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Abstract
We show that if a cusped Borel Anosov representation from a lattice � ⊂ PGL2(R) to
PGLd(R) contains a unipotent element with a single Jordan block in its image, then it is
necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a
Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never
cusped Borel Anosov.
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1 Introduction

Let � be a (word) hyperbolic group and let θ ⊂ � := {1, . . . , d − 1} be any subset. In his
seminal work, Labourie [16] defined what it means for a representation ρ : � → PGLd(R) to
be Pθ -Anosov. This notion ofAnosov representations has proven to be very useful: It is strong
enough for general theorems to be proven for the entire class of Anosov representations, but at
the same time is also flexible enough to admit many interesting examples. For this reason, the
theory of Anosov representations has been heavily studied and developed in the last twenty
years [2, 8, 11, 14].

Recently, there has been a successful push to generalize the notion of Anosov represen-
tations to the setting where � is a relatively hyperbolic group. These include the relatively
asymptotically embedded and relativelyMorse representations defined byKapovich andLeeb
[13], the relatively dominated representations defined by Zhu [18], and the extended geo-
metrically finite representations defined by Weisman [17]. Most recently, Zhu and Zimmer
[19] defined the notion of relatively Anosov representations, and clarified the relationship
between their notion and the other notions mentioned above.

In the case when � ⊂ PGL2(R) is a geometrically finite subgroup i.e. a finitely generated,
non-elementary, discrete subgroup, Canary, Zhang and Zimmer [4] defined the notion of
a cusped Anosov representation ρ : � → PGLd(R). If we view � as a hyperbolic group
relative to the cusp subgroups in �, then cusped Anosov representations are a special case of
all the above notions. Canary, Zhang and Zimmer [5] also defined the notion of transverse
representations, which extends the notion of cusped Anosov representations to allow for �

to be any non-elementary, discrete subgroup of PGL2(R) (and more generally, any projec-
tively visible group), see Remark 1.2. In this article, we will focus exclusively on transverse
representations of non-elementary, discrete subgroups of PGL2(R), which we now define.

For any non-elementary, discrete subgroup � ⊂ PGL2(R), let �(�) denote its limit set,
i.e.�(�) is the set of accumulation points in ∂ H2 of some/any�-orbit inH2. Note that�(�)

is an infinite, �-invariant, compact subset of ∂ H2. For any subset θ ⊂ �, let Fθ (R
d) denote

the corresponding partial flag manifold, i.e. if θ = {k1, . . . , ks} with k1 < · · · < ks , then

Fθ (R
d) := {F = (Fk1 , . . . , Fks ) | Fki ∈ Grki (R

d) and Fki ⊂ Fki+1 for all i}.
In the case when θ = �, we will simply denote F(Rd) := F�(Rd).

Definition 1.1 Let θ ⊂ � be symmetric, i.e. k ∈ θ if and only if d − k ∈ θ , and let
� ⊂ PGL2(R) be a non-elementary, discrete subgroup. A representation ρ : � → PGLd(R)

is Pθ -transverse if there is a continuous map ξ = (ξ k)k∈θ : �(�) → Fθ (R
d) that satisfies

all of the following properties:

• ξ is ρ-equivariant, i.e. ξ(γ · x) = ρ(γ ) · ξ(x) for all γ ∈ � and x ∈ �(�).
• ξ is transverse, i.e. ξ k(x) + ξd−k(y) = R

d for all distinct points x, y ∈ �(�) and all
k ∈ θ .

• ξ is strongly dynamics preserving, i.e. if {γn} is a sequence in � such that γn · b0 → x
and γ −1

n · b0 → y for some/any b0 ∈ H
2 and some x, y ∈ �(�), then ρ(γn) · F → ξ(x)

for all F ∈ Fθ (R
d) that is transverse to ξ(y).

In the above definition, the strongly dynamics preserving property of ξ ensures that it is
unique to ρ. We thus refer to ξ as the limit map of ρ.

Remark 1.2 Canary, Zhang and Zimmer [4, Theorems 4.1 and 6.1] proved that if � ⊂
PGL2(R) is geometrically finite, then for any symmetric θ ⊂ �, a representation ρ : � →
PGLd(R) is Pθ -transverse if and only if it is cusped Pθ -Anosov.
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In the case when θ = �, P�-transverse representations and cusped P�-Anosov rep-
resentations are also called Borel transverse representations and cusped Borel Anosov
representations respectively. When � ⊂ PGL2(R) is a convex cocompact free subgroup,
(cusped) Borel Anosov representations from � to PGLd(R) can be constructed via a ping
pong type argument. However, when � ⊂ PGL2(R) is a lattice, there are currently only two
known families of cusped Borel Anosov representations: the Hitchin representations and the
Barbot examples, see Sect. 2.2 and Appendix B respectively. The search for more examples
of cusped Borel Anosov representations can be formulated as the following question:

Question 1.3 When� ⊂ PGL2(R) is a lattice, are there cusped Borel Anosov representations
that are neither Hitchin representations nor the Barbot examples?

The twomain results of this paper are rigidity results aboutBorel transverse representations
of non-elementary discrete subgroups of PGL2(R) whose limit set is all of ∂ H2. When
specialized to lattices in PGL2(R), they can be interpreted as providing supporting evidence
to a negative answer to the above question.

If � ⊂ PGL2(R) is a non-elementary, discrete subgroup and ρ : � → PGLd(R) is a
Hitchin representation, then it follows from the work of Canary, Zhang and Zimmer [4] that
ρ sends every (non-identity) parabolic element in � to a unipotent element with a single
Jordan block, see Theorem 2.4 and Remark 2.5. Our first theorem resolves Question 1.3
under the additional assumption that the image of ρ contains a unipotent element with a
single Jordan block.

Theorem 1.4 Suppose that � ⊂ PGL2(R) is a discrete subgroup with �(�) = ∂ H2. If
ρ : � → PGLd(R) is a Borel transverse representation whose image contains a unipotent
element with a single Jordan block, then ρ is a Hitchin representation.

Remark 1.5 If ρ : � → PGLd(R) is a Barbot example, then d is necessarily odd, and ρ sends
every parabolic element in � to a unipotent element in PGLd(R) with two Jordan blocks, one
of size j and the other of size d − j for some j ∈ {1, . . . , d−1

2 }, see Appendix B. As such,
the hypothesis of Theorem 1.4 rules out the need to consider the Barbot examples.

One might attempt to construct new examples of cusped Borel Anosov representations on
a lattice � ⊂ PGL2(R) via the following “amalgamation” procedure.

Step 1: Realize � as a free product of two non-elementary, geometrically finite subgroups
�1 and �2, amalgamated over a cyclic subgroup 〈γ 〉.

Step 2: Specify a Barbot example ρ1 : �1 → PGLd(R) and a Hitchin representation ρ2 :
�2 → PGLd(R) so that ρ1(〈γ 〉) is conjugate to ρ2(〈γ 〉).

Step 3: Find a cusped Borel Anosov representation ρ : � → PGLd(R) so that ρ|�1 = ρ1
and ρ|�2 = ρ2.

There are situations (see for example [3, 10]) where this amalgamation procedure allows
one to construct new classes of Pθ -Anosov representations from existing ones. However, our
next theorem implies that the amalgamation process described above will never yield a Borel
transverse representation.

Theorem 1.6 Suppose that � ⊂ PGL2(R) is a discrete subgroup with �(�) = ∂ H2, and
let �′ ⊂ � be a non-elementary subgroup. If ρ : � → PGLd(R) is a Borel transverse
representation such that ρ|�′ : �′ → PGLd(R) is Hitchin, then ρ is Hitchin.

ByRemark 1.2 above, Theorems 1.4 and 1.6 hold for cuspedBorel Anosov representations
as well; one simply imposes the additional condition that � is geometrically finite.
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A key tool used in the proofs of Theorems 1.4 and 1.6 (and also in the definition of Hitchin
representations) is Fock and Goncharov’s notion of positivity for n-tuples in F(Rd) for any
integer n ≥ 3, see Sect. 2.1. With this, one can then define the notion of a positive map from
a subset � ⊂ S

1 (with #� ≥ 3) to F(Rd): we say that a map ξ : � → F(Rd) is positive if
for any integer n ≥ 3, the tuple (ξ(a1), . . . , ξ(an)) is positive for all a1 < · · · < an < a1 in
� (according to the clockwise cyclic order on S1). The proofs of both Theorems 1.4 and 1.6
rely on the following result about continuous, positive maps, which is a special case of more
general results of Guichard, Labourie and Wienhard [9, Lemma 3.5 and Proposition 3.15] in
the setting of 
-positive maps.

Proposition 1.7 Let ξ : S1 → F(Rd) be a continuous, transverse map. If there is a pairwise
distinct triple of points x, y, z ∈ S

1 such that (ξ(x), ξ(y), ξ(z)) is positive, then ξ is a positive
map.

In Sect. 2, wewill recall Fock andGoncharov’s notion of positivity of k-tuples of complete
flags and the definition of Hitchin representations. Then, in Sect. 3, we provide an elementary
and self-contained proof of Proposition 1.7. Finally, we use Proposition 1.7 to prove Theo-
rems 1.4 and 1.6 in Sect. 4. In the appendices, we give an elementary proof of a well-known
fact about positive triples of flags that was used to prove Proposition 1.7, and also describe
the Barbot examples mentioned above.

2 Positive tuples and positive maps

2.1 Fock–Goncharov positivity

We say that an upper triangular, unipotent matrix is totally positive if its non-trivial minors
(i.e. those that are not forced to be 0 by virtue of the matrix being upper triangular) are
positive. Then given an (ordered) basis B = (e1, . . . , ed) of Rd , we say that a unipotent
element in PGLd(R) is totally positive with respect to B if it is represented in the basis B by
an upper triangular, unipotent, totally positive matrix. Let

U>0(B) ⊂ PGLd(R)

denote the set of unipotent elements that are totally positive with respect to B, and let

U≥0(B) ⊂ PGLd(R)

denote the closure of U>0(B). Note that the elements in U≥0(B) are exactly the ones where
all the non-trivial minors are non-negative. Using well-known formulas for how minors
behave under products, it is straightforward to verify that both U>0(B) and U≥0(B) are
sub-semigroups of PGLd(R).

Recall that if F,G ∈ F(Rd), then F and G are transverse if Fk + Gd−k = R
d for all

k ∈ {1, . . . , d − 1}. When n ≥ 3, we say that an n-tuple of complete flags (F1, . . . , Fn) in
F(Rd) is positive if F1 and Fn are transverse, and there is a basis B = (e1, . . . , ed) of Rd

and elements u2, . . . , un−1 ∈ U>0(B) such that ei ∈ Fi
1 ∩ Fd−i+1

n for all i ∈ {1, . . . , d}, and
Fj = (un−1 · · · u j )·Fn for all j ∈ {2, . . . , n−1}. The fact thatU>0(B) is a semigroup implies
that if (F1, . . . , Fn) is positive, then so is (F1, Fi1 , . . . , Fi� , Fn) for all integers i1, . . . , i� such
that 1 < i1 < · · · < i� < n. Recall from the introduction that given a subset � of S1, a map
ξ : � → F(Rd) is positive provided that if n ≥ 3 and (x1, . . . , xn) is a cyclically ordered
subset of pairwise distinct points in �, then (ξ(x1), . . . , ξ(xn)) is a positive n-tuple of flags.
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The following proposition summarizes the basic properties of positive tuples of flags. It
follows easily fromawell-knownparameterization result of Fock andGoncharov [7, Theorem
9.1(a)] (see Kim–Tan–Zhang [15, Observation 3.20]).

Proposition 2.1 Let F1, . . . , Fn be flags in F(Rd).

(1) If n ≥ 3, then the following are equivalent:

• (F1, F2, . . . , Fn) is positive,
• (Fn, . . . , F2, F1) is positive,
• (F2, . . . , Fn, F1) is positive,
• g · (F1, F2, . . . , Fn) is positive for some/all g ∈ PGLd(R).

In particular, if (F1, . . . , Fn) is positive, then (Fi1 , . . . , Fi� ) is positive for all 1 ≤ i1 <

i2 < · · · < i� ≤ n, and so Fi and Fj are transverse for all distinct pairs i, j ∈ {1, . . . , n}.
(2) If n ≥ 4, then (F1, . . . , Fn) is positive if and only if (F1, . . . , Fn−1) is positive and

(F1, Fi , Fn−1, Fn) is positive for some/all i = 2, . . . , n − 2. In particular, (F1, . . . , Fn)
is positive if and only if (Fi1 , Fi2 , Fi3 , Fi4) is positive for all 1 ≤ i1 < i2 < i3 < i4 ≤ n.

Let P denote the set of positive triples of flags in F(Rd), and let T denote the set of
pairwise transverse triples of flags in F(Rd). The following theorem is also a well-known
property of positive triples of flags, which has been generalized to the setting of triples of

-positive flags by Guichard, Labourie and Wienhard [9, Proposition 2.5(1)]. We provide
an elementary proof in Appendix A.

Theorem 2.2 Let F, G and H be complete flags in F(Rd) such that both G and H are
transverse to F. Let u ∈ PGLd(R) be the unipotent element that fixes F and sends H to
G, and let B = (e1, . . . , ed) be any basis of Rd such that ek ∈ Fk ∩ Hd−k+1 for all
k ∈ {1, . . . , d}. If u ∈ U≥0(B) −U>0(B), then G and H are not transverse. In particular, P
is a union of connected components of T .

2.2 Hitchin representations

Suppose for now that � ⊂ PGL2(R) is surface group (i.e. � is cocompact and torsion-
free). Then the discrete and faithful representations from � to PGL2(R) form a single
connected component of Hom(�, PGL2(R))/PGL2(R), known as the Teichmüller compo-
nent. Hitchin [12] noticed that for all d ≥ 2, there is a distinguished connected component
of Hom(�, PGLd(R))/PGLd(R) that is analogous to the Teichmüller component. Today, this
connected component is commonly known as the Hitchin component, and the Hitchin rep-
resentations are the ones whose conjugacy class lies in the Hitchin component. Fock and
Goncharov [7] characterized the Hitchin representations as the representations for which
there exists a ρ-equivariant positive map ξ : �(�) → F(Rd), and Labourie [16] showed
that every Hitchin representation is (cusped) Borel Anosov.

Motivated by Fock and Goncharov’s characterization of Hitchin representations, Canary,
Zhang and Zimmer [5] extended the notion of Hitchin representations to the case when � is
a discrete subgroup of PGL2(R).

Definition 2.3 Let � ⊂ PGL2(R) be a non-elementary, discrete subgroup. A representation
ρ : � → PGLd(R) isHitchin if there is a continuous,ρ-equivariant, positivemap ξ : �(�) →
F(Rd).

Labourie’s result can also be generalized to this case using the proof of [4, Theorem 1.4].
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Theorem 2.4 Every Hitchin representation ρ : � → PGLd(R) is Borel transverse, and
the continuous, ρ-equivariant, positive map is the limit map of ρ (and hence is unique).
Furthermore, ρ sends parabolic elements in � to unipotent elements in PGLd(R) with a
single Jordan block.

Remark 2.5 Even though [4, Theorem 1.4] is stated only in the case when � ⊂ PGL2(R) is
geometrically finite, the proof does not use the geometric finiteness of �.

3 Proof of Proposition 1.7

To prove Proposition 1.7, we will use the following lemma, which is already well-known to
experts (see for example [9, Proposition 3.15]).We give an elementary proof of the lemma for
the reader’s convenience.We remark that the lemma is falsewithout the continuity assumption
on ξ .

Lemma 3.1 If ξ : S1 → F(Rd) is a continuous map such that (ξ(a), ξ(b), ξ(c)) is positive
for every pairwise distinct triple a, b, c ∈ S

1, then ξ is a positive map.

Proof By Proposition 2.1(2), it suffices to show that (ξ(x), ξ(y), ξ(z), ξ(w)) is positive for
all quadruples x, y, z, w ∈ S

1 such that x < y < z < w < x along S
1. Pick any such

quadruple x, y, z, w ∈ S
1, and let I ⊂ S

1 denote the closed subinterval that contains z with
endpoints y and w. By Proposition 2.1(1), the map ξ is transverse. Thus, for all t ∈ I , we
may define the map

u : I → PGLd(R)

by setting u(t) ∈ PGLd(R) to be the unipotent element that fixes ξ(x) and sends ξ(w) to ξ(t).
The continuity of ξ then implies that the map u is continuous.

Since (ξ(x), ξ(y), ξ(w)) is positive, there is a basis B = (e1, . . . , ed) such that ek ∈
ξ(x)k ∩ ξ(w)d−k+1 and u(y) ∈ U>0(B). First, we prove that u(z) ∈ U>0(B) as well. If this
were not the case, then the continuity of u implies that there is some t0 ∈ (y, z] ⊂ I such
that u(t0) ∈ U≥0(B) − U>0(B). By Theorem 2.2, ξ(t0) and ξ(w) are not transverse, thus
contradicting the fact that ξ is a transverse map.

Next, we show that u(z)−1u(y) ∈ U>0(B) as well. To do so, let

v : [z, w] → PGLd(R)

be the continuousmap defined by v(t) := u(t)−1u(y). Observe that v(w) = u(y) ∈ U>0(B).
Thus, if u(z)−1u(y) = v(z) /∈ U>0(B), then there is some t0 ∈ [z, w) such that v(t0) ∈
U≥0(B)−U>0(B). By Theorem 2.2, the pair of flags ξ(w) and v(t0) ·ξ(w) are not transverse,
which means that ξ(t0) = u(t0) · ξ(w) and ξ(y) = u(t0)v(t0) · ξ(w) are not transverse. This
contradicts the fact that ξ is a transverse map.

Since we have proven that both u(z) and u(z)−1u(y) lie inU>0(B), the quadruple of flags
(
ξ(x), ξ(y), ξ(z), ξ(w)

) = (
ξ(x), u(z)u(z)−1u(y) · ξ(w), u(z) · ξ(w), ξ(w)

)

is positive, so the lemma follows. ��

Proof of Proposition 1.7 By Lemma 3.1, it suffices to show that (ξ(a), ξ(b), ξ(c)) is positive
for any pairwise distinct triple a, b, c ∈ S

1. By Proposition 2.1(1), we may assume that
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a < b < c and x < y < z by switching the roles of a and c and the roles of x and z if
necessary. Then there are continuous maps

f1, f2, f3 : [0, 1] → S
1

such that ( f1(0), f2(0), f3(0)) = (x, y, z), ( f1(1), f2(1), f3(1)) = (a, b, c), and
( f1(t), f2(t), f3(t)) are pairwise distinct triples for all t .

Recall that P denotes the set of positive triples of flags in F(Rd), and T denotes the set
of pairwise transverse triples of flags in F(Rd). Since ξ is continuous and transverse, this
implies that the map

F : [0, 1] → T

given by F(t) = (
ξ( f1(t)), ξ( f2(t)), ξ( f3(t))

)
is well-defined and continuous. Since F(0) ∈

P by hypothesis, Theorem 2.2 implies that F(1) ∈ P .

4 Proof of Theorems 1.4 and 1.6

Using Proposition 1.7, we will now prove Theorems 1.4 and 1.6.

Proof of Theorem 1.4 Thed-th upper triangularPascalmatrix Qd is thed×d upper triangular
matrix whose (i, j)-th entry (with i ≤ j) is the integer

( j−1
i−1

)
. To prove the theorem, we will

first recall some basic properties of Qd .

Lemma 4.1 Qd is totally positive, unipotent, and has a single Jordan block

Proof The claim that Qd is unipotent is obvious, and the claim that Qd has a single Jordan
block is a straightforward calculation: one simply verifies that Qd has a unique eigenvector.

Toprove thatQd is totally positive, observe that the naturalGL2(R) actionon the symmetric
tensor Symd−1(R2) given by

g(v1 
 · · · 
 vd−1) := g(v1) 
 · · · 
 g(vd−1)

induces a representation

ιd : GL2(R) → GL(Symd−1(R2)) ∼= GLd(R).

Here, the identification GL(Symd−1(R2)) ∼= GLd(R) is induced by the linear identification

Symd−1(R2) ∼= R
d

given by identifying the standard basis (e1, . . . , ed) of Rd with the basis (ed−1
1 , ed−2

1 e2, . . . ,
e1e

d−2
2 , ed−1

2 ) of Symd−1(R2) induced by the standard basis (e1, e2) of R2. Note that the
representation ιd descends to a representation, also denoted

ιd : PGL2(R) → PGLd(R).

If we take B to be the standard basis of Rd , then by [7, Proposition 5.7],

ιd(U>0(e1, e2)) ⊂ U>0(B).

It is also straightforward to verify that [Qd ] = ιd

([
1 1
0 1

])
and that

[
1 1
0 1

]
clearly lies in

U>0(e1, e2). Thus, [Qd ] ∈ U>0(B), so Qd is totally positive. ��
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The proof of this theorem relies on the following lemma, which demonstrates the inherent
positive nature of a unipotent element in PGLd(R) with a single Jordan block.

Lemma 4.2 Let u ∈ PGLd(R) be a unipotent element with a single Jordan block, and let F
be the fixed flag of u. Then for any flag G that is transverse to F and for any sufficiently large
t, the triple (F, ut · G,G) is positive.

Proof By Lemma 4.1, Qd is a unipotent upper triangular matrix with a single Jordan block,
so wemay choose a basisB = ( f1, . . . , fd) ofRd such that u is represented inB by Qd . Then
ut is represented in B by the matrix Qt

d , which is upper triangular, and whose (i, j)-th entry

(with i ≤ j) is
( j−1
i−1

)
t j−i . Furthermore, for all k ∈ {1, . . . , d − 1}, the subspace Fk ⊂ R

d is
spanned by { f1, . . . , fk}.

Let H ∈ F(Rd) be the flag such that for all k ∈ {1, . . . , d − 1}, the subspace Hk ⊂ R
d

is spanned by { fd−k+1, . . . , fd}. Since G is transverse to F , there is some unipotent v ∈
PGLd(R) that fixes F and sends H to G. It is now sufficient to verify that v−1utv ∈ U>0(B)

for sufficiently large t . Indeed, if this were the case, then the observation that

v−1 · (F, ut · G,G) = (F, v−1utv · H , H)

implies that (F, ut · G,G) is positive for sufficiently large t .
In fact, we will show that if v′ and v are two unipotent elements that fix F , then v′utv ∈

U>0(B) for sufficiently large t . Observe that since v′ and v are represented in the basis
B by upper triangular matrices whose diagonal entries are all 1, the product v′utv is also
represented in the basis B by an upper triangular matrix Mt whose diagonal entries are all 1.
Furthermore, for each i < j , the (i, j)-th entry of Mt is a polynomial in the variable t whose
leading term is

( j−1
i−1

)
t j−i , which is the (i, j)-th entry of Qt

d . By Lemma 4.1, Qt
d is totally

positive, so the leading term of any minor of Mt is the corresponding minor of Qt
d . Hence,

for sufficiently large t , we have v′utv ∈ U>0(B). ��
Let γ ∈ � be the element such that ρ(γ ) is unipotent with a single Jordan block. Since ρ

is Borel transverse, the strongly dynamics preserving property of its limit map ξ : �(�) →
F(Rd) ensures that γ is parabolic. Let x ∈ �(�) be the unique fixed point of γ and let
y ∈ �(�) − {x}. Then ξ(x) is the fixed flag of ρ(γ ). By Lemma 4.2 and the ρ-equivariance
and transversality of ξ , the triple of flags

(
ξ(x), ξ(γ n y), ξ(y)

)
is positive for sufficiently

large n. Proposition 1.7 then implies that ξ is a positive map, so ρ is a Hitchin representation.
��

Proof of Theorem 1.6 Let �(�′) ⊂ �(�) be the limit set of �′, and let x, y, z be pairwise
distinct points in�(�′) (this exists because�′ is non-elementary). Since ρ is Borel transverse
with limit map ξ : �(�) → F(Rd), note that ρ|�′ is also Borel transverse with limit map
ξ |�(�′) : �(�′) → F(Rd). Sinceρ|�′ isHitchin, themap ξ |�(�′) is a positivemap. Therefore,(
ξ(x), ξ(y), ξ(z)

)
is a positive triple, so Proposition 1.7 implies that ξ is a positive map. As

such, ρ is a Hitchin representation. ��
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Appendix A Proof of Theorem 2.2

In this proof, we fix the basis B, and hence may view every u ∈ U≥0(B) as a unipotent upper
triangular d × d matrix. Given (strictly) increasing tuples

I = (i1, . . . , ik) and J = ( j1, . . . , j�)

of integers (weakly) between 1 and d , we denote by uI ,J the submatrix of u corresponding
to the I rows and J columns. We say that I is consecutive if i p = i1 + p − 1 for each
p ∈ {1, . . . , k}. If k > 1, we also denote I ′ := (i1, . . . , ik−1) and I ′′ := (i2, . . . , ik).

Lemma A.1 Let u ∈ U≥0(B) and let k ∈ {1, . . . , d}. Suppose that all the non-trivial � × �-
minors of u are positive for all � < k. If all the non-trivial k × k minors det(uI ,J ) of u with
consecutive I and consecutive J are positive, then all the non-trivial k × k minors of u are
positive.

Proof Notice that it suffices to prove the following pair of claims (assuming that all the
non-trivial � × �-minors of u are positive for all � < k):

(1) Fix I of length k. If all the non-trivial k × k minors of u of the form det(uI ,J ) with
consecutive J are positive, then all the non-trivial k×k minors of u of the form det(uI ,J )

are positive.
(2) Fix J of length k. If all the non-trivial k × k minors of u of the form det(uI ,J ) with

consecutive I are positive, then all the non-trivial k×k minors of u of the form det(uI ,J )

are positive.

Indeed, if all the non-trivial k × k minors det(uI ,J ) of u with consecutive I and consecutive
J are positive, then we may apply Claim (1) to deduce that all the non-trivial k × k minors
det(uI ,J ) of u with consecutive I are positive. Applying Claim (2) now gives the desired
conclusion.

We only prove Claim (1); the proof of Claim (2) is the same, except that the roles of I and
J are switched.

When k = 1, Claim (1) is obvious because every tuple of length 1 is consecutive. We may
thus assume that k ∈ {2, . . . , d}. Denote J = ( j1, . . . , jk), and notice that

m := jk − j1 + 1 ∈ {k, . . . , d}.
We will proceed by induction on m.

In the base case when m = k, J is consecutive, so det(uI ,J ) is positive by assumption.
For the inductive step, fixm ∈ {k+1, . . . , d}. Since k < m, J is not consecutive, so there

exist q ∈ {1, . . . , k − 1} and an integer n such that jq < n < jq+1. Suppose for the purpose
of contradiction that det(uI ,J ) = 0. Then we may write

c1uI , j1 + · · · + cku I , jk = �0 (1)

for some c1, . . . , ck ∈ R that are not all zero. Thus,

0 = det(�0, uI , j2 , . . . , uI , jq , uI ,n, uI , jq+1 , . . . , uI , jk−1)

= det(c1uI , j1 + · · · + cku I , jk , uI , j2 , . . . , uI , jq , uI ,n, uI , jq+1 , . . . , uI , jk−1)

= c1 det(uI ,( j1, j2,..., jq ,n, jq+1,..., jk−1)) + (−1)k−1ck det(uI ,( j2,..., jq ,n, jq+1,..., jk−1, jk )). (2)
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Since det(uI ,J ) is a non-trivial k × k minor of u, i.e. i p ≤ jp for all p ∈ {1, . . . , k},
both det(uI ′,J ′) and det(uI ′,J ′′) are non-trivial (k − 1) × (k − 1) minors of u, so they are
both positive by assumption. So, (1) implies that c1 �= 0 �= ck . At the same time, notice that
jk − j2 + 1 < m. Since det(uI ,J ) is a non-trivial k × k-minor of u, the same is true for
det(uI ,( j2,..., jq ,n, jq+1,..., jk )), so it is positive by the inductive hypothesis. It now follows from
(2) that

(−1)k
ck
c1

= det(uI ,( j1,..., jq ,n, jq+1,..., jk−1))

det(uI ,( j2,..., jq ,n, jq+1,..., jk ))
≥ 0.

On the other hand, we also have

0 = det(�0, uI ′, j2 , . . . , uI ′, jk−1)

= det(c1uI ′, j1 + · · · + cku I ′, jk , uI ′, j2 , . . . , uI ′, jk−1)

= c1 det(uI ′,J ′) + (−1)k−2ck det(uI ′,J ′′),

so

(−1)k−1 ck
c1

= det(uI ′,J ′)

det(uI ′,J ′′)
> 0

because c1 �= 0 �= ck and both det(uI ′,J ′) and det(uI ′,J ′′) are positive. We thus arrive at
a contradiction, so det(uI ,J ) �= 0. Since u ∈ U≥0(B), it follows that det(uI ,J ) > 0. This
completes the inductive step. ��
Lemma A.2 Let u ∈ U≥0(B). Suppose that there exists k ∈ {1, . . . , d} such that
• all the non-trivial � × �-minors of u are positive for all � < k;
• there is a non-trivial k × k minor det(uI ,J ) of u such that I and J are consecutive and

det(uI ,J ) = 0.

Then det(uI0,J0) = 0, where I0 = (1, . . . , k) and J0 = (d − k + 1, . . . , d).

Proof Notice that it suffices to prove that det(uI ,J0) = 0 and that det(uI0,J ) = 0. We will
only prove the former; the proof of the latter is the same.

Let I = (i1, . . . , ik) and J = ( j1, . . . , jk). By assumption, det
(
uI ′,J ′

)
> 0, so

uI ′, j1 , . . . , uI ′, jk−1 and hence uI , j1 , . . . , uI , jk−1 is a linearly independent collection of vec-
tors. Since det

(
uI ,J

) = 0, it follows that uI , jk is a linear combination of uI , j1 , . . . , uI , jk−1 .
Fix n ∈ { jk + 1, . . . , d}. Since det(uI ,J ) is a non-trivial minor and det(uI ,J ) = 0, we

have ik < jk . Then

0 ≤ det
(
u(i1,...,ik , jk ),( j1,..., jk ,n)

)

= det
( uI ,J ′ uI , jk u I ,n

�0 1 u jk ,n

)

= u jk ,n det(uI ,J ) − det
(
uI ,( j1,..., jk−1,n)

)

= − det
(
uI ,( j1,..., jk−1,n)

)

where thefirst inequality holds becauseu ∈ U≥0(B).At the same time, det
(
uI ,( j1,..., jk−1,n)

) ≥
0 because u ∈ U≥0(B), so det

(
uI ,( j1,..., jk−1,n)

) = 0. It follows that uI ,n is a linear combina-
tion of the linearly independent collection of vectors uI , j1 , . . . , uI , jk−1 .

Since J is consecutive, we have proven that the k vectors uI ,d−k+1, uI ,d−k+2, . . . , uI ,d

are all linear combinations of uI , j1 , . . . , uI , jk−1 . In particular, their span has dimension k−1,
so det(uI ,J0) = 0. ��
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Proof of Theorem 2.2 Since u ∈ U≥0(B) − U>0(B), there is some k ∈ {1, . . . , d − 1} such
that some non-trivial k×k minor det(uI ,J ) of u is zero, while all the non-trivial �×�-minors
of u are positive for all � < k.

By Lemma A.1, we may assume that both I and J are consecutive. Then Lemma A.2
implies det(uI0,J0) = 0 with I0 = (1, . . . , k) and J0 = (d − k + 1, . . . , d). Therefore, the
span of the vectors uI0,d−k+1, . . . , uI0,d has dimension at most k − 1, so

Gk + Hd−k = u · Span(ed , . . . , ed−k+1) + Span(ed , . . . , ek+1)

= Span (u · ed , . . . , u · ed−k+1, ed , . . . , ek+1)

= Span
((

uI0,d

�0
)

, . . . ,
(
uI0,d−k+1

�0
)

, ed , . . . , ek+1

)

�= R
d .

This implies that G and H are not transverse. ��

Appendix B The Barbot examples

Fix a lattice � ⊂ SL2(R) and some odd integer d > 2. In this appendix, we define the Barbot
examples, which are representations ρ : � → PGLd(R) that are Borel transverse (or equiv-
alently, cusped Borel Anosov), but not Hitchin. These are a straightforward generalization
of examples (due to Barbot [1]) of Borel Anosov representations of a surface group into
PGL3(R) that are not Hitchin.

To define the Barbot examples, we need some preliminary results. First, let (e1, . . . , ed) be
the standard basis ofRd , and equipRd with the standard inner product. For any g ∈ PGLd(R),
let

σ1(g) ≥ · · · ≥ σd(g) > 0

denote the singular values of (any unit-determinant, linear representative of) g, and let

Ag := diag(log σ1(g), . . . , log σd(g)).

By the singular value decomposition theorem, we may write every g ∈ PGLd(R) as the
product

g = m exp(Ag)�

for some m, � ∈ PO(d) (which are not necessarily unique). For every g ∈ PGLd(R), choose
mg, �g ∈ PO(d) such that g = mg exp(Ag)�g .

Let F0 ∈ F(Rd) be the flag such that

Fk
0 = Span(e1, . . . , ek)

for all k ∈ {1, . . . , d − 1}, and define

U (g) := mg · F0.
One can verify that if σk(g) > σk+1(g) for all k ∈ {1, . . . , d − 1}, then U (g) does not
depend on the choice of mg and �g , and hence is canonical to g. The following proposition
is a standard linear algebra fact, see [6, Appendix A] for a proof.

Proposition B.1 Let {gn} be a sequence in PGLd(R) and F+, F− ∈ F(Rd). The following
are equivalent:
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(1) U (gn) → F+, U (g−1
n ) → F−, and σk (gn)

σk+1(gn)
→ ∞ for all k ∈ {1, . . . , d − 1}.

(2) gn(F) → F+ for all F transverse to F−, and g−1
n (F) → F− for all F transverse to F+.

Next, recall that g ∈ PGLd(R) is weakly unipotent if its multiplicative Jordan-Chevalley
decomposition has elliptic semisimple part and non-trivial unipotent part. We say that a
representation ρ : � → PGLd(R) is type preserving if it sends parabolic elements in � to
weakly unipotent elements in PGLd(R). If � ⊂ SL2(R) is geometrically finite, then given a
type preserving representation σ : � → PGLd(R), one can define

Homtp(σ ) ⊂ Hom(�, PGLd(R))

to be the set of representations ρ : � → PGLd(R) such that ρ(α) is conjugate to σ(α) for
all parabolic α ∈ �. The following are results of Canary, Zhang and Zimmer [4, Theorem
4.1(2) and Theorem 8.1]

Theorem B.2 (Canary-Zhang-Zimmer) Suppose that � ⊂ SL2(R) is geometrically finite. If
ρ : � → PGLd(R) is Pθ -transverse for some symmetric θ ⊂ �, then:

(1) ρ is type-preserving.
(2) The set of Pθ -transverse representations in Homtp(ρ) is open.

Finally, let k ≥ 1 be an integer. Recall from the proof of Lemma 4.1 the representation

ιk : GL2(R) → GL(Symk−1(R2)) ∼= GLk(R).

One can verify that ιk restricts to a representation

ιk : SL2(R) → SLk(R).

Now, given any j ∈ {1, . . . , d−1
2 }, let

τd, j := ιd− j ⊕ ι j : SL2(R) → SLd− j (R) ⊕ SL j (R) ⊂ SLd(R).

Let (e1, . . . , ed) be the standard basis of Rd , let

( f1, . . . , fd− j ) := (e1, e2, . . . , ed− j ) and ( f ′
1, . . . , f ′

j ) := (ed− j+1, . . . , ed),

and let k := d−2 j+1
2 . Then let B ′ ⊂ SLd(R) be the upper triangular group with respect to the

basis

B := ( f1, f2, . . . , fk, f ′
1, fk+1, f ′

2, fk+2, . . . , f ′
j , fk+ j , fk+ j+1, fk+ j+2, . . . , fd− j )

of Rd . Observe that τ−1
d, j (B

′) is the upper triangular subgroup of SL2(R) with respect to the

standard basis (e1, e2) of R2, so we may define the τd, j -equivariant embedding

ξd, j : RP1 ∼= SL2(R)/τ−1
d, j (B

′) → SLd(R)/B ′ ∼= F(Rd).

Let F+ and F− be the flags inF(Rd)with the defining property that for all k ∈ {1, . . . , d−1},
Fk+ is spanned by the first k vectors of the basis B and Fk− is spanned by the last k vectors of
B. Observe that ξd, j ([e1]) = F+ and ξd, j ([e2]) = F−.

Proposition B.3 For every j ∈ {1, . . . , d−1
2 }, the following hold:

(1) The map ξd, j is transverse.
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(2) If {gn} is a sequence in SL2(R) and x, y ∈ RP
1 such that gn · b0 → x and g−1

n · b0 → y
for some/all b0 ∈ H

2, then τd, j (gn) · F → ξd, j (x) for all F transverse to ξd, j (y), and
τd, j (g−1

n ) · F → ξd, j (y) for all F transverse to ξd, j (x).

In particular, if � ⊂ SL2(R) is a non-elementary, discrete subgroup and π : SLd(R) →
PSLd(R) ⊂ PGLd(R) is the obvious quotient map, then

ρ := π ◦ τd, j |� : � → PGLd(R)

is Borel transverse with limit map ξd, j |�(�).

Proof To simplify notation, we will denote ξ := ξd, j and τ := τd, j .
(1) Pick any pair of distinct points a, b ∈ RP

1. Then there is some g ∈ SL2(R) such that
(g · a, g · b) = ([e1], [e2]). By the τ -equivariance of ξ , it follows that

(ξ(a), ξ(b)) = (
τ(g−1) · ξ([e1]), τ (g−1) · ξ([e2])

)
,

so it suffices to verify that ξ([e1]) and ξ([e2]) are transverse. This holds because ξ([e1]) = F+
and ξ([e2]) = F−.

(2) Note that gn · z → x for all z ∈ RP
1 − {y} and g−1

n · z → y for all z ∈ RP
1 − {x}.

Proposition B.1 then implies that

mn · [e1] = U (gn) → x, �−1
n · [e2] = U (g−1

n ) → y and
σ1(gn)

σ2(gn)
→ ∞,

where gn = mn exp(Agn )�n is a singular value decomposition of gn . In particular, any
subsequential limit m of {mn} and � of {�n} satisfy

m · [e1] = x and �−1 · [e2] = y.

Note that

τ(gn) = τ(mn)τ (exp(Agn ))τ (�n)

is a singular value decomposition of τ(gn). It then follows that

U (τ (gn)) = τ(mn) · F+ → τ(m) · F+ = τ(m) · ξ([e1]) = ξ(x),

where m is some/any subsequential limit of {mn}. Similarly,

U (τ (gn)
−1) → ξ(y).

This also implies that

τ(exp(Agn )) = exp(Aτ(gn)) and
σi (τ (gn))

σi+1(τ (gn))
→ ∞,

because

σi (τ (gn))

σi+1(τ (gn))
=

⎧
⎨

⎩

σ1(gn)
σ2(gn)

if 1 ≤ i ≤ k − 1 or d − k + 1 ≤ i ≤ d − 1,√
σ1(gn)
σ2(gn)

if k ≤ i ≤ d − k.

Thus, by Proposition B.1, τ(gn) · F → ξ(x) for all F transverse to ξ(y) and τ(gn) · F →
ξ(y) for all F transverse to ξ(x).

Therefore, ρ is Borel transverse with limit map ξ |�(�). Indeed, ξ is continuous and τ -
equivariant, ξ is transverse by (1), and ξ is strongly dynamics preserving by (2). ��
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We may now define the Barbot examples. Given j ∈ {1, . . . , d−1
2 }, a representation

ρ : � → PGLd(R) is a (�, d, j)-Barbot example if there is a continuous path f : [0, 1] →
Homtp(π ◦ τd, j |�) such that f (0) = ρ, f (1) = π ◦ τd, j |� , and f (t) is Borel transverse for
all t ∈ [0, 1]. By Theorem B.2 and Proposition B.3, the (�, d, j)-Barbot examples form a
connected, non-empty, open set in Homtp(π ◦ τd, j |�).

Remark B.4 We may define the (�, d, j)-Barbot examples for discrete subgroups � ⊂
SL±

2 (R) as well: these are representations ρ : � → PGLd(R)whose restriction to � ∩SL2(R)

is a (�, d, j)-Barbot example as described above. Since � ∩ SL2(R) ⊂ � is a finite-index
subgroup, these representations are also Borel-transverse.
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