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Abstract
Let S be a P2-knot which is the connected sum of a 2-knot with normal Euler number 0 and
an unknotted P2-knot with normal Euler number±2 in a closed 4-manifold X with trisection
TX . Then, we show that the trisection of X obtained by the trivial gluing of relative trisections
of ν(S) and X − ν(S) is diffeomorphic to a stabilization of TX . It should be noted that this
result is not obvious since boundary-stabilizations introduced by Kim and Miller are used to
construct a relative trisection of X − ν(S). As a corollary, if X = S4 and TX was the genus
0 trisection of S4, the resulting trisection is diffeomorphic to a stabilization of the genus 0
trisection of S4. This result is related to the conjecture that is a 4-dimensional analogue of
Waldhausen’s theorem on Heegaard splittings.

Keywords 4-manifold · Trisection · Surface-knot · Bridge trisection ·
Boundary-stabilization

1 Introduction

In 2012, Gay and Kirby [4] introduced the notion of a trisection of a 4-manifold, which
is an analogue of a Heegaard splitting of a 3-manifold. A trisection of a 4-manifold with
boundary is called a relative trisection. Meier and Zupan [10] introduced the notion of a
bridge trisection of a surface-knot, which is an analogue of a bridge decomposition of a
classical knot. A surface-knot can be put in a nice position in a 4-manifold, called a bridge
position, such that the surface-knot is trisected according to a trisection of the 4-manifold.

Let T = (X1, X2, X3) be a trisection of a 4-manifold X , namely, X = X1 ∪ X2 ∪ X3

and each Xi is a 4-dimensional 1-handlebody. For a 2-knot K in X which is in 1-bridge
position, the decomposition of X − ν(K ) into the union of three Xi − ν(K )’s is a relative
trisection of X − ν(K ), where ν(K ) is an open tubular neighborhood of K . On the other
hand, for a surface-knot S in X which is not a 2-knot, the decomposition of X −ν(S) is never
a relative trisection of X − ν(S). Kim and Miller [7] introduced a new technique, called
a boundary-stabilization, to change the above decomposition of X − ν(S) into a relative
trisection.
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We can construct a new trisection of X = ν(S)∪id X −ν(S) by gluing a relative trisection
of ν(S) and that of X − ν(S) constructed above using a gluing technique given by Castro
[1]. In this section, the new trisection is called a trisection obtained by trivially gluing ν(S)

and X − ν(S). This trisection and T are stably diffeomorphic (resp. stably isotopic), namely,
they are diffeomorphic (resp. isotopic) after finitely many stabilizations. However, it is not
obvious whether this trisection is diffeomorphic, especially isotopic, to a stabilization of T
since when we construct a relative trisection of X −ν(S) from the union of three Xi −ν(S)’s,
we use boundary-stabilizations as mentioned above. Thus, we can think about the following
question.

Question (Question 5.1) Let S be a surface-knot in a closed 4-manifold X with trisection
T . Is a trisection obtained by trivially gluing ν(S) and X − ν(S) diffeomorphic, especially
isotopic, to a stabilization of T ? In particular, if X = S4, does this hold?

The Price twist is a surgery along a P2-knot P in a 4-manifold X , which yields at most
three different 4-manifolds, namely, X , �P (X) and a non-simply connected 4-manifold
τP (X). The closed 4-manifold �P (S4) is a homotopy 4-sphere. In this paper, we call the
twist having X the trivial Price twist. Kim and Miller [7] constructed trisections obtained by
the Price twist by attaching a relative trisection of ν(P) obtained from its Kirby diagram to
a relative trisection of X − ν(P) constructed by a boundary-stabilization.

In this paper, we show the following theorem for Question 5.1. Note that a trisection
obtained by the trivial Price twist along S corresponds to that obtained by trivially gluing a
relative trisection of ν(S) and that of X − ν(S).

Theorem (Theorem 5.2) Let X be a closed 4-manifold and S the connected sum of a 2-knot
K with normal Euler number 0 and an unknotted P2-knot with normal Euler number ±2 in
X. Also let T(X ,S) be a bridge trisection of (X , S) and TX the underlying trisection. Suppose
that S is in bridge position with respect to TX . Also let T

′
X be the underlying trisection of the

bridge trisection obtained by meridionally stabilizing T(X ,S) so that S is in 2-bridge position
with respect to T

′
X . Then, the trisection TS obtained by the trivial Price twist along S is

diffeomorphic to a stabilization of T
′
X . In particular, the trisection TS is diffeomorphic to a

stabilization of TX .

In the proof of Theorem 5.2, we will perform handle slides and destabilizations many
times (see also [15]).

A P2-knot S in S4 is said to be of Kinoshita type if S is the connected sum of a 2-knot
and an unknotted P2-knot. It is conjectured that every P2-knot in S4 is of Kinoshita type
(see Remark 3.2).

Corollary (Corollary 5.3) For each P2-knot S in S4 that is of Kinoshita type, the trisection
obtained by the trivial Price twist along S is diffeomorphic to a stabilization of the genus 0
trisection of S4.

This implies that if any two diffeomorphic trisections of S4 are isotopic, the resulting
trisection gives a positive evidence to the conjecture that is a 4-dimensional analogue of
Waldhausen’s theorem on Heegaard splittings.

Conjucture ([11]) Every trisection of S4 is isotopic to either the genus 0 trisection or its
stabilization.
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Organization In Sect. 2, we review trisections, relative trisections and bridge trisections.
In Sect. 3, we recall a surgery along a P2-knot in a 4-manifold, called the Price twist and
provide a topic related to a trisection obtained by the Price twist. In Sect. 4, we review the
definition of a boundary-stabilization and the way of constructing a relative trisection of the
complement of a surface-knot. Finally, in Sect. 5, we raise a question on a stabilization of
a trisection obtained by the trivial regluing of a surface-knot and prove our main theorem
and its corollary related to the conjecture that is a 4-dimensional analogue of Waldhausen’s
theorem on Heegaard splittings.

2 Preliminaries

In this paper, we assume that 4-manifolds are compact, connected, oriented, and smooth
unless otherwise stated and a surface-knot in a 4-manifold is a closed surface smoothly
embedded in the 4-manifold.

2.1 Trisections of 4-manifolds

In this subsection, we review a definition and properties of trisections of closed 4-manifolds
introduced in [4]. Let g, k1, k2 and k3 be integers satisfying 0 ≤ k1, k2, k3 ≤ g.

Definition 2.1 Let X be a closed 4-manifold. A (g; k1, k2, k3)-trisection of X is a decompo-
sition X = X1 ∪ X2 ∪ X3 into three submanifolds X1, X2, X3 of X satisfying the following
conditions:

• For each i = 1, 2, 3, there exists a diffeomorphism φi : Xi → Zki , where Zki = �ki S
1 ×

D3.
• For each i = 1, 2, 3, φi (Xi ∩ Xi−1) = Y−

ki ,g
and φi (Xi ∩ Xi+1) = Y+

ki ,g
, where Y±

ki ,g
is

the genus g Heegaard splitting ∂Zki = Y−
ki ,g

∪ Y+
ki ,g

of ∂Zki obtained by stabilizing the
standard genus ki Heegaard splitting of ∂Zki g − ki times.

Note that when X admits a trisection X = X1 ∪ X2 ∪ X3, we call the 3-tuple T =
(X1, X2, X3) also a trisection of X . If k1 = k2 = k3 = k, the trisection is called a balanced
trisection, or a (g, k)-trisection; if not, it is called an unbalanced trisection. For a (g, k)-
trisection, since χ(X) = 2 + g − 3k, we simply call the trisection a genus g trisection. For
example, the 4-sphere S4 admits the (0, 0)-trisection, namely genus 0 trisection.

For a trisection (X1, X2, X3), let Hα = X3 ∩ X1, Hβ = X1 ∩ X2 and Hγ = X2 ∩ X3.
Then, the trisection is uniquely determined from Hα ∪Hβ ∪Hγ [9]. The union Hα ∪Hβ ∪Hγ

is called the spine.
Given a trisection, we can define its diagram, called a trisection diagram. Note that from

the definition, we see that the triple intersection X1 ∩ X2 ∩ X3 is an oriented closed surface
�g of genus g.

Definition 2.2 Let � be a compact, connected, oriented surface, and δ, ε collections of
disjoint simple closed curves on �. The 3-tuples (�, δ, ε) and (�, δ

′
, ε

′
) are said to be

diffeomorphism and handleslide equivalent if there exists a self diffeomorphism h of � such
that h(δ) and h(ε) are related to δ

′
and ε

′
by a sequence of handleslides, respectively.

Definition 2.3 A (g; k1, k2, k3)-trisection diagram is a 4-tuple (�g, α, β, γ ) satysfying the
following conditions:
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Fig. 1 The standard genus g Heegaard diagram of #ki S
1 × S2

Fig. 2 A (1, 0)-trisection
diagram of CP2

• (�g, α, β) is diffeomorphism and handleslide equivalent to the standard genus g Hee-
gaard diagram of #k1 S

1 × S2.
• (�g, β, γ ) is diffeomorphism and handleslide equivalent to the standard genus g Hee-

gaard diagram of #k2 S
1 × S2.

• (�g, γ, α) is diffeomorphism and handleslide equivalent to the standard genus g Hee-
gaard diagram of #k3 S

1 × S2.

Figure1 describes the standard genus g Heegaard diagram of #ki S
1 × S2.

Note that given a trisection diagram (�g, α, β, γ ), α, β and γ are respectively indicated
by red, blue and green curves as in Fig. 2.

Example 2.4 Fig. 2 is a (1, 0)-trisection diagram of CP2 (see also Fig. 6).

Definition 2.5 ( [6]) Let X be a closed 4-manifold, and T = (X1, X2, X3) and T
′ =

(X
′
1, X

′
2, X

′
3) trisections of X . We say that T and T

′
are diffeomorphic if there exists a

diffeomorphism h : X → X such that h(Xi ) = X
′
i for each i = 1, 2, 3. We say that T and

T
′
are isotopic if there exists an isotopy {ht }t∈[0,1] of X such that h0 = id and h1(Xi ) = X

′
i

for each i = 1, 2, 3.

Note that T and T
′
are diffeomorphic if and only if trisection diagrams of T and T

′
are

related by handle slides on the same color curves and diffeomorphisms of a surface.
As with the stabilization for a Heegaard splitting, we can define a stabilization for a

trisection.

Definition 2.6 Let (X1, X2, X3) be a trisection and C a boundary-parallel arc properly
embedded in Xi ∩ X j . We define X

′
i , X

′
j , and X

′
k as follows, where {i, j, k} = {1, 2, 3}.

• X
′
i = Xi − ν(C),

• X
′
j = X j − ν(C),

• X
′
k = Xk ∪ ν(C).

123



Geometriae Dedicata           (2024) 218:71 Page 5 of 19    71 

Fig. 3 The unbalanced trisection diagrams of S4

The replacement of (X1, X2, X3) by (X
′
1, X

′
2, X

′
3) is said to be the k-stabilization.

Note that the stabilization does not depend on the choice of an arc since any two boundary-
parallel arcs in a 3-dimensional 1-handlebody are isotopic.

We can define a stabilization for a trisection using its trisection diagram.

Definition 2.7 Let (�, α, β, γ ) be a trisection diagram. The diagram obtainted by connect-
summing (�, α, β, γ )with one of three diagrams depicted in Fig. 3 is called the stabilization
of (�, α, β, γ ).

The diagrams in Fig. 3 are (1; 1, 0, 0), (1; 0, 1, 0), (1; 0, 0, 1)-trisection diagrams of S4

from left to right. Note that for a (g; k1, k2, k3)-trisection diagram (�, α, β, γ ), the diagram
obtained by connect-summing (�, α, β, γ ) with the leftmost (resp. middle, resp. rightmost)
diagram inFig. 3 is a (g+1; k1+1, k2, k3) (resp. (g+1; k1, k2+1, k3), resp. (g+1; k1, k2, k3+
1))-trisection diagram. Given a trisection diagram (�, α, β, γ ), we can define a closed 4-

manifold X(�, α, β, γ ) as follows:We attach 2-handles to�×D2 along α×{1}, β ×{e 2π i
3 },

and γ × {e 4π i
3 }, where the framing of each 2-handle is the surface framing. Then, we attach

3, 4-handles. Note that the way of attaching 3, 4-handles is unique up to diffeomorphism [9].
Gay and Kirby [4] showed that every closed 4-manifold X admits a trisection with nice

handle decomposition. Moreover, they showed that any two trisections of a fixed closed 4-
manifold are stably isotopic. Namely, they are isotopic after finitelymany stabilizations. Note
that they proved it in the balanced case. In general, an i-stabilized trisection is not isotopic
to a j-stabilized trisection when i �= j [11].

For more details on trisections of closed 4-manifolds, see [4].

2.2 Relative trisections

In this subsection, we review trisections of 4-manifolds with boundary, called relative trisec-
tions. Before the definition, we introduce some notations.

Let g, k, p and b be non-negative integers with b ≥ 1 and g+ p+b−1 ≥ k ≥ 2p+b−1.
Also let �b

p be a compact, connected, oriented genus p surface with b boundary components
and l = 2p + b − 1. We define D, ∂−D, ∂0D, and ∂+D as follows:

D = {(r , θ) | r ∈ [0, 1], θ ∈ [−π/3, π/3]} , ∂−D = {(r , θ) | r ∈ [0, 1], θ = −π/3} ,

∂0D = {(r , θ) | r = 1, θ ∈ [−π/3, π/3]} , ∂+D = {(r , θ) | r ∈ [0, 1], θ = π/3} .

Then, ∂D = ∂−D∪ ∂0D∪ ∂+D holds. We write P for �b
p andU for D× P . Then, from

the decomposition of ∂D, we have ∂U = ∂−U ∪ ∂0U ∪ ∂+U , where

∂±U = ∂±D × P, ∂0U = P × ∂0D ∪ ∂P × D.
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Fig. 4 The standard diagram for a relative trisection diagram. Note that l = 2p + b − 1

For an integer n > 0, let Vn = �n S1 ×D3 and ∂Vn = ∂−Vn ∪∂+Vn be the standard genus
n Heegaard splitting of ∂Vn . Moreover, for an integer s ≥ n, the Heegaard splitting of ∂Vn
obtained by stabilizing the standard Heegaard splitting is denoted by ∂Vn = ∂−

s Vn ∪ ∂+
s Vn .

Henceforth, let n = k−2p−b+1 = k−l, s = g−k+ p+b−1 (Vn = Vk−2p−b+1 = Vk−l ).
Lastly, we define Zk = U�Vn , where the boundary sum is taken by identifying the

neighborhood of a point in int(∂−U ∩ ∂+U ) with the neighborhood of a point in int(∂−
s Vn ∩

∂+
s Vn). Here, we define Yk = ∂Zk = ∂U#∂Vn . Then, from the above decomposition, we
have Yk = Y−

g,k;p,b∪Y 0
g,k;p,b∪Y+

g,k;p,b, where Y
±
g,k;p,b = ∂±U�∂±

s Vn and Y 0
g,k;p,b = ∂0U =

P × ∂0D ∪ ∂P × D.
Using these notations, we can define a relative trisection as follows.

Definition 2.8 Let X be a 4-manifold with connected boundary. The decomposition X =
X1 ∪ X2 ∪ X3 of X satisfying the following conditions is called a (g, k; p, b)-relative tri-
section:

• For each i = 1, 2, 3, there exists a diffeomorphism φi : Xi → Zk .
• For each i = 1, 2, 3, φi (Xi ∩ Xi−1) = Y−

g,k;p,b, φi (Xi ∩ Xi+1) = Y+
g,k;p,b and φi (Xi ∩

∂X) = Y 0
g,k;p,b, where X4 = X1 and X0 = X3.

Note that this definition is that of a balanced relative trisection. As with the definition 2.1,
we can define an unbalanced relative trisection. Moreover in Definition 2.8, Xi ∩ X j ∩∂X ∼=
�b

p must be connected since ∂X is assumed to be connected. This fact is used in Sect. 4 to
consider a relative trisection of the complement of a surface-knot.

Given a relative trisection, we can define a relative trisection diagram.

Definition 2.9 A (g, k; p, b)-relative trisection diagram is a 4-tuple (�b
g , α, β, γ ) satysfying

the following conditions:

• α, β and γ are respectively (g − p)-tuples of curves on �b
g .

• Eachof the 3-tuples (�b
g, α, β), (�b

g , β, γ ), (�b
g , γ, α) is diffeomorphismandhandleslide

equivalent to the diagram described in Fig. 4.

Lemma 2.10 (Lemma 11 in [2]) A (g, k; p, b)-relative trisection of a 4-manifold X with non-
empty boundary induces an open book decomposition on ∂X with page �b

p (hence binding

∂�b
p).
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Fig. 5 (Left) A
(2, 1; 0, 2)-relative trisection
diagram of the D2 bundle over S2

with Euler number −1. (Right) Its
arced relative trisection diagram

If we want to glue several relative trisection diagrams, we must describe a diagram with
arcs, called an arced relative trisection diagram. There exists an algorithm for drawing such
arcs.

Lemma 2.11 (Theorem 6 in [1]) For i = 1, 2, let Xi be a 4-manifold with nomempty and
connected boundary, and Ti a relative trisection of Xi . Also letOXi be the open book decom-
position on ∂Xi induced by Ti . If f : ∂X1 → ∂X2 is an orientation reversing diffeomorphism
which takesOX1 toOX2, then we obtain a trisection of X = X1 ∪ f X2 by gluing T1 and T2.

Note that if there exists a diffeomorphism f as above, the page of OX1 is diffeomorphic
to the page of OX2 via f . Thus, if Ti is the (gi , ki ; pi , bi )-relative trisection, then p1 = p2
and b1 = b2.

Let (�(i), α(i), β(i), γ (i), a(i), b(i), c(i)) be an arced relative trisection diagram of Xi .
If there exists f in Lem 2.11, we can obtain three kinds of new simple closed curves in
�(1)∪ f �(2), i.e. a(1)∪a(2), b(1)∪b(2) and c(1)∪c(2) via f . Thus, we have the following
proposition, where � = �(1) ∪ f �(2) and α̃ (resp. β̃, resp. γ̃ ) = (a(1) j ∪∂ a(2) j ) j (resp.
(b(1) j ∪∂ b(2) j ) j , resp. (c(1) j ∪∂ c(2) j ) j .

Proposition 2.12 (Proposition 2.12 in [3]) In addition to the assumptions in Lem 2.11, let
(�(i), α(i), β(i), γ (i), a(i), b(i), c(i)) be an arced relative trisection diagram of Xi . Then,
the 4-tuple (�, α, β, γ ) is a trisection diagram of X, where α = α(1) ∪ α(2) ∪ α̃.

Proposition 2.13 (Theorem 5 in [2]) Let (�, α, β, γ ) be a (g, k; p, b) relative trisection
diagram and �α the surface obtained by performing the surgery along α. Suppose that this
operation comes with an embedding φα : � − α → �α . Consider the following step.

1. Choose a collection of arcs a such that a is disjoint from α in � and φα(a) cuts �α into
a disk. Note that a consists of 2p + b − 1 arcs.

2. Choose b by handle sliding a over α so that b is disjoint from β. If necessary, we slide βi

over β j . In this case, the β is denoted by β ′. If handle slides are not needed, β ′ = β.
3. Choose c by handle sliding b over β ′ so that c is disjoint from γ . If necessary, we slide γi

over γ j . In this case, the γ is denoted by γ ′. If handle slides are not needed, γ ′ = γ .

Then, (�, α, β ′, γ ′, a, b, c) is an arced relative trisection diagram.

Example 2.14 Fig. 5 is a (2, 1; 0, 2)-relative trisection diagram of the D2 bundle over S2 with
Euler number −1 and its arced relative trisection diagram constructed from the algorithm.

For more details on relative trisections, see [1–3].
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2.3 Bridge trisections

In this subsection, we review trisections of surface-knots, called bridge trisections.

Definition 2.15 Let V be a 4-dimensional 1-handlebody andD a collection of disks properly
embedded in V . We say that D is trivial if the disks of D are simultaneously isotoped into
∂V .

Definition 2.16 Let H be a 3-dimensional 1-handlebody and τ = {τi } a collection of arcs
properly embedded in H . We say that τ is trivial if τi is isotoped into ∂H for each i . Or
equivalently, there exists a collection � = {�i } of disks in H with �i ∩ � j = ∅ such that
∂�i = τi ∪ τ

′
i for some arc τ

′
i ⊂ ∂H . We call τ , � and τ

′
i trivial tangles, bridge disks and a

shadow of τi respectively.

Definition 2.17 ( [10]) Let X = X1 ∪ X2 ∪ X3 be a (g; k1, k2, k3)-trisection of a closed
4-manifold X , and S a surface-knot in X . A decomposition (X , S) = (X1,D1)∪ (X2,D2)∪
(X3,D3) is a (g; k1, k2, k3; b; c1, c2, c3)-bridge trisection of (X , S) if

• For each i = 1, 2, 3, Di is a collection of trivial ci disks in Xi .
• For i �= j , Di ∩ D j form trivial b tangles in Xi ∩ X j .

We say that S is in (b; c1, c2, c3)-bridge position with respect to (X1, X2, X3) if (X , S) =
(X1, S∩X1)∪(X2, S∩X2)∪(X3, S∩X3) is a (g; k1, k2, k3; b; c1, c2, c3)-bridge trisection.

We call the trisection (X1, X2, X3) the underlying trisection of the bridge trisection.

Remark 2.18 In Definition 2.17, if X = S4, then the trisection is the (0, 0)-trisection [12,
Definition 1.2].

As with a balanced trisection, when k1 = k2 = k3 = k and c1 = c2 = c3 = c, we say
that the decomposition of (X , S) is a (g, k; b, c)-bridge trisection and S is in (b, c)-bridge
position. Note that if S is in (b; c1, c2, c3)-bridge position, then χ(S) = c1 + c2 + c3 − b.
So, when c1 = c2 = c3, we often say that S is in b-bridge position.

Meier and Zupan [10] showed that every pair of a 4-manifold X and a surface-knot S in
X admits a bridge trisection, using a technical operation called meridional stabilization.

Definition 2.19 Let (X , S) = (X1,D1) ∪ (X2,D2) ∪ (X3,D3) be a bridge trisection and C
an arc in Di ∩D j whose endpoints are in distinct components of Dk . We define (X

′
�,D

′
�) as

follows, where {i, j, k} = {1, 2, 3}.
• (X

′
i ,D

′
i ) = (Xi − ν(C),Di − ν(C))

• (X
′
j ,D

′
j ) = (X j − ν(C),D j − ν(C))

• (X
′
k,D

′
k) = (Xk ∪ ν(C),Dk ∪ (ν(C) ∩ S)

The replacement of (X�,D�) by (X
′
�,D

′
�) for all � is said to be a k-meridionally stabilization.

Note that when we meridionally stabilize a bridge trisection of (X , S), for the underlying
trisection of X , we simply stabilize it. This observation is used in the proof of our main
theorem.

Theorem 2.20 (Theorem 2 in [10]) Let S be a surface-link in a closed 4-manifold X with
a (g, k)-trisection T . Then, the pair (X , S) admits a (g, k; b, n)-bridge trisection with b =
3n − χ(S), where n is the number of connected components of S.
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Fig. 6 A doubly pointed trisection diagram of (CP2,CP1). The red, blue, and green curves describe a (1, 1)-
trisection diagram of CP2 and the arcs a, b, and c describe CP1. Note that in a doubly pointed trisection
diagram, we do not need to draw the arcs since there is a unique way to describe them

Note that in Theorem 2.20, if S is a 2-knot, then S can be in 1-bridge position with respect
to a trisection obtained by stabilizing T . Furthermore if S is a P2-knot, then S can be in
2-bridge position.

A surface-knot in S4 can be described by a triplane diagram introduced byMeier andZupan
[12]. On the other hand, it is difficult to describe a surface-knot in a general 4-manifold in
the same way. Therefore, Meier and Zupan [10] developed another diagram using shadows
in Definition 2.16. It is called a shadow diagram.

Definition 2.21 Let (X , S) = (X1,D1) ∪ (X2,D2) ∪ (X3,D3) be a bridge trisection. A 4-
tuple (�, (α, a), (β, b), (γ, c)) is called a shadow diagram if the 4-tuple (�, α, β, γ ) is a
trisection diagram of (X1, X2, X3), and a, b and c are shadows of D1 ∩ D2, D2 ∩ D3 and
D3 ∩D1 respectively. In particular, a, b and c are a shadow of Di ∩D j , the shadow diagram
is called a doubly pointed trisection diagram.

Each 2-knot in a closed 4-manifold admits a doubly pointed trisection diagram since it
can be put in 1-bridge position. Note that for a 2-knot K in 1-bridge position with respect
to a trisection T of X , the underlying trisection diagram of (X , K ) is the diagram of T . For
example, Fig. 6 describes a doubly pointed trisection diagram of (CP2,CP1). We call the
two black points of a doubly pointed trisection diagram base points in the proof of our main
theorem.

For more details on bridge trisections, see [10, 12].

3 The price twist

In this section, we review a surgery along a P2-knot in a closed 4-manifold, called the Price
twist.

Let S be a P2-knot, that is, a real projective plane smoothly embedded in a closed
4-manifold X , with normal Euler number e(S) = ±2. Note that when X = S4, from
Whitney-Massey’s theorem [13, 18], each P2-knot S satisfies e(S) = ±2. Then, for a tubu-
lar neighborhood ν(S) of S in X , the boundary ∂ν(S) is a Seifert-fibered space Q over S2

with three singular fibers labeled S0, S1 and S−1, where these indices are respectively ±2,
±2 and ∓2 when e(S) = ±2. Since ∂(X − ν(S)) ∼= Q, ∂(X − ν(S)) has the same label with
∂ν(S). Price [16] showed that there exist three kinds of self-homeomorphism of ∂ν(S) up to
isotopy, that is, S−1 �→ S−1, S−1 �→ S0 and S−1 �→ S1. Thus, when we reglue ν(S) deleted
from X according to φ : ∂ν(S) → ∂(X − ν(S)), we can obtain the following at most (see
below) three 4-manifolds up to diffeomorphism (the notation follows [7]):
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• If φ(S−1) = S−1, the resulting manifold is X .
• If φ(S−1) = S0, the resulting manifold is denoted by τS(X).
• If φ(S−1) = S1, the resulting manifold is denoted by �S(X).

This operation is called the Price twist of X along S. Especially, in this paper, we call the
first twist, that is, the twist having the original manifold X , the trivial Price twist. Note that
�S(S4) is a homotopy 4-sphere. Let �G

K (X) be the 4-manifold obtained by the Gluck twist
along K , where K is a 2-knot in X . Then, from [8], we see that for a P2-knot S = K#P±,
�S(X) ∼= �G

K (X) holds, where P± is an unknotted P2-knot with normal Euler number ±2
in X . So, for a 2-knot K satisfying �G

K (S4) ∼= S4 such as a twist spun 2-knot, we have
�S(S4) ∼= S4. Thus, we can ask whether the conjecture that is a 4-dimensional analogue of
Waldhausen’s theorem on Heegaard splittings [11, Conjecture 3.11] holds for such �S(S4)
( [7, Question 6.2]). Note that [7, Question 6.2] is a specific case of [11, Conjecture 3.11].

Question (Question 6.2 in [7]) Let S be a P2-knot in S4 so that �S(S4) ∼= S4. Is a trisection
of �S(S4) obtained from the algorithm of Section 5 in [7] isotopic to a stabilization of the
genus 0 trisection of S4?

Conjucture (Conjecture 3.11 in [11]) Every trisection of S4 is isotopic to either the genus 0
trisection or its stabilization.

Remark 3.1 From [15], we immediately see that Figure 19 right of [7], that is, a (6, 2)-
trisection diagram of �P−(S4), is a stabilization of the (0, 0)-trisection diagram of S4 up to
handle slides and diffeomorphisms.

Remark 3.2 For a 2-knot K and an unknotted P2-knot P in S4, the P2-knot S admits the
decomposition K#P is said to be of Kinoshita type. It is not known whether every P2-knot
in S4 is of Kinoshita type. This question is called the Kinoshota question or the Kinoshita
conjecture. We may answer the question with τS(S4) [7]. Note that in [7, Question 6.2], if S
is of Kinoshita type, then trisections in the question are diffeomorphic to trisections obtained
by the Gluck twist [15]. In particular, if S is the connected sum of the unknotted P2-knot
and a spun or twist spun 2-knot, [7, Question 6.2] reduces to [5, Question 6.4] in the sense
of diffeomorphic trisections.

Question (Question 6.4 in [5]) Is the trisection diagram constructed by [14] and [5, Lemma
5.5] for theGluck twist along a spun or twist spun 2-knot a stabilization of the (0, 0)-trisection
diagram of S4?

This question is not answered even in the case of the spun trefoil, which can be regarded
as the simplest non trivial spun 2-knot.

By the following theorem, called Waldhausen’s theorem, we can see the reason that [11,
Conjecture 3.11] is a 4-dimensional analogue of Waldhausen’s theorem on Heegaard split-
tings.

Theorem 3.3 ([19], [17]) The 3-sphere S3 admits a unique Heegaard splitting up to isotopy
for each genus.

For more details on the Price twist and a trisection obtained by the Price twist, see [7, 16].

123



Geometriae Dedicata           (2024) 218:71 Page 11 of 19    71 

4 A boundary-stabilization

In this section, we review a boundary-stabilization for a 4-manifoldwith boundary introduced
in [7].

Definition 4.1 LetY = Y1∪Y2∪Y3 be a 4-manifoldwith ∂Y �= ∅, whereYi∩Y j = ∂Yi∩∂Y j ,
and C an arc properly embedded in Yi ∩ Y j ∩ ∂Y whose endpoints are in Y1 ∩ Y2 ∩ Y3. Also
let ν(C) be a fixed open tubular neighborhood of C . Then, we define Ỹi , Ỹ j , Ỹk as follows:

• Ỹi = Yi − ν(C),
• Ỹ j = Y j − ν(C),
• Ỹk = Yk ∪ ν(C).

The replacement of (Y1, Y2, Y3) by (Ỹi , Ỹ j , Ỹk) is said to be a boundary-stabilization along
C . In this case, we say that Ỹk has been obtained by boundary-stabilizing Yk along C .

As we have seen in Sect. 1, we need a boundary-stabilization in order to construct a
relative trisection of the complement of a surface-knot in a closed 4-manifold. The following
explanation is more precise.

Let S be a surface-knot in a closed 4-manifold X with trisection (X1, X2, X3). Suppose that
S is in (b, c)-bridgepositionwith respect to (X1, X2, X3). Let X

′
i = Xi−ν(S). Then, X−ν(S)

admits a natural decomposition X − ν(S) = X
′
1 ∪ X

′
2 ∪ X

′
3. However, this decomposition of

X−ν(S) can be a relative trisection if and only if S is a 2-knot and S is in 1-bridge position, that
is, b = 1. This is because if b > 1, then the triple intersection X

′
i ∩ X

′
j ∩∂(X − ν(S)), which

is diffeomorphic to the disjoint union �bS1 × I of b annuli, is disconnected. This contradicts
the fact that for a relative trisection (Y1, Y2, Y3), if ∂Y is connected, then Yi ∩ Y j ∩ ∂Y must
be connected. So, for all S except 2-knots, X − ν(S) cannot admit (X

′
1, X

′
2, X

′
3) as a relative

trisection. Although, we can refine the decomposition by boundary-stabilizing each X
′
i so

that X − ν(S) admits a relative trisection for each S. Put briefly, the way is the following:
In this paper, since we focus on a P2-knot, we first review a boundary-stabilization of

the complement of a P2-knot. In the above situation, suppose also that S is a P2-knot and
b = 2 (Theorem 2.20). For each i = 1, 2, 3 and {i, j, k} = {1, 2, 3}, we define Ci to be an
arc in X

′
j ∩ X

′
k ∩ ∂(X − ν(S)) whose endpoints are in X

′
1 ∩ X

′
2 ∩ X

′
3 which intersects two

distinct connected components of ∂(X
′
1 ∩ X

′
2 ∩ X

′
3). Take C1, C2 and C3 so that they have

different endpoints. Then, if we boundary-stabilize X
′
� alongC�, we obtain the decomposition

X − ν(S) = X̃1 ∪ X̃2 ∪ X̃3, where X̃� is the submanifold of X − ν(S) obtained by boundary-
stabilizing X

′
� along C1, C2, and C3. We see that X̃i ∩ X̃ j ∩ ∂(X − ν(S)) is connected and if

we furthermore check on the structure of an open book decomposition which will be induced,
we have the following proposition.

Proposition 4.2 ( [7]) The 3-tuple (X̃1, X̃2, X̃3) is a relative trisection of X − ν(S).

For a surface-knot S except P2-knots, we can construct a relative trisection of the com-
plement of S as with the case of a P2-knot. The differences are that for each i = 1, 2, 3, we
take Ci to be a collection of 2 − χ(S) arcs and take each arc in Ci so that the arc is parallel
to a different one in ν(S) ∩ X j ∩ Xk .

Note that unlike a stabilization of a trisection, a boundary-stabilization depends on the
choice of an arc. If S is a P2-knot, the type of a relative trisection of X − ν(S) obtained
by boundary-stabilizations as above is either (g, k; 0, 3) or (g

′
, k

′ ; 1, 1). In Sect. 5, since
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we glue a (2, 2; 0, 3)-relative trisection of ν(S) and a relative trisection of X − ν(S) from
boundary-stabilizations, we need to boundary-stabilize X − ν(S) = ⋃3

i=1 Xi − ν(S) so that
the type of the resulting relative trisection is (g, k; 0, 3) for some g and k.

Kim and Miller developed an algorithm to describe a relative trisection diagram of the
complement of a surface-knot using the shadow diagram; see [7, Section 4].

For more details on boundary-stabilizations and a relative trisection of the complement
of a surface-knot, see [7].

5 Main theorem

As we have seen in Sect. 1, we can think about the following question.

Question 5.1 Let S be a surface-knot in a closed 4-manifold X with trisection T . Is a trisection
obtained by trivially gluing ν(S) and X − ν(S) diffeomorphic, especially isotopic, to a
stabilization of T ? In particular, if X = S4, does this hold?

For the restricting case, we answer Question 5.1 affirmatively in Theorem 5.2, our main
theorem.

Theorem 5.2 Let X be a closed 4-manifold and S the connected sum of a 2-knot K with
normal Euler number 0 and an unknotted P2-knot with normal Euler number ±2 in X. Also
let T(X ,S) be a bridge trisection of (X , S) and TX the underlying trisection. Suppose that
S is in bridge position with respect to TX . Also let T

′
X be the underlying trisection of the

bridge trisection obtained by meridionally stabilizing T(X ,S) so that S is in 2-bridge position
with respect to T

′
X . Then, the trisection TS obtained by the trivial Price twist along S is

diffeomorphic to a stabilization of T
′
X . In particular, the trisection TS is diffeomorphic to a

stabilization of TX .

Proof Let DY be a relative trisection diagram of a 4-manifold Y . Also let P+ and P− be
unknotted P2-knots in X with normal Euler number 2 and −2, respectively.

Since the preferred diagram Dν(P+) and DS4−ν(P+) in [7] are the mirror images of Dν(P−)

and DS4−ν(P−), respectively, it suffices to proof Theorem 5.2 only for S = K#P−. ��
Constructing TS It follows from [7] that DX−ν(S) is the union of DS4−ν(P−) and DX−ν(K ).
Thus, the gluingDν(P−) andDX−ν(S) together by the trivial Price twist is described as Fig. 7.
Note that we construct Dν(P−) in Fig. 7 by deforming the preferred diagram of ν(P−) in [7]
so that the gluing is described as Fig. 7. In Fig. 7, if we draw arcs of Dν(P−) and DS4−ν(P−),
then we can obtain Fig. 8. The diagram depicted in Fig. 8 corresponds to TS . It should be
noted that we do not draw curves and arcs on the surface of DX−ν(K ) in Fig. 7, but DX−ν(K )

has them.
From now on, we deform trisection diagrams specifically. Note that from Fig.8–18, the

undrawn part describes DX−ν(K ) with arcs and if necessary, let two arcs of DX−ν(K ) be
parallel by performing handle slides. Also note that for a α curve αi , we call a curve obtained
by sliding αi over another α curve also αi . The same is true for β and γ curves.
The first destabilization In Fig. 8 (or Fig. 9), we will destabilize α1, β1 and γ1. To do this,
we slide γ2 over γ3 so that the geometric intersection number of γ2 and α1 is 2. Then, we
slide γ2, γ3 and γ4 over γ1 in this order. After that, we slide γ2 over γ4. As a result, γ2 does
not intersect α1. We also slide γ4 over γ3 so that γ4 does not intersect α1. Finally, we slide
γ3 over γ1, so that all γ curves except γ1 do not meet α1 and β1. Then, we obtain Fig. 9. In
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Fig. 7 The gluing diagram of
Dν(P−) and DX−ν(S) by the
trivial Price twist along
S = K#P− in X . We glue
Dν(P−), DS4−ν(P−), and
DX−ν(K ) along the boundary
components of the corresponding
characters a, b, c and d

Fig. 8 Starting diagram
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Fig. 9 Before the first destabilization

Fig. 10 After the first destabilization

Fig. 9, by destabilizing α1, β1 and γ1, that is, erasing γ1 and surgering α1 or β1 (if we choose
α1, then we erase β1 and vise versa), we get Fig. 10.
The second destabilization In Fig. 10 (or Fig. 11), we will destabilize α1, β1 and γ1. To
do this, we firstly need to make β1 parallel to γ1. We slide β3 over β4 and β1 over β2. We
again slide β1 over β2 so that β1 is parallel to γ1. After that, we slide γ2 and γ3 over γ1 in
order to remove the crossings of γ2, γ3 and α1. As a result, we obtain Fig. 11. In Fig. 11, by
destabilizing α1, β1 and γ1, that is, erasing β1 and γ1 and surgering α1, we get Fig. 12.
The third destabilization In Fig. 12 (or Fig. 13), we will destabilize α1, β1 and γ1. To do
this, we need to make β1 parallel to γ1. We slide γ1 over γ2 so that γ1 does not intersect α2.
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Fig. 11 Before the second destabilization

Fig. 12 After the second destabilization

Then, we slide β1 over β2 and β3, so that β1 is parallel to γ1. As a result, we obtain Fig. 13.
In Fig. 13, by destabilizing α1, β1 and γ1, we get Fig. 14.
The fourth destabilization In Fig. 14 (or Fig. 15), we will destabilize α1, β1 and γ1. To do
this, we need to make β1 parallel to α1. We slide β1 over β2 and α1 over α2, so that α1 is
parallel to β1. As a result, we obtain Fig. 15. In Fig. 15, by destabilizing α1, β1 and γ1, we
get Fig. 16.
The fifth destabilization In Fig. 16, we make γ1 and α1 be parallel by isotopies. Then, we
obtain Fig. 17. In Fig. 17, by destabilizing α1, β1 and γ1, we get Fig. 18.
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Fig. 13 Before the third destabilization

Fig. 14 After the third destabilization

The sixth destabilization In Fig. 18, the trisection of X−ν(K ) is 0-annular since the normal
Euler number of K is 0. Thus, themonodromy of the open book decomposition is the identity,
that is, α1 and γ1 in Fig. 18 can be parallel. By destabilizing α1, β1 and γ1, we have a diagram
D.

The diagram D is obtained by attaching two disks to the two boundary components of
the surface of DX−ν(K ) since we surger along α1 when we destabilize α1, β1 and γ1 in
Fig. 18. In fact, DX−ν(K ) is the diagram obtained by removing the open neighborhood of
base points of the doubly pointed trisection diagram of (X , K ). Thus, D is the diagram
obtained by simply deleting the base points. (Note that the surface erased the base points has
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Fig. 15 Before the fourth destabilization

Fig. 16 After the fourth destabilization

no punctures.) In addition, the underlying trisection diagram of the doubly pointed trisection
diagramof (X , K ) is the diagramof T

′
X . It can be seen from thewayof boundary-stabilizations

performed to construct a relative trisection diagram of X − ν(S) [7]. This means that D is
just the diagram of T

′
X . Therefore, TS is diffeomorphic to a stabilization of T

′
X . Moreover, a

meridional stabilization of a bridge trisection corresponds to a stabilization for the underlying
trisection. Thus, T

′
X is a stabilization of TX . This completes the proof of Theorem 5.2. ��

Corollary 5.3 For each P2-knot S in S4 that is of Kinoshita type, the trisection obtained by
the trivial Price twist along S is diffeomorphic to a stabilization of the genus 0 trisection of
S4.
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Fig. 17 Before the fifth destabilization

Fig. 18 After the fifth destabilization

Proof In Theorem 5.2, if X = S4, then TX is the genus 0 trisection of S4 (see Remark 2.18).
��

Lastly, as we have seen in Sect. 1, if any two diffeomorphic trisections of S4 are isotopic,
it follows from corollary 5.3 that the trisection obtained by the trivial Price twist along a
P2-knot which is of Kinoshita type is isotopic to a stabilization of the genus 0 trisection of
S4. Namely, Conjecture 3.11 in [11], i.e. the conjecture that is a 4-dimansional analogue of
Waldhausen’s theorem on Heegaard splittings, is correct for this trisection.
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