 74.230 161.252 0.185%
CP-FFT −313.864 619.209 74.269 161.409
Difference −0.733 1.142 0.039 0.298

D = −5000 m Reference −593.078 124.038 −440.795 456.699 0.114%
CP-FFT −593.712 123.980 −441.255 457.195
Difference −0.883 0.210 −0.461 0.520
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Fig. 9  Forward results of Tcb
zz

 on two profiles crossing the highest peak of the European Alps test area with 
multiple computation heights D. a Elevation changes along the two profiles (red lines A and B in Fig. 4, 
third row). Forward results using both the rigorous prism-summation (PS) method (red and blue solid lines) 
and the CP-FFT method (yellow and cyan dash-dot lines) are compared on 8 different observation heights 
(only 4 are shown here) parallel to the topography with a distance D, with b D = 1 m above the topography, 
c D = 100 m, d D = 1000 m and e D = 5000 m simulating typical flight heights for airborne surveys. Sta-
tistical details for all 8 computation heights are summarized in Table 3
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of both the source and the computation grids, and the large vertical extent of the obser-
vations ( Hcal ∈ [1028, 9195] m), parameters of the CP-FFT algorithm are chosen as 
NL = NH = Nh = 200 , RFFT = 2 km, and NCP = 60 here. The obtained gz and Tzz compo-
nents are shown in Fig. 10e and f, respectively. It can be observed that gz field in the air-
borne region (red zone in Fig. 10c) is somehow a low-pass filtered version of the terres-
trial field (blue zone in Fig. 10c), and both have a strong correlation with the DEM. The 
Tzz component, which is a high-pass filtered version of the gz filed, clearly contains more 
short-wavelength information, especially for the terrestrial observations. (Note here we 
choose limits [−100, 100] E ̈otvö s for the color bar to show more details of the Tzz field, the 
actual limits are [−1100, 1462] E ̈otvö s, see Table 4).

For precise reference, the prism-summation (PS) solution is computed at the selected 
7991 gravity observations (see Fig. 10a). Figure 11 shows difference maps of all GP, GV 
and GGT components between the two applied algorithms at the selected observations. 
More statistical details are summarized in Table 4. Obviously, the two algorithms agree 
perfectly, with E2 errors below 0.01%, 0.1% and 1.3% for the GP, GV and GGT compo-
nents, respectively. Specifically, we have MAE as 0.1 mGal, RMS error as 0.05 mGal, E2 
error as 0.02% for the gz component, and MAE below 1 E ̈otvö s, RMS error below 0.1 E ̈o

Table 3  Descriptive statistics of the forward results of Tcb
zz

 in Fig. 9. Comparisons are made on 8 different 
observation heights parallel to the topography, with D = 1, 5, 10, 50, 100, 500, 1000, 5000 m all above the 
topography. Units in Eötvös

Observation height Quantity Min Max Mean RMS E2

D = 1 m Reference −1493.906 2144.877 97.296 459.919 0.130%
CP-FFT −1494.734 2144.979 96.761 459.849
Difference −1.184 0.103 − 0.534 0.599

D = 5 m Reference −1525.823 2058.288 54.333 444.749 0.135%
CP-FFT −1526.649 2058.389 53.796 444.738
Difference −1.184 0.101 −0.537 0.601

D = 10 m Reference −1551.856 1948.852 4.796 433.245 0.139%
CP-FFT −1552.677 1948.947 4.259 433.305
Difference −1.191 0.095 −0.537 0.602

D = 50 m Reference −1406.943 1339.346 −121.034 415.544 0.145%
CP-FFT −1407.882 1339.381 −121.570 415.797
Difference −1.186 0.083 −0.536 0.603

D = 100 m Reference −1248.256 1092.116 −81.804 367.956 0.163%
CP-FFT −1249.093 1092.070 −82.341 368.180
Difference −1.148 0.053 −0.537 0.600

D = 500 m Reference −759.305 661.659 −3.332 236.778 0.253%
CP-FFT −760.190 661.288 −3.868 236.981
Difference −1.268 0.717 −0.536 0.599

D = 1000 m Reference −513.635 450.109 23.614 167.839 0.223%
CP-FFT −514.608 450.173 23.327 167.983
Difference −1.032 0.685 −0.287 0.374

D = 5000 m Reference −80.870 137.892 34.857 61.312 0.118%
CP-FFT −80.899 138.015 34.906 61.379
Difference −0.029 0.141 0.049 0.072
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tvö s, E2 error below 0.1% for the Tzz component. Except for the Txx and Tyy components, 
which exhibit slightly larger errors (MAE about 6 E ̈otvös), MAEs for other GGT compo-
nents are generally below 1 E ̈otvö s, which is sufficiently accurate for most practical appli-
cations. The space-domain solution takes more than 5 days computing values simply at the 
subset of 7991 observations, while the CP-FFT algorithm takes about 16 hours computing 
all 10 gravitational components on the size 9601 × 6001 computation grid (acceleration 
𝜏 > 60000 ), proving its capability for fast computation of gravitational signal induced by 
large DEM datasets on personal computers.

Fig. 10  a 3�� × 3�� resolution SRTM v4.1 DEM (Jarvis et al. 2008) of the Colorado test area and selected 
terrestrial (blue triangles) and airborne (red diamonds) gravity observation locations. b Laterally variable 
density distribution interpolated from the 30′′ resolution UNB_TopoDens model (Sheng et  al. 2019). c 
Interpolated terrain clearance D. d The calculation surface Hcal = hDEM + D . e CP-FFT calculated gz com-
ponent. f CP-FFT calculated Tzz component. Height values in meters, density in kg/m3 , gz values in mGal, 
and Tzz in E ̈otvös
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3.5  Magnetic Field Modeling

The final example is dedicated to the modeling of magnetic fields induced by a bathymetric 
model around 13◦ N on the Mid-Atlantic Ridge, where sea surface gravity, magnetic data, 
and near-seafloor magnetic fields have been measured and analyzed by several authors for 
the study of oceanic core complexes (OCC) (Mallows et al. 2012; Searle et al. 2019). As 
shown in Fig. 12, a patch of 0.5◦ × 0.5◦ multibeam bathymetry data with 3�� × 3�� resolution 
is downloaded from NOAA’s National Centers for Environmental Information (NCEI). To 
test our new algorithm for variable magnetization, we apply the inverted seafloor magneti-
zation in Searle et al. (2019) in our forward modeling.

The computations are carried out both at the sea surface and at an undulating surface 
with 100 m constant height above the seafloor. The magnetic fields are induced from a 0.5 
km thick source layer with either normally (positive magnetization) or reversely (negative 
magnetization) magnetized blocks. The magnetization is in the direction of a geocentric 
axial dipole with declination 0◦ , inclination 25.6◦ (Searle et al. 2019), and the background 
magnetic direction is calculated from the IGRF-13 model as declination −17◦ , inclination 
21◦ (Alken et al. 2021).

Fig. 11  Difference maps for GP, GV and GGT components between CP-FFT forward results and prism-
summation computed reference values at the selected 7991 gravity observations in Fig. 10a. GP values in 
m 2/s2 , GV values in mGal, GGT values in E ̈otvös
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Using the prismatic solution as the precise reference, our CP-FFT algorithm 
( NL = NH = Nh = 100 , RFFT = 2 km, NCP = 50 ) obtains MAEs below 1 nT, RMS errors 
below 0.2 nT, and E2 errors below 0.3% for sea surface magnetic field modeling, and 
MAEs below 7 nT, RMS errors below 2 nT, and E2 errors below 0.7% for all near-bottom 
magnetic vector components. More statistical details can be found in Table 5. The space-
domain solution takes more than 2 days to complete the whole calculation (source grid size 
601 × 601 , computation grid size 591 × 591 ), while the CP-FFT algorithm costs only about 
17 minutes (acceleration � ≈ 190 ), proving its remarkable efficiency in computing mag-
netic components on both constant and undulating surfaces caused by densely-sampled, 
rough bathymetric models with variable magnetization.

Table 4  Statistics of the forward results of GP, GV and GGT components caused by the Colorado DEM 
model with laterally variable density (see Fig. 10) using CP-FFT and prism-summation algorithms. GP in 
m 2/s2 , GV in mGal, and GGT in E ̈otvös

Component Quantity Min Max Mean RMS E2

 V Reference 318.278 803.929 617.015 626.621 0.010%
CP-FFT 318.317 804.027 617.071 626.679
Difference 0.012 0.144 0.056 0.062

 g
x

Reference −517.758 305.364 −13.327 111.505 0.077%
CP-FFT −518.023 305.565 −13.339 111.580
Difference −0.330 0.269 −0.011 0.086

 g
y

Reference −264.815 403.732 0.856 107.628 0.097%
CP-FFT −264.891 403.935 0.856 107.718
Difference −0.295 0.283 −0.000 0.104

 g
z

Reference 43.584 432.737 211.587 224.841 0.022%
CP-FFT 43.596 432.815 211.628 224.885
Difference −0.022 0.107 0.041 0.050

 T
xx

Reference −992.131 1119.208 −45.007 154.302 1.239%
CP-FFT −988.965 1120.782 −43.888 153.898
Difference −2.274 6.201 1.119 1.912

 T
xy

Reference −436.027 439.470 −0.890 58.078 0.268%
CP-FFT −436.375 439.478 −0.881 58.091
Difference −0.814 1.015 0.009 0.156

 T
xz

Reference −1167.491 482.814 1.662 70.753 0.123%
CP-FFT −1167.627 482.759 1.657 70.749
Difference −0.417 0.395 −0.006 0.087

 T
yy

Reference −1032.165 752.867 −38.061 148.047 1.277%
CP-FFT −1030.069 756.029 −36.882 147.669
Difference −2.168 5.853 1.179 1.891

 T
yz

Reference −1102.512 924.344 −16.851 79.078 0.118%
CP-FFT −1102.389 924.744 −16.840 79.081
Difference −0.515 0.518 0.011 0.093

 T
zz

Reference −1099.702 1462.005 83.068 272.108 0.096%
CP-FFT −1099.925 1461.328 82.997 272.020
Difference −0.828 0.494 −0.071 0.261
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4  Conclusions

In this study, we have developed a new CP-FFT algorithm for fast and accurate computa-
tion of topographic gravitational and magnetic fields. We have made several improvements 
to the classical FFT-based terrain correction algorithm, including (a) CP decomposition 
instead of binomial expansion is applied to guarantee the convergence of the outer zone 
computation for rough terrain or bathymetry models, (b) the new method is extended to 
include GP, GV, GGT and magnetic field forward modeling on arbitrary undulating sur-
faces caused by topographic sources with variable density/magnetization, and (c) a GQML 
model is introduced to accelerate the computation of the inner zone effect. Numerical 
tests prove that our new algorithm has great advantage in computational speed over space-
domain solutions while maintaining a sufficiently high accuracy well below existing instru-
mentation error levels.

Except for the sizes of the source and computation grids, computational efficiency 
of the new algorithm mainly depends on RFFT , i.e., the radius separating the inner and 
outer computation zones. A larger separating radius would require more time-consuming 

Fig. 12  Comparison of space-domain and CP-FFT forward results of sea surface and near-bottom magnetic 
fields induced by a bathymetric model with variable magnetization around 13◦ N on the Mid-Atlantic Ridge. 
a Bathymetry of the area. b Inverted seafloor magnetization digitized from Searle et al (2019, Fig. 5) c–e 
Sea surface magnetic anomaly BSS

e
 calculated by using space-domain and CP-FFT algorithms and the cor-

responding difference. (f–h) Near-bottom magnetic anomaly BNB
e

 calculated by using space-domain and 
CP-FFT algorithms and the corresponding difference. Bathymetry values in meters, magnetization in A/m, 
magnetic fields in nT
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space-domain evaluation of inner-zone effects, while in the mean time accelerate the con-
vergence of the outer-zone calculation. An empirical value of RFFT =

max(h)−min(h)

4
 , which 

equals to one fourth of the overall undulation of the input DEM, is recommended to better 
balance computational efficiency and accuracy. Besides, a value of NCP = 50 for CP decom-
position of the gravitational integration kernels is also recommended for the FFT-evaluated 
outer-zone effect to achieve sufficient accuracy with minimum computation amount. For 
the dimension of the CP decomposition, we recommend using NL = NH = Nh = 100 for 
computation areas at a scale of around 200 × 200 km, and NL = NH = Nh = 200 for com-
putation areas at a scale of around 500 × 500 km. For calculation areas above 500 km, the 
influence of Earth curvature may become more significant, and the CP-FFT method may 
not be applicable.

The proposed method is developed in Cartesian coordinates, therefore, it should be 
used with caution when dealing with regional gravitational or magnetic modeling prob-
lems where planar approximation of the actual curved Earth can lead to significant errors. 
Extension of the method to include the curvature of the Earth through a resampling of the 
DEM may be possible. However, since most DEM products are provided on geographical 
grids, additional Cartesian-Spherical coordinate transformations and interpolations of both 

Table 5  Descriptive statistics of the forward results of magnetic effects of the bathymetric model in Fig. 12. 
SS stands for Sea Surface magnetic fields, and NB stands for Near Bottom magnetic fields. Units in nT

Component Quantity Min Max Mean RMS E2

B
SS

x
Reference −158.896 179.492 0.563 58.229 0.253%
CP-FFT −158.987 179.664 0.608 58.260
Difference −0.425 0.373 0.044 0.147

B
SS

y
Reference −176.895 197.860 4.506 55.065 0.171%
CP-FFT −177.039 198.071 4.494 55.129
Difference −0.312 0.224 −0.011 0.094

B
SS

z
Reference −247.406 237.712 −5.717 79.875 0.066%
CP-FFT −247.549 237.852 −5.722 79.920
Difference −0.158 0.150 −0.005 0.052

B
SS

e
Reference −160.261 177.297 −2.776 56.947 0.250%
CP-FFT −160.453 177.505 −2.735 57.010
Difference −0.419 0.363 0.041 0.142

B
NB

x
Reference −1469.905 1445.836 0.578 251.886 0.626%
CP-FFT −1468.329 1444.054 0.172 252.045
Difference −6.218 3.008 −0.405 1.576

B
NB

y
Reference −1168.927 1238.702 1.729 233.707 0.316%
CP-FFT −1169.621 1240.074 1.639 233.897
Difference −2.852 3.199 −0.090 0.740

B
NB

z
Reference −2250.195 1716.048 −8.209 321.703 0.050%
CP-FFT −2250.053 1715.736 −8.210 321.675
Difference −1.172 0.762 −0.001 0.161

B
NB

e
Reference −1553.230 1394.238 −2.898 254.823 0.578%
CP-FFT −1554.978 1394.553 −3.236 254.968
Difference −6.350 2.936 −0.338 1.473
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the DEM and the calculated fields are required to obtain forward results also on geographi-
cal grids.

In our numerical tests, the inner zone effect is evaluated using prismatic solutions, with 
the topography represented by a step function. Using a more smooth polyhedral or bilinear 
representation of the topography for evaluation would certainly improve the accuracy of 
modeling. The computational cost will be slightly increased by choosing different height 
values for each mass line in our GQML model using triangular or bilinear interpolation 
within each grid cell. These may be treated in an updated version of our algorithm and 
computer code.

The new algorithm may be a ready substitute for existing methods. All source codes, 
including space-domain solutions, the CP-FFT algorithm, and several numerical examples, 
are released in MATLAB language. To our knowledge, there is no publicly available code 
that effectively and efficiently implements similar forward computing capabilities, which 
covers terrain-induced GP, GV, GGT and magnetic fields on arbitrary undulating surfaces, 
and takes into account variable density/magnetization distributions.

Appendix 1 CP‑FFT Expressions for GP, GV, GGT with Horizontal 
Variable Density

Kernel functions for the gravitational potential (GP) V:

For the gravitational vector (GV) components gx , gy , gz:

For the gravitational gradient tensor (GGT) components Txx , Txy , Txz , Tyy , Tyz , Tzz:

(22)K
cb
V
= ∫

0

h

1

R
dz̃ = I1.

(23)K
cb
gx
=

𝜕

𝜕x

(
∫

0

h

1

R
dz̃

)
= (x − x̃)I2,

(24)K
cb
gy
=

𝜕

𝜕y

(
∫

0

h

1

R
dz̃

)
= (y − ỹ)I2,

(25)K
cb
gz
=

𝜕

𝜕z

(
∫

0

h

1

R
dz̃

)
= J1.

(26)K
cb
Txx

=
𝜕2

𝜕x2

(
∫

0

h

1

R
dz̃

)
= 3(x − x̃)2I3 + I2,

(27)K
cb
Txy

=
𝜕2

𝜕x𝜕y

(
∫

0

h

1

R
dz̃

)
= 3(x − x̃)(y − ỹ)I3,

(28)K
cb
Txz

=
𝜕2

𝜕x𝜕z

(
∫

0

h

1

R
dz̃

)
= (x − x̃)J3,



1204 Surveys in Geophysics (2023) 44:1175–1210

1 3

Here

The CP decompositions are applied to the functions Ii or Ji , i = 1, 2, 3 , all of which are 
functions of (L, H, h). Extra factors (x − x̃)i or (y − ỹ)i , i = 1, 2 can be combined with An(L) 
since both are functions of (x − x̃, y − ỹ).

CP-FFT expression for the gx component is:

with An(L) , Bn(H) and Cn(h) representing a CP decomposition of I2.
CP-FFT expression for the Txx component is:

(29)K
cb
Tyy

=
𝜕2

𝜕y2

(
∫

0

h

1

R
dz̃

)
= 3(y − ỹ)2I3 + I2,

(30)K
cb
Tyz

=
𝜕2

𝜕y𝜕z

(
∫

0

h

1

R
dz̃

)
= (y − ỹ)J3.

(31)K
cb
Tzz

=
𝜕2

𝜕z2

(
∫

0

h

1

R
dz̃

)
= J2.

(32)I1 = ln

√
L2 + (H − h)2 + (H − h)√

L2 + H2 + H
,

(33)I2 = −
1

L2

�
H − h√

L2 + (H − h)2
−

H√
L2 + H2

�
,

(34)I3 = −
I2

L2
−

1

3L4

⎡⎢⎢⎣

�
H − h√

L2 + (H − h)2

�3

−

�
H√

L2 + H2

�3⎤⎥⎥⎦
,

(35)J1 =
1√

L2 + (H − h)2
−

1√
L2 + H2

,

(36)J2 =
H

[L2 + H2]
3

2

−
H − h

[L2 + (H − h)2]
3

2

,

(37)J3 =
1

[L2 + H2]
3

2

−
1

[L2 + (H − h)2]
3

2

.

(38)ḡcb
x
(x, y,H) ≈ G

NCP∑
n=1

𝜆nBn(H)
([
𝜌(x̃, ỹ)Cn(h)

]
∗
[
(x − x̃)An(L)

])
,
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with A(1)
n
(L) , B(1)

n
(H) and C(1)

n
(h) representing a CP decomposition of I3 , and A(2)

n
(L) , B(2)

n
(H) 

and C(2)
n
(h) representing a CP decomposition of I2.

The computation of the GGT components Txx and Tyy requires the summation of two 
CP-FFTs, while all other components can be solved using one single CP decomposition.
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