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Abstract
Let S be an oriented, closed surface of genus g. The mapping class group of S is the group of
orientation preserving homeomorphisms of Smodulo isotopy. In 1997, Looijenga introduced
the Prym representations, which are virtual representations of the mapping class group that
depend on a finite, abelian group. Let V be a genus g handlebody with boundary S. The
handlebody group is the subgroup of those mapping classes of S that extend over V . The
twist group is the subgroup of the handlebody group generated by twists about meridians.
Here, we restrict the Prym representations to the handlebody group and further to the twist
group. We determine the image of the representations in the cyclic case.
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Introduction

The mapping class groupMod(S) of a closed, oriented surface S is the group of orientation
preserving homeomorphisms of S up to isotopy. Looijenga introduced the Prym represen-
tations of the mapping class group ([5]), which arise by acting on the homology of a finite,
abelian covering of S. These (virtual) representations are only defined on a suitable finite
index subgroup of Mod(S) consisting of certain liftable mapping classes. Furthermore, their
image lies in a matrix group quotiented by a finite subgroup; see Sect. 1.2 for a formal def-
inition and more details. Throughout, we will use the term representation even when we
map to a matrix group quotiented by a finite subgroup. Looijenga proceeds to determine the
image of the Prym representations in the case of a cyclic covering, which then allows him to
determine the image in the general abelian case up to finite index.
If S is the boundary of a handlebody V , we call the subgroup of those homeomorphisms that
extend to homeomorphisms of V the handlebody group and denote it byHV (S). A different
choice of handlebody V ′ results in a conjugate subgroup HV ′(S). Throughout the paper,
we fix a handlebody V and consider HV (S). The handlebody group arises naturally when
studying Heegaard splittings: Given two handlebodies and a gluing along their boundary, the
homeomorphism type of the resulting manifold is invariant under changing the gluing by
composition with an element in the handlebody group. The purpose of this paper is to study
certain representations of the handlebody group.
Using an approach similar to Looijenga’s, Grunewald, Larsen, Lubotzky andMalestein define
representations for any finite, regular covering ([3]). The difference in their setup is that they
use the puncturedmapping class groupMod(S, x0), in order to have unique lifts for elements.
The punctured mapping class group consists of homeomorphisms that fix x0 up to isotopy
that fixes x0. The authors of [3] determine the image of this group as well as the image of the
punctured handlebody group HV (S, x0) (defined analogously) under their representations
up to finite index.
Our main result is to determine the precise image of (a finite index subgroup of) the han-
dlebody group HV (S) in the case of a cyclic covering. In this case, the representations of
Looijenga, as well as of Grunewald, Larsen, Lubotzky and Malestein have the same image
(up to quotienting by a finite cyclic group), so our result yields (virtual) representations of
HV (S), as well as HV (S, x0), where the precise image is known. In particular, we show:
Main theorem

For every d ∈ N, and every genus g ≥ 2, there is a finite index subgroup � of the
punctured handlebody group HV (S, x0) and a representation

� → GL2g−2(Z[ζd ]),
whose image is the subgroup

� :=
{(

(D∗)−1 B
0 D

) ∣∣∣∣ det(D) = ±ζ k
d , D∗B = B∗D

}
.

Here ζd is a dth root of unity and D∗ is the adjoint matrix.
Equivalently, there is a finite index subgroup of the (non-punctured) handlebody groupHV (S)

that surjects onto �/〈ζd〉, where 〈ζd〉 is the subgroup generated by the diagonal matrix
⎛
⎜⎝

ζd · · · 0
...

. . .
...

0 · · · ζd

⎞
⎟⎠ .
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Wegive twoproofs of this theorem.Both proofs rely on a result ofGrunewald andLubotzky
for an analogous graph-theoretic representation of the automorphism group of a free group
(stated in [2]) as well as a result of Grunewald, Lubotzky, Larsen and Malestein relating the
above representation to one of the handlebody group (stated in [3]). Our first proof comes
from carefully examining Looijenga’s computation for the image of the whole mapping class
group and adjusting it to the handlebody group. In particular, we observe which mapping
classes used in Looijenga’s computation are in fact in the handlebody subgroup and prove
that they are enough to deduce our result. For the second one, we determine the image of a
subgroup of the handlebody group (called the twist group) and observe that using the results
from [2] and [3], it is enough to figure out this image. We show that there is a surjective
representation of the twist group onto the subgroup

{(
I d B
0 I d

) ∣∣∣∣B = B∗
}

of GL2g−2(Z[ζd ]). In particular, it follows that the twist group surjects onto the additive
group of self-adjoint matrices with entries in Z[ζd ].

Outline. In the first section, we recall some basics about the mapping class group, as
well as the handlebody- and the twist group. Then, we define the representations that were
studied in [5], respectively [3], and explain how these representations are related. In the
second section, we state our main results. In the third section, we prove our main theorem,
which determines the image of the handlebody group. As a corollary, we obtain arithmetic
quotients of (a finite index subgroup of) the handlebody group. In the genus 2 case, we also
obtain a virtual surjection of the handlebody group onto the integers. In the fourth section, we
determine the image of the twist group which gives an alternative proof of our main theorem.
Again, as a corollary, we obtain arithmetic quotients of the twist group and are in particular
able to show that it surjects onto the integers.

1 Preliminaries

We start in Sect. 1.1 by defining the mapping class group, handlebody group and twist group
and describe the standard symplectic representation of these groups. In Sect. 1.2, we proceed
with discussing the representations studied by Looijenga as well as Grunewald, Larsen,
Lubotzky and Malestein. These can be seen as a generalisation of the standard symplectic
one.

1.1 Mapping class group, handlebody group and twist group

A genus g handlebody is a closed 3-ball with g 1-handles attached. We fix a handlebody and
denote it throughout by V . The boundary of V is a closed genus g surface, which we denote
by S. The mapping class group Mod(S), resp. the handlebody groupHV (S), is the group of
orientation preserving homeomorphisms of S, resp. V , up to isotopy. The handlebody group
can be thought of as the homeomorphisms of the surface that extend to the handlebody and is
naturally a subgroup of Mod(S). See ([4], Sect. 3) for more details. We will refer to elements
of both groups as mapping classes.
Let α be a simple closed curve on S. We say that α is a meridian, if it bounds a disk
in the handlebody V . An element f ∈ HV (S) preserves the topological properties of the
handlebody and therefore maps meridians to meridians. In fact this is a sufficient condition,
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Fig. 1 The curves E±i

in the sense that an f ∈ Mod(S) is in the handlebody group, if and only if f maps meridians
to meridians (see [4], Corollary 5.11). Consequently it follows that a Dehn twist about a
meridian is inHV (S), whereas a Dehn twist about a simple closed curve that doesn’t bound
a disk in V is not.
Let TV (S) denote the group generated by all twists about meridians. We call this group the
twist group. It is a subgroup of the handlebody group, so we have the inclusions TV (S) ⊂
HV (S) ⊂ Mod(S),which are both of infinite index (see [4], Corollary 5.4 for the handlebody
group). For the twist group this follows from the following alternative description: The twist
group can also be defined as the kernel of the surjective mapHV (S) → Out(Fg)which arises
by assigning a mapping class to its induced outer automorphism of the fundamental group
π1(V ) ∼= Fg (see [4], Theorem 6.4).
Wenow recall the standard symplectic representation. This representation is defined by letting
Mod(S) act on the first homology of the surface H1(S). The first homology is isomorphic to
Z
2g generated by the curves E±1, . . . , E±g as in Fig. 1.

Wewill always use the convention that V is the handlebody, so that the curves E1, . . . , Eg are
meridians, whereas E−1, . . . , E−g are not.We also choose the orientation of our surface to be
so that the algebraic intersection is given by (Ei , E−i ) = 1 (and consequently (E−i , Ei ) =
−1) for i = 1, . . . , g.

We state the following well known fact as a lemma, since it will be used later on.

Lemma 1.1 If α is a meridian, then the homology class of α is contained in the subspace
〈E1, . . . , Eg〉.
Proof We can write the homology class of α as a linear combination

n1E1 + · · · + ngEg + n−1E−1 + · · · + n−g E−g,

where n±i ∈ Z for all i = 1, . . . , g. We have to show that n−1 = n−2 = · · · = n−g = 0.
Assume that for some i,we have n−i �= 0. Then the algebraic intersection number between α

and Ei is non-zero contradicting Lemma 2.1 in [4], which states that the albegraic intersection
number between two meridians is always zero. �

We identify Aut(H1(S))with GL2g(Z) via the ordered basis E1, . . . , Eg, E−1, . . . , E−g.

The standard symplectic representation is thus a homomorphism

Mod(S) → GL2g(Z).
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Its image is the symplectic group Sp2g(Z), which comes from the fact that the action of the
mapping class group preserves the algebraic intersection form on H1(S) (see [1], Theorem
6.4).
By restricting this representation to the handlebody group, we obtain a homomorphism

HV (S) → Sp2g(Z).

Since any f ∈ HV (S) maps meridians to meridians, its action on H1(S) has to preserve the
subspace generated by E1, . . . , Eg (compare Lemma 1.1). So the image of the handlebody
group under this representation consists of matrices of the form(

A B
0 D

)
.

Since these matrices are in Sp2g(Z), one sees that in fact they have to be of the form
(

(Dt )−1 B
0 D

)

where B satisfies Dt B = Bt D.

Further restricting to the twist group gives us the representation

TV (S) → Sp2g(Z).

Since the algebraic intersection of any two meridians is 0 ([4], Lemma 2.1), any Dehn twist
about a meridian will not change the homology class of any other meridian. Consequently,
a generator of the twist group will fix the subspace generated by E1, . . . , Eg pointwise.
Therefore, a matrix in the image of the representation of the twist group is of the form(

I d B
0 I d

)

with Bt = B.

In fact, the image of the handlebody group as well as the image of the twist group under
the standard symplectic representation consists of all matrices of the above discussed form,
respectively.Our results generalise this to representations obtained by acting on the homology
of a cyclic covering, which we define now.

1.2 Definition of Prym representations

We start by constructing the representations defined in [5]. These are defined for finite abelian
groups, but we restrict to the case of cyclic groups in our definition.
Let S be a closed genus g surface. From now on we assume throughout that g ≥ 2. Let
S̃ → S be a normal covering with deck group C ∼= Z/dZ. This covering gives rise to the
exact sequence

H1(S̃) → H1(S) → C → 0.

Lemma 1.2 Any surjection H1(S) → C arises by taking the algebraic intersection with a
primitive element in H1(S) and then reducing modulo d.

Proof Let φ : H1(S) → C be surjective. Let a±i ∈ Z be any preimages of φ(E±i ) under the
modulo d map. Defining φ̄ : H1(S) → Z by φ̄(E±i ) := a±i shows that φ factors through Z.
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Consider now the element

e := a−1E1 − a1E−1 ± · · · + a−g Eg − agE−g.

Then we have (e, E±i ) = a±i = φ̄(E±i ),which shows that φ is the composition of algebraic
intersection with e followed by reduction modulo d.

Finally, since φ is surjective, we can choose the a±i so that φ̄ is surjective. Consequently
e has to be primitive, since otherwise e = ke′ for e′ ∈ H1(S) and k > 1 which would imply
image(φ̄) ⊂ kZ. �

The above lemma tells us that the surjection H1(S) → C arising from the covering S̃ → S
is given by algebraic intersection with a primitive element in H1(S) followed by reduction
modulo d. Primitive elements in H1(S) are represented by non-separating simple closed
curves (see [1], Proposition 6.2), so we have to consider the algebraic intersecion with the
homology class of such a curve. For our purposes, we can assume without loss of generality
that this curve is Eg. This is because for a choice of a different curve γ =: γg, we can
find curves γ±1, γ±2, . . . , γ±g that form a symplectic basis of H1(S) and a homeomorphism
that maps the homology classes of E±i to the homology classes of γ±i for all i . Here,
a symplectic basis means that (γi , γ−i ) = 1 for i > 0 and (γi , γ j ) = 0 for |i | �= | j |.
The existence of the aforementioned homeomorphism follows from the surjectivity of the
symplectic representation Mod(S) → Sp2g−2(Z).

Hence, our covering corresponds to the surjection that maps all E±i to 0, except for E−g

which is mapped to 1 ∈ Z/dZ. Geometrically, we can describe this covering as follows: Cut
S at Eg and call the obtained genus g − 1 surface with two boundary components S′. Take d
copies of S′ and glue them in a cyclic order. The resulting surface can be seen in Fig. 2. The
deck group C acts as rotations and the curves e±i (seen as subsets of the surface) map to the
E±i respectively under the covering projection. If we regard the e±i as homology classes,
the previous sentence is true in all cases except for e−g, which maps to dE−g.

Let K = ker(H1(S) → C). By acting on homology, every f ∈ Mod(S) yields an
automorphism f∗ : H1(S) → H1(S). If f∗ preserves K , this automorphism induces an
automorphism f̄ of H1(S)/K ∼= C .

Let �S,C ⊂ Mod(S) denote the subgroup of mapping classes f such that f∗ preserves K
and f̄ = id. This is a finite index subgroup of Mod(S). We also want to use an equivalent
characterisation of �S,C :
Lemma 1.3 �S,C is the group of mapping classes that admit a lift to S̃ and whose lifts
commute with the deck transformations.

Proof Let f ∈ �S,C . That there is a lift f̃ ∈ Mod(S̃) of f follows from the lifting lemma in
algebraic topology using the fact that f∗ preserves K .

Now let c ∈ C be a deck transformation, x ∈ S a point and x̃ ∈ S̃ a preimage. By abuse of
notation let f , f̃ be representing homeomorphisms of the corresponding mapping classes.
Let α be a loop in S based at the point x whose homology class maps to c under H1(S) → C .

Thismeans that the lift α̃ ofα to the point x̃ has as endpoint c(x̃).Since f̄ = id, the homology
class of f (α) also maps to c under H1(S) → C . Therefore the lift of f (α) to the point f̃ (x̃)
has as endpoint c( f̃ (x̃)). But note that f̃ (α̃) is also a lift of f (α) which starts at f̃ (x̃) and
ends at f̃ (c(x̃)).By the uniqueness of the lifting lemma, we conclude that the endpoints have
to be the same, i.e. c( f̃ (x̃)) = f̃ (c(x̃)). Since x̃ was arbitrary, we obtain c ◦ f̃ = f̃ ◦ c.

This shows that any element of �S,C satisfies the description given in the lemma. For
the converse let f ∈ Mod(S) such that there is a lift f̃ which commutes with the deck
transformations. Since the diagram
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Fig. 2 The covering space S̃ and the curves e±i

H1(S̃) H1(S̃)

H1(S) H1(S)

f̃∗

f∗

commutes and the image of the vertical maps is K , we get that f∗ preserves K .

Now let α be a loop and c ∈ C the image of the homology class of α under H1(S) → C .

The lift α̃ of α to some suitable point x̃ has as endpoint c(x̃). Consider now the loop f (α).

It’s lift to the point f̃ (x̃) is f̃ (α̃), whose endpoint is f̃ (c(x̃)), which by assumpion is equal
to c( f̃ (x̃)). This implies that the homology class of f (α) also maps to c under H1(S) → C .

Since α was arbitrary, we conclude that f̄ = id. �
Let �#

S,C be the group of lifts of elements in �S,C . Since any two lifts of the same element
differ by a deck transformation, we obtain the short exact sequence stated in the following
lemma.

123
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Lemma 1.4 The sequence

1 → C → �#
S,C → �S,C → 1

is short exact.

Proof This statement can easily be checked on the level of homeomorphisms. On the level
of mapping classes, from ([7], Proposition 3.1) it follows that

1 → C → �#
S → �S → 1,

where �S is the group of all liftable mapping classes and �#
S its group of lifts, is short exact.

Since �S,C ⊂ �S is a subgroup and �#
S,C is the preimage of �S,C under �#

S → �S, the only

thing remaining to check is whether image(C → �#
S) is contained in �#

S,C . This is the case,
since C is abelian and therefore any element in C commutes with all other elements in C ,
i.e. with every deck transformation. �

By letting �#
S,C act on H1(S̃), we obtain a representation

�#
S,C → Aut(H1(S̃)),

which in turn induces a representation

�S,C → Aut(H1(S̃))/C .

The deck group C acts on H1(S̃) and from ([5], Proposition 4.2) we know that the following
is an isomorphism of Z[C]-modules:

H1(S̃) ∼= Z[C]2g−2 ⊕ Z
2.

The curves e±1, . . . , e±(g−1) (compare Fig. 2) all generate a copy of Z[C] in homology,
whereas the curves e±g both generate a copy of Z.

Since the elements of �#
S,C commute with the deck transformations, the image of the

above representation consists of C-equivariant automorphisms, or equivalently maps into
AutZ[C](Z[C]2g−2 ⊕ Z

2).

Consider now homology with rational coefficients. By tensoring with Q on both sides,
the above isomorphism becomes

H1(S̃; Q) ∼= Q[C]2g−2 ⊕ Q
2.

By letting �#
S,C act on rational homology, we obtain the representation

�#
S,C → AutQ[C](Q[C]2g−2 ⊕ Q

2).

The reason we did this is because we can split Q[C] into simple submodules. In particular,
if C1, . . . ,Ck denote all the cyclic factor groups of C, then for all i = 1, . . . , k, Q(ζi ) with
ζi a root of unity of order |Ci | is a simple Q[C]-module and

Q[C] ∼=
k⊕

i=1

Q(ζi ),

compare ( [5], Sect. 1). Note that Q(ζi ) = Q for the simple submodule corresponding to
the case of Ci being the trivial group. It follows that the isotypical components of the C-
representation Q[C]2 g−2 ⊕ Q

2 are Q(ζi )
2 g−2 for ζi �= 1 and Q

2g. The representation of
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�#
S,C descends to a representation on each isotypical component. In particular, after choosing

the component corresponding to Ci = C, we obtain

�#
S,C → AutQ[C](Q(ζ )2g−2) ∼= GL2g−2(Q(ζ )),

where ζ is a d th root of unity. One can think of the curves e±1, . . . , e±(g−1) as a basis of
Q(ζ )2g−2. In order to identify AutQ[C](Q(ζ )2g−2) with GL2g−2(Q(ζ )), we use the ordered
basis e1, . . . , eg, e−1, . . . , e−g.

We used Q-coefficients in order to split our representation into pieces. However, the action
of �#

S,C on H1(S̃; Q) is obtain from the action on H1(S̃) by tensoring with Q. Hence, the

representation �#
S,C → AutQ[C](H1(S̃; Q)) factors through AutZ[C](H1(S̃)). Consequently,

the matrices in the image of

�#
S,C → GL2g−2(Q(ζ ))

are ones with entries in the image of Z[C] under the projection Q[C] → Q(ζ ). This image
is equal to Z[ζ ], the ring of integers of Q(ζ ).

Let from now on R = Z[ζ ] with ζ a d th root of unity. The above discussion shows that we
have a representation

�#
S,C → GL2g−2(R). (1)

For more details about the whole construction, see [5].

Remark Let c ∈ C be a deck transformation. Then c is a lift of the identity mapping class on
S, so c ∈ �#

S,C . The action of c on Q[C]2g−2 ⊕ Q
2 is given by multiplication by c on each

Q[C] factor and the identity on Q. This can also be seen geometrically, since c rotates the
curves e±1, . . . , e±(g−1) to the (for c �= 1) non-homologous curves c(e±1), . . . , c(e±(g−1)),

while c(e±g) = e±g ∈ H1(S̃). The projection Q[C] → Q(ζ ) maps c to ζ k for some k.
Hence, c acts on Q(ζ )2g−2 by multiplication by ζ k . Equivalently, the image of c under
�#
S,C → GL2 g−2(R) is given by the matrix ζ k I d. We will use the convention that the deck

transformation corresponding to a counterclockwise rotation in Fig. 2 acts as multiplication
by ζ.

The image of representation (1) was studied by Looijenga:
Choose any embedding of the number field Q(ζ ) into C. Such an embedding sends ζ to
a primitive dth root of unity in C. Therefore, restriction of complex conjugation to Q(ζ )

induces an automorphism (that maps ζ to ζ−1) which is independent of the embedding. We
call this automorphism also complex conjugation and since it preserves the ring of integers
R, it further induces a well defined notion of complex conjugation on R.

For A ∈ GL2g−2(R), let A∗ denote the matrix obtained by complex conjugation of each
entry and transposition of the matrix. Let U2g−2(R) ⊂ GL2g−2(R) denote the subgroup of
matrices A such that A∗	A = 	, where

	 =
(

0 I d
−I d 0

)
.

These are exactly the matrices that preserve the form on R2g−2, that is induced from the
Z[G]-valued algebraic intersection form on H1(S̃) (see [5] for more details). The form is the
skew-Hermitian, sesquilinear (linear in the first entry, conjugate-linear in the second entry)
form given by 〈ei , e−i 〉 = 1 for i = 1, . . . , g−1.Wewill refer to this form as the intersection
form on R2g−2. Let U #

2g−2(R) denote the subgroup of U2g−2(R) of matrices that have an
even power of ζ as determinant. In ([5],Theorem 2.4), Looijenga shows the following:
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Theorem 1.5 The image of the representation (1) is the subgroup U #
2g−2(R).

Wenowgive the construction of the representations defined in [3].Again,we restrict ourselves
to cyclic groups, even though in this case the representations were defined for any finite group
(satisfying some conditions).
Let x0 ∈ S be a fixed basepoint. The punctured mapping class groupMod(S, x0) is the group
of orientation preserving homeomorphisms that fix p up to isotopy fixing p at all times. The
punctured handlebody and twist group are defined analogously.
Let S̃ → S be the covering with deck group C ∼= Z/dZ as above and let x̃0 be any preimage
of x0. The covering gives rise to the exact sequence

1 → π1(S̃, x̃0) → π1(S, x0) → C → 1.

Let now K = ker(π1(S, x0) → C).Exactly as before (nowwithπ1(S, x0) instead of H1(S)),
for any f ∈ Mod(S, x0), we obtain an automorphism f∗ of π1(S, x0). If f∗ preserves K ,

this automorphism induces an automorphism f̄ of C . The reason we worked with the exact
sequence on homology before was that an element in Mod(S) only induces an automorphism
of H1(S) and not one of π1(S, x0). Elements of the punctured mapping class group however
do induce automorphisms of π1(S, x0).
Let �S,C,x0 ⊂ Mod(S, x0) denote the subgroup of mapping classes f such that f∗ preserves
K and f̄ = id. This is a finite index subgroup of Mod(S, x0), and analogously to the proof
of Lemma 1.3 one shows that �S,C,x0 is the group of mapping classes that admit a lift to S̃
and whose lifts commute with the deck transformations.
The difference to the construction in [5] is that now we have a preferred lift, namely the one
that fixes x̃0.So, by lifting an element f ∈ Mod(S, x0) to the unique element f̃ ∈ Mod(S̃, x̃0)
and looking at the action of f̃ on H1(S̃), we obtain a representation

�S,C,x0 → Aut(H1(S̃)),

which by the same arguments as before induces a representation

�S,C,x0 → GL2g−2(R), (2)

where R = Z[ζ ] and ζ is a d th root of unity.
We now describe the relation between the groups �S,C and �S,C,x0 and proceed to show that
the two representations (1) and (2) have the same image.

Lemma 1.6 There is a short exact sequence

1 → π1(S, x0) → �S,C,x0 → �S,C → 1,

where the elements of π1(S, x0) can be thought of as point-pushing maps.

Proof Recall the Birman exact sequence 1 → π1(S, x0) → Mod(S, x0) → Mod(S) → 1
(see [1], Section 4.2 for more details). In order to prove the lemma, it suffices to show that
any point-pushing map is contained in �S,C,x0 . Let γ ∈ π1(S, x0). If we think of γ as a
point pushing map, it acts on π1(S, x0) by conjugation. In particular, it preserves the normal
subgroup π1(S̃, x̃0) and induces the identity onC sinceC is abelian. Therefore, γ ∈ �S,C,x0 .

�
Lemma 1.7 The image of the representation�S,C,x0 → GL2g−2(R) is the same as the image
of �#

S,C → GL2g−2(R), i.e. it is the subgroup U #
2g−2(R).
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Fig. 3 The lift of α

Proof Let ρ1 denote the representation of �#
S,C and ρ2 the one of �S,C,x0 . By construction

of the representations, we have im(ρ1) = C · im(ρ2), where C is the induced action of the
deck group on R2g−2, i.e. generated by multiplication by ζ.

So, in order to prove the claim, we have to show that for any deck transformation c ∈ C
there is an element in �S,C,x0 such that the action of this element on R2g−2 is the same as
the one of c. Let c = k under the identification C ∼= Z/dZ, i.e. c is the deck transformation
that rotates S̃ so that each subsurface in Fig. 2 moves k steps further in a counterclockwise
direction. So c acts on R2g−2 by multiplication by ζ k . We show that there is f ∈ �S,C,x0
whose preferred lift to S̃ acts also by multiplication by ζ k .

Let f be the point pushing map corresponding to the (at x0 based) curve α := E−k−g, i.e.
the curve that winds k times around E−g in the opposite direction. Then a lift α̃ of α is the
non-closed curve as in Fig. 3.
A lift of f is given by the point pushing map along α̃. However this lift maps x̃0 to c−1 · x̃0.
So, in order to obtain a lift that fixes x̃0, we need to compose this point-pushing map with
the deck transformation c. This is now our preferred lift of f and it clearly acts on R2g−2 the
same way that c does. �

2 Statements of the results

We are now ready to formally formulate the results of this paper. This section contains the
statements of the results as well as brief explanations on why these results are expected. All
formal proofs will appear in later sections.
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Let V be the handlebody with boundary surface S as discussed in Sect. 1.1 andHV (S) the
associated handlebody group. Let �S,C be as in Sect. 1.2 and define �V ,C := �S,C ∩HV (S).

Since �S,C is a finite index subgroup of Mod(S), it follows that �V ,C is a finite index
subgroup of the handlebody group. Let �#

V ,C denote the group of lifts of elements in �V ,C .

By restricting the representation (1), we obtain the representation:

�#
V ,C → GL2g−2(R),

which also induces the virtual represention of the handlebody group

�V ,C → GL2g−2(R)/C .

We repeat the main theorem stated in the introduction with more precise notation, which
describes the image of these representations.

Theorem 2.1 The image of �#
V ,C → GL2g−2(R) is the subgroup

� :=
{(

(D∗)−1 B
0 D

) ∣∣∣∣ det(D) = ±ζ k, D∗B = B∗D
}
.

The 0-block in the lower left part of the matrices in� comes from the fact that handlebody
elements lift to handlebody elements (for an appropriate choice of handlebody for the cover)
and these have to send meridians to meridians. The relation D∗B = B∗D has to be satisfied,
because the intersection form is preserved. That one obtains matrices with lower right block
D,where det(D) = ±ζ k for some k, follows from a result of Grunewald and Lubotzky ([2]).
Hence, our main work consists in showing that for such a given D, all matrices(

(D∗)−1 B
0 D

)

with D∗B = B∗D lie in the image of our representation, i.e. we get all possible upper right
blocks B.

Theorem 2.1 generalizes the standard symplectic representation, in the sense that for
C = 0, we recover the result of the standard symplectic representation mentioned in the
introduction. Note that the case C = 0 corresponds to taking the identity as our covering and
hence just acting on H1(S).

Now, let HV (S, x0) denote the punctured handlebody group and define the subgroup
�V ,C,x0 := �S,C,x0 ∩ HV (S, x0). Restricting the representation (2) yields

�V ,C,x0 → GL2g−2(R).

Applying the same proof as in Lemma 1.7 to the representations of �#
V ,C and �V ,C,x0 shows

that their image is the same. Note that we are able to apply the same proof, since point
pushing maps are in the handlebody group. So, Theorem 2.1 implies that the image of
�V ,C,x0 → GL2 g−2(R) is also �.

Let TV (S) denote the twist group. Then TV (S) ∩ �S,C = TV (S) (see Lemma 4.1 below).
Let T #

V (S) denote the group of lifts of elements in TV (S). We thus obtain the representation

T #
V (S) → GL2g−2(R)

and prove:

Theorem 2.2 The image of T #
V (S) → GL2g−2(R) is the subgroup

� :=
{
ζ k

(
I d B
0 I d

) ∣∣∣∣ B = B∗
}
.
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That here the upper left and lower right blocks of the matrices in � are the identity comes
from the fact that Dehn twists about meridians lift to a composition of Dehn twists about
meridians and these leave the homology classes of every other meridian unchanged.

3 Image of the handlebody group

In this section, we prove our main theorem. We start by observing that the matrices in the
image of our representation are of a certain block form, which allows us to split the discussion
into two parts. In Sect. 3.1, we discuss the lower right block of the matrices and in Sect. 3.2,
the upper right block.We endwith Sect. 3.3, wherewe study the genus 2 casemore concretely.
Let V be the handlebody with boundary surface S as defined in Sect. 1.1. Let S̃ → S be
the cyclic covering defined in Sect. 1.2 and observe that it was chosen in such a way that S̃
bounds a handlebody Ṽ such that Ṽ → V is also a cyclic covering with the same deck group
C = Z/dZ.

Let�V ,C , �V ,C,x0 be the finite index subgroups ofHV (S),HV ,x0(S) respectively, defined
in Sect. 1.2, let �#

V ,C be the group of lifts of �V ,C and consider

ρ1 : �#
V ,C → GL2g−2(R),

ρ2 : �V ,C,x0 → GL2g−2(R),

the associated representations also defined in Sect. 1.2, where R = Z[ζ ] and ζ is a d th root
of unity.

Since the image of the two representations ρ1, ρ2 is the same, for our purpose it doesn’t
matter which of the two we study. In the following we will use both of them interchangeably
and whenever no confusion arises denote either of them simply by ρ.

By construction of our covering, every f̃ ∈ �#
V ,C is contained in the handlebody group

HṼ (S̃). Therefore, f̃ maps meridians to meridians, which means that its action on homology
maps any ei (i > 0) into the subspace 〈e1, . . . , eg−1〉 (compare lemma 1.1). Hence, the image
of our representation only consists of upper right block matrices

M =
(
A B
0 D

)
.

Furthermore, the condition M∗	M = 	, where

	 =
(

0 I d
−I d 0

)
,

implies that the matrices in the image are of the form

M =
(

(D∗)−1 B
0 D

)

with D∗B = B∗D.

3.1 The lower right block D

This chapter describes work from Grunewald and Lubotzky which can be found in ( [2]).
For completeness, we include it here, since our setup and notation are slightly different, and
state their result.
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The lower right block D of a matrix in the image of �V ,C,x0 can be studied purely graph
theoretically. Intuitively speaking, this comes from the fact that the handlebody deformation
retracts onto a wedge of g circles, whose homology classes are the E−i . Since D only
depends on the images of the E−i , it turns out that studying an analogous graph theoretic
representation is sufficient.

Formally, let X be a graphwith one vertex v and g edges x1, . . . , xg . Thenπ1(X , v) = Fg,

the free group on g generators. Let X̃ be the covering associated to the map Fg → C which
maps every generator xi to 0 for i ≤ g − 1 and maps xg to 1 ∈ C . The graph X can be
embedded into V such that the edges xi are representatives of the homology classes of the
E−i . From the definition of the covering, it follows that X̃ is isomorphic as a covering space
to the preimage of X ⊂ V under Ṽ → V . This preimage is a deformation retract of Ṽ .

Let K := ker(Fg → C) and let �X ,C ⊂ Aut(Fg) be the subgroup that preserves K and
induces the identity on Fg/K . Since �X ,C preserves K , it acts on K . This action induces an
action on K/[K , K ] ∼= H1(X̃) ∼= H1(Ṽ ).

Lemma 3.1 H1(Ṽ ) ∼= Z[C]g−1 ⊕ Z as C-representations (or equivalently Z[C]-modules).
Proof Recall that as a Z[C]-module H1(S̃) ∼= Z[C]2 g−2 ⊕ Z

2, where the curves
e±1, . . . , e±(g−1) from Fig. 2 form a basis of the free part, and the curves e±g generate
the Z

2 part. The inclusion S̃ ↪→ Ṽ induces a surjection H1(S̃) → H1(Ṽ ). Let K be the
kernel of this surjection. The Z-rank of H1(Ṽ ) and hence also the Z-rank of K is half of
that of H1(S̃). The curves ei for i > 0 lie in K , since they are meridians. We obtain that the
copy of Z[C]g−1 ⊕ Z generated by e1, . . . , eg is contained in the kernel and by comparing
the ranks K ∼= Z[C]g−1 ⊕ Z. Furthermore, H1(S̃) splits as the direct sum of K and the
submodule generated by e−1, . . . , e−g, which is also isomorphic to Z[C]g−1 ⊕ Z. Hence,
the short exact sequence

0 → K → H1(S̃) → H1(Ṽ ) → 0

can be rewritten as the following short exact sequence of Z[C]-modules:

0 → K → K ⊕ Z[C]g−1 ⊕ Z → H1(Ṽ ) → 0,

where the inclusion of K into K ⊕ Z[C]g−1 ⊕ Z is the natural inclusion k �→ (k, 0). From
this, we get the desired result

H1(Ṽ ) ∼= (K ⊕ Z[C]g−1 ⊕ Z)/K ∼= Z[C]g−1 ⊕ Z.

�
From the lemma, we obtain that we have an action of �X ,C on Z[C]g−1 ⊕ Z and conse-

quently on Rg−1. In other words we obtain a representation η : �X ,C → GLg−1(R).

The punctured handlebody groupHV (S, x0) acts on π1(V , x0) ∼= Fg and this action induces
a surjective mapHV (S, x0) → Aut(Fg) (see [4], Theorem 6.3). Since �V ,C,x0 by definition
acts on Fg by preserving K and inducing the identity on Fg/K , the image of �V ,C,x0 under
the above map is contained in �X ,C . Given an automorphism h ∈ �X ,C , there is some
f ∈ HV (S, x0) which acts on Fg as h and consequently f lies in �V ,C,x0 . This implies that
the image of �V ,C,x0 under HV (S, x0) → Aut(Fg) is all of �X ,C .

The following is a fact established in ([3], Lemma 6.6).

Lemma 3.2 Let ρ : �V ,C,x0 → GL2g−2(R) and η : �X ,C → GLg−1(R) denote our two
representations. For any f ∈ �V ,C,x0 , let f∗ denote the induced automorphism of Fg. This
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yields a map �V ,C,x0 → �X ,C . Let

pr :
(

(D∗)−1 B
0 D

)
�→ D

denote the projection to the lower right block. Then it holds that

pr(ρ( f )) = η( f∗),

i.e. the following diagram commutes:

�V ,C,x0

{(
(D∗)−1 B

0 D

) ∣∣∣∣ D ∈ GLg−1(R), D∗B = B∗D
}

�X ,C {D | D ∈ GLg−1(R)}.

ρ

pr
η

Because the vertical maps in the diagram of Lemma 3.2 are surjective, a matrix D occurs as
a lower right block in the representation of �V ,C,x0 , if and only if it is in the image of η. So,
in order to find those matrices D, it suffices to determine the image of the graph theoretic
representation of �X ,C . This is done in [2], where Grunewald and Lubotzky study virtual
representations of Aut(Fg) by looking at the action on the homology of finite coverings of
graphs. In particular, they show:

Theorem 3.3 The image of �X ,C → GLg−1(R) consists of all matrices D with determinant
±ζ k for some k ∈ Z.

Proof Consider the homomorphism Aut(Fg) → GLg(Z) → {±1}, where the first map
comes from the abelianisation functor and the second is the determinant. Let �+

X ,C be the
subgroup of �X ,C of elements that map to +1 under the above homomorphism. This is a
subgroup of index 2. Let f ∈ �X ,C\�+

X ,C be the automorphism that maps x1 �→ x−1
1 and

fixes every other generator xi ∈ Fg.

The image of �+
X ,C under �X ,C → GLg−1(R) consists of all matrices with determinant

a power of ζ (see [2], Proposition 6.4). The element f maps under our representation to the
diagonal matrix

⎛
⎜⎜⎜⎝

−1
1

. . .

1

⎞
⎟⎟⎟⎠ ,

which has determinant−1.Hence, the image of�X ,C consists of allmatriceswith determinant
a power of ζ as well as with determinant −1 times a power of ζ. �

We denote the subgroup of GLg−1(R) of matrices D with det(D) = ±ζ k by GL±
g−1(R).

Note that when the order of k is even, the minus sign is redundant. For us, the theorem
implies:

Corollary 3.4 The matrices that occur as a lower right block in the representation of �V ,C,x0
(or the one of �#

V ,C) are exactly the matrices D ∈ GL±
g−1(R).
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3.2 The upper right block B

Given some D ∈ GL±
g−1(R), we know that there is a matrix

(
(D∗)−1 B

0 D

)

in the image of the representation of �#
V ,C , but we don’t know which B can occur.

A necessary condition for B is to satisfy the equality D∗B = B∗D. The goal of this
section is to show that for any B satisfying D∗B = B∗D, the matrix(

(D∗)−1 B
0 D

)

is in the image.
Note that in order to show the goal, it is enough to consider the case where D is the identity

matrix I d:

Lemma 3.5 If the subgroup {(
I d B
0 I d

) ∣∣∣∣ B = B∗
}

is in the image, then any (
(D∗)−1 B

0 D

)

with det(D) = ±ζ k and D∗B = B∗D is in the image.

Proof Let D ∈ GL±
g−1(R) and let B be a (g − 1) × (g − 1) matrix such that D∗B = B∗D.

Since D ∈ GL±
g−1(R), we know from the commutative diagram in Lemma 3.2 that there

is some matrix E with D∗E = E∗D such that(
(D∗)−1 E

0 D

)

is in the image.
Define F := D∗(B − E). Then F is self-adjoint, since

F∗ = (B − E)∗(D∗)∗ = B∗D − E∗D = D∗B − D∗E = D∗(B − E) = F .

Hence (
I d F
0 I d

)

lies in the image by assumption. We compute(
(D∗)−1 E

0 D

) (
I d F
0 I d

)
=

(
(D∗)−1 (D∗)−1F + E

0 D

)
=

(
(D∗)−1 B

0 D

)

and conclude that (
(D∗)−1 B

0 D

)

is also in the image. �
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Because of the lemma, the goal of this section is now to prove the following:

Proposition 3.6 The imageof the representation�#
V ,C → GL2g−2(R) contains the subgroup

{(
I d B
0 I d

) ∣∣∣∣ B = B∗
}
.

The rest of this section is devoted to proving the proposition. Our proof largely follows
Looijenga’s proof in ([5]), where we make the necessary adjustments, since we work with
the handlebody group instead of the whole mapping class group.

As it will turn out in Sect. 4, the subgroup{(
I d B
0 I d

) ∣∣∣∣ B = B∗
}

is exactly the image of our representation restricted to the twist group, which in particular
proves the proposition. However, in this section we present a different proof.

Let P ⊂ Sp2g−2(Z) denote the upper right block matrices in the symplectic group, i.e.
matrices of the form (

(Dt )−1 B
0 D

)

where each block is a (g − 1) × (g − 1) matrix. We denote our representation of �#
V ,C by ρ.

Lemma 3.7 We have the inclusion P ⊂ image(ρ).

Proof Let γ be the curve separating S into a genus g−1 surfacewith one boundary component
S′ and a one holed torus T , as in Fig. 4.

Let D be a disk embedded in the handlebody V with boundary γ as in Fig. 4. Let S′′ :=
S′ ∪D. Then S′′ is a closed surface that is embedded in V and bounds a handlebody V ′′ ⊂ V .

The homology H1(S′′) is generated by the E±i for i = 1, . . . , g − 1 and can therefore be
identified with the subspace 〈E±1, . . . , E±(g−1)〉 of H1(S). The image under the standard
symplectic representation of the handlebody group HV ′′(S′′) is P by ( [4], Theorem 7.1).
In order to prove the lemma, let A ∈ P and let f ′′ ∈ HV ′′(S′′) which maps to A under the
standard symplectic representation.

Any element of the handlebody group of S′′ can be homotoped, such that it is the identity
on D, and can hence be restricted to a homeomorphism of S′. By doing this for f ′′,we obtain
a homeomorphism of S′ which we call f ′. This in turn can be extended to a homeomorphism
f of S, where f |T is defined as the identity. Note that f (seen as a mapping class) is in the
handlebody group of S and its action on the subspace 〈E±1, . . . , E±(g−1)〉 ⊂ H1(S) is the
same as the action of f ′′ on H1(S′′). Since f restricted to T is the identity, the induced action
on the subspace 〈Eg, E−g〉 ⊂ H1(S) is also the identity. Consequently f (as a mapping
class) lies in �V ,C .

Consider S̃ as in Fig. 5.
The green curves are the lifts of γ . They separate S̃ into the surfaces S1, . . . , Sd and the

"middle surface"M which is a toruswith d boundary components. All the Sk for k = 1, . . . , d
map homeomorphically onto S′ under the covering projection. Let fk : Sk → S′ be the
homeomorphisms obtained by restricting the covering projection to the Sk, which we use to
identify each Sk with S′.

A lift f̃ of f can be defined as f −1
k ◦ f ′ ◦ fk on every Sk and the identity on M . This is

well defined since f ′ is the identity on the boundary of S′ and fk maps the boundary of Sk
to the boundary of S′ for all k = 1, . . . , d.
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Fig. 4 The subsurfaces S′ and T

Fig. 5 The subsurfaces Si and M

The homology H1(Sk) is isomorphic through fk to H1(S′) which in turn is naturally
isomorphic to H1(S′′) = 〈E±1, . . . , E±(g−1)〉 for all k = 1, . . . , d. Furthermore, letting
e±i be the homology classes of the curves on S1 as depicted in Fig. 2 and ck be the deck
transformation rotating S1 to Sk for all k, we have H1(Sk) = 〈cke±1, . . . , cke±(g−1)〉 and the
above mentioned isomorphism maps each cke±i to E±i for all i = 1, . . . , g − 1. The action
of f̃ on H1(Sk) is the same as the action of f ′′ on H1(S′′) in the sense that the following
diagram

H1(Sk) = 〈cke±1, ..., cke±(g−1)〉 〈cke±1, ..., cke±(g−1)〉 = H1(S1)

H1(S′′) = 〈E±1, ..., E±(g−1)〉 〈E±1, ..., E±(g−1)〉 = H1(S′′),

f̃∗

f ′′∗

where the vertical maps are the above mentioned isomorphism, commutes.
In particular, the matrix corresponding to f̃∗ relative to the basis cke±1, . . . , cke±(g−1) is

the same as the one corresponding to f ′′∗ relative to the basis E±1, . . . , E±(g−1), which is A.

Finally, since f̃ preserves the Sk, and the curves e±1, . . . , e±(g−1) get mapped to Z-linear
combinations of themselves, the action of f̃ on R2g−2 is also given by A. This means A lies
in the image of f̃ in GL2g−2(R).

123



Geometriae Dedicata           (2024) 218:59 Page 19 of 31    59 

Fig. 6 The curves α and E−g bound an annulus in the handlebody

Since using this procedure we can obtain any element of P , this completes the proof. �
Let e1, . . . , eg−1, e−1, . . . , e−(g−1) be the standard basis of R2g−2 and let T : R2g−2 →

R2g−2 be defined by e±1 �→ ζe±1 and e±i �→ e±i for i ≥ 2. Looijenga proves that T is in
the image of the representation of the mapping class group. Here, we show that T is in fact
also in the image of the representation of the handlebody group.

Lemma 3.8 T is in the image of ρ.

Proof In order to prove that T is in the image of �#
S,C , Looijenga defines the mapping class

τ := TE−g ◦ T−1
α ∈ �S,C and shows that a lift of τ maps to T (see [5], Proof of (2.4)).

Here, Tγ denotes the Dehn twist about a curve γ and α is the curve that can be seen in
Fig. 6.

Hence, in order to prove the lemma, it suffices to show that τ ∈ HV (S). For that, note
that E−g and α bound an annulus in the handlebody. Therefore, τ is an annulus twist and
consequently in the handlebody group (compare [4], Example 5.5). �

Let R′ ⊂ R be the subring defined as the fixed point set of complex conjugation on R.

Since as discussed in Sect. 1.2, complex conjugation is a well defined automorphism on R,

the subring R′ is well defined and equal to the subring of real elements, i.e. R′ = R ∩ R.

Consider the so called elementary transformations

Ti (r
′) : x �→ x + r ′〈x, ei 〉ei and Ti, j (r) : x �→ x + r〈x, ei 〉e j + r̄〈x, e j 〉ei ,

for i, j = ±1, . . . ,±(g − 1), |i | �= | j |, r ′ ∈ R′, r ∈ R. Here 〈·, ·〉 stands for the intersection
form on R2g−2 discussed in Sect. 1.2. From [5], we have that all of them are in the image of
�#
S,C . Of course, we can only expect the ones having an upper right block form to be in the

image of �#
V ,C . We prove that all of those indeed lie in the image.

Lemma 3.9 Let r ′ ∈ R′ and r ∈ R. Then the following statements hold:

1) Ti (r ′) is in the image of ρ if and only if i > 0.
2) Ti, j (r) is in the image of ρ if and only if at least one of the i, j is positive.

Proof If in 1) i ≯ 0 or in 2) both i, j ≯ 0, then the elementary transformations would have
a nonzero entry in the lower left block. So, the implication from left to right is clear.

For the other implications, let i, j ∈ {±1, . . . ,±(g − 1)} with i > 0, |i | �= | j |. We have
to show that Ti (r ′) and Ti, j (r) are in the image of ρ for any r ′ ∈ R′, r ∈ R.

Let H ⊂ R2g−2 be defined as H := 〈ei , e−i 〉. Let AH be the transformation that maps H
to 〈e1, e−1〉, i.e. defined by

AH (e±i ) := e±1, AH (e±1) := e±i and AH (e±k) := e±k for all other k.
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Then AH ∈ P. From Lemmas 3.7 and 3.8, we have that TH := A−1
H ◦T ◦ AH is in the image

of ρ. Note that TH is just multiplication with ζ on H and the identity on the (with respect to
the intersection form on R2g−2) orthogonal subspace.

Similarly, let H ′ := 〈ei , e−i+e j 〉 and AH ′ be the transformation thatmaps H ′ to 〈e1, e−1〉.
If | j | �= 1, define AH ′ by

AH ′(e±1) := e±i , AH ′(ei ) := e1, AH ′(e−i ) := e−1 − e j , AH ′(e− j ) := e− j − e1.

If j = 1, define AH ′ by

AH ′(e1) := ei , AH ′(ei ) := e1, AH ′(e−1) := e−i − e1, AH ′(e−i ) := e−1 − ei .

If j = −1, define AH ′ by

AH ′(e1) := e1 + ei , AH ′(ei ) := e1, AH ′(e−1) := e−i , AH ′(e−i ) := e−1 − e−i ,

and in any case AH ′(ek) := ek for all other non specified k.
Again,we see that AH ′ ∈ P.Let TH ′ := A−1

H ′ ◦T ◦AH ′ .Asbefore, TH ′ is justmultiplication
by ζ on H ′ and lies in the image of ρ.

Computing Ti, j (1−ζ k) and T−k
H ◦T k

H ′ for every basis element by using the above formulas,

we see that Ti, j (1 − ζ k) = T−k
H ◦ T k

H ′ ∈ image(ρ) for any k ∈ Z.
We perform an example computation for the basis element e−i in the case where i, j > 0

and | j | �= 1 :
T−k
H ◦ T k

H ′(e−i ) = T−k
H (ζ ke−i + (ζ k − 1)e j ) = e−i − (1 − ζ k)e j = Ti, j (1 − ζ k)(e−i ).

The other cases can be checked similarly.
Since Ti, j (1) is in P , we conclude that

Ti, j (ζ
k) = Ti, j (1 − ζ k)−1 ◦ Ti, j (1) ∈ image(ρ),

and consequently any Ti, j (r), with r ∈ R, lies in the image of ρ.

Another computation shows [Ti,− j (ζ
k), Ti, j (1)] = Ti (ζ k + ζ−k) for any k ∈ Z. From

that, we obtain that Ti (ζ k + ζ−k) ∈ image(ρ).

Together with the fact that Ti (n) ∈ P ⊂ image(ρ) for all n ∈ Z,we obtain that any Ti (r ′),
with r ′ ∈ R′, is in the image. This proves 1) and the part of 2) with i > 0.

In order to prove the part with j > 0, just exchange the roles of i and j and argue
analogously. �

With this lemma, we are finally able to prove Proposition 3.6.

Proof Let

A =
(
I d B
0 I d

)

with B = B∗. We have to show A ∈ image(ρ).

Let bi j be the entries of B, where i and j range from 1 to g − 1. Then bi j = b ji for all
i �= j and bii ∈ R′.

Note that the elementary transformation Ti (−bii ) corresponds to the matrix
(
I d bii Eii

0 I d

)
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and that Ti j (−b ji ) corresponds to
(
I d b ji E ji + bi j Ei j

0 I d

)
,

where Ei j stands for the matrix with a 1 in the (i, j)-entry and zeros everywhere else.
Multiplying any two such matrices yields a matrix, where we still have the identity on the

diagonal blocks and the sum of the two upper right blocks in the upper right block. Therefore,
multiplying all Ti (−bii ) for i = 1, . . . , g− 1 and all Ti j (−b ji ) for i �= j in whichever order
yields our matrix A. The claim now follows from Lemma 3.9. �

This discussion finishes the proof of Proposition 3.6 and therefore also the proof of The-
orem 2.1 which for completeness we state again here.

Theorem The image of �#
V ,C → GL2g−2(R) (and that of �V ,C,x0 → GL2g−2(R)) is the

subgroup

� :=
{(

(D∗)−1 B
0 D

) ∣∣∣∣ det(D) = ±ζ k, D∗B = B∗D
}
.

We end this section with a Corollary. Let Q2 g−2(R) ⊂ U2 g−2(R) denote the group of
upper right block matrices A that satisfy A∗	A = 	. Each such matrix has a power of ζ as
determinant. Let Q#

2g−2(R) ⊂ Q2g−2(R) denote the subgroup of matrices with determinant

an even power of ζ. Then the inclusion Q#
2g−2(R) ⊂ Q2g−2(R) is an equality if d = |C | is

odd and is of index two if d is even.
So,� = image(ρ) is the subgroup of matrices in Q#

2g−2(R) such that the diagonal blocks

have determinant ±ζ k . In general, the lower right block of a matrix in Q#
2g−2(R) has a

determinant of the form ±r ′ζ k, where r ′ is a real unit of Z[ζ ].
In the following corollary, a group G is said to virtually surject onto a group H , if there

is a homomorphism G → H whose image is of finite index. Our theorem implies:

Corollary 3.10 The punctured handlebody groupHV (S, x0) virtually surjects onto the groups
Q2g−2(Z[ζd ]), where d ∈ {2, 3, 4, 6} and ζd is a dth root of unity.

The handlebody group HV (S) virtually surjects onto the groups Q2g−2(Z[ζd ])/〈ζd〉,
where again d ∈ {2, 3, 4, 6}, ζd is a dth root of unity and 〈ζd〉 denotes the cyclic subgroup
generated by the matrix

⎛
⎜⎝

ζd · · · 0
...

. . .
...

0 · · · ζd

⎞
⎟⎠ .

Proof ForHV (S, x0), we know from Theorem 2.1 that its finite index subgroups �V ,Z/dZ,x0
surjects onto �.

Consider the chain of inclusions � ⊂ Q#
2 g−2(R) ⊂ Q2 g−2(R). The second inclusion is

of finite index, the first in general is not. However, in the cases where d ∈ {2, 3, 4, 6}, there
are no real units in Z[ζd ] other than ±1 and we obtain � = Q#

2g−2(R). This implies that �
is of finite index in Q2g−2(R) in these cases, which proves the claim in the punctured case.

The claim forHV (S) follows in an analogous way fromTheorem 2.1 and the commutative
diagram
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Fig. 7 The curves γ and δ

�#
V ,C Q2g−2(Z[ζd ])

�V ,C Q2g−2(Z[ζd ])/〈ζd 〉.
�

Remark In the cases where d �= 2, 3, 4, 6 there are matrices in Q#
2g−2(R) that are not in the

image of ρ. They are however in the image of the representation of �#
S,C . An example (for

the genus 2 surface and the representation with d = 5) of a mapping class that maps to a
matrix in Q#

2(R)\� is the mapping class

T 2
γ ◦ T−2

E1
◦ TE−1 ◦ T 2

γ ◦ T−6
E1

◦ T 2
δ ◦ T−3

E−1
,

where the curves that we use for the Dehn twists can be seen in Fig. 7.
This mapping class has a lift mapping to the matrix

(√
5 − 2 0
0

√
5 + 2

)
.

A concrete computation for this fact can be found in (“Representations of the Mapping Class
Group”(Master’s thesis, P. Bader), Example 5.1.3).

Here, we just point out that the Dehn twists about γ and δ map to the matrices(
1 ζ + ζ−1 − 2
0 1

)

and (
1 0

2 − ζ − ζ−1 1

)
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respectively, where ζ in this case denotes a 5th root of unity.
Note that the constructed mapping class is not in the handlebody group, since it doesn’t

map all meridians to meridians.

3.3 The genus 2 case

Let V be a genus 2 handlebody, C = Z/dZ, R = Z[ζd ], where ζd is a d th root of unity and
�#
V ,C → GL2(R) the corresponding representation.
Let R′ := R ∩ R. Theorem 2.1 implies the following Corollary:

Corollary 3.11 In the genus 2 case the image of �#
V ,C → GL2(R) is the group of matrices

� =
{
ζ k
d

(±1 r ′
0 ±1

) ∣∣∣∣ r ′ ∈ R′, k ∈ Z

}
.

Note that for even d, we could replace the ±1 in the above corollary by just +1 since −1
is a dth root of unity already. Corollary 3.11 allows us to find virtual surjections of the genus
2 handlebody group. Let Z[ζd ]′ denote the (additive) subgroup of real elements of Z[ζd ].
Corollary 3.12 The genus 2 handlebody group HV (S) virtually surjects onto the groups
Z/2Z ⊕ Z[ζd ]′ for any odd d ∈ N and onto Z[ζd ]′ for any even d ∈ N. In particular, there
exists a virtual surjection HV (S) → Z.

Proof Let C = Z/dZ for some d ∈ N. The surjection �#
V ,C → � induces (as in the proof

of Corollary 3.10) a surjection

�V ,C → �/〈ζd 〉.
For d even, we have

�/〈ζd〉 ∼=
{(

1 r ′
0 1

) ∣∣∣∣ r ′ ∈ Z[ζd ]′
}
∼= Z[ζd ]′.

For d odd on the other hand, we obtain

�/〈ζd 〉 ∼=
{(±1 r ′

0 ±1

) ∣∣∣∣ r ′ ∈ Z[ζd ]′
}
=: �.

The subgroups

{±I d} ⊂ �

and {(
1 r ′
0 1

) ∣∣∣∣ r ′ ∈ Z[ζd ]′
}
⊂ �

are both normal and generate �.

Since these two subgroups are isomorphic to Z/2Z and Z[ζd ]′ respectively, we obtain
� ∼= Z/2Z ⊕ Z[ζd ]′.

The fact that �V ,C is a finite index subgroup of the handlebody group proves the claim.
One can obtain the virtual surjection onto Z by choosing for example d = 4, so that

Z[ζd ]′ = Z[i]′ = Z. �
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In fact, the first homology of the genus 2 handlebody group is Z ⊕ Z/2Z ⊕ Z/2Z, so the
whole genus 2 handlebody group surjects onto Z. However, for g ≥ 3, the first homology
of the genus g handlebody group is Z/2Z, which means that it doesn’t admit a surjection
onto Z. For g = 3 it does admits a virtual surjection onto Z, but for g ≥ 4 it is still an
open question whether there even exists a virtual surjection of the handlebody group onto
the integers. See Theorem 8.5 and the subsequent discussion in [4] for more details.

4 Image of the twist group

The purpose of this section is to determine the image of the twist group under our representa-
tions. This will be done explicitely by finding certain curves such that the twists about them
map to matrices that generate the image of the twist group.We end this section by concluding
that the twist group surjects onto the integers.

The twist group TV (S) is a subgroup of the handlebody groupHV (S). It can be defined as
the kernel of the natural map HV (S) → Out(Fg) as discussed in Sect. 1.1. It is well known
that it is generated by twists about meridians.

For simplicity, we will write T = TV (S), since we’ve fixed the handlebody this group
depends on. In this section, we will determine the image of T under our representation.

More precisely: Let as always C be a cyclic group of order d, R = Z[ζ ] with ζ a d th root
of unity and consider the representation �#

V ,C → GL2g−2(R),which has image� (compare
Theorem 2.1).

Let T # be the group of lifts of T ∩ �V ,C . Then T # is a subgroup of �#
V ,C , so we can ask

what its image under the above representation is.
In particular, we have a map

T # → �

with

� =
{(

(D∗)−1 B
0 D

) ∣∣∣∣ det(D) = ±ζ k, D∗B = B∗D
}

and we want to determine the image of this map.
First of all, we want to show that T is completely contained in �V ,C , and consequently

T # consists of the lifts of all elements in the twist group.

Lemma 4.1 It holds that T ⊂ �V ,C .

Proof It suffices to show that a generator of T , i.e. a twist about a meridian, lies in �V ,C .

So, let α be a meridian and consider the Dehn twist Tα. We give an algebraic as well as a
geometric proof.

Algebraic proof : By the definition of �V ,C , we have to check that the action of Tα on
homology preserves the subgroup ker(H1(S) → C) and induces the identity on C . Recall
that in our case the map H1(S) → C ∼= Z/dZ is given by E−g �→ 1 (mod d) and all other
basis vectors map to 0. So, we have ker(H1(S) → C) = 〈E±1, . . . , E±(g−1), dE−g〉. The
action of Tα on homology is given by x �→ x + (x, [α])[α], where the homology class of α

is of the form [α] = a1E1 + · · · + agEg, since it is a meridian (cf. Lemma 1.1). Now, one
easily checks that the above claim is satisfied, and therefore we obtain Tα ∈ �V ,C .

Geometric proof : Since α is a meridian and our covering was constructed in a way that it
also gives rise to a covering of handlebodies, we get that α lifts to d homeomorphic copies
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α1, . . . , αd , which are all meridians as well. (This will be explained in more detail in the
geomtric proof of Proposition 4.2 below.)

Therefore, Tα admits a lift of the form Tα1 ◦ · · · ◦ Tαd . This shows that Tα does indeed lift
to the covering. Now, let c ∈ C be any deck transformation and note that c ◦ Tβ = Tc(β) ◦ c
for any curve β. Hence, we obtain

c ◦ Tα1 ◦ · · · ◦ Tαd = Tc(α1) ◦ c ◦ Tα2 ◦ · · · ◦ Tαd

= Tc(α1) ◦ · · · ◦ Tc(αd ) ◦ c = Tα1 ◦ · · · ◦ Tαd ◦ c.

In the computation, we use that c permutes the αi , and since these are disjoint, we can
rearrange the order we twist about them as we like. So, we also get that any lift of Tα

commutes with the deck transformations, i.e. Tα ∈ �V ,C . �
From the lemma, we obtain that T # is the group of lifts of all elements in the twist group.

Therefore, we know that it is generated by the lifts of twists about meridians. We will use
this in order to prove the following statement about the image of the representation.

Proposition 4.2 The image of the representation T # → � is contained in the subgroup

� :=
{
ζ k

(
I d B
0 I d

) ∣∣∣∣ B = B∗, k ∈ Z

}
.

Proof By the above lemma, it suffices to show that a twist about a meridian has a lift that
maps to a matrix of the form (

I d B
0 I d

)
,

because all other lifts just differ by a deck transformation and therefore map to a matrix of
the form

ζ k
(
I d B
0 I d

)
∈ �.

We will again give an algebraic as well as a geometric proof of this claim.
Algebraic proof : Recall from Sect. 3.1 that we can describe the way to obtain the lower
right block of our representation in a different way. Namely, for any f ∈ �V ,C , we can
look at the induced element in Out(Fg). A representative of this element in Aut(Fg) induces
an automorphism of π1(Ṽ ) = ker(Fg → C), which in turn induces an automorphism of
H1(Ṽ ; Q) and consequently one of Z[ζ ]g−1. This automorphism corresponds to the lower
right block matrix in our representation. The choice of a different representative in the step
from Out(Fg) to Aut(Fg) leads to an element which differs from the previous by the action
of a deck transformation, i.e. by multiplication with ζ k for some k. Since the twist group is
defined as the kernel ofHV (S) → Out(Fg), this procedure shows that the lower right block
of our representation will be the identity matrix (up to multiplication with ζ k) for any element
in the twist group. In other words, any element in the twist group admits a lift, which maps
to a matrix with I d as its lower right (and upper left) block.

Geometric proof : Let α be a meridian. Since the map H1(S) → C corresponding to
our covering factors through H1(V ), the homology class of α maps to 0 and therefore α

lifts to the covering as a closed curve. Consequently the whole preimage of α consists of
d disjoint curves α1, . . . , αd which all map homeomorphically onto α under the covering
map. Furthermore, since the covering is constructed in such a way that it is also a covering of
handlebodies, the αi are meridians. The composition of twists Tα1 ◦ · · · ◦ Tαd is a lift of Tα.

123



   59 Page 26 of 31 Geometriae Dedicata           (2024) 218:59 

Since any two meridians have trivial algebraic intersection number (compare [4], Lemma
2.1), any twist Tαi fixes the homology class of any meridian. In particular, the homology
classes of e1, . . . , eg−1 are fixed under the action of the lift, i.e. we get that the upper left
block (and therefore also the lower right block) is the identity. �

The above proposition says that the image of T # is contained in �. We want to show the
converse, i.e. that the image is all of �. For that, we have to understand how a lift of a Dehn
twist acts on R2g−2.

Let α be a meridian and Tα the Dehn twist about α. Let α1, . . . , αd be the disjoint lifts of α.

Then T̃α = Tα1 ◦ · · · ◦ Tαd is a lift of Tα. Let 〈·, ·〉 denote the intersection form on R2g−2

(compare Sect. 1.2).

Lemma 4.3 The action of T̃α on R2g−2 is given by x �→ x + 〈x, α1〉α1.

Proof This can be checked using the definition of the intersection form on R2g−2. We refer
the reader to ([5], Section 3.1) for more details. �
Theorem 4.4 The image of the representation T # → � is the subgroup �, where

� =
{
ζ k

(
I d B
0 I d

) ∣∣∣∣ B = B∗, k ∈ Z

}
.

Proof We have to show that any self-adjoint B can be an upper right block in the image of
T #. By composing a lift that maps to such a desired matrix with all deck transformations,
we get that all the

ζ k
(
I d B
0 I d

)

are in the image of T #.

Note that the diagonal entries of B are all in R′, while the off-diagonal entries are arbitrary
elements in R, where as always R = Z[ζ ] and R′ is the subring of real elements. Since R
is additively generated by the ζ k and R′ by 1 and the ζ k + ζ−k, it suffices to show that
the matrices Eii , (ζ k + ζ−k)Eii and ζ k E ji + ζ−k Ei j occur as an upper right block in the
image for any i, j ∈ {1, . . . , g − 1}, i �= j . Here, Emn stands for the matrix with a 1 in the
(m,n)-entry and zeros otherwise.

Thematrix Eii : Thismatrix is in the image as an upper right block, since a lift of the inverse
of the twist about Ei , which is a meridian, maps to it. This can be seen by the following
calculation. The inverse twist about Ei acts on R2g−2 as

x �→ x − 〈x, ei 〉ei .
From that, we obtain e− j �→ e− j for all j �= i and e−i �→ e−i + ei . In matrix notation this
means that the upper right block is Eii as desired.

The matrix (ζ k + ζ−k)Eii : Consider the two curves Ei and Ēi and the arc αk (for k ∈ N)
as shown in Fig. 8 for k = 1, 2, 3. In general the arc αk intersects Eg exactly k times.

Let Dk be a tubular neighbourhood of the arc αk, i.e. Dk ∼= αk × [0, 1], on the surface S.

Then Dk is a disk embedded in S. We choose Dk so that the curves Ei , Ēi intersect Dk only
on its boundary. Now build the curve γ = γi,k by taking the parts of Ei and Ēi that don’t
intersect Dk and connect them via the parts of the boundary of Dk that don’t intersect Ei and
Ēi . We obtain a curve as in Fig. 9.
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Fig. 8 The arcs αk for k = 1, 2, 3

Fig. 9 The curve γ = γi,k

Since Ei and Ēi bound disks D and D̄ respectively in V , γ bounds the disk D ∪ Dk ∪ D̄.

Hence γ is a meridian and Tγ ∈ T . A lift of γ can be seen in Fig. 10. Here, c denotes a
generator of the deck group that rotates the surface counterclockwise.

The Z[ζ ]-valued homology class of this lift is (1− ζ k)ei . Therefore, from Lemma 4.3 we
know that a lift of Tγ acts as

x �→ x + 〈x, (1 − ζ k)ei 〉(1 − ζ k)ei = x + (1 − ζ k)(1 − ζ k)〈x, ei 〉ei
= x + (2 − (ζ k + ζ−k))〈x, ei 〉ei .

In matrix notation, this has (ζ k + ζ−k − 2)Eii as upper right block. So, a lift of Tγ ◦ T−2
Ei

is

the desired element mapping to a matrix with upper right block equal to (ζ k + ζ−k)Eii .

The matrix ζ k E ji + ζ−k Ei j : Assume, without loss of generality, that i < j . Consider the
following curve γ = γi, j,k as in Fig. 11, which is build in the analogous way as γi,k before
by changing Ēi to Ē j .

By the same reasoning as before, it is a meridian, so Tγ ∈ T . There is a lift of γ with
Z[ζ ]-valued homology class equal to ei − ζ ke j , as can be seen in Fig. 12.

So, there is a lift of Tγ , which acts as

x �→ x + 〈x, ei − ζ ke j 〉(ei − ζ ke j ).
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Fig. 10 A lift of γ = γi,k

We compute the matrix notation of this map. Clearly, the upper left and lower right blocks
are the identity and the lower left block is zero. The upper right block is zero everywhere,
except for the i .th and j .th column. We compute:

e−i �→ e−i − ei + ζ ke j , e− j �→ e− j + ζ−k(ei − ζ ke j ) = e− j + ζ−kei − e j .

Therefore, the upper right block is

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0

−1 · · · ζ−k

...
. . .

...

ζ k · · · −1

0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where all entries are zero, except for the four in the (i, i), (i, j), ( j, i) and ( j, j)-position.
In order to get rid of the two −1 in the (i, i) and ( j, j)-entry, we compose with the inverse
of the twists about Ei and E j . So, the mapping class Tγ ◦ T−1

Ei
◦ T−1

E j
admits a lift that maps

to a matrix with upper right block equal to ζ k E ji + ζ−k Ei j . �

By projection to the upper right block, we get the following corollary from the above
theorem:

Corollary 4.5 The twist group T surjects onto the (additive) group of self-adjoint (g − 1) ×
(g − 1)-matrices with entries in R = Z[ζd ] for any d ∈ N and ζd a dth root of unity.

Proof We have the commutative diagram
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Fig. 11 The curve γ = γi, j ,k

Fig. 12 A lift of γ = γi, j ,k

T # �

T �/〈ζd〉,
where all maps are surjections.

By 〈ζd〉, we mean the subgroup generated by the matrix⎛
⎜⎝

ζd
. . .

ζd

⎞
⎟⎠ .
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Since

�/〈ζd 〉 ∼=
{(

I d B
0 I d

) ∣∣∣∣ B = B∗
}
,

we get the claim by post-composing the bottom map of the diagram with the projection to
the upper right block of the matrices. �

By post-composing the surjection given by the above corollary with the homomorphism
projecting a matrix to one of its off-diagonal entries, we obtain:

Corollary 4.6 The twist group (of any genus≥ 3 surface) surjects onto anyZ[ζd ]with d ∈ N.

By projecting to a diagonal entry, we also obtain:

Corollary 4.7 The twist group (of any genus ≥ 2 surface) surjects onto the subgroup of real
elements of Z[ζd ] for any d ∈ N.

In particular, we obtain (for any genus ≥ 2):

Corollary 4.8 There is a surjection T � Z of the twist group onto the integers.

The results about the surjections of the twist group also follow from ([6], Theorem 1.2).
There, it is shown that T surjects onto Z[Z] by using an infinite cyclic covering instead of
finite coverings.
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