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Abstract
For a stratified group G, we construct a class of Lie groups endowed with a left-invariant
distribution locally diffeomorphic to the flat distribution ofG. Vice versa, we show that all Lie
groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of
G belong to the class we constructed, if the Lie algebra of G has finite Tanaka prolongation.
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1 Introduction

In this article, we consider the following question: given a stratified group G, we wish to
characterise those polarised Lie groups that are equivalent to G. Here a polarisation on a
Lie group is the choice of a left-invariant and bracket-generating subbundle of the tangent
bundle (cfr. [11]), and two polarized Lie groups are equivalent if there is a locally defined
distribution-preserving diffeomorphism between them. Stratified groups carry a canonical
polarisation. Given a stratified group, we will construct a class of polarised Lie groups that
are equivalent to G, which we will call modifications of G. The key tool for our construction
will be Tanaka prolongation theory.

Before diving in the technical details of ourmain results, we first provide some framework.
The problemunder study is relevant in different areas, such asTanaka prolongation theory, CR
geometry, sub-Riemannian geometry, and control theory. In the setting of Tanaka’s theory, it
is known that the infinitesimal automorphisms of the polarisation associated to a stratified Lie
algebra are encoded by its full Tanaka prolongation (see, e.g., [13, 15, 18]). If theLie algebra is
not stratified, however, all we can conclude is that every infinitesimal automorphism induces
an infinitesimal automorphism on its stratified symbol. In this paper, we construct classes of
polarised Lie algebras that are not stratified, but that have the same space of infinitesimal
automorphisms as their stratified symbol.

Our study has potential applications to geometric control theory. Given a nonholonomic
control system, the motion planning problem consists in finding a curve tangent to the polari-
sation that connects two given points in the ambient space. Nilpotent Lie groups are thewidest
class of nonholonomic systems for which an exact solution to the motion planning problem
is known, see [6]. Distribution-preserving diffeomorphisms are equivalences of motion plan-
ning problems. Thus, our method detects classes of non-nilpotent nonholonomic systems
that are equivalent to nilpotent ones.

Furthermore, our findings have consequences in metric geometry. On a polarised Lie
group, one may define a left-invariant sub-Riemannian distance. In metric geometry, it is
natural to study the equivalence of metric spaces up to isometries, bi-Lipschitz mappings,
conformal and quasiconformal mappings. For example, if two stratified groups are (locally)
quasiconformal, then their Lie algebras are isomorphic [14]. If two nilpotent Lie groups are
isometric, then they are isomorphic [7, 9]. It is an open question to determine whether two
nilpotent Lie groups that are globally bi-Lipschitz to one another are indeed isomorphic. In
[4], the authors study the Lie groups that can be made isometric to a given nilpotent Lie
group, endowed with a left-invariant distance. (See also [5] for the Riemannian case.) In this
sense, our work follows [4], because distribution-preserving diffeomorphisms are locally
bi-Lipschitz.

In sub-Riemannian geometry, one of the major open problems is to determine whether
the conclusions of Sard Theorem hold for the endpoint map, which is a canonical map
from an infinite dimensional path space to the underlying finite dimensional manifold. The
set of critical values for the endpoint map is also known as abnormal set, being the set
of endpoints of abnormal extremals leaving the base point. In the context of Lie groups,
perhaps the most general positive results have been proved in [11]. Here the authors prove
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that the abnormal set has measure zero in the case of 2-step stratified groups and several
other examples. This property for the abnormal set is preserved by distribution-preserving
diffeomorphisms between sub-Riemannian manifolds. It then comes out from our results
that every modification of a stratified group satisfies the Sard Theorem, if the stratified group
does.

Now we will present our main results in detail. Recall that a Tanaka prolongation of a
stratified Lie algebra g through a Lie subalgebra g0 of the Lie algebra of derivations of g
that preserve the stratification is the maximal nondegenerate graded Lie algebra that contains
g+ g0, where nondegenerate means that the adjoint action of any element of positive weight
on g is nontrivial.1 When g0 is chosen as the whole set of strata preserving derivations, we
obtain the full Tanaka prolongation. When the prolongation algebra is finite dimensional, we
obtain a graded Lie algebra p = g⊕q and we say that g and any Lie groupG with Lie algebra
g are rigid. The term of finite type is also common in the literature to denote Lie algebras
with finite Tanaka prolongation. Modifications of g are then defined to be subalgebras s of
p of the same dimension of g that are transversal to q. It turns out that there is a linear map
σ : g → q of which the modification is the graph. If g−1 is the first layer of g, then the
set {v + σ(v) : v ∈ g−1} defines a polarisation on a Lie group whose Lie algebra is the
modification s.

Our first main result draws the connection between modifications of G and Lie groups
that are equivalent to G.

Theorem A Every modification of a stratified Lie group G is equivalent to G. Viceversa, if
G is rigid, then every polarised Lie group that is equivalent to G is one of its modification.

Theorem A is restated and proven in Theorems 4.2 and 4.4. A key tool in the study of
local distribution-preserving diffeomorphisms is the quotient manifold M = P/Q, where P
and Q < P are the Lie groups with Lie algebras p and q respectively. The polarisation of G
induces a polarisation �M on M and G embeds in M as an open subset, see Proposition 2.9.
Moreover, if S is a modification of G, then an open neighborhood of the identity in S can be
also embedded into M , see Lemma 4.1. The composition of such embeddings induce a local
distribution-preserving diffeomorphism between G and S. If the group G is rigid, i.e., its full
Tanaka prolongation is finite dimensional, then all distribution-preserving diffeomorphisms
between G and S arise in this way, see Theorem 4.4.

The rigid case is particularly favorable because all distribution-preserving diffeomor-
phisms of G are induced by affine maps on P , see (3) at page 9. We can express this rigidity
in terms of local distribution-preserving diffeomorphisms of M . More precisely, we will
prove in Theorem 3.3 the following statement:

Theorem B Suppose G is rigid and let M = P/Q be the manifold described above, where
the Lie algebra of P is the full tanaka prolongation of g. Let U ⊂ M be open and connected
and f : U → f (U ) ⊂ M a smooth map with d f (�M ) ⊂ �M. Suppose that there exists
x0 ∈ U such that d f (x0) is non-singular. Then there exists a unique distribution-preserving
diffeomorphism g : M → M such that g|U = f .

We will also prove that, in the hypothesis of Theorem B, the connected component of the
identity in the group of distribution-preserving diffeomorphisms of M is isomorphic to Q,
see Theorem 3.6.

1 Recall that a grading of aLie algebra is a vector space decomposition g = ⊕
i∈Z gi such that [gi , g j ] ⊂ gi+ j

for all i, j ∈ Z. A grading is a stratification if g = ⊕
i≤−1 gi and [g−1, g j ] = g j−1 for all j < 0.
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It remains open whether the second part of Theorem A holds true without asking that
the full Tanaka prolongation is finite. While we cannot prove the theorem in this generality,
examples suggest that itmaybe true.More precisely, in Sect. 5.1,we show that all three dimen-
sional sub-Riemannian structures are modifications of the Heisenberg group with respect to
a suitable finite dimensional Tanaka prolongation, even though the full prolongation of the
Heisenberg Lie algebra is infinite dimensional, see Theorem 5.1. This justifies the following
conjecture.

Conjecture Suppose that G is a stratified Lie group and that S is a polarised Lie group that
is equivalent to G. Then there is a finite Tanaka prolongation of Lie(G) in which Lie(S) is
a modification of Lie(G).

In Sect. 5.2 we explicitly compute some modifications of the free nilpotent Lie group
with two generators and step four, F24. It comes out that one may construct examples of
non-nilpotent Lie groups that are equivalent to F24. We also find a nilpotent, non-stratified,
polarised Lie group that is equivalent to F24 via a global distribution-preserving diffeomor-
phism, see Theorem 5.5. Finally, in Sect. 5.3, we study all the modifications of an ultra-rigid
stratified group, that is, a stratified group whose only strata-preserving derivation is the
infinitesimal generator of dilations. It turns out that such modifications are all solvable and
the only nilpotent one is the stratified group itself, see Theorem 5.9.

The paper is organized as follows. In Sect. 2, we fix the notation and establish the
framework in which we will be working. We consider stratified algebras and their Tanaka
prolongations, we define the corresponding Lie groups and fix a polarisation on them. In
Sect. 3, we study distribution-preserving diffeomorphisms of M as affine maps of P and
prove Theorem B. In Sect. 4, we define the modifications of a stratified algebra and those of a
stratified group, proving Theorem A. Finally, we apply our modification technic to a number
of examples in Sect. 5.

2 Notation and preliminaries

2.1 Polarizations and Tanaka prolongations

Given a connected, smooth manifold M , a polarisation of M is the choice of a subbundle�M

of the tangent bundle T M that is bracket generating, i.e., with the property that the sections
of�M bracket generate all the sections of T M . Given two polarised manifolds (M,�M ) and
(N ,�N ), a distribution-preserving diffeomorphism between M and N is a diffeomorphism
f : M → N such that f∗(�M ) = �N . We denote by �(T M) the space of vector fields on
M . A vector field V ∈ �(T M) on a polarised manifold (M,�M ) is a contact vector field
if its flow is made of distribution-preserving diffeomorphisms. For a Lie group S, we shall
always consider left-invariant polarisations�S . The pair (S,�S) is called a polarised group.
The identity element will be denoted by eS , or simply e if no confusion arises. We denote
by G a stratified group, that is, a connected and simply connected Lie group whose Lie
algebra decomposes as g = ⊕−1

i=−s gi , with [g−1, g j ] = g j−1 for every −s + 1 ≤ j ≤ −1.
On a stratified group we will always consider the left-invariant polarisation �G for which
(�G)eG = g−1. In a stratified group G we consider the strata preserving derivations

Der(g) := {u ∈ End(g) : u(g−1) ⊂ g−1,

and u[X , Y ] = [u(X), Y ] + [X , u(Y )] ∀X , Y ∈ g}.
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Given a subalgebra g0 of Der(g), we define the Tanaka prolongation of g through g0 as
the (possibly infinite) maximal nondegenerate graded Lie algebra Prol(g, g0) = ⊕

k≥−s gk
which contains g⊕ g0. When g0 = Der(g), we call Prol(g, g0) the full Tanaka prolongation
of g. It is not difficult to see that the latter contains all prolongations. We say that g, or G, is
rigid if the full Tanaka prolongation has finite dimension. When it is clear from the context
and the prolongation under consideration is finite dimensional, we shall denote Prol(g, g0)
by p, the nonnegative part

⊕
k≥0 gk by q, and the positive part

⊕
k>0 gk by p+. See [13, 15,

18] for further details on Tanaka prolongation.

2.2 The groups P andQ and their quotientM

In the following, we establish a number of properties of the Lie groups that correspond to
the Lie algebras introduced above. Let P̄ be the connected and simply connected Lie group
whose Lie algebra is a finite dimensional Tanaka prolongation p of a stratified Lie algebra g.
Let Q̄ be the connected subgroup of P̄ whose Lie algebra is q.

The set {δλ : λ > 0} of mappings on p defined by δλ(X) = λi X for X ∈ gi is a one param-
eter family of automorphisms of p. By abuse of notation, we write δλ for the corresponding
automorphisms of the group P̄ . Such maps exist because P̄ is simply connected.

Lemma 2.1 Denote by expP : p → P̄ the exponential map of P̄. Then expP is injective on
g and on

⊕
k≥1 gk .

Proof Let v,w ∈ g such that expP (v) = expP (w). Since v,w ∈ g, then limλ→∞ δλv =
limλ→∞ δλw = 0. Let λ ≥ 1 be such that both δλ(v) and δλ(w) belong to a neighborhoodU
of 0 in p on which the exponential map expP is injective. Then expP (δλv) = δλ(expP (v)) =
δλ(expP (w)) = expP (δλw). By the injectivity of expP on U , we have δλv = δλw. Since δλ

is a linear isomorphism, we conclude that v = w. A similar argument proves that expP is
injective on

⊕
k≥1 gk .

By Lemma 2.1, the canonical immersion G ↪→ P̄ induced by g ↪→ p is injective. We are
going to show that G is closed in P̄ . We prove two lemmas first.

Lemma 2.2 The intersection of G with Q̄ is trivial.

Proof Since δλ(g) = g and δλ(q) = q, then δλ(G) = G and δλ(Q̄) = Q̄, for all λ > 0. Since
g is nilpotent, G = expP (g).

Let x ∈ G ∩ Q̄; then x = expP (v) for some v ∈ g and limλ→∞ δλ(x) =
expP (limλ→∞ δλv) = eP . It follows that the curve γ : (0, 1] → P̄ , γ (t) = δt−1x , extends
to a continuous path [0, 1] → P̄ connecting γ (0) = eP to γ (1) = x and laying in G. Since
δλ(x) ∈ Q̄ for all λ > 0, then γ lies in Q̄ as well.

Since g ⊕ q = p, there are open neighborhoods U ⊂ g and V ⊂ q of 0 such that
	 = expP (U ) expP (V ) is an open neighborhood of eP in P̄ and the following holds: The
connected component of 	 ∩ G containing eP is expP (U ), the connected component of
	 ∩ Q̄ containing eP is expP (V ), and expP (U ) ∩ expP (V ) = {eP }.

Since γ joins x to eP continuously, then γ ([0, 1]) ∩ 	 lies in both the connected compo-
nents of 	∩G and 	∩ Q̄ containing eP , i.e., γ ([0, 1])∩	 ⊂ expP (U )∩ expP (V ) = {eP }.
This implies that x = eP .

Lemma 2.3 (Lemma on Lie groups) Let G be a Lie subgroup of a Lie group P and let
ι : G ↪→ P the inclusion. The image ι(G) is not closed in P if and only if there is a sequence
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{gn}n∈N ⊂ G such that limn→∞ gn = ∞ (i.e., gn eventually escapes every compact set of
G) and limn→∞ ι(gn) = eP .

Proof Recall that G is closed in P if and only if ι is an embedding. So, if such a sequence
exists then ι(G) is not closed in P . We need to prove the converse implication.

Let ρ be any left-invariant Riemannian distance onG. Then ρ is complete and in particular
closed balls are compact. Let {gn}n∈N ⊂ G be a sequence such that limn→∞ ι(gn) = p ∈ P .
If there is R > 0 such that ρ(eG , gn) ≤ R for all n, then there is a subsequence gnk converging
to some g∞ ∈ G. Since the immersion ι : G ↪→ P is continuous, we obtain ι(g∞) = p,
hence p ∈ ι(G).

So, if ι(G) is not closed, then there is a sequence {gn}n∈N ⊂ G such that limn→∞ ι(gn) =
p ∈ P but gn → ∞ in G. Let {gnk }k be a subsequence such that ρ(gnk , gnk+1) > k for k ∈ N

and define hk = g−1
nk gnk+1 . Then hk → ∞ in G, because ρ(eG , hk) = ρ(eG , g−1

nk gnk+1) =
ρ(gnk , gnk+1) > k for all k. However, ι(hk) = ι(g−1

nk )ι(gnk+1) → p−1 p in P as k → ∞.

Lemma 2.4 The immersed group G is closed in P̄.

Proof We prove that, if {vn}n∈N ⊂ g is a sequence so that limn→∞ expP (vn) = eP , then
limn→∞ vn = 0. By Lemma 2.3 and expP (g) = G, this claim implies that G is closed in P .

Let {vn}n∈N ⊂ g be a sequence with limn→∞ expP (vn) = eP . Let U ⊂ g and W ⊂ q be
open neighborhoods of 0 such that the map U × W → P , (u, w) �→ expP (u) expP (w) is
a diffeomorphism onto its image. Then, for n large enough, there are un ∈ U and wn ∈ W
so that expP (un) expP (wn) = expP (vn). Therefore, expP (un)−1 expP (vn) = expP (wn) ∈
Q̄ ∩ G. By Lemma 2.2, we have expP (un) = expP (vn). By Lemma 2.1, we have un = vn .
Since expP (un) → eP , then vn = un → 0.

Corollary 2.5 The immersed group Q̄ is closed in P̄.

Proof This is a consequence of Lemma 2.4 and part (iii) of Lemma 2.15 in [4]

Since Q̄ is closed, we may consider the homogeneous manifold M := P̄/Q̄ with quotient
projection π : P̄ → M . The action of P̄ may have a non-trivial kernel

K := {p ∈ P̄ : p.x = x ∀x ∈ M} =
⋂

p∈P̄

pQ̄ p−1.

Lemma 2.6 The kernel K of the action of P̄ on M is discrete and contained in Q̄. Moreover,
if p ∈ K, then δλ p = p for all λ > 0.

Proof Clearly K is a normal and closed subgroup of P̄ and it is contained in Q̄. Let v ∈
Lie(K ), theLie algebra of K . Then for somepositive integer , wemaywrite v = v0+· · ·+v,
with vi ∈ gi for every i = 0, . . . , . Since Lie(K ) is an ideal in p contained in q, it follows
in particular that for all i = 0, . . . , ,

[[. . . [[vi , y1], y2], . . . ], y+1] ∈ gi−−1 ∩ q = {0},
for every y1, . . . , y+1 ∈ g−1. By definition of Tanaka prolongation, this implies that v = 0.
Therefore, the Lie algebra of K is trivial and so K is discrete.

Since K = ⋂
x∈P̄ x Q̄x−1, it is clear that δλ(K ) ⊂ K for all λ > 0. However, since

λ �→ δλ p is a continuous curve passing through p, we must have δλ p = p when p ∈ K .
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From Lemma 2.6 it follows that P := P̄/K and Q := Q̄/K are Lie groups, that Q is
closed in P and M = P/Q. Moreover, the maps δλ are automorphisms of P as well, for all
λ > 0. Since G ∩ K = {e}, the group G is embedded in P with G ∩ Q = {e}.
Remark 2.7 If we are given G and Q inside P , for instance as matrix groups, we may want
to visualise the action of P on M as a local action of P on G. In other words, if p ∈ P ,
then there may be open subsets Up, Vp ⊂ G and a distribution-preserving diffeomorphism
f p : Up → Vp that corresponds to the action of p on M , i.e., f p(g1) is the only g2 ∈ G,
if it exists, such that {g1Q) ∩ G = {g2}. In general, such construction is not possible for all
p ∈ P , but if p is near enough to eP , then Up , Vp and f p do exist. The fact that such f p is a
distribution-preserving diffeomorphism will be proved in Proposition 2.8.

2.3 Polarizations on G, P andM

We denote by π : P → M the quotient map, with M = P/Q. If p ∈ P and m ∈ M , we
use the notation p.m or p(m) for the action of p on m. In such contexts, we will identify
elements p ∈ P with smooth diffeomorphisms p : M → M .

Recall that on G we have the polarisation �G with (�G)e = g−1. We define on P the
polarisation �P such that (�P )eP = g−1 ⊕ q. Notice that �G = �P ∩ TG. Define �M :=
dπ(�P ) which is a subset of T M . We shall prove that �M is a P-invariant polarisation on
M .

Proposition 2.8 The set �M ⊂ T M is a P-invariant, bracket generating subbundle of M.
In particular, (M,�M ) is a polarised manifold and the diffeomorphisms p : M → M for
p ∈ P are distribution-preserving diffeomorphisms.

Proof Notice that�M is a P-invariant subset of T M . In order to show that�M is a subbundle,
we need to prove that, if p1, p2 ∈ P are such that π(p1) = π(p2), then

dπ((�P )p1) = dπ((�P )p2). (1)

Since p ◦ π = π ◦ L p for all p ∈ P , then (1) is equivalent to d(p−1
2 ◦ π ◦ L p1)[(�P )e] =

dπ[(�P )e]. Let p = p1 and choose q ∈ Q so that p2 = p1q . Then p−1
2 ◦π ◦L p1 = π ◦Lq−1

and thus (1) is also equivalent to

Adq [(�P )e] mod q = (�P )e mod q. (2)

Since Ad is a homomorphism and every q ∈ Q is the finite product of exponential elements,
it’s enough that we show (2) for q = exp y, y ∈ q. Denote by y0 the projection of y on g0.
Let w ∈ g−1 ⊕ q and denote by w−1 its projection on g−1. Then

Adqw mod q = ead(y)w mod q

= ead(y0)w−1 mod q.

Since ead(y0) : g−1 → g−1 is a bijection, we conclude that Adq [(�P )e] mod q = g−1

mod q. This proves (2) and therefore (1).
Finally, we need to show that �M is bracket generating. Recall that, for an analytic

subbundle of an analytic manifold, being bracket generating is equivalent to being connected
by curves tangent to the subbundle, and that quotients of Lie groups and invariant subbundles
are all analytic. Thus, let m0 = π(p0) and m1 = π(p1) in M . Then there is a C1-curve
γ : [0, 1] → P such that γ (0) = p0, γ (1) = p1 and γ ′(t) ∈ �P for all t ∈ [0, 1]. Hence,
the curve π ◦ γ : [0, 1] → M goes from m0 to m1 and is clearly tangent to �M .
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Proposition 2.9 The restriction π |G : (G,�G) → (M,�M ) is a distribution-preserving
diffeomorphism onto its image, which is an open subset of M.

Proof First, we show that π |G is injective. Let a, b ∈ G such that π(a) = π(b). Then
π(e) = π(a−1a) = a−1.π(a) = a−1π(b) = π(a−1b), i.e., a−1b ∈ Q. Since a−1b ∈ G and
G ∩ Q = {e}, then a = b.

Second, we show that π |G is an immersion. Since ker(dπ |g) = dLg(q) and dLg(q) ∩
TgG = DLg(q) ∩ DLg(g) = {0}, then d(π |G)|g = (dπ |g)|TgG is injective, for all g ∈ G.

Third,we claimdπ |G(�G) = �M∩T (π(G)). Since�G ⊂ �P and since�M = dπ(�P )

by definition, it follows that dπ |G(�G) ⊂ �M ∩ T (π(G)). Moreover, since �M is P-
invariant by Proposition 2.8, for all x ∈ M , dim(�M )x = dim(�M )π(e) = dim((g−1 ⊕
q)/q) = dim(g−1). Therefore, we obtain the claim by comparing the dimensions.

Finally, the fact that π(G) is open in M and the fact that π |G is an embedding are
both consequences of (π |G) being an immersion and the fact that M and G have the same
dimension.

Remark 2.10 A first consequence of Proposition 2.9 is that any local distribution-preserving
diffeomorphism on M is in fact a local distribution-preserving diffeomorphism onG. Indeed,
by the action of P on M and via the map π |G , any local distribution-preserving diffeomor-
phism of M defines a local distribution-preserving diffeomorphism of G. Similarly, contact
vector fields on M define contact vector fields on G.

In case G is a rigid stratified group and p is the full Tanaka prolongation of g, these
relations are stronger, see Sect. 3.

3 Distribution-preserving diffeomorphisms ofMwhenG is rigid

This section contains Theorem 3.3 for distribution-preserving diffeomorphisms in the rigid
case.

Relative to a vector X ∈ TeP , we denote by X̃ the left-invariant vector field X̃(p) =
dL p|e[X ], and by X† the right-invariant vector field X†(p) = dRp|e[X ]. Similarly, we
denote by p̃ the Lie algebra of left-invariant vector fields and by p† the Lie algebra of right-
invariant vector fields on P . Moreover, as in the previous sections, the manifold M is the
quotient P/Q and we denote by o the point π(e) ∈ M .

Lemma 3.1 Let  : p → p be a Lie algebra automorphism with (q) = q and (g−1 ⊕ q) =
g−1⊕q. Then there is a unique distribution-preserving Lie group automorphism L : P → P
with L∗ =  and a unique distribution-preserving diffeomorphism Lπ : M → M with
Lπ ◦ π = π ◦ L.

Proof If  : p → p is a Lie algebra automorphism with (q) = q, then the induced Lie group
automorphism L̄ : P̄ → P̄ has the property that L̄(K ) = K , where K is the kernel of the
action of P̄ on M . It follows that there is a Lie group automorphism L : P → P such that
L∗ = .

If L : P → P is a Lie group automorphism with L(Q) = Q, then it is well known that
there is a unique diffeomorphism Lπ : M → M such that Lπ ◦ π = π ◦ L .

Now, suppose that (g−1 ⊕ q) = g−1 ⊕ q, i.e., L∗(�P )e = (�P )e. Since �P is left-
invariant, then L is a distribution-preserving diffeomorphism of (P,�P ). Finally, we prove
that Lπ is a distribution-preserving diffeomorphism. Let X ∈ �P and x ∈ P . Then

dLπ |π(x)[dπ |x [X̃x ]] = d(Lπ ◦ π)|x [X̃x ] = d(π ◦ L)|x [X̃x ] ∈ �M |Lπ (x).
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Let Aut(p, g) be the group of Lie algebra automorphisms of p that induce distribution-
preserving diffeomorphism on M . By Lemma 3.1, we have

Aut(p, g) = {φ ∈ Aut(p) : φ(q) = q, φ(g−1 ⊕ q) = g−1 ⊕ q}.
This group plays a crucial role in the classification of modifications of a stratified Lie algebra,
as we shall show in Theorem 4.6.

For the following claim, see [15, Sect. 6] and [18].

Theorem 3.2 (Tanaka) If g is rigid and p is the full Tanaka prolongation, thenπ∗p† ⊂ �(T M)

is the set of all germs of contact vector fields on M. More precisely, on the one hand π∗p† are
contact vector fields of (M,�M ); On the other hand, if U ⊂ M is open and connected, and
V ∈ �(TU ) is a contact vector field, then there is a unique X ∈ p such that V = π∗X†|U .

Denote by Cont(U ) the space of contact vector fields on an open setU ⊂ M . Notice that
Cont(U ) is a Lie algebra. Theorem 3.2 can be restated as: if U ⊂ M is open and connected,
then π∗|U : X† �→ π∗X†|U is a Lie algebra isomorphism between p† and Cont(U ). With
Theorem 3.2, we can prove the following result:

Theorem 3.3 Suppose g is rigid and let p be its full Tanaka prolongation. Let U ⊂ M be
open and path-connected and f : U → f (U ) ⊂ M be a smooth map with d f (�M ) ⊂ �M

and suppose that there exists x0 ∈ U such that d f (x0) is non-singular. Then there exists a
unique a Lie group automorphism L f : P → P such that (L f )∗ ∈ Aut(p, g) and p f ∈ P
such that, for every p ∈ P with π(p) ∈ U, we have

f (π(p)) = π(p f L f (p)). (3)

In particular, there exists a unique distribution-preserving diffeomorphism g : M → M such
that g|U = f .

The proof of Theorem 3.3 requires the following preliminary lemma.

Lemma 3.4 Suppose g is rigid and let p be its full Tanaka prolongation. Let U ⊂ M be open
and path-connected and f : U → f (U ) ⊂ M be a smooth diffeomorphism with d f (�M ) ⊂
�M. Then there exist a unique p f ∈ P and a Lie group automorphism L f : P → P with
(L f )∗ ∈ Aut(p, g) such that, for every x ∈ P with π(x) ∈ U, we have

f (π(x)) = π(p f L
f (x)). (4)

In particular, there exists a unique distribution-preserving diffeomorphism g : M → M such
that g|U = f .

Proof By Theorem 3.2, the map  f = π∗|−1
f (U ) ◦ f∗ ◦ π∗|U : p† → p† is a composition of

Lie algebra isomorphisms

p† → Cont(U ) → Cont( f (U )) → p†.

Let L f : P → P be the corresponding Lie group automorphism, whose existence is assured
by Lemma 3.1.

It is clear that, if f1, f2 are two such distribution-preserving diffeomorphisms then
L f2◦ f1 = L f2 ◦ L f1 , whenever the composition is well defined. Moreover, notice that if
p ∈ P , then seen as a diffeomorphism p : M → M the argument above shows that p = Id,
and so (4) holds with L p = Id and pp = p.
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Back to the general case, let p0, p1 ∈ P satisfy π(p0) ∈ U and π(p1) = f (π(p0)). Then
h(m) := p−1

1 . f (p0.m) defines a distribution-preserving diffeomorphism h : p−1
0 .U →

p1. f (U ). By the previous paragraph, we also have Lh = L f . Since h(π(eP )) = π(eP ),
integrating the contact vector fields, we get h(π(x)) = π(Lh(x)) whenever π(x) ∈ U . We
conclude that (4) holds with p f := p1L(p−1

0 ).
Viceversa, if L f and p f satisfy (4), then the differential  f of L f at eP is a Lie algebra

automorphism of p† satisfying  f = π∗|−1
f (U ) ◦ f∗ ◦π∗|U . Therefore, L f is unique. Moreover,

since f (π(x)) = π(p f L f (x)) = p f .π(L f (x)), p f is uniquely determined.
Finally, the fact that x �→ p f L f (x) induces a global diffeomorphism g : M → M , which

extends f , is a consequence of Lemma 3.1.

Proof of Theorem 3.3 Fix x0 ∈ U and a neighborhood U ′ ⊂ U of x0 such that f is a diffeo-
morphism U ′ → f (U ′). By Lemma 3.4, there is a distribution-preserving diffeomorphism
g : M → M with g|U ′ = f |U ′ . Let W ⊂ U be the largest open set where f and g are equal.
If x ∈ ∂W ∩U then continuity of the differential implies that d f (x) = dg(x) and it follows
that d f (x) is nonsingular. Applying Lemma 3.4 again, there is a neighborhood U ′′ of x and
a distribution-preserving diffeomorphism g′′ : M → M such that g′′|U ′′ = f |U ′′ . Notice
that U ′′ ∩ W is a nonempty open set and that the restrictions of g′′ and g are distribution-
preserving diffeomorphisms on U ′′ ∩ W and g′′|U ′′∩W = gU ′′∩W . Since Lemma 3.4 implies
the uniqueness of smooth distribution-preserving extensions, we get g′′ = g. In particular,
we have that x ∈ U ′′ ⊂ W , in contradiction with x ∈ ∂W .

Therefore, we conclude that ∂W ∩U = ∅ and, since U is connected, W = U .

Remark 3.5 Tanaka prolongation is usually stated in the C∞ category. However, in Theo-
rem 3.2, and consequently in Theorem 3.3, one can assume f to be only smooth of class C2.
The upgrade of the regularity works like in [13].

Finally, we prove that the group of Aut(p, g) is the adjoint representation of Q.

Theorem 3.6 Suppose that g is rigid and that p is the full Tanaka prolongation. The Lie
algebra of Aut(p, g) is {adX : X ∈ q}. In particular, the connected component of the identity
in Aut(p, g) is {Adx : x ∈ Q}, which is isomorphic to Q via the adjoint map x �→ Adx .

Proof We need to show that, if D : p → p is a derivation such that D(q) ⊂ q and D(�P |e) ⊂
�P |e, then there is X ∈ q such that D = adX .

The one-parameter group of Lie algebra automorphisms t := etD are such that t (q) = q

and t (�P )e = (�P )e. By Lemma 3.1, they induce a one-parameter group of Lie group
automorphism Lt on P and a one-parameter group of distribution-preserving diffeomorphism
Lπ
t : M → M .
Since Lπ

t is a one-parameter group of distribution-preserving diffeomorphisms on M
and by Theorem 3.2, there is V ∈ π∗p† such that Lπ

t is its flow. Let X ∈ p be such that
π∗(X†) = V . Since Lπ

t (o) = o and thus V (o) = 0, we have X ∈ q.
Notice that Lπ

t (m) = exp(t X).m for allm ∈ M . Therefore, if p ∈ P andm = π(p), then

π(Lt (p)) = Lπ
t (π(p)) = exp(t X).π(p)

= π(exp(t X)p) = π(exp(t X)p exp(−t X)) = π(Cexp(t X) p),

where Ca p = apa−1 is the conjugation by a ∈ P . Since by Lemma 3.4 the lift of a
distribution-preserving diffeomorphism from M to P is unique, we conclude thatCexp(t X) =
Lt .
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Finally, for all t ∈ R we have

etadX = Adexp(t X) = dCexp(t X)|e = dLt |e = etD

and thus D = adX .
For the last part of the statement, we need to show that x �→ Adx is injective on Q. So,

suppose that x ∈ Q is such that Adx is the identity map on P . Since Q = exp(q), there
is v ∈ q such that x = exp(v) and thus Adx = eadv . The vector v can be decomposed as
v = ∑

j≥k v j with v j ∈ g j and vk �= 0, where k ≥ 1. If we denote by πk−1 the projection
p → gk−1 given by the grading of p, then for every w ∈ g−1 we have

πk−1(e
adv (w)) = [v,w]

Since eadv (w) = w ∈ g−1, then [v,w] = 0. We obtain that adv|g−1 = 0 and thus, by
definition of Tanaka prolongation, v = 0. We conclude that x = e and thus Ad is injective.

4 Modifications of stratified groups

A polarised Lie algebra is a pair (s, s−1) where s is a Lie algebra and s−1 is a bracket-
generating subspace. We say that two polarised Lie algebras (s, s−1) and (s′, s′−1) are
isomorphic if there is a Lie algebra isomorphism φ : s → s′ such that φ(s−1) = s′−1. Given
a stratified Lie algebra g and a finite dimensional Tanaka prolongation p = Prol(g, g0), a
modification of g in p is a polarized algebra (s, s−1) where s ⊂ p is a subalgebra such that
p = s ⊕ q and s−1 = (g−1 ⊕ q) ∩ s. In other words, a modification of g in p is a subalgebra
s ⊂ p of the form

s := {X + σ(X) : X ∈ g},
for some σ : g → q linear, endowed with the polarization

s−1 := {X + σ(X) : X ∈ g−1}.
Notice that s−1 bracket generates s. Indeed, on the one hand, s has the same dimension as g.
On the other hand, one can easily check that, for iterated brackets of length k ≥ 0, we have
⎛

⎝[s−1, . . . [s−1, s−1] . . . ] mod
⊕

j≥−k

g j

⎞

⎠ =
⎛

⎝[g−1, . . . [g−1, g−1] . . . ] mod
⊕

j≥−k

g j

⎞

⎠ .

If S is the connected Lie subgroup of P with TeS = s, we call the pair (S,�S)modification
of G in P , where (�S)e = s−1. If (s′, s′−1) is a polarized Lie algebra that is isomorphic to a
modification of g in p, then we just say that s is a modification of g. Similarly, a modification
of G is any polarized group (S,�S) whose Lie algebra is a modification of g.

Lemma 4.1 Let S be a modification of G in P. The restriction π |S : S → M is a distribution-
preserving diffeomorphism when restricted from a neighbourhood of eS to one of π(eS).

Proof We denote by o the base point π(eS) in M . Observe that d(π |S)eS : TeS S = s → ToM
is the restriction to s of dπeP : p → ToM . Since the kernel of dπeP is q, and since q∩s = {0},
d(π |S)eS is injective. Moreover, dim s = dim g = dim M , so that d(π |S)eS is a linear
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isomorphism. In particular, π |S is a diffeomorphism between two open neighbourhoods of
eS and o, respectively. Finally, on the one hand

d(π |S)(�S) = dπ(�P ∩ T S) ⊆ �M ,

while on the other hand dim(�S)s = dim(g−1) = dim(�M )π(s) for all s ∈ S. So, at all
points s where d(π |S)s is injective we have d(π |S)s(�S)s = (�M )π(s).

By Lemma 4.1, both maps

ψG
S = π |−1

S ◦ π |G : UG → US ψ S
G = π |−1

G ◦ π |S : US → UG

are distribution-preserving diffeomorphisms between a neighborhood UG of eG in G and a
neighborhood US of eS in S. One can also easily prove that the differential dψG

S |eG : g → s

is the map X �→ X + σ(X).
Using the mapsψG

S andψ S
G , the following theorem is a direct consequence of Lemma 4.1.

Theorem 4.2 Modifications of a stratified Lie group G are equivalent to G.

Remark 4.3 If we are given G and S in P (for instance as matrix groups), then for any s ∈ S
the image ψ S

G(s) is the only element g of G, if it exists, such that (sQ) ∩ G = {g}. Such an
element is unique because π : G → P/Q is injective.

The following theorem is a converse of Theorem 4.2 in the rigid case.

Theorem 4.4 Suppose that G is a rigid stratified group and that (S,�S) is a polarized Lie
group that is equivalent to G. Then (S,�S) is a modification of G.

Proof Let p be the full Tanaka prolongation of g. Let ψ : US → UG be a distribution-
preserving diffeomorphism from an open subset US ⊂ S to UG ⊂ G. Up to composing ψ

with left translations on S and on G, we may assume ψ(eS) = eG .
Let s† ⊂ �(T S) be the Lie algebra of right-invariant vector fields on S. Since s† is made

of contact vector fields on S and since the Tanaka prolongation of g coincides canonically
with the Lie algebra of germs of contact vector fields on G, ψ∗ : �(TUS) → �(TUG) gives
an injective Lie algebra morphism ψ∗ : s† ↪→ p.

Notice that if X ∈ s† is such thatψ∗X(eG) = 0, then X = 0. Therefore,ψ∗(s†)∩q = {0}.
Since S and G have the same dimension, we obtain that

ψ∗(s†) = {X + σ X : X ∈ g}
for some linear map σ : g → q.

Finally, since dψ((�S)eS ) = (�G)eG , we obtain that

ψ∗{X ∈ s† : X(eG) ∈ (�S)eS } = {X + σ X : X ∈ g−1}.
We conclude that (ψ∗(s†), dψ((�S)eS )) is a modification of g in p.

Remark 4.5 In the case G is not rigid, i.e., the full Tanaka prolongation of g is infinite
dimensional, then the argument in the proof of Theorem 4.4 does not work. However, the
example of the Heisenberg group, which is not rigid, shows that it may still be possible to
obtain as modifications all Lie groups that are equivalent to G. See Sect. 5.1.

In the rigid case, isomorphisms of modifications are all elements of Aut(p, g):
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Theorem 4.6 Suppose g is rigid. If s, s′ are two modifications of g in p, and if there is an
isomorphism φ : s → s′ such that φ(s∩ (g−1 ⊕ q)) = s′ ∩ (g−1 ⊕ q), then there is a unique
 ∈ Aut(p, g) such that φ = |s.
Proof. Let S, S′ < P be the subgroups of P whose Lie algebra are s and s′ respectively,
endowedwith the polarizations induced by P , e.g.,�S = �P∩T S. Themapφ defines a local
distribution-preserving diffeomorphism � : 	 → �(	), 	 ⊂ S open with e ∈ 	. We may
assume that π |	 : 	 → π(	) ⊂ M and π |�	 : �(	) → π(�	) ⊂ M are distribution-
preserving diffeomorphisms, see Lemma 4.1. Define U := π(	) and f := π ◦ � ◦ π |−1

	 :
U → f (U ) = π(�	). The map f is then a distribution-preserving diffeomorphism. By
Theorem 3.3, there is a Lie group automorphism L : P → P such that f (π(p)) = π(L(p))
for all p ∈ π−1(U ). Now, we claim that the map L∗ : p → p restricted to s is equal to φ.
Indeed, if X ∈ s, then

L∗[X ] = L∗[X†]∣∣e = (π∗|p†)−1 ◦ π∗ ◦ L∗ ◦ (π∗|p†)−1 ◦ π∗[X†]∣∣
e

= (π∗|p†)−1 ◦ f∗ ◦ π∗[X†]∣∣
e

= (π∗|p†)−1 ◦ (π ◦ � ◦ π |−1
	 )∗ ◦ π∗[X†]

∣
∣
∣
e

= �∗[X†|S]
∣
∣
e = φ[X ].

5 Examples

In this section we consider a few applications of our main results. First, we observe that every
three-dimensional polarized Lie group is equivalent either to R

3 or to the Heisenberg group.
Although this is of course a consequence of themore general Darboux Theorem, we believe it
is a good example for presenting our techniques. Second, we study somemodifications of the
free nilpotent Lie algebra f24. In this casewe are able to find a nilpotentmodification (N ,�N )

of the stratified group F24 corresponding to f24 that, although not isomorphic, admits a global
distribution-preserving diffeomorphism to F24. In particular, if we endow N and F24 with
left-invariant sub-Riemannian distances, our example shows two nilpotent Lie groups that
are bi-Lipschitz on every compact set but not isomorphic.

5.1 Modifications of the Heisenberg group

We study the consequences of the results of the previous section in the case where g is the
three-dimensional Heisenberg algebra. It is well known that the full Tanaka prolongation of
the Heisenberg Lie algebra g is infinite. However, there is a number a different choices of
subalgebras g0 ⊂ Der(g) that generate finite dimensional prolongations. We shall show that
these finite prolongations are enough to recover all polarized Lie groups that are equivalent
to the Heisenberg group, i.e., all three dimensional Lie groups with a non-trivial polarization:

Theorem 5.1 Let (s, s−1) be a three dimensional polarised Lie algebra such that dim(s−1) =
2. Then there is a finite-dimensional prolongation p of the Heisenberg Lie algebra h so that
(s, s−1) is isomorphic to a modification in p.

Our study is based on a classification of three-dimensional Lie algebras due to several
authors. We summarise the results we need in the following theorem.

Proposition 5.2 Let (s, s−1) be a three-dimensional polarised Lie algebra such that
dim(s−1) = 2. Then there is a basis ( f1, f2, f3) of s with s−1 = span{ f1, f2} such that
exactly one of the following cases occurs:
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(A) [ f1, f2] = f3, [ f1, f3] = α f2 + β f3 and [ f2, f3] = 0, for some α ∈ R and β ∈ {0, 1}.
In this case s is solvable and the non-isomorphic cases are exactly the following four:

(A.1) [ f1, f2] = f3, [ f1, f3] = 0 and [ f2, f3] = 0;
(A.2) [ f1, f2] = f3, [ f1, f3] = f2 and [ f2, f3] = 0;
(A.3) [ f1, f2] = f3, [ f1, f3] = − f2 and [ f2, f3] = 0;
(A.4) [ f1, f2] = f3, [ f1, f3] = α f2 + f3 and [ f2, f3] = 0.

(B) [ f1, f2] = f3, [ f1, f3] = − f2, [ f2, f3] = f1. In this case s = su(2) is simple.
(C) [ f1, f2] = f3, [ f1, f3] = − f1, [ f2, f3] = f2. In this case s = sl(2, R) is simple.
(D) [ f1, f2] = f3, [ f1, f3] = f2, [ f2, f3] = − f1. In this case s = sl(2, R) is simple.

Part of the proof ofProposition5.2 is basedon the following lemma, see [2]. Proposition5.2
is also a consequence of Winternitz classification [16].

Lemma 5.3 (Baudoin–Cecil) Let S be a three-dimensional solvable Lie group endowed with
a left-invariant sub-Riemannian structure (�S, g). There exist vectors e1, e2, e3 linearly
independent in s, α ∈ R and β ≥ 0 such that e1, e2 is an orthonormal basis of (�S)e and

[e1, e2] = e3, [e1, e3] = αe2 + βe3, [e2, e3] = 0. (5)

Proof of Proposition 5.2 If s is a three dimensional Lie algebra, then it is either solvable or
simple. Indeed, the claim follows from the Levi decomposition and the fact that there are
no simple Lie groups of dimension 1 or 2. If s is simple, then the (s, s−1) falls into one
the cases (B), (C) or (D), see [1]. Notice that the cases (C) and (D) are not isomorphic as
polarised Lie algebras because ad f3 is a reflexion of s−1 in case (C), while in case (D) it is a
rotation.

If s is solvable, then we apply Lemma 5.3 and obtain case (A). However, since the
classification in Lemma 5.3 is up to isometry, we have to further discriminate to obtain non-
isomorphic subcases. So, if f1, f2, f3 is a basis of s with s−1 = span{ f1, f2}, [ f1, f2] = f3
and [ f2, f3] = 0, then we must have

⎧
⎪⎨

⎪⎩

f1 = a11e1 + a21e2
f2 = a22e2
f3 = a11a

2
2e3,

for some real coefficients. The third bracket relation is

[ f1, f3] = α(a11)
2 f2 + βa11 f3.

Since α ∈ R and β ≥ 0, in each case we can choose a j
i in the following way:

α = β = 0 a11 = 1, a21 = 0, a22 = 1 : [ f1, f3] = 0

β > 0, α ∈ R a11 = 1

β
, a21 = 0, a22 = 1 : [ f1, f3] = α

β2 f2 + f3

β = 0, α > 0 a11 = 1√
α

, a21 = 0, a22 = 1 : [ f1, f3] = f2

β = 0, α < 0 a11 = 1√|α| , a21 = 0, a22 = 1 : [ f1, f3] = − f2

Now, we want to show that cases (A.1), (A.2), (A.3) and (A.4) are not isomorphic to
each other. Notice that  := span{ f3} = [s−1, s−1] and s(2) := [s, s] are invariant under
isomorphisms of polarised Lie algebras.
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First, case (A.1) is not isomorphic to the others because in case (A.1) we have s(2) =
span{ f3} while in all other three cases we have s(2) = span{ f2, f3}.

Second, case (A.4) is not isomorphic to the others because in case (A.4)we have [, s−1] �⊂
s−1 while in all other cases we have [, s−1] ⊂ s−1.

Third, for different choices of α ∈ R in case (A.4) we get non-isomorphic polarised Lie
algebras: To prove this, we shall show that the parameter α is independent of the choice
of the basis. So, suppose that g1, g2, g3 ∈ s form another basis with s−1 = span{g1, g2},
[g1, g2] = g3, [g2, g3] = 0 and [g1, g3] = α′g2 + g3. Then one easily shows that g1 =
x f1 + y f2, g2 = μ f2 and g3 = λ f3, for some x, y, λ, μ ∈ R with xμ

λ
= 1. Moreover,

[g1, g3] = α
xμ
λ
g2 + xg3, which implies x = 1 and α = α′.

Finally, cases (A.2) and (A.3) are not isomorphic to each other, because in case (A.2) it
holds ad f1 |2s(2) = Id|s(2) , while while in case (A.3) it holds ad f1 |2s(2) = −Id|s(2) .

Proof of Theorem 5.1 Let us fix the notation for the Heisenberg Lie algebra. Fix a basis
e1, e2, e3 so that [e1, e2] = e3, and choose g−1 = span{e1, e2}. The space Der(g) of the
strata preserving derivations of g may be identified with gl(2, R).

First, we consider

g0 := {D ∈ Der(g) : D(e1) ⊆ Re1 and D(e2) ⊆ Re2}.
In this case, Prol(g, g0) = sl(3, R) = g⊕ q (see, e.g., [3]), where g is identified with the Lie
algebra generated by

e1 =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , e2 =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , e3 =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ . (6)

and q is the set of matrices in sl(3, R) of the form

⎛

⎝
∗ 0 0
∗ ∗ 0
∗ ∗ ∗

⎞

⎠

The modifications of g in sl(3, R) are the subalgebras of sl(3, R) of the form {X + σ(X) :
X ∈ g}, for some linear map σ : g → q. We show that all three dimensional Lie algebras
with a bracket generating plane are graphs of such a σ :

Case (A): If s is solvable, then define σ by the assignments:

σ(e1) =
⎛

⎜
⎝

2β
3 0 0
α −β

3 0
0 0 −β

3

⎞

⎟
⎠ , σ (e2) = σ(e3) = 0.

It is easy to check that vectors fi := ei + σ(ei ), i = 1, 2, 3, satisfy the bracket relations of
case (A) in Proposition 5.2.

Case (B):
For this case, we choose

σ(e1) =
⎛

⎝
0 0 0

−1 0 0
0 0 0

⎞

⎠ , σ (e2) =
⎛

⎝
0 0 0
0 0 0
0 −1 0

⎞

⎠ , σ (e3) =
⎛

⎝
0 0 0
0 0 0

−1 0 0

⎞

⎠ .
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Case (C): we obtain the brackets in (C) by choosing

σ(e1) = 0, σ (e2) =
⎛

⎝
0 0 0
1/2 0 0
0 0 0

⎞

⎠ , σ (e3) =
⎛

⎝
1/2 0 0
0 −1/2 0
0 0 0

⎞

⎠ .

Case (D): In this case we use the finite prolongation su(2, 1) of the Heisenberg algebra,
as in [8, p313]. Let

J =
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ .

The Lie algebra su(2, 1) is given by 3 × 3 complex matrices A with zero trace and such
that A∗ J + J A = 0, where A∗ is the hermitian transpose of A. Define the Lie algebra
automorphism θ : su(2, 1) → su(2, 1), θ A := J AJ . Define

X =
⎛

⎝
0 i 0
−i 0 −i
0 −i 0

⎞

⎠ Y =
⎛

⎝
0 1 0
1 0 1
0 −1 0

⎞

⎠ Z =
⎛

⎝
2i 0 2i
0 0 0

−2i 0 −2i

⎞

⎠

H =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ U =
⎛

⎝
i 0 0
0 −2i 0
0 0 i

⎞

⎠

θX =
⎛

⎝
0 −i 0
i 0 −i
0 −i 0

⎞

⎠ θY =
⎛

⎝
0 −1 0

−1 0 1
0 −1 0

⎞

⎠ θ Z =
⎛

⎝
2i 0 −2i
0 0 0
2i 0 −2i

⎞

⎠

The grading of su(2, 1) is

g−2(g) = span{Z}
g−1(g) = span{X , Y }
g0(g) = span{H ,U }
g1(g) = span{θX , θY }
g2(g) = span{θ Z},

where g−2(g) ⊕ g−2(g) = g is the Heisenberg Lie algebra: notice that [X , Y ] = Z while
[X , Z ] = [Y , Z ] = 0. So, q = span{H ,U , θX , θY , θ Z}. Define σ : g → q by setting

σ X := − 1

16
θX + i

9

16
θY =

⎛

⎝
0 −i 12 0

−i 58 0 i 58
0 −i 12 0

⎞

⎠ ,

σY := −i
9

16
θX − 1

16
θY =

⎛

⎝
0 − 1

2 0
5
8 0 − 5

8
0 − 1

2 0

⎞

⎠ ,

σ Z := −i
9

4
H + 1

4
U − 5

16
θ Z =

⎛

⎝
−i 38 0 −i 138
0 −i 12 0

−i 238 0 i 78

⎞

⎠ .

One can easily check that f1 = X + σ X , f2 = Y + σY and f3 = Z + σ Z form a basis of a
Lie subalgebra of su(2, 1) satisfying the relations of Case (D).
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Remark 5.4 The map σ above can easily be found using the software Maple and it is not
unique.

5.1.1 Rigid motions of the plane as a modification of the Heisenberg group

We conclude this section discussing more in detail the case of the group of rigid motions
of the plane as a modification of the Heisenberg group. At a group level, we may represent
points in the Heisenberg group H as matrices in SL(3, R) by

H(x1, x2, x3) :=
⎛

⎝
1 x1 x3
0 1 x2
0 0 1

⎞

⎠ ,

for x1, x2, x3 ∈ R.
The Lie algebra of the the group of rigid motions of the plane E(2) corresponds to the

case (A) with α = −1 and β = 0. The corresponding representation in sl(3, R) given in the
previous theorem is the span of the vectors

f1 =
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ , f2 =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , f3 =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ .

At the group level, the points of E(2) inside SL(3, R) are parametrized by

R(y1, y2, y3) :=
⎛

⎝
cos y1 sin y1 y3

− sin y1 cos y1 y2
0 0 1

⎞

⎠

where y1 ∈ R/(2πZ) and y2, y3 ∈ R.
With the procedure described in Remark 4.3, we find the mapping E(2) → H:

R(y1, y2, y3) �→ H(tan y1, y2, y3),

which is defined on the domain (−π/2, π/2) × R
2.

5.2 Modifications of the free nilpotent Lie group F24

We consider the free nilpotent Lie algebra f24 = span{ei : i = 1, . . . , 8} of rank 2 and step
4 and the corresponding simply connected Lie group F2,4. We will prove the following result

Theorem 5.5 There exists a nilpotent Lie group S, not isomorphic to F2,4, that is a modifi-
cation of F2,4 and is globally equivalent to F2,4.

Proof The Lie brackets in f24 are

[e2, e1] = e3, [e3, e1] = e4, [e3, e2] = e5,

[e4, e1] = e6, [e5, e1] = e7, [e4, e2] = e7, [e5, e2] = e8.

It is known that the full Tanakaprolongation of f24 isp = f24⊕Der(g),withDer(g) � gl(2, R)

(see [17]). Therefore, the modifications of f24 are subalgebras of p that are graphs of some
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linear map σ : f24 → gl(2, R). Here we only consider σ that on the basis of f24 is zero except
for σ(e1). Imposing that the graph is a Lie algebra, a direct computation shows that

σ(e1) =
(
a 0
c b

)

,

where a, b, c ∈ R. We obtain a three parameter family s(a, b, c) of Lie algebras with basis
f1, . . . , f8, where f1 = e1 + σ(e1) and fi = ei for i = 2, . . . , 8, and brackets

[ f2, f1] = f3 − b f2, [ f3, f1] = f4 − (a + b) f3, [ f3, f2] = f5,

[ f4, f1] = f6 − c f5 − (2a + b) f4, [ f4, f2] = f7, [ f5, f1] = f7 − (a + 2b) f5,

[ f1, f6] = 2c f7 + (3a + b) f6, [ f1, f7] = c f8 + 2(a + b) f7,

[ f1, f8] = (a + 3b) f8, [ f5, f2] = f8.

In particular, setting a = b = 0 gives a one parameter family of nilpotent Lie algebras
s(c). We now find the distribution-preserving diffeomorphism � from S(c) to F24 when
c = 1, as in Remark 4.3. Every point in S(1) is of the form expP (

∑
xi fi ). Following

[12], expP (
∑

xi fi ) = (EF24(x1σ(e1);∑
xi ei ), expGL(x1σ(e1)) ∈ F24 � GL(2, R), where

EF24(x1e1;
∑

xi ei ) = γ (1) and γ : [0, 1] → F24 is the solution of

{
γ ′(t) = dLγ (t) expGL(t x1σ(e1))(

∑
xi ei )

γ (0) = eF24 .

The image of this point via � is going to be that element p ∈ F24 such that gQ =
expP (

∑
xi fi )Q, i.e.,

�
(
expP

(∑
xi fi

))
= EF24(x1e1;

∑
xi ei ).

To compute this, we first observe that

v := expGL(t x1σ(e1))
(∑

xi ei
)

= (
x1, x

2
1 t + x2, x3, x4, x5 + t x1x4, x6, x7 + 2t x1x6, x8 + t x1x7 + t2x21 x6

)
.

Second, we need to compute dLγ v using the Baker–Campbell–Hausdorff formula:

dLγ v = d

dh

∣
∣
∣
∣
h=0

exp−1(exp(γ ) exp(hv)) = v + 1

2
[γ, v] + 1

12
[γ, [γ, v]].
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The system of differential equations γ̇ = dLγ v that we obtain is

γ̇1 = x1

γ̇2 = t x21 + x2

γ̇3 = −1

2
t x21γ1 − 1

2
x2γ1 + 1

2
x1γ2 + x3

γ̇4 = 1

12
t x21γ

2
1 + 1

12
x2γ

2
1 − 1

12
(γ1γ2 − 6γ3)x1 − 1

2
x3γ1 + x4

γ̇5 = 1

12
x2γ1γ2 − 1

12
x1γ

2
2 + 1

12

(
x21γ1γ2 + 6x21γ3 + 12x1x4

)
t − 1

2
x3γ2

+ 1

2
x2γ3 + x5

γ̇6 = 1

12
x3γ

2
1 − 1

12
(γ1γ3 − 6γ4)x1 − 1

2
x4γ1 + x6

γ̇7 = 1

6
x3γ1γ2 − 1

12
x2γ1γ3 − 1

12

(
x21γ1γ3 + 6x1x4γ1 − 6x21γ4 − 24x1x6

)
t

− 1

12
(γ2γ3 − 6γ5) x1 − 1

2
x5γ1 − 1

2
x4γ2 + 1

2
x2γ4 + x7

γ̇8 = t2x21 x6 + 1

12
x3γ

2
2 − 1

12
x2γ2γ3 − 1

12

(
x21γ2γ3 + 6x1x4γ2 − 6x21γ5 − 12x1x7

)
t

− 1

2
x5γ2 + 1

2
x2γ5 + x8.

Third, we need to integrate this system of ODEs with initial conditions γi (0) = 0 for
every i = 1, . . . , 8. The solution is

γ1(t) = t x1

γ2(t) = 1

2
t2x21 + t x2

γ3(t) = − 1

12
t3x31 + t x3

γ4(t) = t x4

γ5(t) = − 1

240
t5x51 + 1

12
t3x21 x3 + 1

2
t2x1x4 + t x5

γ6(t) = 1

720
t5x51 + t x6

γ7(t) = 1

720
t6x61 + 1

360
t5x41 x2 + t2x1x6 + t x7

γ8(t) = 1

5040
t7x71 + 1

720
t6x51 x2 + 1

720

(
x31 x

2
2 + 3x41 x3

)
t5

− 1

12

(
x1x2x4 − x21 x5 − 4x21 x6

)
t3 + 1

2
t2x1x7 + t x8.

Therefore, the mapping from S(1) to G is � : expP (
∑

xi fi ) �→ γ (1), which is a global,
surjective smooth distribution-preserving diffeomorphism.

Finally, S(1) is not isomorphic to F2,4 because S(1) has nilpotency step 5 instead of 4, as
one can easily see from the expression of the Lie brackets in s(1).
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Remark 5.6 The mapping from S(1) to G described above is in particular bi-Lipschitz on
every compact set, when the groups are endowed with left-invariant sub-Riemannian dis-
tances. Notice, however, that this is not a global quasiconformal mapping.

5.3 Modifications of ultra-rigid stratified groups

A stratified Lie algebra g is called ultra-rigid if the only automorphisms of g preserving the
stratifications are dilations, see [10]. In particular, the full Tanaka prolongation of such g is
p = g�R, as semi-direct product of Lie algebras. In this sectionwe describe all modifications
in g � R and their equivalence relation. Many results do not need the assumption of g being
ultra-rigid, so we assume this hypothesis only when needed.

Let g = ⊕−1
j=−s g j be a stratified Lie algebra. Let D : g → g be the linear map with

Dv = jv for v ∈ g− j . Notice that D is a derivation of g that preserves the layers and that
δet = etD : g → g are the dilations.

The semi-direct product p := g � R is the Lie algebra whose Lie brackets are

[(0, a), (Y , 0)] = (aDY , 0) hence [(X , a), (Y , b)] = ([X , Y ] + aDY − bDX , 0).

Proposition 5.7 Let σ : g → R be a linear map and set s := {(X , σ X) : X ∈ g}. The vector
space s is a Lie subalgebra of g � R if and only if

⊕−s
j=−2 g j ⊂ ker σ .

Proof First, we note that s is a Lie algebra if and only if, for all X , Y ∈ g,

σ([X , Y ]) + (σ X)(σDY ) − (σY )(σDX) = 0. (7)

⇒ Suppose s is a Lie algebra, i.e., (7) holds for all X , Y ∈ g. We prove
⊕−s

j=−2 g j ⊂
ker σ by induction on j . If X , Y ∈ g−1, then DX = X and DY = Y , thus (7) implies
σ([X , Y ]) = 0. Since g−2 = [g−1, g−1], it follows that g−2 ⊂ ker σ . Now, suppose that
g−k ⊂ ker σ for k ≥ 2. If X ∈ g−1 and Y ∈ g−k , then (7) implies that σ([X , Y ]) = 0. Since
g−k−1 = [g−1, g−k], it follows that g−k−1 ⊂ ker σ . We conclude that

⊕−s
j=−2 g j ⊂ ker σ .

⇐ Suppose
⊕−s

j=−2 g j ⊂ ker σ . By the bilinearity of the expression, we need to show
that (7) holds only when X ∈ gi and Y ∈ g j for some i and j . Since σ is non-zero only on the
first layer, the only non-trivial instance of (7) is for X , Y ∈ g−1. In this case, σ([X , Y ]) = 0,
and (σ X)(σDY ) − (σY )(σDX) = (σ X)(σY ) − (σY )(σ X) = 0. Therefore, (7) is satisfied
and s is a Lie algebra.

Lemma 5.8 The Lie algebra automorphisms φ : p → p such that φ({0} × R) = {0} × R

and φ(g−1 × R) = g−1 × R are exactly those of the form φ(X , a) = (φ1X , a) for some Lie
algebra automorphism φ1 : g → g that preserves the layers.

Proof On the one hand, if φ1 : g → g is a Lie algebra automorphism that preserves the
layers, then φ(X , a) = (φ1X , a) is clearly a Lie algebra automorphism φ : p → p with
φ({0} × R) = {0} × R and φ(g−1 × R) = g−1 × R, because φ1D = Dφ1.

On the other hand, if φ : p → p is a Lie algebra automorphism, then φ(g×{0}) = g×{0}
because g×{0} = [p, p]. Suppose also thatφ({0}×R) = {0}×R andφ(g−1×R) = g−1×R.
Then φ(X , a) = φ(X , 0) + φ(0, a) = (φ1(X), 0) + (0, φ2(a)) and φ1(g−1) = g−1. This
implies that φ1(g j ) = g j for all j , as one can prove by induction on j . Notice that, for all
X ∈ g and all a ∈ R,

φ2(a)Dφ1X = [(0, φ2(a)), (φ1X , 0)] = φ([(0, a), (X , 0)]) = φ(aDX , 0) = aφ1DX .

For every X ∈ g−1, DX = X and Dφ1X = φ1X , hence φ2(a)φ1X = aφ1X , i.e., φ2(a) = a.
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Theorem 5.9 Suppose that g is ultra-rigid, i.e., p = g � R is its full Tanaka prolongation.
The set of all non-isomorphic modifications of g is parametrized by g∗−1/R>0. Moreover, all
modifications of g in p are solvable and the only nilpotent one is g itself.

Proof The set of all modifications of g in p can be identified with g∗−1 by Proposition 5.7,
where σ ∈ g∗−1 is identified with σ(

∑
j v j ) = σ(v−1) for

∑
j v j ∈ g and the modification

sσ := {(X , σ X) : X ∈ g} ⊂ p. Since g is rigid, by Theorem 4.6 two modifications σ, τ ∈
g∗−1 are isomorphic if and only if there is a Lie algebra automorphism φ : p → p with
φ({0} × R) = {0} × R and φ(g−1 × R) = g−1 × R such that φ(sσ ) = sτ . Therefore, by
Lemma 5.8, two modifications σ, τ ∈ g∗−1 are isomorphic if and only if there is a Lie algebra
automorphism φ1 : g → g such that, for all X ∈ g,

(φ1X , σ X) = (φ1X , τφ1X),

i.e., σ X = τφ1X for all X ∈ g−1. Now, since g is ultrarigid, φ1 = δλ for some λ > 0.
Therefore, two modifications σ, τ ∈ g∗−1 are isomorphic if and only if there is λ > 0 such
that σ = λτ .

Finally, notice that all modifications of g in p are solvable, because p itself is solvable.
Moreover, the only nilpotent modification is g itself. Indeed, if s �= g, then there is X ∈ g−1

with σ X �= 0, so that, if Y ∈ g−s is nonzero, then [(X , σ X), (Y , 0)] = sσ X(Y , 0), where
s is the step of g. Therefore, we obtain that (Y , 0) ∈ [s, [. . . , [s, s] . . . ]] for any order of
brackets, that is, s is not nilpotent.
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