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Abstract

For a stratified group G, we construct a class of Lie groups endowed with a left-invariant
distribution locally diffeomorphic to the flat distribution of G. Vice versa, we show that all Lie
groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of
G belong to the class we constructed, if the Lie algebra of G has finite Tanaka prolongation.
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1 Introduction

In this article, we consider the following question: given a stratified group G, we wish to
characterise those polarised Lie groups that are equivalent to G. Here a polarisation on a
Lie group is the choice of a left-invariant and bracket-generating subbundle of the tangent
bundle (cfr. [11]), and two polarized Lie groups are equivalent if there is a locally defined
distribution-preserving diffeomorphism between them. Stratified groups carry a canonical
polarisation. Given a stratified group, we will construct a class of polarised Lie groups that
are equivalent to G, which we will call modifications of G. The key tool for our construction
will be Tanaka prolongation theory.

Before diving in the technical details of our main results, we first provide some framework.
The problem under study is relevant in different areas, such as Tanaka prolongation theory, CR
geometry, sub-Riemannian geometry, and control theory. In the setting of Tanaka’s theory, it
is known that the infinitesimal automorphisms of the polarisation associated to a stratified Lie
algebra are encoded by its full Tanaka prolongation (see, e.g.,[13, 15, 18]). If the Lie algebra is
not stratified, however, all we can conclude is that every infinitesimal automorphism induces
an infinitesimal automorphism on its stratified symbol. In this paper, we construct classes of
polarised Lie algebras that are not stratified, but that have the same space of infinitesimal
automorphisms as their stratified symbol.

Our study has potential applications to geometric control theory. Given a nonholonomic
control system, the motion planning problem consists in finding a curve tangent to the polari-
sation that connects two given points in the ambient space. Nilpotent Lie groups are the widest
class of nonholonomic systems for which an exact solution to the motion planning problem
is known, see [6]. Distribution-preserving diffeomorphisms are equivalences of motion plan-
ning problems. Thus, our method detects classes of non-nilpotent nonholonomic systems
that are equivalent to nilpotent ones.

Furthermore, our findings have consequences in metric geometry. On a polarised Lie
group, one may define a left-invariant sub-Riemannian distance. In metric geometry, it is
natural to study the equivalence of metric spaces up to isometries, bi-Lipschitz mappings,
conformal and quasiconformal mappings. For example, if two stratified groups are (locally)
quasiconformal, then their Lie algebras are isomorphic [14]. If two nilpotent Lie groups are
isometric, then they are isomorphic [7, 9]. It is an open question to determine whether two
nilpotent Lie groups that are globally bi-Lipschitz to one another are indeed isomorphic. In
[4], the authors study the Lie groups that can be made isometric to a given nilpotent Lie
group, endowed with a left-invariant distance. (See also [5] for the Riemannian case.) In this
sense, our work follows [4], because distribution-preserving diffeomorphisms are locally
bi-Lipschitz.

In sub-Riemannian geometry, one of the major open problems is to determine whether
the conclusions of Sard Theorem hold for the endpoint map, which is a canonical map
from an infinite dimensional path space to the underlying finite dimensional manifold. The
set of critical values for the endpoint map is also known as abnormal set, being the set
of endpoints of abnormal extremals leaving the base point. In the context of Lie groups,
perhaps the most general positive results have been proved in [11]. Here the authors prove
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that the abnormal set has measure zero in the case of 2-step stratified groups and several
other examples. This property for the abnormal set is preserved by distribution-preserving
diffeomorphisms between sub-Riemannian manifolds. It then comes out from our results
that every modification of a stratified group satisfies the Sard Theorem, if the stratified group
does.

Now we will present our main results in detail. Recall that a Tanaka prolongation of a
stratified Lie algebra g through a Lie subalgebra go of the Lie algebra of derivations of g
that preserve the stratification is the maximal nondegenerate graded Lie algebra that contains
g + go, where nondegenerate means that the adjoint action of any element of positive weight
on g is nontrivial.! When gq is chosen as the whole set of strata preserving derivations, we
obtain the full Tanaka prolongation. When the prolongation algebra is finite dimensional, we
obtain a graded Lie algebra p = g q and we say that g and any Lie group G with Lie algebra
g are rigid. The term of finite type is also common in the literature to denote Lie algebras
with finite Tanaka prolongation. Modifications of g are then defined to be subalgebras s of
p of the same dimension of g that are transversal to q. It turns out that there is a linear map
o : g — q of which the modification is the graph. If g_; is the first layer of g, then the
set {v + o(v) : v € g_1} defines a polarisation on a Lie group whose Lie algebra is the
modification s.

Our first main result draws the connection between modifications of G and Lie groups
that are equivalent to G.

Theorem A Every modification of a stratified Lie group G is equivalent to G. Viceversa, if
G is rigid, then every polarised Lie group that is equivalent to G is one of its modification.

Theorem A is restated and proven in Theorems 4.2 and 4.4. A key tool in the study of
local distribution-preserving diffeomorphisms is the quotient manifold M = P/Q, where P
and Q < P are the Lie groups with Lie algebras p and g respectively. The polarisation of G
induces a polarisation Ay on M and G embeds in M as an open subset, see Proposition 2.9.
Moreover, if S is a modification of G, then an open neighborhood of the identity in S can be
also embedded into M, see Lemma 4.1. The composition of such embeddings induce a local
distribution-preserving diffeomorphism between G and S. If the group G is rigid, i.e., its full
Tanaka prolongation is finite dimensional, then all distribution-preserving diffeomorphisms
between G and S arise in this way, see Theorem 4.4.

The rigid case is particularly favorable because all distribution-preserving diffeomor-
phisms of G are induced by affine maps on P, see (3) at page 9. We can express this rigidity
in terms of local distribution-preserving diffeomorphisms of M. More precisely, we will
prove in Theorem 3.3 the following statement:

Theorem B Suppose G is rigid and let M = P/ Q be the manifold described above, where
the Lie algebra of P is the full tanaka prolongation of g. Let U C M be open and connected
and f : U — f(U) C M a smooth map with df (Ay) C Apy. Suppose that there exists
xo € U such that df (xo) is non-singular. Then there exists a unique distribution-preserving
diffeomorphism g : M — M such that g|ly = f.

We will also prove that, in the hypothesis of Theorem B, the connected component of the
identity in the group of distribution-preserving diffeomorphisms of M is isomorphic to Q,
see Theorem 3.6.

I Recall thata grading of aLie algebra is a vector space decomposition g = €p; .7, g; suchthat[g;, g i1 C8itj
foralli, j € Z. A grading is a stratification if g = @1571 giand[g_y,g;] =g forall j <O.
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It remains open whether the second part of Theorem A holds true without asking that
the full Tanaka prolongation is finite. While we cannot prove the theorem in this generality,
examples suggest that it may be true. More precisely, in Sect. 5.1, we show that all three dimen-
sional sub-Riemannian structures are modifications of the Heisenberg group with respect to
a suitable finite dimensional Tanaka prolongation, even though the full prolongation of the
Heisenberg Lie algebra is infinite dimensional, see Theorem 5.1. This justifies the following
conjecture.

Conjecture Suppose that G is a stratified Lie group and that S is a polarised Lie group that
is equivalent to G. Then there is a finite Tanaka prolongation of Lie(G) in which Lie(S) is
a modification of Lie(G).

In Sect. 5.2 we explicitly compute some modifications of the free nilpotent Lie group
with two generators and step four, F»4. It comes out that one may construct examples of
non-nilpotent Lie groups that are equivalent to F24. We also find a nilpotent, non-stratified,
polarised Lie group that is equivalent to F>4 via a global distribution-preserving diffeomor-
phism, see Theorem 5.5. Finally, in Sect. 5.3, we study all the modifications of an ultra-rigid
stratified group, that is, a stratified group whose only strata-preserving derivation is the
infinitesimal generator of dilations. It turns out that such modifications are all solvable and
the only nilpotent one is the stratified group itself, see Theorem 5.9.

The paper is organized as follows. In Sect.2, we fix the notation and establish the
framework in which we will be working. We consider stratified algebras and their Tanaka
prolongations, we define the corresponding Lie groups and fix a polarisation on them. In
Sect. 3, we study distribution-preserving diffeomorphisms of M as affine maps of P and
prove Theorem B. In Sect. 4, we define the modifications of a stratified algebra and those of a
stratified group, proving Theorem A. Finally, we apply our modification technic to a number
of examples in Sect.5.

2 Notation and preliminaries
2.1 Polarizations and Tanaka prolongations

Given a connected, smooth manifold M, a polarisation of M is the choice of a subbundle A j;
of the tangent bundle 7'M that is bracket generating, i.e., with the property that the sections
of Ay bracket generate all the sections of 7M. Given two polarised manifolds (M, A ys) and
(N, An), a distribution-preserving diffeomorphism between M and N is a diffeomorphism
f : M — N such that f,(Ay) = Ayn. We denote by I'(T M) the space of vector fields on
M. A vector field V € I'(T M) on a polarised manifold (M, Ayy) is a contact vector field
if its flow is made of distribution-preserving diffeomorphisms. For a Lie group S, we shall
always consider left-invariant polarisations Ag. The pair (S, Ag) is called a polarised group.
The identity element will be denoted by eg, or simply e if no confusion arises. We denote
by G a stratified group, that is, a connected and simply connected Lie group whose Lie
algebra decomposes as g = @i;l_x gi,with[g_1,g;] =g;j— forevery —s +1 < j < —L
On a stratified group we will always consider the left-invariant polarisation Ag for which
(AG)eg = 9—1. In a stratified group G we consider the strata preserving derivations

Der(g) := {u € End(g) : u(g-1) C g-1,
and u[X, Y] = [u(X), Y]+ [X,u(Y)]VX, Y € g}.
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Given a subalgebra g of Der(g), we define the Tanaka prolongation of g through go as
the (possibly infinite) maximal nondegenerate graded Lie algebra Prol(g, go) = D~ _; 0k
which contains g @ go. When go = Der(g), we call Prol(g, go) the full Tanaka prolongation
of g. It is not difficult to see that the latter contains all prolongations. We say that g, or G, is
rigid if the full Tanaka prolongation has finite dimension. When it is clear from the context
and the prolongation under consideration is finite dimensional, we shall denote Prol(g, go)
by p, the nonnegative part @), gk by g, and the positive part P, gk by p+. See [13, 15,
18] for further details on Tanaka prolongation.

2.2 The groups P and Q and their quotient M

In the following, we establish a number of properties of the Lie groups that correspond to
the Lie algebras introduced above. Let P be the connected and simply connected Lie group
whose Lie algebra is a finite dimensional Tanaka prolongation p of a stratified Lie algebra g.
Let Q be the connected subgroup of P whose Lie algebra is .

The set {8;, : A > 0} of mappings on p defined by 8, (X) = A/ X for X € g; is a one param-
eter family of automorphisms of p. By abuse of notation, we write §, for the corresponding
automorphisms of the group P. Such maps exist because P is simply connected.

Lemma 2.1 Denote by expp : p — P the exponential map of P. Then exp p 1S injective on
g and on Py~ G-

Proof Let v, w € g such that expp(v) = expp(w). Since v, w € g, then limy_, o 83V =
lim) 0 8w = 0. Let L > 1 be such that both §, (v) and 6, (w) belong to a neighborhood U
of 0 in p on which the exponential map expp is injective. Then expp (§,v) = . (expp (v)) =
8 (expp(w)) = expp(§,w). By the injectivity of expp on U, we have §,v = §,w. Since §;,
is a linear isomorphism, we conclude that v = w. A similar argument proves that expp is
injective on @~ | gk- O

By Lemma 2.1, the canonical immersion G < P induced by g < p is injective. We are
going to show that G is closed in P. We prove two lemmas first.

Lemma 2.2 The intersection of G with Q is trivial.

Proof Since 8; (g) = g and 8, (q) = ¢, then 8, (G) = G and 8, (Q) = Q, forall A > 0. Since
g is nilpotent, G = expp(g).

Let x € G N Q; then x = expp(v) for some v € g and limy_ oo 8r(x) =
expp (limy o 6, v) = ep. It follows that the curve y : (0, 1] — P, y(t) = §,-1x, extends
to a continuous path [0, 1] — P connecting ¥ (0) = ep to (1) = x and laying in G. Since
8).(x) € Q forall A > 0, then y lies in 0 as well.

Since g @ q = p, there are open neighborhoods U C g and V C q of O such that
Q = expp(U) expp (V) is an open neighborhood of ep in P and the following holds: The
connected component of & N G containing ep is expp(U), the connected component of
QNo containing ep is expp(V), and expp(U) Nexpp(V) = {ep}.

Since y joins x to ep continuously, then y ([0, 1]) N 2 lies in both the connected compo-
nents of QNG and 2N QO containing ep, i.e., y ([0, 1)) N2 C expp(U) Nexpp(V) = {ep}.
This implies that x = ep. i

Lemma 2.3 (Lemma on Lie groups) Let G be a Lie subgroup of a Lie group P and let
t: G < P the inclusion. The image (G) is not closed in P if and only if there is a sequence

@ Springer



56 Page6of22 Geometriae Dedicata (2024) 218:56

{gnlnen C G such that lim,_,~ g, = 00 (i.e., g, eventually escapes every compact set of
G) and lim,_, o t(gn) = ep.

Proof Recall that G is closed in P if and only if ¢ is an embedding. So, if such a sequence
exists then ¢(G) is not closed in P. We need to prove the converse implication.

Let p be any left-invariant Riemannian distance on G. Then p is complete and in particular
closed balls are compact. Let {g, },en C G be a sequence such that lim, 0 t(g,) = p € P.
Ifthereis R > Osuchthat p(eg, g,) < R forall n, then there is a subsequence g,, converging
to some go, € G. Since the immersion ¢ : G < P is continuous, we obtain t(g~,) = p,
hence p € ((G).

So,if t(G) is not closed, then there is a sequence {g, },en C G such thatlim,,_, » t(g,) =
p € Pbutg, — ooinG. Let {gy, }; be a subsequence such that p (g, &) > kfork e N
and define h; = g,,_klgnk“. Then hy — oo in G, because p(eg, hy) = p(eg, gn_klg”m) =
£ (8ng» 8niyy) > k for all k. However, t(hg) = 1(g,,)t(gny,) = p~'pin Pask — co. O

Lemma 2.4 The immersed group G is closed in P.

Proof We prove that, if {v,},en C g is a sequence so that lim,_, . expp(v,) = ep, then
lim, o0 v, = 0. By Lemma 2.3 and expp(g) = G, this claim implies that G is closed in P.

Let {v,}nen C g be a sequence with lim, . expp(v,) = ep.Let U C gand W C q be
open neighborhoods of 0 such that the map U x W — P, (u, w) — expp(u) expp(w) is
a diffeomorphism onto its image. Then, for n large enough, there are u,, € U and w, € W
so that expp (u,) expp(w,) = expp(v,). Therefore, expP(u,,)‘1 expp(v,) = expp(wy) €
oNG. By Lemma 2.2, we have expp (u,) = expp(v,). By Lemma 2.1, we have u, = v,.
Since expp (u,) — ep, then v, = u, — 0. ]

Corollary 2.5 The immersed group Q is closed in P.
Proof This is a consequence of Lemma 2.4 and part (iii) of Lemma 2.15 in [4] ]

Since Q is closed, we may consider the homogeneous manifold M := P/ Q with quotient
projection w : P — M. The action of P may have a non-trivial kernel

K::{pei_):p.XZXVXEM}: ﬂPQIfL
peP

Lemma 2.6 The kernel K of the action of P on M is discrete and contained in Q. Moreover;
if p€ K, then 8, p = p forall » > 0.

Proof Clearly K is a normal and closed subgroup of P and it is contained in Q. Let v €
Lie(K), the Lie algebra of K. Then for some positive integer £, we may write v = vg+- - -+vy,
with v; € g; foreveryi =0, ..., £. Since Lie(K) is an ideal in p contained in g, it follows
in particular that for alli =0, ..., ¢,

[[...[[vi, y11, ¥21, .. 1, yew1] € gi—e—1 N q = {0},

for every yi, ..., ye+1 € g—1. By definition of Tanaka prolongation, this implies that v = 0.
Therefore, the Lie algebra of K is trivial and so K is discrete.

Since K = ﬂxei’ xOx~1, it is clear that 8, (K) C K for all » > 0. However, since
A > 8, p is a continuous curve passing through p, we must have §, p = pwhen p € K. O
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From Lemma 2.6 it follows that P := P/K and Q := Q/K are Lie groups, that Q is
closed in P and M = P/Q. Moreover, the maps §, are automorphisms of P as well, for all
A > 0. Since G N K = {e}, the group G is embedded in P with G N Q = {e}.

Remark 2.7 1f we are given G and Q inside P, for instance as matrix groups, we may want
to visualise the action of P on M as a local action of P on G. In other words, if p € P,
then there may be open subsets U, V;, C G and a distribution-preserving diffeomorphism
fp 1 Up — 'V, that corresponds to the action of p on M, i.e., f,(g1) is the only g2 € G,
if it exists, such that {g; Q) N G = {g>}. In general, such construction is not possible for all
p € P,butif pis near enough to ep, then U, V), and f), do exist. The fact that such f), isa
distribution-preserving diffeomorphism will be proved in Proposition 2.8.

2.3 Polarizationson G,Pand M

We denote by 7 : P — M the quotient map, with M = P/Q.If p € Pandm € M, we
use the notation p.m or p(m) for the action of p on m. In such contexts, we will identify
elements p € P with smooth diffeomorphisms p : M — M.

Recall that on G we have the polarisation Ag with (Ag). = g—1. We define on P the
polarisation A p such that (Ap)., = g—1 @ q. Notice that A = Ap N TG. Define Ay :=
dm(Ap) which is a subset of T M. We shall prove that A, is a P-invariant polarisation on
M.

Proposition 2.8 The set Ayy C TM is a P-invariant, bracket generating subbundle of M.
In particular, (M, Ayy) is a polarised manifold and the diffeomorphisms p : M — M for
p € P are distribution-preserving diffeomorphisms.

Proof Notice that Ay is a P-invariant subset of 7 M. In order to show that A, is a subbundle,
we need to prove that, if p1, po € P are such that 7 (p1) = 7 (p2), then

drn((Ap)p,) = dn((Ap)p,). ey

Since pom =m o Ly forall p € P, then (1) is equivalent to d(p;1 omoL,)[(Ap).] =

dn[(Ap)e].-Let p = p1 and choose ¢ € Q sothat p» = p1q. Then Pz_l omolLpy =moL,-1
and thus (1) is also equivalent to

Ady[(Ap)] mod q=(Ap), mod g. 2)

Since Ad is a homomorphism and every g € Q is the finite product of exponential elements,
it’s enough that we show (2) for ¢ = expy, y € gq. Denote by yg the projection of y on go.
Let w € g—1 @ q and denote by w_ its projection on g_;. Then

Ad;w mod q= 4y mod q
= ¢00y_;  mod q.
Since ¢2400) : g_; — g_; is a bijection, we conclude that Ady[(Ap)e] mod g = g
mod q. This proves (2) and therefore (1).
Finally, we need to show that A, is bracket generating. Recall that, for an analytic

subbundle of an analytic manifold, being bracket generating is equivalent to being connected
by curves tangent to the subbundle, and that quotients of Lie groups and invariant subbundles

are all analytic. Thus, let mg = w(po) and m| = 7w (p1) in M. Then there is a Cl-curve
y :[0,1] — P such that y(0) = pg, y(1) = p; and y'(¢) € Ap forall ¢ € [0, 1]. Hence,
the curve o y : [0, 1] — M goes from m¢ to m and is clearly tangent to A ;. ]
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Proposition 2.9 The restriction 7| : (G, Ag) — (M, Ay) is a distribution-preserving
diffeomorphism onto its image, which is an open subset of M.

Proof First, we show that m|g is injective. Let a,b € G such that w(a) = 7(b). Then
n(e)=n(atla)y=a'n(@) =a'nb) =n(a'b),ie,a b e Q.Sincea='b € Gand
GNQ ={e},thena = b.

Second, we show that 7| is an immersion. Since ker(dn|g) = dLg(q) and dLg(q) N
TeG = DLg(q) N DLg(g) = {0}, thend(r|g)lg = (dnlg)|rgc is injective, for all g € G.

Third, we claimdr |G (Ag) = AyNT (7 (G)).Since Ag C Ap andsince Ay = dn(Ap)
by definition, it follows that dm|g(Ag) C Ay N T(w(G)). Moreover, since Ay is P-
invariant by Proposition 2.8, for all x € M, dim(Apy), = dim(Apy)ze) = dim((g—1 &
q)/q) = dim(g_;). Therefore, we obtain the claim by comparing the dimensions.

Finally, the fact that w(G) is open in M and the fact that 7|g is an embedding are
both consequences of (77|g) being an immersion and the fact that M and G have the same
dimension. |

Remark 2.10 A first consequence of Proposition 2.9 is that any local distribution-preserving
diffeomorphism on M is in fact a local distribution-preserving diffeomorphism on G. Indeed,
by the action of P on M and via the map 7|, any local distribution-preserving diffeomor-
phism of M defines a local distribution-preserving diffeomorphism of G. Similarly, contact
vector fields on M define contact vector fields on G.

In case G is a rigid stratified group and p is the full Tanaka prolongation of g, these
relations are stronger, see Sect. 3.

3 Distribution-preserving diffeomorphisms of M when G is rigid

This section contains Theorem 3.3 for distribution-preserving diffeomorphisms in the rigid
case.

Relative to a vector X € T,P, we denote by X the left-invariant vector field X (p) =
dLyl.[X], and by X T the right-invariant vector field X¥(p) = dR ple[X]. Similarly, we
denote by p the Lie algebra of left-invariant vector fields and by p' the Lie algebra of right-
invariant vector fields on P. Moreover, as in the previous sections, the manifold M is the
quotient P/Q and we denote by o the point 7w (e) € M.

Lemma3.1 Let £ : p — p be a Lie algebra automorphism with £(q) = q and £(g—1 ® q) =
g—1Dq. Then there is a unique distribution-preserving Lie group automorphism L : P — P
with L, = £ and a unique distribution-preserving diffeomorphism L™ : M — M with
L"om =molL.

Proof 1If £ : p — pis a Lie algebra automorphism with £(q) = g, then the induced Lie group
automorphism L : P — P has the property that L(K) = K, where K is the kernel of the
action of P on M. It follows that there is a Lie group automorphism L : P — P such that
L,=1¢.

If L: P — P isaLie group automorphism with L(Q) = Q, then it is well known that
there is a unique diffeomorphism L : M — M such that L o7 = 7 o L.

Now, suppose that £(g_1 & q) = g—1 @ g, i.e,, Ly(Ap)e = (Ap).. Since Ap is left-
invariant, then L is a distribution-preserving diffeomorphism of (P, A p). Finally, we prove
that L™ is a distribution-preserving diffeomorphism. Let X € Ap and x € P. Then

AL |z oldm | [X 1] = d(L™ o 70) |, [Xy] = d(m o L)< [Xy] € Aplr7(x)-
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O

Let Aut(p, g) be the group of Lie algebra automorphisms of p that induce distribution-
preserving diffeomorphism on M. By Lemma 3.1, we have

Aut(p, g) ={¢p € Aut(P) : d(q) =4, ¢(g-1 D q) =g-1 D q).

This group plays a crucial role in the classification of modifications of a stratified Lie algebra,
as we shall show in Theorem 4.6.
For the following claim, see [15, Sect. 6] and [18].

Theorem 3.2 (Tanaka) If g is rigid and p is the full Tanaka prolongation, then w,pt C T'(T M)
is the set of all germs of contact vector fields on M. More precisely, on the one hand w.p" are
contact vector fields of (M, Ayr); On the other hand, if U C M is open and connected, and
V € I(TU) is a contact vector field, then there is a unique X € p such that V = m, X '|y.

Denote by Cont (U) the space of contact vector fields on an open set U C M. Notice that
Cont(U) is a Lie algebra. Theorem 3.2 can be restated as: if U C M is open and connected,
then m,|U : X* +— m,.X |y is a Lie algebra isomorphism between pT and Cont(U). With
Theorem 3.2, we can prove the following result:

Theorem 3.3 Suppose g is rigid and let p be its full Tanaka prolongation. Let U C M be
open and path-connected and f : U — f(U) C M be a smooth map with df (Ay) C Ay
and suppose that there exists xo € U such that df (xo) is non-singular. Then there exists a
unique a Lie group automorphism LY © P — P such that (L), € aut(p, g) and p/ € P
such that, for every p € P with w(p) € U, we have

f(p) =n(p’ LY (p)). )

In particular, there exists a unique distribution-preserving diffeomorphism g : M — M such
that gly = f.

The proof of Theorem 3.3 requires the following preliminary lemma.

Lemma 3.4 Suppose g is rigid and let p be its full Tanaka prolongation. Let U C M be open
and path-connected and f : U — f(U) C M be a smooth diffeomorphism with df (Apy) C
Ay Then there exist a unique py € P and a Lie group automorphism LT : P — P with
(LN, € Aut(p, g) such that, for every x € P with w(x) € U, we have

fr@) =nm(prL? (x)). 4

In particular, there exists a unique distribution-preserving diffeomorphism g : M — M such
that gly = f.

Proof By Theorem 3.2, the map ¢/ = ”*|;(1U) o fyomsly : p" — pl is a composition of
Lie algebra isomorphisms

p’ — Cont(U) - Cont(f(U)) — p'.

Let L/ : P — P be the corresponding Lie group automorphism, whose existence is assured

by Lemma 3.1.
It is clear that, if fi, f» are two such distribution-preserving diffeomorphisms then
L7t = Lf2 o L/ whenever the composition is well defined. Moreover, notice that if

p € P, then seen as a diffeomorphism p : M — M the argument above shows that £ = Id,
and so (4) holds with L? =Id and p, = p.
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Back to the general case, let pg, p1 € P satisfy w(po) € U and w(p1) = f (7 (po)). Then
h(m) = pfl. f(po.m) defines a distribution-preserving diffeomorphism & : py v >
p1.f(U). By the previous paragraph, we also have L" = L/. Since h(w(ep)) = m(ep),
integrating the contact vector fields, we get h(w(x)) = (L"(x)) whenever (x) € U. We
conclude that (4) holds with p/ := piL( Po ! ).

Viceversa, if L/ and pf satisfy (4), then the differential £ ; of L  ate p is a Lie algebra
automorphism of p satisfying ¢/ = n*l;(lU) o fy oy |y. Therefore, L/ is unique. Moreover,
since f(m(x)) = n(prf(x)) = pf.n(Lf(x)), Py is uniquely determined.

Finally, the fact that x > p fo (x) induces a global diffeomorphism g : M — M, which
extends f, is a consequence of Lemma 3.1. |

Proof of Theorem 3.3 Fix x¢ € U and a neighborhood U’ C U of xq such that f is a diffeo-
morphism U’ — f(U’). By Lemma 3.4, there is a distribution-preserving diffeomorphism
g: M — Mwithg|y = fly. Let W C U be the largest open set where f and g are equal.
If x € 9W N U then continuity of the differential implies that df (x) = dg(x) and it follows
that df (x) is nonsingular. Applying Lemma 3.4 again, there is a neighborhood U” of x and
a distribution-preserving diffeomorphism g” : M — M such that g’ |y» = f|y». Notice
that U” N W is a nonempty open set and that the restrictions of g” and g are distribution-
preserving diffeomorphisms on U” N W and g”|y7nw = gu7nw. Since Lemma 3.4 implies
the uniqueness of smooth distribution-preserving extensions, we get g’ = g. In particular,
we have that x € U” C W, in contradiction with x € 9W.

Therefore, we conclude that 9W N U = @ and, since U is connected, W = U. O

Remark 3.5 Tanaka prolongation is usually stated in the C*° category. However, in Theo-
rem 3.2, and consequently in Theorem 3.3, one can assume f to be only smooth of class C2.
The upgrade of the regularity works like in [13].

Finally, we prove that the group of Aut(p, g) is the adjoint representation of Q.

Theorem 3.6 Suppose that g is rigid and that p is the full Tanaka prolongation. The Lie
algebra of Aut(p, g) is {adx : X € q}. In particular, the connected component of the identity
in Aut(p, g) is {Ady : x € Q}, which is isomorphic to Q via the adjoint map x — Ady.

Proof We need to show that, if D : p — pis aderivation such that D(q) C gand D(Ap|.) C
Ap|e, then there is X € q such that D = ady.

The one-parameter group of Lie algebra automorphisms ¢, := ¢'” are such that £;(q) = q
and ¢;(Ap)e = (Ap).. By Lemma 3.1, they induce a one-parameter group of Lie group
automorphism L, on P and a one-parameter group of distribution-preserving diffeomorphism
LT :M— M.

Since LT is a one-parameter group of distribution-preserving diffeomorphisms on M
and by Theorem 3.2, there is V € m,p" such that L7 is its flow. Let X € p be such that
7+(X™) = V. Since L7 (0) = o and thus V (0) = 0, we have X € q.

Notice that LT (m) = exp(tX).m for allm € M. Therefore, if p € P and m = (p), then

(L (p)) = L] (m(p)) = exp(tX).7(p)
= m(exp(tX)p) = w(exp(t X)pexp(—1X)) = 7w(Cexp(rx)P)>

D

where C,p = apa™' is the conjugation by @ € P. Since by Lemma 3.4 the lift of a

distribution-preserving diffeomorphism from M to P is unique, we conclude that Cexp(rx) =
L[ .
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Finally, for all # € R we have
edx — Adexp(tX) = dcexp(tX)|e =dL|, = e'?

and thus D = ady.

For the last part of the statement, we need to show that x +— Ady is injective on Q. So,
suppose that x € Q is such that Ad, is the identity map on P. Since Q0 = exp(q), there
is v € q such that x = exp(v) and thus Ad, = ¢*d. The vector v can be decomposed as
v =) ;5 vj withv; € g; and vx # 0, where k > 1. If we denote by 7, the projection
P — gk—1 given by the grading of p, then for every w € g_; we have

-1 (e (w)) = [v, w)

Since eadv(w) = w € g1, then [v, w] = 0. We obtain that ad,|g_, = 0 and thus, by
definition of Tanaka prolongation, v = 0. We conclude that x = e and thus Ad is injective.
|

4 Modifications of stratified groups

A polarised Lie algebra is a pair (s,5_1) where s is a Lie algebra and s_; is a bracket-
generating subspace. We say that two polarised Lie algebras (s,s_1) and (s',s" ) are
isomorphic if there is a Lie algebra isomorphism ¢ : s — s’ such that ¢ (s_;) = s"_,. Given
a stratified Lie algebra g and a finite dimensional Tanaka prolongation p = Prol(g, go), a
modification of g in p is a polarized algebra (s, s_1) where s C p is a subalgebra such that
p=s®qands_; = (g—1 D q) N s. In other words, a modification of g in p is a subalgebra
5 C p of the form

s:={X+0o(X): X €g},
for some o : g — ¢ linear, endowed with the polarization
s ={X+0X): Xeg_1}.

Notice that s_; bracket generates s. Indeed, on the one hand, s has the same dimension as g.
On the other hand, one can easily check that, for iterated brackets of length k > 0, we have

[s_1,...[5-1,5-1]...] mod @ gi | =1lg-1,...[g-1,9-1]...]mod @ gj

j=—k j=—k

If S is the connected Lie subgroup of P with 7, S = s, we call the pair (S, Ag) modification
of G in P, where (Ag), = 5_1.If (¢, 5L1) is a polarized Lie algebra that is isomorphic to a
modification of g in p, then we just say that s is a modification of g. Similarly, a modification
of G is any polarized group (S, Ag) whose Lie algebra is a modification of g.

Lemma 4.1 Let S be a modification of G in P. The restrictionw|g : S — M is a distribution-
preserving diffeomorphism when restricted from a neighbourhood of es to one of 7 (es).

Proof We denote by o the base point 7 (eg) in M. Observe that d(|§)eg : TesS =5 — T,M

is the restriction to s of dn,, : p — T, M. Since the kernel of dr,, is g, and since qNs = {0},
d(m|s)eg is injective. Moreover, dims = dimg = dim M, so that d(|s), is a linear
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isomorphism. In particular, | is a diffeomorphism between two open neighbourhoods of
es and o, respectively. Finally, on the one hand

d(r|s)(As) =dn(ApNTS) S Aum,

while on the other hand dim(Ag); = dim(g_1) = dim(Ap)z() for all s € S. So, at all
points s where d (1 |s)s is injective we have d (1 ]s)s (As)s = (Am)x(s)- ]

By Lemma 4.1, both maps
v§ =nly'onlg: U = Us  ¥g =mnlg' onls: Us = Us

are distribution-preserving diffeomorphisms between a neighborhood Ug of e in G and a
neighborhood Us of eg in S. One can also easily prove that the differential d 1//? leg 09— 5
isthe map X — X + o(X).

Using the maps l/fSG and 1//CS;, the following theorem is a direct consequence of Lemma 4.1.

Theorem 4.2 Modifications of a stratified Lie group G are equivalent to G.

Remark 4.3 If we are given G and S in P (for instance as matrix groups), then for any s € S
the image wg (s) is the only element g of G, if it exists, such that (sQ) N G = {g}. Such an
element is unique because 7 : G — P/(Q is injective.

The following theorem is a converse of Theorem 4.2 in the rigid case.

Theorem 4.4 Suppose that G is a rigid stratified group and that (S, As) is a polarized Lie
group that is equivalent to G. Then (S, Ag) is a modification of G.

Proof Let p be the full Tanaka prolongation of g. Let ¥ : Us — Ug be a distribution-
preserving diffeomorphism from an open subset Us C S to Ug C G. Up to composing ¥
with left translations on S and on G, we may assume ¥ (es) = eg.

Lets™ c T'(T'S) be the Lie algebra of right-invariant vector fields on S. Since s’ is made
of contact vector fields on S and since the Tanaka prolongation of g coincides canonically
with the Lie algebra of germs of contact vector fields on G, ¥ : I'(TUs) — I'(TUg) gives
an injective Lie algebra morphism ¥, : 7 < p.

Notice that if X € s is such that ¥, X (eg) = 0, then X = 0. Therefore, ¥, (s7) N q = {0}.
Since S and G have the same dimension, we obtain that

Yu(s) = (X +0X: X € g}

for some linear map o : g — q.
Finally, since dy/ ((As)eg) = (AG)es, We obtain that

VufX €5 X(e) € (As)es) ={X +0X: X €g_i).
We conclude that (W, (s7), dyr((As)eg)) is a modification of g in p. O

Remark 4.5 In the case G is not rigid, i.e., the full Tanaka prolongation of g is infinite
dimensional, then the argument in the proof of Theorem 4.4 does not work. However, the
example of the Heisenberg group, which is not rigid, shows that it may still be possible to
obtain as modifications all Lie groups that are equivalent to G. See Sect.5.1.

In the rigid case, isomorphisms of modifications are all elements of Aut(p, g):
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Theorem 4.6 Suppose g is rigid. If 5, s’ are two modifications of g in p, and if there is an
isomorphism ¢ : s — § such that ¢(s N (g—1 & q)) = 5" N (g1 D q), then there is a unique
£ € Aut(p, g) such that ¢ = £|s.

Proof. Let S, S’ < P be the subgroups of P whose Lie algebra are s and s’ respectively,
endowed with the polarizations induced by P,e.g., As = ApNTS. The map ¢ defines alocal
distribution-preserving diffeomorphism ® : Q — ®(€2), 2 C S open with e € Q. We may
assume that 7|q : @ - 7(R) C M and |pq : P(R) — 7 (PR) C M are distribution-
preserving diffeomorphisms, see Lemma 4.1. Define U := 7(Q) and f ;=m0 P o 7'(|51 :
U — fU) = n(PRQ). The map f is then a distribution-preserving diffeomorphism. By
Theorem 3.3, there is a Lie group automorphism L : P — P such that f (7w (p)) = 7 (L(p))
for all p € w~1(U). Now, we claim that the map L. : p — p restricted to s is equal to ¢.
Indeed, if X € s, then

LoX] = LoX"|, = (ruly) ™ 0w 0 Lico (el 1) ™ o mul X1,
= Gl o fromdX '], = (raly) T o (o Dol o mlXT|

= @,[X[s]], = o1X]. =

5 Examples

In this section we consider a few applications of our main results. First, we observe that every
three-dimensional polarized Lie group is equivalent either to R3 or to the Heisenberg group.
Although this is of course a consequence of the more general Darboux Theorem, we believe it
is a good example for presenting our techniques. Second, we study some modifications of the
free nilpotent Lie algebra f24. In this case we are able to find a nilpotent modification (N, Ay)
of the stratified group F4 corresponding to f»4 that, although not isomorphic, admits a global
distribution-preserving diffeomorphism to F4. In particular, if we endow N and Fy4 with
left-invariant sub-Riemannian distances, our example shows two nilpotent Lie groups that
are bi-Lipschitz on every compact set but not isomorphic.

5.1 Modifications of the Heisenberg group

We study the consequences of the results of the previous section in the case where g is the
three-dimensional Heisenberg algebra. It is well known that the full Tanaka prolongation of
the Heisenberg Lie algebra g is infinite. However, there is a number a different choices of
subalgebras go C Der(g) that generate finite dimensional prolongations. We shall show that
these finite prolongations are enough to recover all polarized Lie groups that are equivalent
to the Heisenberg group, i.e., all three dimensional Lie groups with a non-trivial polarization:

Theorem 5.1 Let (s, s—1) be a three dimensional polarised Lie algebra such that dim(s_) =
2. Then there is a finite-dimensional prolongation p of the Heisenberg Lie algebra by so that
(s, 5_1) is isomorphic to a modification in p.

Our study is based on a classification of three-dimensional Lie algebras due to several
authors. We summarise the results we need in the following theorem.

Proposition 5.2 Let (s,s_1) be a three-dimensional polarised Lie algebra such that
dim(s_1) = 2. Then there is a basis (f1, f2, f3) of s with s_1 = span{f1, f2} such that
exactly one of the following cases occurs:
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(A) Lf1, 21 = f3. U Ll =afa + Bfsand [ f2, f3]1 =0, for some o € R and B € {0, 1}.

In this case s is solvable and the non-isomorphic cases are exactly the following four:

(A1) Lf1, 21= f3 [f1, 51 =0and [ f2, f3]1 = 0;

(A.2) [f1, 21= f3, Lf1, 31 = faand [ f2, f31 = 0;

(A.3) Lf1, f21= f3, Uf1. sl = —faand [ f2, 3] =0;
(A4) [f1, 21 = f3 [f1, sl =afo+ frand [ f2, f3]1 =0.

(B) Lf1, 1= F Lf1, 1= =5 Lf. f5] = fi. In this case 5 = su(2) is simple.
(C) Uf1, fal = f3, L1, f31 = = f1, Lf2, f3] = fa. In this case s = s1(2, R) is simple.
(D) Lf1, f21= f3, [f1, f3]1 = fo, [f2, f3] = — f1. In this case s = s1(2, R) is simple.

Part of the proof of Proposition 5.2 is based on the following lemma, see [2]. Proposition 5.2
is also a consequence of Winternitz classification [16].

Lemma 5.3 (Baudoin—Cecil) Let S be a three-dimensional solvable Lie group endowed with
a left-invariant sub-Riemannian structure (Ag, g). There exist vectors ey, ez, e3 linearly
independent in s, « € R and B > 0 such that ey, e, is an orthonormal basis of (As),. and

le1, ea]l = e3, [e1,e3] =aer + Be3, [e2,e3]1=0. 5)

Proof of Proposition 5.2 1f s is a three dimensional Lie algebra, then it is either solvable or
simple. Indeed, the claim follows from the Levi decomposition and the fact that there are
no simple Lie groups of dimension 1 or 2. If s is simple, then the (s, s_;) falls into one
the cases (B), (C) or (D), see [1]. Notice that the cases (C) and (D) are not isomorphic as
polarised Lie algebras because ad g, is a reflexion of s_; in case (C), while in case (D) itis a
rotation.

If s is solvable, then we apply Lemma 5.3 and obtain case (A). However, since the
classification in Lemma 5.3 is up to isometry, we have to further discriminate to obtain non-
isomorphic subcases. So, if f1, f2, f3 is a basis of s with s_; = span{ f1, 2}, [ f1, f2] = f3
and [ f2, f3] = 0, then we must have

1 2
Si =ae; +ajez
fr =adle
f3 =ajajes,
for some real coefficients. The third bracket relation is

Lf1, 51 =a@)? f> + Bai f3.

Since « € R and g > 0, in each case we can choose aij in the following way:

a=B=0 al=1,a2=0,d3=1: [f1, 31=0
1 [ 2 a
B>0 aeR a1=E,a1=0,a2=1: [fl,f3]=?f2+f3
1 1 2 2
B=0,a>0 a1=ﬁ,al=o,a2=1: Lf1, f31= 12
1 1 2 2
=0 a<0 alz—m,a1=0,a2=1: Lf1, sl=— 12
Now, we want to show that cases (A.1), (A.2), (A.3) and (A.4) are not isomorphic to
each other. Notice that £ := span{ f3} = [s_1,5_1] and 5@ .= [s, 5] are invariant under

isomorphisms of polarised Lie algebras.

@ Springer



Geometriae Dedicata (2024) 218:56 Page 150f22 56

First, case (A.1) is not isomorphic to the others because in case (A.1) we have 5@ =
span{ f3} while in all other three cases we have §@ = span{ f>, f3}.

Second, case (A.4) is not isomorphic to the others because in case (A.4) wehave [¢,s_1] ¢
s_1 while in all other cases we have [£,5_1] C 5_1.

Third, for different choices of « € R in case (A.4) we get non-isomorphic polarised Lie
algebras: To prove this, we shall show that the parameter « is independent of the choice
of the basis. So, suppose that g1, g2, g3 € s form another basis with s_; = span{gi, g2},
(g1, &2] = g3, [g2, g3]1 = 0 and [g1, g3] = &’g2 + g3. Then one easily shows that g; =
xfi + yf2, g2 = nfr and g3 = Af3, for some x, y, A, u € R with =% = 1. Moreover,
[g1. 3] = @™ g2 + xg3, which implies x = 1 and o = o'.

Finally, cases (A.2) and (A.3) are not isomorphic to each other, because in case (A.2) it
holds ad ¢, |§(2) = Id|,@, while while in case (A.3) it holds ad ¢, |§(2) = —-Id|;». O

Proof of Theorem 5.1 Let us fix the notation for the Heisenberg Lie algebra. Fix a basis
e1, ez, e3 so that [er, ea] = e3, and choose g_; = span{ej, ez}. The space Der(g) of the
strata preserving derivations of g may be identified with gl(2, R).

First, we consider

go := {D € Der(g) : D(e;) € Req and D(ez) C Ren}.

In this case, Prol(g, go) = sl(3, R) = g & q (see, e.g., [3]), where g is identified with the Lie
algebra generated by

010 000 001
er=1000|, ea={001], es=[000]. (©6)
000 000 000

and q is the set of matrices in 5[(3, R) of the form

*00
* %0
* % %

The modifications of g in s[(3, R) are the subalgebras of s[(3, R) of the form {X + o (X) :
X € g}, for some linear map o : g — . We show that all three dimensional Lie algebras
with a bracket generating plane are graphs of such a o:

Case (A): If s is solvable, then define o by the assignments:

o o0
glen=|a -5 0 |. o) =0 =0.
00 -4

It is easy to check that vectors f; :=¢; + o (e;), i = 1, 2, 3, satisfy the bracket relations of
case (A) in Proposition 5.2.

Case (B):

For this case, we choose

000 000 000
oge))=|—-100}, o()={0 00}, og3)=| 0 00
000 0-10 —-100
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Case (C): we obtain the brackets in (C) by choosing

000 1/2 0 0
o(e1) =0, o(ea)=11/200]), o(e3)=| 0 —1/20
000 0 0 O

Case (D): In this case we use the finite prolongation su(2, 1) of the Heisenberg algebra,
asin [8, p313]. Let

10 0
J=]10-10
00 —1

The Lie algebra su(2, 1) is given by 3 x 3 complex matrices A with zero trace and such
that A*J + JA = 0, where A* is the hermitian transpose of A. Define the Lie algebra
automorphism 0 : su(2, 1) — su(2, 1), 0A := JAJ. Define

0 i O 010 2i 0 2i
X=1—-i 0 —i Y=\|101 Z=| 0 0 O
0 —i 0 0-10 —2i 0 =21
001 i 00
H=1]000 U=10-2i0
100 0 0 i
0—-i 0 0 —-10 21 0 =2i
0X=1i 0 —i oY =1-1 0 1 0Z=100 O
0—i 0 0 -10 2i 0 =2i

The grading of su(2, 1) is

g-2(g) = span{Z}

g-1(g) = span{X, Y}
go(g) = span{H, U}
g1(g) = span{0 X, 0Y}
g2(g) = span{6Z},

where g_>(g) ® g—2(g) = g is the Heisenberg Lie algebra: notice that [X, Y] = Z while
[X,Z]=1Y,Z]=0.So,q=span{H,U,0X,0Y,0Z}. Define o : g — q by setting

1
X 19X+'90Y 95_(;2 '05
o = —— —_ = —7 2 2 ,
16 16 's V'8
O —l§0
0-1 0
9 1 2
oY =i X = 0Y = 20 -3,
0-% 0
9o 1. 5 iy 0 —if
Z=—i-H+-U—-—0Z=| 0 —il 0
a A TS Ty 2T
—l§ 0 lg

One can easily check that fj = X 4+ 0 X, fp =Y +0Y and f3 = Z + o Z form a basis of a
Lie subalgebra of su(2, 1) satisfying the relations of Case (D). O
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Remark 5.4 The map o above can easily be found using the software Maple and it is not
unique.

5.1.1 Rigid motions of the plane as a modification of the Heisenberg group

We conclude this section discussing more in detail the case of the group of rigid motions
of the plane as a modification of the Heisenberg group. At a group level, we may represent
points in the Heisenberg group H as matrices in SL(3, R) by

1 x1 x3
H(xy,x2,x3) ;=0 1 x2 ],
00 1

for x1, x2, x3 € R.

The Lie algebra of the the group of rigid motions of the plane E(2) corresponds to the
case (A) with @ = —1 and 8 = 0. The corresponding representation in s[(3, R) given in the
previous theorem is the span of the vectors

010 000 001
fi=|—-100], HL=1001], f=1000
000 000 000

At the group level, the points of E(2) inside SL(3, R) are parametrized by
cosy; siny; 3
R(Yl,yz, y3) = —siny1 CcCoSy1 Y2
0 0 1

where y; € R/(2nZ) and y», y3 € R.
With the procedure described in Remark 4.3, we find the mapping E(2) — H:

R(y1, y2, y3) = H(tan yi, y2, y3),
which is defined on the domain (—7/2, 7/2) x R2.

5.2 Modifications of the free nilpotent Lie group F»4

We consider the free nilpotent Lie algebra fo4 = spanf{e; : i =1, ..., 8} of rank 2 and step
4 and the corresponding simply connected Lie group F3 4. We will prove the following result

Theorem 5.5 There exists a nilpotent Lie group S, not isomorphic to F» 4, that is a modifi-
cation of F» 4 and is globally equivalent to > 4.

Proof The Lie brackets in {4 are

[e2, e1] =e3, [e3,e1]l =es4, [e3,e2] =es,

[es, e1] =es, [es,e1]l =e7, [e4,e2] =e7, [es5,e2] = es.

Itis known that the full Tanaka prolongation of fo4 isp = foa@Der(g), withDer(g) =~ gl(2, R)
(see [17]). Therefore, the modifications of fo4 are subalgebras of p that are graphs of some
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linear map o : fo4 — gl(2, R). Here we only consider o that on the basis of fo4 is zero except
for o (e1). Imposing that the graph is a Lie algebra, a direct computation shows that

aen=(43):

where a, b, c € R. We obtain a three parameter family s(a, b, ¢) of Lie algebras with basis
f1,--., fs, where f| =e; +o(ey) and f; =e¢; fori =2, ..., 8, and brackets

Lf2, fil = f3—=Dbf2, Lf3 il = fa—(a+D)f3, Lf3. f2l1=fs,

[fa, il = fo —cfs — Qa+ D) fa, Lfa, 21= f1. Lfs, il = f1—(a+2b)fs,
[f1, fel = 2¢f7+ Ba+D) fo, /1, f1]1=cfs +2(a +D)f7,

[f1, f8sl = (a+3b)fs, [fs, f2l = fs.

In particular, setting @ = b = 0 gives a one parameter family of nilpotent Lie algebras
5(c). We now find the distribution-preserving diffeomorphism ¥ from S(c) to F>4 when
¢ = 1, as in Remark 4.3. Every point in S(1) is of the form expp(}_ x; fi). Following
[12], expp O xi fi) = (Epy (x10(e1); Y xiei), expgy (x10(e1)) € Fag X GL(2, R), where
Epy(x1e1; Y xie;) = y(1) and y : [0, 1] — Fpq4 is the solution of

Y'(t) =dLyg expgy(txio(en)(Q xiei)
}/(0) = €Fyy-

The image of this point via W is going to be that element p € F»4 such that gQ =

expp (X xi fi) Q. e,

v (expp (infi>> = Epy(x1€1; inei)-

To compute this, we first observe that

v 1= expg (tx1o(e1)) (Z Xiei)

= (xl, xlzt + X2, X3, X4, X5 + tX1X4, X6, X7 + 2X1 X6, X§ + tX1X7 + t2x12x6) .

Second, we need to compute d L, v using the Baker—Campbell-Hausdorff formula:

d 1 1
dLyv= o exp ! (exp(y) exp(hv)) = v + Sy v+ Sy Iy vl
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The system of differential equations y = d L, v that we obtain is

Y1 = X1
]}2 = tx]2 “+ x2
, 1, 1 1
V3= _Etxlyl 5N + PRE +x3
V4 = itxlzyz + ixz)/z - i()/ — 6y3)x1 — l)c +x
12 1 12 1 12 12 V3)X1 2 3V1 4
oo I 5 1
Vs = RRanre - 5 + E(xlmfz + 6x7y3 + 12x1x4)1 — F%372
+ %xzm + x5
o1, 1 1
Yo = 153V ~ E(m/s — Oy4)x1 — FXan + X6

1 1

. 1
Y1 = ZX3Y1Y2 — 75 X2V1V3 — —&

6 12 12 (x127/17/3 +6x1x4y1 — 6x7ys — 24x1x6) 1

1 1 1 1
- (y2y3 — 6ys5) x1 — SXSVL = 5472 + 5X2v4 + x7

.22 L 2_L _iz 6 — 62y — 12
Y8 =1 Xx1Xx6 + 12)63)/2 12)62)/2)/3 2 (xl)/z)/s + 6x1x4)2 X1Vs X1X7)t
1

1
- Exsyz + Exzys + x3.

Third, we need to integrate this system of ODEs with initial conditions y;(0) = 0 for
everyi = 1, ..., 8. The solution is

y1(t) = txy

1
r@) = Etlez +txy

y3(t) = —it3x3 +tx3
12 !

ya(t) =1xy
y5(t) = —Ltsx5 + it‘%)cz)m + 1tlem + txs
240" TP 12t TR T2
1 5.5
1 66 1 5 4 2
yi(t) = %t xi + %t X[X2 + 17x1X6 + tx7
1 7.7 1 6.5 1 3.2 4 5
)/3([): Mt X1 +mt X1x2+%(xl.X2 +3X1X3)t

— l (x1x2x4 — x12X5 — 4x12x6) 2+ 1t2x1x7 + txg.

12 2
Therefore, the mapping from S(1) to G is ¥ : expp(D_x; fi) — y (1), which is a global,
surjective smooth distribution-preserving diffeomorphism.

Finally, S(1) is not isomorphic to F» 4 because S(1) has nilpotency step 5 instead of 4, as
one can easily see from the expression of the Lie brackets in s(1). |
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Remark 5.6 The mapping from S(1) to G described above is in particular bi-Lipschitz on
every compact set, when the groups are endowed with left-invariant sub-Riemannian dis-
tances. Notice, however, that this is not a global quasiconformal mapping.

5.3 Modifications of ultra-rigid stratified groups

A stratified Lie algebra g is called ultra-rigid if the only automorphisms of g preserving the
stratifications are dilations, see [10]. In particular, the full Tanaka prolongation of such g is
p = g xR, as semi-direct product of Lie algebras. In this section we describe all modifications
in g x R and their equivalence relation. Many results do not need the assumption of g being
ultra-rigid, so we assume this hypothesis only when needed.

Letg = @;:1 _, g, be a stratified Lie algebra. Let D : g — g be the linear map with
Dv = jvforv € g_;. Notice that D is a derivation of g that preserves the layers and that
8. = e'P : g — g are the dilations.

The semi-direct product p := g x R is the Lie algebra whose Lie brackets are

[(0,a), (Y,0)] = (aDY,0) hence [(X,a),(Y,b)]= ([X,Y]+aDY —bDX,0).

Proposition 5.7 Leto : g — R be a linear map and set s := {(X, 0 X) : X € g}. The vector
space s is a Lie subalgebra of g x R if and only if@fi_z g; C kero.

Proof First, we note that s is a Lie algebra if and only if, forall X, Y € g,
o([X,Y]) + (0 X)(@DY) — (cY)(cDX) = 0. (7

Suppose s is a Lie algebra, i.e., (7) holds for all X,Y € g. We prove @;i—z g; C
ker o by induction on j. If X, Y € g_j, then DX = X and DY = Y, thus (7) implies
o([X,Y]) = 0. Since g_» = [g—1, g—1], it follows that g_» C ker . Now, suppose that
g—x Ckerofork >2.If X e g_1and Y € gy, then (7) implies that o ([ X, Y]) = 0. Since
g—k—1 = [g—1, g—k], it follows that g_;_; C ker 0. We conclude that @;i_z g; Ckero.
Suppose @1172 g; C kero. By the bilinearity of the expression, we need to show
that (7) holds only when X € g; and Y € g; for some i and j. Since o is non-zero only on the
first layer, the only non-trivial instance of (7) is for X, Y € g_;. In this case, o ([X, Y]) = 0,
and (6 X)(c DY) —(cY)(cDX) = (6 X)(0Y)— (6Y)(6 X) = 0. Therefore, (7) is satisfied
and s is a Lie algebra. i

Lemma 5.8 The Lie algebra automorphisms ¢ : p — p such that ¢ ({0} x R) = {0} x R
and ¢(g—1 X R) = g_1 x R are exactly those of the form ¢ (X, a) = (¢1X, a) for some Lie
algebra automorphism ¢1 : ¢ — ¢ that preserves the layers.

Proof On the one hand, if ¢; : g — g is a Lie algebra automorphism that preserves the
layers, then ¢ (X, a) = (¢1X, a) is clearly a Lie algebra automorphism ¢ : p — p with
¢({0} x R) = {0} x Rand ¢p(g—1 x R) = g_1 x R, because ¢1 D = D¢;.

On the other hand, if ¢ : p — p is a Lie algebra automorphism, then ¢ (g x {0}) = g x {0}
because g x {0} = [p, p]. Suppose also that ¢ ({0} x R) = {0} x Rand ¢ (g—1 xR) = g_; xR.
Then ¢ (X, a) = ¢(X,0) + ¢(0,a) = (¢1(X), 0) + (0, p2(a)) and ¢;(g—1) = g1. This
implies that ¢ (g;) = g; for all j, as one can prove by induction on j. Notice that, for all
X egandalla € R,

$2(@) D1 X = [0, p2(a)), (#1X, 0)] = ¢([(0, ), (X, 0)]) = ¢(aDX,0) = a1 DX.

Forevery X € g_;, DX = X and D¢ X = ¢1 X, hence pr(a)p1 X = ap1 X, i.e.,¢2(a) = a.
O
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Theorem 5.9 Suppose that g is ultra-rigid, i.e., p = g X R is its full Tanaka prolongation.
The set of all non-isomorphic modifications of g is parametrized by g* | /R.o. Moreover, all
modifications of g in p are solvable and the only nilpotent one is g itself.

Proof The set of all modifications of g in p can be identified with g* | by Proposition 5.7,
where o € g*, is identified with J(Zj v;) = o(v_y) for Zj v; € g and the modification
5s (= {(X,0X) : X € g} C p. Since g is rigid, by Theorem 4.6 two modifications o, T €
g*, are isomorphic if and only if there is a Lie algebra automorphism ¢ : p — p with
¢({0} x R) = {0} x Rand ¢(g—1 x R) = g_; x R such that ¢(s,) = s,. Therefore, by
Lemma 5.8, two modifications o, T € g* , are isomorphic if and only if there is a Lie algebra
automorphism ¢; : g — g such that, forall X € g,

(91 X,0X) = (1 X, 11 X),

ie., 0 X = t¢ X for all X € g_;. Now, since g is ultrarigid, ¢; = §, for some L > 0.
Therefore, two modifications o, T € g* ; are isomorphic if and only if there is A > 0 such
that o = At.

Finally, notice that all modifications of g in p are solvable, because p itself is solvable.
Moreover, the only nilpotent modification is g itself. Indeed, if 5 # g, then there is X € g_;
with 0 X # 0, so that, if Y € g_; is nonzero, then [(X, 0 X), (Y, 0)] = so X (Y, 0), where
s is the step of g. Therefore, we obtain that (Y,0) € [s,[...,[s, s]...]] for any order of
brackets, that is, s is not nilpotent. O
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