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Abstract
We show that every cross ratio preserving homeomorphism between boundaries of Hadamard
manifolds extends to amap, called circumcenter extension, provided that themanifolds satisfy
certain visibility conditions. We describe regions on which this map is Hölder-continuous.
Furthermore, we show that this map is a rough isometry, whenever the manifolds admit
cocompact group actions by isometries and we improve previously known quasi-isometry
constants, provided by Biswas, in the case of 2-dimensional CAT(−1) manifolds. Finally,
we provide a sufficient condition for this map to be an isometry in the case of Hadamard
surfaces.
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1 Introduction

The visual boundary of a geodesically complete CAT(−1) space is naturally endowed with
a cross ratio. In this paper, we show that this cross ratio can still be defined on the visual
boundary of a geodesically complete CAT(0) space and that it still retains a lot of information
about the interior space, provided that certain visibility conditions are satisfied.

Our core motivation is the following, informal question, which is related to several results
from geometry and geometric group theory in recent decades.

Question Let (X , d) and (Y , d) be two geodesically complete CAT(0) spaces and f : ∂X →
∂Y a cross ratio-preserving homeomorphism between their boundaries. Can f be extended
to an isometry F : X → Y ?

Alternatively, if a group G acts on X and Y by isometries and f is a G-equivariant, cross
ratio-preserving homeomorphism, can we construct F to be G-equivariant?

This question has seen a series of complete and partial answers for various special cases
over the course of the last few decades. The first series of results concern situations where
X and Y admit geometric actions, i.e. proper, cocompact actions by isometries, by some
group G. Specifically, if X and Y have constant negative curvature, the extension of f to a
G-equivariant isometry is used in Thurston’s proof of Mostow rigidity [30]. If X and Y are
universal coverings of negatively curved surfaces, the fact that f extends to a G-equivariant
isometry is crucial to Otal’s proof of Marked Length Spectrum Rigidity [28]. In a series
of papers, Hamenstädt and Besson-Courtois-Gallot show that f extends to a G-equivariant
isometry, if both spaces are universal coverings of negatively curved manifolds and one of
them is a locally symmetric space [3, 23].

A second, more recent series of results mostly drops the assumptions about group actions.
If X and Y are proper, geodesically complete CAT(−1) spaces, Biswas proved that f can
be extended to a rough isometry, i.e. a (1,C)-quasi-isometry [10]. One may also consider
classes of spaces for which the appropriate notions are no longer the visual boundary and
isometries. Beyrer, Fioravanti and the author proved a similar extension theorem for CAT(0)
cube complexes and their Roller boundaries, equipped with a suitable cross ratio [7]. Fur-
thermore, Beyrer-Fioravanti proved additional extension theorems for cubulable hyperbolic
groups and for certain group actions on nice CAT(0) cube complexes [5, 6].

A third collection of results is focused on a type of local rigidity. For example, Biswas
shows in [11] that small, compactly supported deformations of Cartan-Hadamard manifolds
whose curvature is bounded from above by −1 do not change the isometry class of the
manifold if the deformation does not change the cross ratio on the boundary. Furthermore,
there are various instances, where the visual boundary is closely related to the geodesic flow
of the interior space. For example, if X is the universal covering of a closed, negatively
curved Riemannian manifold, then the cross ratio on its boundary and the Marked Length
Spectrum of the closed manifold determine each other (see for example [10, 22] for how
the cross ratio determines the Marked Length Spectrum and [26, 27, 29] for the converse).
Guillarmou and Lefeuvre show that for a closed, negatively curved manifold, there exists
some small ε > 0 such that any other negatively curved metric on the same manifold that has
the same marked length spectrum and is ε-close to the original metric, is in fact isometric to
the original manifold (see [21]).

Finally, one may take a coarse viewpoint and only require that f coarsely preserves the
cross ratio. This is called a quasi-Möbius map. In [17], Charney-Cordes-Murray show that,
under a mild stability condition, quasi-Möbius maps between Morse boundaries of finitely
generated groups extend to quasi-isometries of groups.
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While cross ratios have been used on numerous occasions in spaces of negative curvature,
they have not been studied very much for general non-positively curved spaces. In part, this is
due to the fact that visual boundaries of hyperbolic orCAT(−1) spaces have several properties
that visual boundaries of CAT(0) spaces don’t. In this paper, we show how to work around
these difficulties to define a cross ratio on the visual boundary of a proper, geodesically
complete CAT(0) space. We then show that the circumcenter construction introduced in
[10, 12] can be generalized to a large class of non-positively curved manifolds and that this
circumcenter extension provides a good framework to study the initially stated question.

In order to state our results, we first need to define the cross ratio. Let X be a proper,
connected, geodesically complete CAT(0) space. Fix a base point o ∈ X . For any admissible
quadruple (ξ1, ξ2, ξ3, ξ4) ∈ ∂X4 (see Sect. 2.2 for the definition of admissibility), we can
define the cross ratio

cr(ξ1, ξ2, ξ3, ξ4) := ρo(ξ1, ξ2)ρo(ξ3, ξ4)

ρo(ξ1, ξ3)ρo(ξ2, ξ4)
,

where ρo(ξ, η) := e−(ξ |η)o , with (ξ |η)o denoting the Gromov product on ∂X with respect to
the base point o.

Proposition A Let X be a proper, connected, geodesically completeCAT(0) space. The cross
ratio cr is well-defined for all admissible quadruples and independent of the choice of o.

It turns out that the boundary, together with the cross ratio, contains a lot of information
about the interior space, provided that the boundary satisfies certain visibility properties.
Specifically, we say:

(1) The visual boundary ∂X satisfies 4-visibility, if for every quadruple (ξ1, ξ2, ξ3, ξ4) ∈
∂X4, there exists η ∈ ∂X , such that for all i ∈ {1, 2, 3, 4}, (ξi |η)o is finite for some base
point o ∈ X .

(2) We say that ξ ∈ ∂X is in a rank 1 hinge if there exist η, ζ ∈ ∂X , such that there is a
bi-infinite geodesic from η to ζ and there exist bi-infinite rank 1 geodesics from ξ to η

and from ξ to ζ .

Given two proper, connected, geodesically complete CAT(0) spaces X and Y , we say that
a map f : ∂X → ∂Y is Möbius if and only if it preserves the cross ratio.

Let X , Y be Hadamard manifolds, i.e. simply connected, geodesically complete Rieman-
nian manifolds such that all sectional curvatures are non-positive. The main result of this
paper is a construction that allows us to extend Möbius homeomorphisms that satisfy one
mild extra condition to the interior spaces, provided that ∂X and ∂Y satisfy conditions (1)
and (2) above. We call this extension the circumcenter extension of f . We prove a very
general Theorem about the circumcenter extension in Sect. 4. This Theorem has several con-
sequences, as soon as one adds some extra assumption. If X and Y admit a cocompact group
action, we obtain

Theorem B Let X , Y be Hadamard manifolds such that ∂X , ∂Y satisfy (1) and all points in
∂X and ∂Y satisfy (2). Suppose, the group G acts cocompactly by isometries on X and Y .
Let f : ∂X → ∂Y be a G-equivariant Möbius homeomorphism, such that f and f −1 send
visible pairs to visible pairs. Then the circumcenter extension is a G-equivariant (1, 2M)-
quasi-isometry F : X → Y for some constant M ≥ 0.

The constant M will be the supremum of a Lipschitz continuous function M : X →
[0,∞), which essentially measures by how much F fails to be an isometry at a certain point.
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Abetter understanding of the functionM has the potential to significantly improve this result,
the main result of the paper and the results stated below.

If we drop the assumption about cocompact group actions, we can restrict to more spe-
cialised situations and obtain other, sometimes even stronger results. The first of these results
concerns surfaces.

Theorem C Let X , Y be Hadamard manifolds whose sectional curvatures are bounded from
below by−b2 such that ∂X , ∂Y satisfy (1) and all points in ∂X and ∂Y satisfy (2). Assume that
X , Y are 2-dimensional. Let f : ∂X → ∂Y be a Möbius homeomorphism such that f and
f −1 send visible pairs to visible pairs. Then, the circumcenter extension is a homeomorphism
F : X → Y , it is locally Lipschitz continuous on a dense subset and differentiable almost
everywhere.

Furthermore, to every x ∈ X,we can associate a set Kx ⊂ ∂X with the following property:
For almost every x, F is differentiable at x and if Kx contains at least five points, then DFx
is an isometry between tangent spaces.

We emphasize that the Theorem above includes the statement that the circumcenter exten-
sion is invertible, a result that we do not obtain in higher dimensions.

In [10], Biswas proved that the circumcenter extension provides a (1, ln(2))-quasi-
isometry, if X and Y are CAT(−1) spaces. For manifolds with a lower curvature bound
−b2, it is a (1, (1− 1

b ) ln(2))-quasi-isometry (cf. [11]). We can recover Biswas’ first constant
and improve it in dimension two.

Theorem D Let X , Y be 2-dimensional Hadamard manifolds whose sectional curvatures
are bounded from below by −b2 and from above by −1. Let f : ∂X → ∂Y be a Möbius
homeomorphism. Then, the circumcenter extension is a (1, ln( 43 ))-quasi-isometry.

We end the introduction with a discussion on what kind of spaces satisfy the visibility
properties necessary for our results (see Sect. 2 for all definitions not given here). Many
examples can be constructed by using the notion of visibility points in the boundary. A point
ξ ∈ ∂X is called a visibility point if it can be connected with every other point in the boundary
by a bi-infinite geodesic in X . Let ξ ∈ ∂X be a visibility point, η ∈ ∂X and γ a bi-infinite
geodesic from ξ to η. It follows that γ is a rank one geodesic, as the end points of geodesic
lines that are not rank one (i.e. that bound a euclidean halfplane) cannot be visibility points.
Since two points in the boundary that can be connected by a bi-infinite geodesic always have
finite Gromov product, we conclude that, whenever ∂X contains at least five visibility points,
both visibility properties introduced above are satisfied.

We now present a class of Hadamardmanifolds that do not have strictly negative curvature
and do admit five visibility points. Consider a closed, non-positively curved Riemannian
manifold M . By the rank rigidity theorem (see Theorem C in [1]), we obtain that its universal
covering M̃ is either a finite Riemannian product, a higher rank symmetric space, or contains
at least one bi-infinite rank one geodesic. By Lemma 1.7 in [2], the endpoints of this rank
one geodesic in ∂X have Tits distance strictly greater than π . Because π1(M) acts properly
and cocompactly, its limit-set, denoted �, satisfies � = ∂X (see the introduction of [2]). By
Proposition 1.10 in [2], this implies that there exists an element g ∈ π1(M) and a rank one
geodesic γ in M̃ , such that g acts as translation on γ . By Theorem 5.4 in [4], an axis for some
isometry in a proper CAT(0) space is rank one if and only if it is contracting. Therefore, γ is
a contracting geodesic line. In particular, both of its endpoints in ∂X are visibility points by
Proposition 3.6 in [18]. Since every orbit of π1(M) in ∂X is dense (see for example [24], in
particular Lemma 5.1) and isometries send visibility points to visibility points, we conclude
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that ∂ M̃ has infinitely many visibility points. Therefore, the universal covering of any closed,
non-positively curved RiemannianmanifoldM is either a finite Riemannian product, a higher
rank symmetric space, or it satisfies the visibility properties (1) and (2). This provides us
with a large class of spaces satisfying our assumptions. In particular, this includes most graph
manifolds.

We also mention a non-cocompact example that can be obtained as follows. Consider five
copies of the euclidean upper halfplane R × [0,∞) and glue them together isometrically
along their boundary R × {0} such that all five halfplanes intersect at the origin. The space
obtained this way is a CAT(0) space and its Tits boundary is a circle of circumference
5π . Using properties of the Tits metric and rank one geodesics, one can see that this space
satisfies visibility properties (1) and (2) as well. While this example is only a CAT(0) and not
a Riemannian manifold it seems feasible that a Hadamard manifold with the same behaviour
can be constructed. Both of the examples above illustrate that there is a large and flexible
class of Hadamard manifolds that satisfy our visibility properties, but do not admit a negative
upper curvature bound, which shows that the circumcenter extension map indeed can be
constructed in a more general setting than previously thought.

The remainder of the paper is organised as follows. In Sect. 2, we develop all the necessary
preliminary theory. Specifically, we give a brief introduction to asymptotic geometry and
generalise several results known for CAT(−1) spaces to CAT(0) spaces, including the proof
of Proposition A; we generalise the theory of metric derivatives as needed and we give a brief
primer on the facts we will need about convex functions and Jacobi fields. We also provide
an example of a space whose boundary contains points that have finite Gromov product but
are not visible (this example is the reason why f and f −1 have to send visible pairs to
visible pairs). In Sect. 3, we construct the circumcenter extension and define all the notions
we will use to prove the results above. In Sect. 4, we prove a result on Hölder continuity
of the circumcenter extension and finish the proof of the main result (see Theorem 4.6). In
Sect. 5, we prove Theorems B, C and D. Sections4 and 5 are written so that they can be read
independently.

2 Preliminaries

2.1 Boundaries at infinity, Gromov products and Busemann functions

For a general introduction to spaces of non-positive curvature, we refer to [8] and [9]. For
more material on asymptotic geometry, we additionally refer to [15].

Let (X , d) be a metric space. We say X is proper if all closed balls are compact. For
A, B ⊂ X , we denote d(A, B) := inf{d(a, b)|a ∈ A, b ∈ B}. (Note that this does not define
a metric.) A geodesic is an isometric embedding γ : I → X , where I ⊂ R is any interval.
A geodesic is also called a geodesic segment, if I is closed and bounded, a geodesic ray, if
I = [a,∞) or I = (−∞, a], and a bi-infinite geodesic or a geodesic line, if I = R. To make
notation easier, our geodesic rays will start at time a = 0 unless stated otherwise. A metric
space is called geodesically complete if and only if all geodesic segments can be extended to
geodesic lines.

Assume from now on, that (X , d) is a proper, connected, geodesically complete CAT(0)
space. (Later, we will specialize to an n-dimensional, connected, geodesically complete Rie-
mannian manifold (X , g), such that all sectional curvatures are non-positive.) Since (X , d) is
CAT(0), the functions d(γ (t), γ ′(t)) and d(x, γ (t)) are convex and strictly convex respec-
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tively for all geodesics γ, γ ′ and x ∈ X (see Sect. 2.4 for a definition and discussion of
(strict) convexity).

Two geodesic rays γ , γ ′ are called asymptotic if there exists B > 0 such that for all t ≥ 0,
d(γ (±t), γ ′(±t)) ≤ B, where the two signs depend on whether γ , γ ′ are defined on [0,∞)

or (−∞, 0]. This defines an equivalence relation.We denote the equivalence class containing
a geodesic ray γ by [γ ]. The boundary at infinity of X is defined as the space of equivalence
classes of geodesic rays

∂X := {γ |γ a geodesic ray }�asymptotici t y.

Given ξ ∈ ∂X and a representative γ : [0,∞)→ X of ξ , we sometimes write ξ = γ (∞)

and call ξ the endpoint of γ . If γ : (−∞, 0] → X is a representative of ξ , we write
ξ = γ (−∞). In particular, a bi-infinite geodesic γ defines two points γ (∞), γ (−∞) in ∂X .

Two bi-infinite geodesics γ , γ̃ are parallel, if the function t 	→ d(γ (t), γ̃ (t)) is constant.
Since X is CAT(0), any two bi-infinite geodesics whose endpoints are ξ, η are parallel. We
denote the set of geodesics with γ (−∞) = ξ, γ (∞) = η by [ξ, η]. Whenever there exists a
bi-infinite geodesic with endpoints ξ, ηwe call it a geodesic from ξ to η andwe say that (ξ, η)

is visible. We call an n-tuple (ξ1, . . . , ξn) a visible n-tuple, whenever for all i 
= j, (ξi , ξ j )
is visible.

We can equip the boundary at infinity with a topology called the visual topology. It is
defined as follows. Fix a base point x ∈ X . For any ξ ∈ ∂X , denote the unique geodesic
ray starting at x , representing ξ by ξx . (The existence of such geodesics is a well-known
application of the Theorem of Arzela-Ascoli.) Let ξ ∈ ∂X . For all R > 0, ε > 0, define

UR,ε,x (ξ) := {η ∈ ∂X |d(ηx (R), ξx (R)) < ε}.
It is easy to see that the collection {UR,ε,x (ξ)}R,ε,ξ forms a basis for a topology on ∂X ,

the visual topology. Furthermore, this topology is independent of x (see Part II, Section 8 in
[9]).

The following family of functions is a valuable tool when studying ∂X . Fix a base point
x ∈ X and define the Gromov product of two points ξ , η ∈ ∂X with respect to x to be

(ξ |η)x := lim
t→∞

1

2
(d(x, ξx (t))+ d(x, ηx (t))− d(ξx (t), ηx (t)))

= lim
t→∞ t − 1

2
d(ξx (t), ηx (t)).

This limit exists, since the function on the right-hand-side is non-decreasing in t , although
(ξ |η)x may be infinite, e.g. if ξ = η, or if ξx , ηx span a flat sector in X (think of a sector
in R

2). If there exists ε > 0, such that X is CAT(−ε), then (ξ |η)x is infinite if and only if
ξ = η. Note that, if (ξ |η)x = ∞ for some base point x , then (ξ |η)y = ∞ for all y ∈ X . We
define

ρx (ξ, η) := e−(ξ |η)x

with the convention that e−∞ = 0.

Remark 2.1 We remark that we could define the Gromov product to be the limit limn→∞
(ξx (tn)|ηx (t ′n))x for any two sequences tn, t ′n

n→∞−−−→ ∞. Due to monotony, all these limits
are equal.
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Wewill also use the following notation. In analogy to theGromov product on the boundary,
we define for any triple x, y, z ∈ X the Gromov product of y, z with respect to x by

(y|z)x := 1

2
(d(x, y)+ d(x, z)− d(y, z)).

In order to understand how the Gromov product depends on the choice of base point, we
use the Busemann function: Let x , y ∈ X and ξ ∈ ∂X . The Busemann function is defined
by

B(x, y, ξ) := lim
t→∞ d(y, ξx (t))− d(x, ξx (t)).

Using the triangle-inequality, we see that the function on the right-hand-side is bounded in
absolute value and non-increasing, hence this limit exists and is finite. Further, the Busemann
function is continuous in x and y [8, Section 3.1] and convex in y [9, Section II.8, Proposition
8.22].

In Appendix A.2 of [20], it is shown that in CAT(0) spaces, for all geodesic rays γ

asymptotic to ξx ,

B(x, y, ξ) = lim
t→∞ d(y, γ (t))− d(x, γ (t)).

This independence of the representative of ξ implies that for all x, y, z ∈ X and ξ ∈ ∂X , we
compute

B(x, y, ξ)+ B(y, z, ξ) = lim
t→∞ d(y, γ (t))− d(x, γ (t))+ d(z, γ (t))− d(y, γ (t))

= B(x, z, ξ),

which gives us the cocycle equation

B(x, y, ξ)+ B(y, z, ξ) = B(x, z, ξ). (1)

In particular,

B(x, y, ξ) = −B(y, x, ξ).

Finally, the Busemann function is also continuous in ξ with respect to the visual topology on
∂X [9, Section II.8].

Let ξ ∈ ∂X and y0 ∈ X . The horospheres centered at a point ξ ∈ ∂X are the level sets

{x ∈ X |B(x, y0, ξ) = m},
where m ranges over all of R. Because of equation (1), this filtration does not depend on y0,
which is why y0 is omitted from the terminology.

Let γ, γ ′ be two asymptotic geodesic rays representing ξ ∈ ∂X . Extend both of them to
bi-infinite geodesic lines. For all T ∈ R, there exists T ′ such that γ (T ), γ ′(T ′) lie on the
same horosphere of ξ , i.e. B(γ ′(T ′), γ (T ), ξ) = 0. In fact,

T ′ = B(γ ′(T ′), γ ′(0), ξ)

= B(γ ′(T ′), γ (T ), ξ)+ B(γ (T ), γ (0), ξ)+ B(γ (0), γ ′(0), ξ)

= T + B(γ (0), γ ′(0), ξ).

Definition 2.2 Let x, y ∈ X and ξ ∈ ∂X . For k > 0, there exists an - up to isometry
unique - constellation x, y ∈ H

2−k, ξ ∈ ∂H
2−k , such that d(x, y) = d(x, y) and B(x, y, ξ) =
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Fig. 1 Any two geodesic rays representing the same point ξ at infinity can be reparametrised so that at
any given time, they lie on the same horosphere centered at ξ . In this figure, one may reparametrise γ ′ as
γ ′new(t) = γ ′(t + T ′ − T )

B(x, y, ξ). We call (x, y, ξ) a comparison triangle of (x, y, ξ) in H
2−k . We call the angle

∠x (y, ξ) the comparison angle to (x, y, ξ) in curvature −k and denote it by ∠(−k)
x (y, ξ).

For k = 0, we analogously find x, y ∈ R
2, ξ ∈ ∂R

2 satisfying the same equations. We
use the same terminology and denote the comparison angle to (x, y, ξ) in curvature 0 by
∠(0)
x (y, ξ).

The following formulas relate the Busemann function with the comparison angle:

Lemma 2.3 For all x, y ∈ X and all ξ ∈ ∂X, we have

∀k > 0 : ekB(x,y,ξ) = cosh(kd(x, y))− sinh(kd(x, y)) cos(∠(−k2)
x (y, ξ)),

B(x, y, ξ) = −d(x, y) cos(∠(0)
x (y, ξ)).

In particular, we conclude from these equations that ∠(−k)
x (y, ξ) is continuous in x, y and ξ

for all k ≥ 0.

The first of these formulas is proven in [11]. We prove the second one here, since it is not
easy to find in the literature.

Proof Let x, y ∈ X , ξ ∈ ∂X and let γ be a geodesic ray in R
2. Denote x := γ (0) and

ξ := [γ ]. For every t > 0, there exist exactly two points y1(t), y2(t) ∈ R
2, such that

(x, yi , γ (t)) is a comparison triangle to (x, y, ξx (t)) (by definition a triangle with the same
side lengths). For every t , choose one of these two points, denoted y(t), such that y(t) varies
continuously in t . Since (x, y(t), γ (t)) are comparison triangles to (x, y, ξx (t)), we have

d(y(t), γ (t))− d(x, γ (t)) = d(y, ξx (t))− d(x, ξx (t))
t→∞−−−→ B(x, y, ξ).

Since y(t) is a bounded curve, it admits a converging subsequence. The equation above
implies that any convergent subsequence of y(t) converges to a point y such that (x, y, ξ)

is a comparison triangle for (x, y, ξ). Since there are exactly two such points and y(t) is
continuous, we see that y(t) converges to one of these points. This implies that

∠x (y(t), γ (t))
t→∞−−−→ ∠x (y, ξ) = ∠(0)

x (y, ξ).

123



Geometriae Dedicata (2024) 218 :34 Page 9 of 48 34

By the law of cosines in Euclidean space, we have
d(y(t), γ (t))2 = d(x, y(t))2 + d(x, γ (t))2 − 2d(x, y(t))d(x, γ (t)) cos(∠x (y(t), γ (t)))

= d(x, y)2 + t2 − 2d(x, y)t cos(∠x (y(t), γ (t))).

Therefore,

B(x, y, ξ) = lim
t→∞(d(y, ξx (t))− d(x, ξx (t)))

t→∞−−−→1
︷ ︸︸ ︷

d(y, ξx (t))+ d(x, ξx (t))

2t

= lim
t→∞

d(y(t), γ (t))2 − t2

2t

= lim
t→∞

d(x, y)2 − 2d(x, y)t cos(∠x (y(t), γ (t)))

2t
= −d(x, y) cos(∠(0)

x (y, ξ)).

�


2.2 Cross ratios

Let X be a proper, connected, geodesically complete CAT(0) space. We obtain a family of
functions (·|·)x : ∂X × ∂X → [0,∞].
Definition 2.4 Let (ξ1, . . . , ξn) ∈ ∂Xn be an n-tuple. Choose x ∈ X . We say (ξ1, . . . , ξn) is
algebraically visible, if for all i 
= j , (ξi |ξ j )x <∞.

As noted in the last section, this definition does not depend on the choice of x . We can
reformulate it in terms of the maps ρx , by requiring ρx (ξi , ξ j ) > 0 for all i 
= j instead.
Note that ρx is symmetric and non-negative, but it does not satisfy the triangle inequality and
there may be pairs ξ 
= η such that ρx (ξ, η) = 0. Nevertheless, we can use ρx to define a
cross ratio as follows.

Define the set of admissible quadruples in ∂X to be the set

A := {(ξ1, ξ2, ξ3, ξ4) ∈ ∂X4|∀i 
= j 
= k 
= i, at least two of the pairs

(ξi , ξ j ), (ξi , ξk), (ξ j , ξk) are algebraically visible}.
In other words,A consists of the quadruples whose points do not include a chain in which

pairs of consecutive points are not algebraically visible. For all admissible quadruples, we
can define a cross ratio by

crx (ξ1, ξ2, ξ3, ξ4) := ρx (ξ1, ξ2)ρx (ξ3, ξ4)

ρx (ξ1, ξ3)ρx (ξ2, ξ4)
∈ [0,∞].

The goal of this section is to prove the following theorem.

Theorem 2.5 Let X be a proper, connected, geodesically complete CAT(0) space. Then, for
all x, y ∈ X, crx = cry on all of A.

The proof is based on the following

Lemma 2.6 For all x, y ∈ X, and for all ξ, η ∈ ∂X,

(ξ |η)x = 1

2
(B(y, x, ξ)+ B(y, x, η))+ (ξ |η)y
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This formula is well known for CAT(−1) spaces (see [14]). However, the case of CAT(0)
spaces is hard to find in the literature, which is why we provide a proof here.

Proof of Lemma 2.6 Since (ξ |η)x = ∞ if and only if (ξ |η)y = ∞, the equation trivially
holds in that case. Suppose (ξ |η)x <∞. We first show the inequality ‘≥’. Let ε > 0. Since
the function (ξy(t)|ηy(t))y is monotone increasing, we find T ≥ 0, such that for all t ≥ T ,
we have

(ξy(t)|ηy(t))y ≥ (ξ |η)y − ε

2
.

From the properties of Busemann functions in the last section, we know that there are
Tξ , Tη such that B(ξx (Tξ ), ξy(T ), ξ) = 0 = B(ηx (Tη), ηy(T ), η). Specifically,

Tξ = T + B(y, x, ξ)

Tη = T + B(y, x, η).

Since B(ξx (Tξ ), ξy(T ), ξ) = B(ηx (Tη), ηy(T ), η) = 0, there exists S ≥ T such that for
all s ≥ S,

|d(ξy(T ), ξx (s))− d(ξx (Tξ ), ξx (s))| ≤ ε

2

|d(ηy(T ), ηx (s))− d(ηx (Tη), ηx (s))| ≤ ε

2
.

We obtain for all s ≥ S

2(ξ |η)x ≥ d(x, ξx (s))+ d(x, ηx (s))− d(ξx (s), ηx (s))

≥ s + s − d(ξx (s), ξy(T ))− d(ξy(T ), ηy(T ))− d(ηy(T ), ηx (s))

≥ s + s − d(ξx (s), ξx (Tξ ))− d(ηx (s), ηx (Tη))− d(ξy(T ), ηy(T ))− ε

= Tξ + Tη − d(ξy(T ), ηy(T ))− ε

= B(y, x, ξ)+ B(y, x, η)+ 2(ξy(T )|ηy(T ))y − ε

≥ B(y, x, ξ)+ B(y, x, η)+ 2(ξ |η)y − 2ε.

Since ε was chosen arbitrarily, we obtain

(ξ |η)x ≥ (ξ |η)y + 1

2
(B(y, x, ξ)+ B(y, x, η))

The same argument with x and y swapped yields

(ξ |η)y ≥ (ξ |η)x + 1

2
(B(x, y, ξ)+ B(x, y, η))

= (ξ |η)x − 1

2
(B(y, x, ξ)+ B(y, x, η))

and thus

(ξ |η)x ≤ (ξ |η)y + 1

2
(B(y, x, ξ)+ B(y, x, η)),

which concludes the proof. �

Proof of Theorem 2.5 We know from Lemma 2.6 that for all ξ, η ∈ ∂X

ρy(ξ, η) =
√

e−B(x,y,ξ)e−B(x,y,η)ρx (ξ, η)
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Therefore, for all admissible, algebraically visible quadruples (ξ1, ξ2, ξ3, ξ4),

cry(ξ1, ξ2, ξ3, ξ4) =
√
e−B(x,y,ξ1)−B(x,y,ξ2)−B(x,y,ξ3)−B(x,y,ξ4)ρx (ξ1, ξ2)ρx (ξ3, ξ4)√
e−B(x,y,ξ1)−B(x,y,ξ2)−B(x,y,ξ3)−B(x,y,ξ4)ρx (ξ1, ξ3)ρx (ξ2, ξ4)

= crx (ξ1, ξ2, ξ3, ξ4).

We are left to check the special cases where (ξ1, ξ2, ξ3, ξ4) is admissible, but not alge-
braically visible. If an admissible quadruple is not algebraically visible, there has to be at
least one pair in the quadruple that is not algebraically visible. If (ξ1, ξ2) or (ξ3, ξ4) is not
algebraically visible, then crx (ξ1, ξ2, ξ3, ξ4) = 0 = cry(ξ1, ξ2, ξ3, ξ4). If (ξ1, ξ3) or (ξ2, ξ4)

is not algebraically visible, then crx (ξ1, ξ2, ξ3, ξ4) = ∞ = cry(ξ1, ξ2, ξ3, ξ4). Otherwise,
the equation from above still applies. We conclude that crx = cry on all of A. �


If X is CAT(−1), it is a well-known result that (ξ |η)x is continuous with respect to the
visual topology. For CAT(0) spaces, this is not true anymore, which is illustrated by the
fact that the Gromov product on the boundary of the euclidean plane obtains exactly the
values zero and infinity and the set of pairs for which the Gromov product is infinite is dense.
Nevertheless, some continuity properties remain true. We say that a bi-infinite geodesic γ in
X is rank 1 if and only if it does not bound an isometrically embedded half plane in X . Note
that γ might still have parallel geodesics, however there is a bound on the distance of any
such parallel geodesic to γ .

Lemma 2.7 Let ξn → ξ, ηn → η be two converging sequences in ∂X. Then the following
statements hold.

(1) (ξ |η)x ≤ lim inf
n→∞ (ξn |ηn)x .

(2) If (ξn, ηn) is visible for all n and (ξ, η) can be connected by a rank 1 geodesic, then
lim
n→∞(ξn |ηn)x = (ξ |η)x .

The proof of Lemma 2.7 requires several preliminary results. We begin with

Lemma 2.8 Let ξn → ξ , ηn → η be two converging sequences in ∂X such that (ξn, ηn) can
be connected by a geodesic line γn for all n and (ξ, η) can be connected by a geodesic line
γ . Then, for all n sufficiently large, there exists a point pn ∈ γn such that ∠γ (0)(ξ, pn) = π

2 ,
or γ (0) ∈ γn.

Proof By Proposition 9.2 in Part II of [9], the function (ξ, η) 	→ ∠γ (0)(ξ, η) that sends two
points in X ∪∂X to the angle between the unique geodesics from γ (0) to ξ and η respectively
is continuous away from γ (0) with respect to the cone topology (which restricts to the visual
topology on the boundary). This implies that

∠γ (0)(ξ, ξn)→ 0,

∠γ (0)(ξ, ηn)→ π.

Therefore, we find N such that for all n ≥ N , we have

∠γ (0)(ξ, ξn) ≤ π

4
,

∠γ (0)(ξ, ηn) ≥ 3π

4
.

Let γn be a geodesic from ξn to ηn . If γn does not meet γ (0), then the angle function varies
continuously along γn and the intermediate value theorem tells us that there has to exist some
point pn ∈ γn , for which ∠γ (0)(ξ, pn) = π

2 . Otherwise, γ (0) ∈ γn . �
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Given a subset A ⊂ X and ε > 0, we denote the ε-neighbourhood of A by Nε(A) :=
{x ∈ X |d(x, A) < ε}. Next, we need
Lemma 2.9 Let ξn → ξ , ηn → η be two converging sequences in ∂X, such that (ξn, ηn) is
visible for all n and (ξ, η) can be connected by a rank 1 geodesic γ . Let γn be a geodesic
from ξn to ηn. For n sufficiently large, Lemma 2.8 allows us to choose pn ∈ γn, such that
∠γ (0)(ξ, pn) = π

2 or pn = γ (0). Reparametrize γn, such that γn(0) = pn.
Then for all ε > 0, T > 0, there exists an N such that for all n ≥ N, there exists a

geodesic γ̃ from ξ to η such that γn |[−T ,T ] ⊂ Nε(γ̃ |[−T ,T ]).

Proof We set the convention that, throughout this proof, γ̃ denotes a bi-infinite geodesic from
ξ to η, which is parametrised such that B(γ (0), γ̃ (0), ξ) = 0.

Suppose, the statement of the Lemma was not true. Then, we would find ε > 0, T > 0
and subsequences (ξni )i , (ηni )i such that for all γ̃ , we find tni ∈ [−T , T ] such that
d(γ̃ (tni ), γni (tni )) ≥ ε.

Step 1: There exists N , such that for all ni ≥ N and for all γ̃ , we have d(γ̃ (0), γni (0)) ≥ ε
2 .

Suppose, d(γ̃ (0), γni (0)) < ε
2 for some γ̃ and some ni ≥ N . Since γ is a rank 1 geodesic,

the set

{γ̃ (0)|γ̃ a bi-infinite geodesic from ξ to η with B(γ (0), γ̃ (0), ξ) = 0}
is bounded. Therefore, we can choose N sufficiently large, such that for all γ̃ , we have

d(γ̃ (−T ), ξni ,γ̃ (0)(T )) ≤ ε

2
,

d(γ̃ (T ), ηni ,γ̃ (0)(T )) ≤ ε

2
.

By construction and assumption,

d(ξni ,γ̃ (0)(0), γni (0)) <
ε

2
,

d(ηni ,γ̃ (0)(0), γni (0)) <
ε

2
.

Since distance functions are convex in CAT(0) spaces, [ξni ,γ̃ (0)] = [γni |(−∞,0]], and
[ηni ,γ̃ (0)] = [γni |[0,∞)], this implies that

d(ξni ,γ̃ (0)(T ), γni (−T )) <
ε

2
,

d(ηni ,γ̃ (0)(T ), γni (T )) <
ε

2

and therefore,
d(γ̃ (t), γni (t)) < ε

for all t ∈ [−T , T ]. This contradicts our assumption that γ̃ admits some tni ∈ [−T , T ]
satisfying d(γ̃ (tni ), γni (tni )) ≥ ε. We conclude that, for all ni ≥ N and for all γ̃ ,
d(γ̃ (0), γni (0)) ≥ ε

2 .
Recall from the statement of the Lemma that γni (0) = pni was chosen so that either

γni = γ (0), or ∠γ (0)(ξ, pni ) = π
2 . As we have just shown, d(γ̃ (0), γni (0)) ≥ ε

2 for all γ̃ ,
which includes γ . Thus, γ (0) 
= γni (0) and we conclude that the geodesic from γ (0) to
γni (0) meets γ at a right angle in γ (0).

Step 2: Recall from the statement of the Lemma that γni (0) = pni was chosen so that
either γni = γ (0), or ∠γ (0)(ξ, pni ) = π

2 . According to Step 1, d(γ̃ (0), γni (0)) ≥ ε
2 for all

ni sufficiently large and for all γ̃ , which includes γ . Thus, γ (0) 
= γni (0) and we conclude
that the geodesic from γ (0) to γni (0) meets γ at a right angle in γ (0).

123



Geometriae Dedicata (2024) 218 :34 Page 13 of 48 34

Fig. 2 Visualisation of proof: Since the geodesic from ξni to ηni stays away from the flat strip from ξ to η,
the geodesic δni has to move away from that flat strip. The shape of the two horospheres illustrates why φni
is strictly decreasing along δni . As ni →∞, any finite segment of δni is pushed into the flat strip from ξ to
η, because ξni → ξ and ηni → η

Let δni be the geodesic from γ (0) to γni (0), which meets γ |[0,−∞) at a right angle for all
sufficiently large ni . By the Theorem of Arzela-Ascoli, (δni )i has a converging subsequence
in compact-open topology. Passing to a subsequence if necessary, we assume without loss
of generality that (δni )i converges to a geodesic δ. Since δni meets γ |[0,−∞) at a right angle
for all ni , we know that the same is true for δ. Therefore, δ cannot be extended to a geodesic
ray representing ξ or η.

Choose x ∈ γ and denote for all ζ ∈ ∂X

Bζ (x
′) := B(x, x ′, ζ ).

Further, we define

φni (x
′) := Bξni

(x ′)+ Bηni
(x ′)− Bξni

(γ (0))− Bηni
(γ (0)).

Note that (by straight-forward calculation from the definitions) for any bi-infinite geodesic
γ0 from ξ0 toη0, a point x ∈ γ0, and some x ′ ∈ X , we have that B(x, x ′, ξ0)+B(x, x ′, η0) ≥ 0
with equality if and only if x ′ lies on a geodesic from ξ0 to η0. Using this observation together
with equation (1), we see that

φni (γni (0)) = B(γ (0), γni (0), ξni )+ B(γ (0), γni (0), ηni ) ≤ 0

and

φni (δ(0)) = φni (γ (0)) = 0.

In particular, since Busemann functions are convex, φni (δni (s)) ≤ 0 for all s, where δni is
defined. Since Bξ (x) is continuous in ξ and Lipschitz continuous in x , we see that on every
compact interval, on which δni is defined for ni large, we have

0 ≥ φni (δni (s))
i→∞−−−→ Bξ (δ(s))+ Bη(δ(s)) ≥ 0.

Therefore, Bξ (δ(s)) + Bη(δ(s)) ≡ 0 for all s for which δ is defined, which implies that
δ lies completely in the set of points that are contained in geodesics from ξ to η. Since ξ

and η are connected by a rank 1 geodesic, the geodesic δ can only have infinite length if it
represents either ξ or η. As discussed above, this cannot happen given the waywe constructed
δ. We conclude that δ has finite length. Therefore, the forward-endpoints of δni converge to
the forward-endpoint of δ, i.e. γni (tni )→ p, where p lies on a geodesic connecting ξ with η

and – because δ meets γ |[0,−∞) at a right angle – B(γ (0), p, ξ) = 0. Therefore, p = γ̃ (0)
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Fig. 3 The horospheres in the picture are the smallest ones centered at ξ and η that have non-empty intersection,
provided that we shrink them at equal speed, starting with the horospheres containing x

for some γ̃ . This is a contradiction to our original assumption that the subsequence γni (0)
stays away from γ̃ (0) for all γ̃ . This completes the proof. �


We also need another characterisation of the Gromov product. Fix some x ∈ X and let
ξ, η ∈ ∂X . Denote by

h−m := {y ∈ X |B(x, y, ξ) ≤ −m},
h′−m := {y ∈ X |B(x, y, η) ≤ −m}

the horoballs centered at ξ and η respectively. Note that ξx (t) ∈ ∂h−t and ηx (t) ∈ ∂h′−t .
Define

mx (ξ, η) := sup{m′|h−m′ ∩ h′−m′ 
= ∅}.

Lemma 2.10 Let X be a proper, geodesically complete CAT(0) space. For all x ∈ X , ξ, η ∈
∂X, we have

(ξ |η)x = mx (ξ, η).

Furthermore, if (ξ, η) is visible, then every geodesic γ from ξ to η contains a point in
∂h−mx (ξ,η) ∩ ∂h′−mx (ξ,η) and every p ∈ h−mx (ξ,η) ∩ h′−mx (ξ,η) lies on a geodesic from ξ to η.

Before we prove this lemma, we introduce a convenient notation. Given two real numbers
a, b and δ > 0, we write a �δ b, whenever |a − b| ≤ δ.

Proof of Lemma 2.10 Denote m := mx (ξ, η). We first show that 2(ξ |η)x ≤ 2m. Suppose
(ξ |η)x <∞. Let m′ > m and ε > 0. There exists t0 ≥ 0, such that

2(ξ |η)x ≤ 2t0 − d(ξx (t0), ηx (t0))+ ε.

Let γt be the geodesic from ξx (t) to ηx (t). Denote the unique intersection point of γt with
∂h−m′ by p(t) and the unique intersection point of γt with ∂h′−m′ by q(t). Sincem′ > m, we
know that there is a segment of γt that lies outside of h−m′ ∪ h′−m′ . For t > t0, we compute

2(ξ |η)x ≤ 2t0 − d(ξx (t0), p(t0))− d(p(t0), q(t0))− d(q(t0), ηx (t0))+ ε

≤ 2t − d(ξx (t), p(t0))− d(q(t0), ηx (t))+ ε

≤ B(p(t0), x, ξ)+ B(q(t0), x, η)+ ε

= 2m′ + ε,
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as p(t0) ∈ ∂h−m′ , q(t0) ∈ ∂h−m′ . Since this computation applies for all ε > 0 and m′ > m,
we conclude that (ξ |η)x ≤ m whenever (ξ |η)x < ∞. If (ξ |η)x = ∞, we do the same
computation as above, except that we drop ε and instead find for every C > 0 a time t0, such

that C ≤ 2t − d(ξx (t), p(t0))− d(p(t0), q(t0))− d(q(t0), ηx (t))
t→∞−−−→ 2m′.

Now, letm′ < m, i.e. h−m′ ∩h′−m′ 
= ∅ and define γt as above. Choose p ∈ ∂h−m′ ∩h′−m′ .
Let ε > 0. Then, for t sufficiently large,

2m′ ≤ B(p, x, ξ)+ B(p, x, η)

≤ 2t − d(ξx (t), p)− d(p, ηx (t))+ ε

≤ 2t − d(ξx (t), ηx (t))+ ε

≤ 2(ξ |η)x + ε.

Therefore, (ξ |η)x ≥ m, which concludes the proof of the first statement.
For the second statement of the Lemma, suppose (ξ, η) is visible and again denote m :=

mx (ξ, η). Let γ be a geodesic from ξ to η. Since B(x, γ (t), ξ) = B(x, γ (0), ξ)+ t , there is
a unique intersection point of γ with ∂h−m . We denote this intersection point by p.

We claim that p ∈ ∂h′−m . Suppose not. Sincem = sup{m′|h−m′ ∩h′−m′ 
= ∅}, this implies
that B(x, p, η) > −m. Therefore, there exists ε > 0 such that B(x, p, η) > −m+2ε. Since
m = mx (ξ, η), we find q ∈ h−m+ε ∩ h′−m+ε . We compute

B(x, p, ξ)+ B(x, p, η) > −2m + 2ε

≥ B(x, q, ξ)+ B(x, q, η)

= B(x, p, ξ)+ B(x, p, η)+ B(p, q, ξ)+ B(p, q, η).

This implies that B(p, q, ξ)+B(p, q, η) < 0, which is a contradiction to the fact that p ∈ γ .
We conclude that p ∈ ∂h′−m .

Note that h−m ∩ h′−m = ∂h−m ∩ ∂h−m . Otherwise, we would find a point p such that
B(x, p, ξ) = B(x, p, η) = −m − ε with ε > 0, which contradicts the assumption that
m = mx (ξ, η). We now show that every q ∈ ∂h−m ∩ ∂h′−m lies on a geodesic from ξ to η as
well. Let p be as above. We compute

B(p, q, ξ)+ B(p, q, η) = B(p, x, ξ)+ B(x, q, ξ)+ B(p, x, η)+ B(x, q, η)

= m + (−m)+ m + (−m) = 0.

Since p lies on a geodesic from ξ to η, the sum B(p, q, ξ)+ B(p, q, η) equals zero if and
only if q also lies on a geodesic from ξ to η. This proves the second part of the Lemma. �


Proof of Lemma 2.7 We first prove (1). Let ε > 0. There exists T ≥ 0, such that for all
t ≥ T , (ξx (t)|ηx (t))x ≥ (ξ |η)x − ε. Since ξn → ξ and ηn → η, we find N such that for all
n ≥ N , ξn ∈ UT , ε

2 ,x (ξ) and ηn ∈ UT , ε
2 ,x . Thus,

(ξn |ηn)x ≥ (ξn,x (T )|ηn,x (T ))x

= T − 1

2
d(ξn,x (T ), ηn,x (T ))

≥ T − 1

2
(d(ξx (T ), ηx (T ))+ 2ε)

≥ (ξ |η)x − 2ε.

Since ε was chosen to be any positive number, we conclude that lim inf
n→∞ (ξn |ηn)x ≥ (ξ |η)x .
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To prove (2), we start by using Lemma 2.10 to describe the Gromov product as follows.
Let (ξ, η) be visible and let h, h′ be as in the definition of mx (ξ, η). Denote the unique point
where ξx intersects ∂h−mx (ξ,η) by p and the unique point where ηx intersects ∂h′−mx (ξ,η) by q .
Since (ξ, η) is visible, we know fromLemma2.10 that h−mx (ξ,η)∩h′−mx (ξ,η) is non-empty and
contains only points that are contained in a geodesic from ξ toη. Let r ∈ h−mx (ξ,η)∩h′−mx (ξ,η).
The Gromov product is equal to mx (ξ, η) which is the same as the distance d(x, p). Note
that the following equations hold by construction:

d(x, p) = d(x, q)

B(p, r , ξ) = B(q, r , η) = 0.

Let ε > 0. Let γn be a bi-infinite geodesic from ξn to ηn . By Lemma 2.9, there exists
(after reparametrisation) a subsequence γni converging to a geodesic γ from ξ to η. Choose
r from above such that r ∈ γ . We find triples (pn, qn, rn) as in the construction above, where
we choose rn ∈ γn . By (1), we know that lim inf

n→∞ d(x, pn) ≥ d(x, p).

Suppose, lim inf
n→∞ d(x, pn) ≥ d(x, p) + ε. By choice of γ , we know that γni converges

to γ in compact-open topology. In particular, for ni sufficiently large, r ∈ N ε
4
(γni ) and we

find r ′ni ∈ γni , such that d(r , r ′ni ) < ε
4 . Therefore, for ni sufficiently large, B(r , rni , ξni ) � ε

4

B(r ′ni , rni , ξni ).
Furthermore, since ξn → ξ and ηn → η, we can choose ni sufficiently large such that

d(ξx (d(x, p)), ξni ,x (d(x, p))) < ε
4 and d(ηx (d(x, p)), ηni ,x (d(x, p))) < ε

4 . Together with
our assumption on the convergence behaviour of d(x, pn), we obtain that for all ni sufficiently
large

B(pni , p, ξni ) ≥ B(pni , ξni ,x (d(x, p)), ηni )−
ε

8
≥ d(x, pni )− d(x, p)− ε

4
≥ 3ε

4
,

B(qni , q, ηni ) ≥ B(qni , ηni ,x (d(x, p)), ηni )−
ε

8
≥ d(x, qni )− d(x, q)− ε

4
≥ 3ε

4
,

and thus,

B(pni , r , ξni ) ≥ B(p, r , ξni )+
3ε

4
,

B(qni , r , ηni ) ≥ B(q, r , ηni )+
3ε

4
.

Finally, since Busemann functions B(x, y, ξ) are continuous in ξ , we can choose ni
sufficiently large such that

B(p, r , ξni ) ≥ B(p, r , ξ)− ε

4
,

B(q, r , ηni ) ≥ B(q, r , η)− ε

4
.

Altogether, this implies that there exists N ∈ N such that for all n ≥ N ,

B(pni , rni , ξni ) ≥ B(pni , r , ξni )+ B(r ′ni , rni , ξni )−
ε

4

≥ B(p, r , ξni )+ B(r ′ni , rni , ξni )+
ε

2

≥ B(p, r , ξ)+ B(r ′ni , rni , ξni )+
ε

4

= B(r ′ni , rni , ξni )+
ε

4
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B(qni , rni , ηni ) ≥ B(qni , r , ηni )+ B(r ′ni , rni , ηni )−
ε

4

≥ B(q, r , ηni )+ B(r ′ni , rni , ηni )+
ε

2

≥ B(q, r , η)+ B(r ′ni , rni , ηni )+
ε

4

= B(r ′ni , rni , ηni )+
ε

4
.

However, since rni , r
′
ni both lie on the geodesic γni from ξni to ηni , we have

B(pni , rni , ξni )+ B(qni , rni , ηni )) ≤ 0

and

B(r ′ni , rni , ξni )+ B(r ′ni , rni , ηni )) = 0,

which is a contradiction to the inequalities above. We conclude that lim inf
n→∞ d(x, pn) =

d(x, p). Since this argument applies to any subsequence of (ξn, ηn) as well, we conclude
that lim

n→∞ d(x, pn) exists and equals d(x, p). This concludes the proof. �

Weprove onemore Lemma that characterizes rank 1 geodesics in terms of a local visibility

property.

Lemma 2.11 Let γ be a rank 1 geodesic from ξ toη. Then, there exists an open neighbourhood
U × V of (ξ, η), such that for all (ξ ′, η′) ∈ U × V , (ξ ′, η′) is a visible pair.

In particular, a pair (ξ, η) can be connected by a rank 1 geodesic if and only if there exists
a neighbourhood U of ξ , such that for all ξ ′ ∈ U, (ξ ′, η) is visible.

Proof The proof uses a similar idea as the proof of Lemma 2.9. Since γ is a rank 1 geodesic,
there exists a constant C > 0, such that every geodesic γ ′ from ξ to η is parallel to γ and
has Hausdorff distance dHaus(γ, γ ′) ≤ C .

Suppose the Lemma was not true. Then, there exist sequences ξi → ξ , ηi → η, such
that for all i , (ξi , ηi ) is not visible. Denote x := γ (0), γ−i the geodesic ray starting at x
representing ξi , and γ+i the geodesic ray starting at x representing ηi . Let γT ,i be the unique
geodesic from γ−i (T ) to γ+i (T ). Note that, if we fix i , the paths γT ,i vary continuously in T in
the sense that dHaus(γT+ε,i , γT ,i ) ≤ 2ε. Denote the points at infinity obtained by extending
γT ,i by ξT ,i and ηT ,i respectively.

Recall thatwedefinedd(A, B) := inf{d(a, b)|a ∈ A, b ∈ B}.Note thatd(x, γT ,i )
T→∞−−−→

∞. If it did not, we could use Arzela-Ascoli to find a converging subsequence of bi-infinite
geodesics γTn ,i that converges to a bi-infinite geodesic from ξi to ηi , contradicting the assump-
tion that the pair (ξi , ηi ) is not visible. Furthermore, one immediately sees from the definition

that d(x, γT ,i )
T→0−−−→ 0.

Since γT ,i varies continuously in T , there exists a time Ti such that d(x, γTi ,i ) = 2C

and there exists a unique point xi ∈ γTi ,i satisfying d(x, xi ) = 2C . Note that Ti
i→∞−−−→ ∞,

as ξi → ξ and ηi → η. We reparametrise γTi ,i such that it is an arc-length geodesic with
γTi ,i (0) = xi . Since X is assumed to be proper, the Arzela-Ascoli theorem implies the
existence of a subsequence γTni ,ni that converges to a bi-infinite geodesic line γ̃ from ξ̃

to η̃ with xni converging to a point x̃ ∈ γ̃ . Without loss of generality, we denote these
subsequences by γTi ,i and xi .

We claim that∠x (x̃, ξ) = ∠x (x̃, η) = π
2 . To prove this, we denote αi := ∠x (xi , γ

−
i (Ti )),

α′i := ∠x (xi , γ
+
i (Ti )), βi := ∠xi (x, γ

−
i (Ti )), β ′i := ∠xi (x, γ

+
i (Ti )). Since xi minimizes
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Fig. 4 The times Ti are chosen such that d(x, xi ) = 2C . This provides us with a subsequence of the geodesics
γTi ,i that converges to γ̃ . The angles of the triangles (x, xi , γ

±
i (Ti )) tell us that x̃ cannot lie in the flat strip

from ξ to η (indicated by the dotted lines). However, the endpoints of γ̃ turn out to be ξ and η, which leads to
a contradiction

the distance d(x, γTi ,i (t)) and is not an endpoint of γTi ,i , we conclude that βi , β
′
i ≥ π

2 .
Since the sum of angles of a triangle in a CAT(0) space is at most π , this implies that
αi , α

′
i ≤ π

2 . However, since ξi → ξ and ηi → η, we have that limi→∞ αi + α′i ≥ π (the
limit exists, since xi → x̃). We conclude that limi→∞ αi = limi→∞ α′i = π

2 , which means
that ∠x (x̃, ξ) = ∠x (x̃, η) = π

2 . Combined with the fact that d(x, x̃) = 2C and any geodesic
parallel to γ is contained in the C-neighbourhood of γ , this implies that x̃ does not lie in the
flat strip spanned by all geodesic lines from ξ to η.

We now claim that ξ̃ = ξ and η̃ = η, contradicting the fact that x̃ does not lie on any
geodesic from ξ to η. We show this by proving that dHaus(γ, γ̃ ) < ∞. Fix R > 0. By the
convergences established above, there exists I such that for all i ≥ I , we have Ti ≥ R, and
for all |t | ≤ R, we have d(γTi ,i (t), γ̃ (t)) ≤ C , and d(γ (t), γ±i (|t |)) ≤ C . We estimate for
all |t | ≤ R,

d(γ (t), γ̃ (t)) ≤ d(γ (t), γ±i (|t |))
+ d(γ±i (|t |), γTi ,i (t))
+ d(γTi ,i (t), γ̃ (t))

≤ 4C,

where we used the fact that γ±i (Ti ) ∈ γTi ,i and convexity of distance functions to estimate
d(γ±i (|t |), γTi ,i (t)) ≤ max(d(x, xi ), d(γ±i (Ti ), γTi ,i (Ti ))) = 2C .

This implies that γ̃ and γ have bounded Hausdorff distance and, therefore, they are
parallel. In particular, ξ = ξ̃ and η = η̃ and x̃ lies on a geodesic from ξ to η. However, x̃
was constructed so that it cannot lie on such a geodesic. This is a contradiction and proves
the Lemma. �

Corollary 2.12 Let x ∈ X, ξ, η ∈ ∂X, and γ a rank 1 geodesic from ξ to η. Then, (·|·)x :
∂X × ∂X → [0,∞] is continuous at (ξ, η).

We now define one of the properties necessary to make the circumcenter extension con-
struction work.

Definition 2.13 Let X be a proper, connected, geodesically complete CAT(0) space, ξ ∈ ∂X .
We say that ξ is in a rank 1 hinge if there exist η, ζ ∈ ∂X , such that (η, ζ ) is algebraically
visible and the pairs (ξ, η), (ξ, ζ ) both can be connected by a rank 1 geodesic.
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2.3 Metric derivatives

In order to extend cross ratio preserving maps to maps of the interior, we need to generalize
the notion of metric derivatives, which has been developed for general metric spaces (see
[10, 11, 13]). In this subsection, we show how this tool can be extended to boundaries of
CAT(0) spaces that ‘have sufficiently many algebraically visible pairs’. Since the underlying
theory is more general, we will state the definitions and results in a more general form and
then return to CAT(0)-spaces and boundaries.

Let Z be a topological space, ρ and ρ′ two non-negative, symmetric maps ρ, ρ′ : Z ×
Z → [0,∞] such that for all z ∈ Z , ρ(z, z) = ρ′(z, z) = 0. By analogy to the previous
section, we call an n-tuple (x1, . . . , xn) ∈ Zn algebraically visible with respect to ρ if
and only if for all i 
= j , ρ(xi , x j ) > 0. We say that a quadruple (x1, x2, x3, x4) ∈ Z4 is
admissible with respect to ρ if it contains no triple (xi , x j , xk) with i 
= j 
= k 
= i such that
ρ(xi , x j ) = ρ(x j , xk) = 0. Denote the set of quadruples admissible with respect to ρ by
Aρ . We will not indicate the ρ, whenever it is clear from context. Using the same formula as
before, ρ and ρ′ both define a cross ratio crρ and crρ′ on the setAρ andAρ′ respectively. We

say that ρ and ρ′ areMöbius equivalent ifAρ = Aρ′ and crρ = crρ′ . We write ρ
M∼ ρ′. Note

that a pair (x, y) is algebraically visible if and only if the quadruple (x, x, y, y) is admissible.
Thus, Aρ = Aρ′ if and only if ρ and ρ′ define the same algebraically visible pairs.

Definition 2.14 Wesay that (Z , ρ) satisfies the 4-visibility assumption, if the following holds:

(4v) For every quadruple (z, x, x ′, y′) ∈ Z4, there exists w ∈ Z , such that w is algebraically
visible with z, x , x ′, y′.

Remark 2.15 For any n ∈ N
+, we can define the assumption (nv) by replacing quadruples

by n-tuples. Note that (nv) implies (kv) for all k ≤ n and whenever Z satisfies (nv), it has to
contain at least n+ 1 points, as otherwise we could choose an n-tuple that contains all points
in Z to create a contradiction to (nv).

Further note that, if (Z , ρ) satisfies (4v) and ρ
M∼ ρ′, then (Z , ρ′) satisfies (4v) as well.

We say that a point z in (Z , ρ) is approximable, if there exists a sequence zn ∈ Z , such

that zn
n→∞−−−→ z and (z, zn) is algebraically visible for all n. Note that, if ρ

M∼ ρ′, then a point
is approximable in (Z , ρ) if and only if it is approximable in (Z , ρ′).

Definition/Proposition 2.16 (cf. [10]) Suppose ρ
M∼ ρ′. Additionally, assume that (Z , ρ)

(and thus (Z , ρ′)) satisfies (4v)). Let z ∈ Z and choose x, y ∈ Z such that (x, y, z) is an
algebraically visible triple with respect to ρ (and thus ρ′). Then, the expression

Rz(x, y) := ρ(z, x)ρ(z, y)ρ′(x, y)
ρ(x, y)ρ′(z, x)ρ′(z, y)

,

is constant in x and y; it is continuous whenever ρ and ρ′ are continuous and, if ρ and ρ′
are continuous, the following equality holds for every point z ∈ Z that is approximable with
respect to ρ:

Rz(x, y) = lim
z′→z,ρ(z,z′)
=0

ρ(z, z′)
ρ′(z, z′)

.

This equation motivates to define the derivative of ρ by ρ′ at z by
∂ρ

∂ρ′
(z) := ρ(z, x)ρ(z, y)ρ′(x, y)

ρ(x, y)ρ′(z, x)ρ′(z, y)
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Proof We start by showing that every z ∈ Z admits x , y ∈ Z , such that (x, y, z) is an
algebraically visible triple. Let z ∈ Z . We can extend z to a quadruple (z, a, b, c) ∈ Z4. By
(4v), there exists a point x ∈ Z that is algebraically visible to z, a, b, c. In particular, z 
= x .
By extending the pair (z, x) to a quadruple and using (4v) again, we obtain y ∈ Z , that is
algebraically visible to both z and x . We conclude that (x, y, z) is an algebraically visible
triple.

Next, we show independence of x and y for all possible choices of x, y. Let x ′, y′ ∈ Z be
another pair such that (x ′, y′, z) is an algebraically visible triple. We proceed in two steps.

Step 1: Suppose, one of the pairs (x, x ′), (x, y′), (y, x ′), (y, y′) is algebraically visible.
Let’s assume that (x, x ′) is. We want to show that

Rz(x, y) = ρ(z, x)ρ(z, y)ρ′(x, y)
ρ(x, y)ρ′(z, x)ρ′(z, y)

= ρ(z, x ′)ρ(z, y′)ρ′(x ′, y′)
ρ(x ′, y′)ρ′(z, x ′)ρ′(z, y′)

= Rz(x
′, y′).

This is true if and only if

ρ(z, x)ρ(z, y)ρ(x ′, y′)ρ(x, x ′)
ρ(x, y)ρ(z, x ′)ρ(z, y′)ρ(x, x ′)

= ρ′(z, x)ρ′(z, y)ρ′(x ′, y′)ρ′(x, x ′)
ρ′(x, y)ρ′(z, x ′)ρ′(z, y′)ρ′(x, x ′)

,

which is the same as

crρ(z, y, x ′, x)crρ(z, x, y′, x ′) = crρ′(z, y, x
′, x)crρ′(z, x, y′, x ′).

This last equation is true, since all appearing quadruples are admissible by assumption

and ρ
M∼ ρ′. The cases, where (x, y′), (y, x ′) or (y, y′) is algebraically visible are analogous.

Step 2: Suppose, all the pairs above are not algebraically visible. By assumption (4v),
there exists a point w ∈ Z , which is algebraically visible with z, x , x ′ and y′. By Step 1, we
obtain that

Rz(x, y) = Rz(w, y′) = Rz(x
′, y′).

Therefore, Rz(x, y) = Rz(x ′, y′) for any two algebraically visible triples (x, y, z),
(x ′, y′, z).

In order to prove continuity, note that, if ρ is continuous, algebraic visibility with respect
to ρ is an open condition and analogously for ρ′. Therefore, for any z ∈ Z , we find an open
neighbourhood U and a pair (x, y), such that for all z′ ∈ U , (x, y, z′) is an algebraically
visible triple with respect to ρ and ρ′. Thus, for all z′ ∈ U , ∂ρ

∂ρ′ (z
′) = Rz′(x, y), which is

continuous in z′ by continuity of ρ and ρ′.
Finally, if z is approximable in (Z , ρ), we find a sequence of points zn that are algebraically

visible with z and converging to z. By continuity of ρ and ρ′, we find a point y ∈ Z , such that
(zn, y, z) is an algebraically visible triple for all sufficiently large n. Using the continuity of
ρ and ρ′ again, we obtain

∂ρ

∂ρ′
(z) = lim

n→∞ Rz(zn, y)

= lim
n→∞

ρ(z, zn)ρ(z, y)ρ′(zn, y)
ρ(zn, y)ρ′(z, zn)ρ′(z, y)

= ρ(z, y)ρ′(z, y)
ρ(z, y)ρ′(z, y)

lim
n→∞

ρ(z, zn)

ρ′(z, zn)
= lim

n→∞
ρ(z, zn)

ρ′(z, zn)
.

This implies that limz′→z
ρ(z,z′)
ρ′(z,z′) exists and the desired equality, which completes the

proof. �
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We require a few properties of these derivatives. If ρ, ρ′ are metrics, these properties are
shown in [10] and the proof is the same as here.

Lemma 2.17 (cf. [10]) Let ρ
M∼ ρ′ M∼ ρ′′, z, z′ ∈ Z. Then

(Chain rule) ∂ρ
∂ρ′ (z)

∂ρ′
∂ρ′′ (z) = ∂ρ

∂ρ′′ (z)

(Geometric mean value theorem) ρ(z, z′)2 = ∂ρ
∂ρ′ (z)

∂ρ
∂ρ′ (z

′)ρ′(z, z′)2

Proof For the Chain rule, choose x, y ∈ Z such that (z, x, y) is an algebraically visible triple
with respect to ρ, ρ′, ρ′′. Then

∂ρ

∂ρ′
(z)

∂ρ′

∂ρ′′
(z) = ρ(z, x)ρ(z, y)ρ′(x, y)ρ′(z, x)ρ′(z, y)ρ′′(x, y)

ρ(x, y)ρ′(z, x)ρ′(z, y)ρ′(x, y)ρ′′(z, x)ρ′′(z, y)
= ∂ρ

∂ρ′′
(z).

For the Geometric mean value theorem, if ρ(z, z′) = 0, the equation follows from Aρ =
Aρ′ . If ρ(z, z′) 
= 0, we can choose x ∈ Z such that (z, z′, x) is an algebraically visible
triple. Then

∂ρ

∂ρ′
(z)

∂ρ

∂ρ′
(z′) = ρ(z, z′)ρ(z, x)ρ′(z′, x)ρ(z′, z)ρ(z′, x)ρ′(z, x)

ρ(z′, x)ρ′(z, z′)ρ′(z, x)ρ(z, x)ρ′(z′, z)ρ′(z′, x)
= ρ(z, z′)2

ρ′(z, z′)2
�


Remark 2.18 If at least one point z ∈ Z is approximable in (Z , ρ) and both ρ and ρ′ are
continuous, then it is easy to see from the characterization of the derivative at the approx-
imable point z by ∂ρ

∂ρ′ (z) = limz′→z
ρ(z,z′)
ρ′(z,z′) that the Geometric mean value theorem uniquely

determines the derivative of ρ by ρ′.
Remark 2.19 (cf. [10]) Using Lemma 2.6 and the additivity of Busemann functions, it is easy
to see that on boundaries of CAT(0) spaces,

∂ρx

∂ρy
(ξ) = eB(x,y,ξ).

Lemma 2.20 (cf. [10]) Let ρ
M∼ ρ′. Additionally, assume that Z is compact, for all z, z′ ∈ Z,

ρ(z, z′) ≤ 1, ρ′(z, z′) ≤ 1 and that for every z ∈ Z there exist z̄, z̄′ ∈ Z such that ρ(z, z̄) = 1
and ρ′(z, z̄′) = 1. Then,

max
z∈Z

{

∂ρ

∂ρ′
(z)

}

min
z∈Z

{

∂ρ

∂ρ′
(z)

}

= 1

Note that, if Z = ∂X and ρ = ρx , ρ
′ = ρx ′ , then the assumptions of Lemma 2.20 are

satisfied, so this Lemma applies in the context that we will be considering.

Proof Let z ∈ Z such that ∂ρ
∂ρ′ (z) is maximal and z′ ∈ Z such that ∂ρ

∂ρ′ (z
′) is minimal. Denote

the obtained maximum and minimum by μ and λ respectively. Let z̄′ ∈ Z be such that
ρ′(z, z̄′) = 1. then

1 ≥ ρ(z, z̄′)2 = ∂ρ

∂ρ′
(z)

∂ρ

∂ρ′
(z̄′) ρ′(z, z̄′)2

︸ ︷︷ ︸

=1
≥ μλ.

On the other hand, let z̄ ∈ Z be such that ρ(z′, z̄) = 1. Then

1 ≥ ρ′(z′, z̄)2 = ∂ρ′

∂ρ
(z′) ∂ρ

′

∂ρ
(z̄) ρ(z′, z̄)2

︸ ︷︷ ︸

=1
≥ 1

λ

1

μ
.

We conclude that μ · λ = 1. �
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2.4 Convex functions

We need some basic results about convex functions. A function f : I → R defined on an
interval I ⊂ R is called convex if for all a, b ∈ I and t ∈ [0, 1], we have f ((1− t)a+ tb) ≤
(1− t) f (a)+ t f (b). A function is called strictly convex if this inequality is a strict inequality
for all t ∈ (0, 1).

In a geodesic metric space X , a function f : X → R is called convex if for any geodesic
γ on X and any a, b on the domain of γ , we have

∀t ∈ [0, 1] : f (γ ((1− t)a + tb)) ≤ (1− t) f (γ (a))+ t f (γ (b)).

Remark 2.21 There is a sufficient, but generally not necessary analytic condition for (strict)

convexity. If f : I → R is aC2-function, then f is convex if and only if ∂2 f
∂t2
≥ 0 everywhere.

Furthermore, if ∂2 f
∂t2

> 0 everywhere, then f is strictly convex. However, the converse is not

necessarily true, as is illustrated by the example t 	→ t4 at the point zero.

We recall the following standard result about convex functions.

Lemma 2.22 Let fz : X → R be a family of convex functions on a connected, geodesic
CAT(0) space X parametrized by z ∈ Z. Define F(x) := supz∈Z { fz(x)}. Then F : X → R

is convex.

2.5 Visibility and algebraic visibility

Let X , Y be proper, connected, geodesically complete CAT(0) spaces. Amap f : ∂X → ∂Y ,
is calledMöbius if and only if it sends algebraically visible pairs to algebraically visible pairs
and preserves the cross ratio, i.e.

∀(ξ1, ξ2, ξ3, ξ4) ∈ A : crX (ξ1, ξ2, ξ3, ξ4) = crY ( f (ξ1), f (ξ2), f (ξ3), f (ξ4)).

In order to construct our extension map, we require that f is not only Möbius but also
that f and f −1 both preserve visible pairs. It is tempting to try and show that Möbius maps
always preserve visible pairs by arguing that a pair (ξ, η) in ∂X is visible if and only if it is
algebraically visible. It is known that visible pairs are always algebraically visible. However,
while the converse is true if X admits a cocompact group action by isometries, it is not true in
general, as the following example – provided by Jean-Claude Picaud and Viktor Schroeder
– illustrates.

Consider the manifoldR
2 with coordinates (x, y) and equip it with the Riemannianmetric

dx2 + f (x)2dy2, where f : R → R is a C2-function, such that f (x) > 1 for all x and
limx→∞ f (x) = 1. The curvature of this metric at (x, y) is given by − f ′′(x)

f (x) . Hence, if f is
strictly convex, this space has negative curvature everywhere. We equip the tangent space of
R
2 with the standard basis e1, e2 everywhere. We denote the inner product with respect to

the Riemannian metric above by 〈·, ·〉 f .
This Riemannian manifold is the universal covering of a surface of revolution R × S1

with coordinates (x, ϑ) and Riemannian metric dx2 + f (x)2dϑ2. By abuse of notation,
we call the projection of the vector fields e1, e2 onto the surface of revolution by e1, e2 as
well. It is a classical result that a path γ on a surface of revolution is a geodesic in the
Riemannian sense if and only if the function 〈γ ′(t), e2(γ (t))〉 f is constant. (This is called
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Clairaut’s constant, cf. [19].) We observe from this fact that a geodesic γ (t) = (x(t), y(t))
with x ′(0) > 0, will have monotone increasing x(t) for all t ≥ 0 if and only if its Clairaut
constant 〈γ ′(t), e2〉 f ≤ limt→∞〈e2, e2〉 f = limt→∞ f (t)2 = 1. Else, the geodesic γ will
eventually change its x-direction and have decreasing x(t). This argumentation carries over
to the universal covering, where we conclude that a geodesic ray γ represents a point in

the boundary with x(t)
t→∞−−−→ ∞ if and only if |〈γ ′(0), e2〉 f | ≤ 1. The Clairaut constant

also implies that no two geodesic rays with x(t)
t→∞−−−→∞ can be connected by a bi-infinite

geodesic. Thus, any pair of geodesics with x ′(0) > 0 and Clairaut constant at most one is a
non-visible pair.

We focus our attention on the borderline case where the absolute value of the Clairaut
constant equals one, i.e. |〈γ ′(t), e2〉 f | ≡ 1. Fixing (x0, y0) ∈ R

2, there are exactly two
geodesic rays starting at (x0, y0) whose Clairaut constant in absolute value equals 1. We will
show that, depending on the choice of the function f , this pair of points in the boundary may
be algebraically visible or not algebraically visible.

We start with some general arguments that will allow us to reverse engineer the functions
f and y, assuming that we know the x-coordinate of a geodesic with Clairaut constant one.
Suppose, we have a geodesic γ with a known x-coordinate. We know that the following two
equations hold:

±1 ≡ 〈γ ′(t), e2〉 f = f (x(t))2y′(t).
1 ≡ 〈γ ′(t), γ ′(t)〉 f = x ′(t)2 + f (x(t))2y′(t)2

This implies that

y′(t) = ± 1

f (x(t))2
,

f (x(t))2 = ± 1

1− x ′(t)2
.

We now use these equations in two concrete cases.

Example 2.23 Restrict to t ≥ 2 and suppose, x(t) = ln(t). By the equations above, using the
fact that we also require f (x) > 1, we obtain

f (x(t)) =
√

t2

t2 − 1
= t√

t2 − 1
,

y′(t) = ±
(

1− 1

t2

)

.

In particular, we obtain

f (x) = ex√
e2x − 1

,

which is a strictly convex function for x > 0 with limx→∞ f (x) = 1, as direct computation
shows.

For every starting point p0, we obtain two geodesic rays starting at that point that are
described by the equations above. Choose some p0 and denote the two geodesics start-
ing there by γ+, γ−. We claim that their Gromov product is finite. Since

∫∞
2

1
t2
dt < ∞,

we obtain that there exists some constant C such that y+(t) > t − C and y−(t) <

−t + C for all t . Let δ be the shortest path connecting γ+(t), γ−(t). Since the euclidean
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inner product satisfies 〈·, ·〉Eucl ≤ 〈·, ·〉 f , we see that the euclidean distance satisfies
2t − 2C ≤ dEucl(γ+(t), γ−(t)) ≤ d f (γ

+(t), γ−(t)). Therefore, the Gromov product satis-
fies ([γ+]|[γ−])p0 ≤ 2C <∞. In particular, here we have an example of a non-visible pair
that is algebraically visible.

Example 2.24 Restrict to t > 1, choose α ∈ (0, 1
2 ) and suppose, x(t) = 1

1−α
t1−α . We obtain

f (x(t)) = 1√
1− t−2α

,

y′(t) = ±(1− t−2α),

y(t) = ±(t − 1

1− 2α
t1−2α)+ C .

In particular,

f (x) = 1
√

1− (1− α)−
2α
1−α x−

2α
1−α

.

Abbreviating σ := 1
1−2α and τ := (1− α)−

2α
1−α , we rewrite

f (x) = 1
√

1− τ x−
2α
1−α

y(t) = ±(t − σ t1−2α)+ C .

Again, a computation shows that f ′′ > 0 and f (x)
x→∞−−−→ 1. Again, we obtain two

geodesics γ+, γ− starting at the same starting point p0, described by these equations.
We claim that their Gromov product is infinite. For this, it is sufficient to show that

d(γ+(t), γ−(t)) ≤ t − ψ(t) for some function ψ
t→∞−−−→ ∞. Since dEucl(γ+(t), γ−(t)) ≤

2(t − σ t1−2α)+C ′ is the euclidean length of the euclidean geodesic between γ+(t), γ−(t)
and since σ > 1, we obtain that

d f (γ
+(t), γ−(t)) ≤ 2 f (x(t))(t − σ t1−2α)+ f (x(t))C ′

≤ 2
1√

1− t−2α
(t − t1−2α)+ C ′√

1− t−2α

= 2t
√

1− t−2α + C ′√
1− t−2α

≤ 2t(1− 1

2
t−2α)+ C ′√

1− t−2α
= 2t − ψ(t),

where ψ(t) = t1−2α − C ′√
1−t−2α

t→∞−−−→∞. We conclude that ([γ+]|[γ−])p0 = ∞.

These examples illustrate why we will assume not only that f is Möbius but also that it
preserves visible pairs in the coming sections.

2.6 Jacobi fields

Wenowmove fully into the realm of Riemannianmanifolds.We refer to [19] for all necessary
background informations. Let X be an n-dimensional, connected, simply connected, geodesi-
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cally complete Riemannian manifold such that all sectional curvatures are non-positive. Let
ξ ∈ ∂X . The radial vector field in the direction of ξ is the unique unit vector field � on X
such that at every p ∈ X , the geodesic ray in the direction of the vector�p is a representative
of ξ .

Since X is geodesically complete, every vector v ∈ T X induces a unique geodesic ray
γv : R→ X such that γ ′v(0) = v. The exponential map at a point x ∈ X is defined by

expx : Tx X → X , v 	→ γv(1).

One easily checks that expx is a smooth map and expx (λv) = γv(λ) for all λ ∈ R. Fur-
thermore, since X is simply connected and has non-positive sectional curvature, expx is a
diffeomorphism according to the Cartan-Hadamard theorem.

Let γ be a geodesic in X . A vector field J defined along γ is called a Jacobi-field if and
only if it satisfies the following second-order ordinary differential equation:

D2

dt2
J (t)+ R(J (t), γ ′(t))γ ′(t) = 0.

where R denotes the Riemannian curvature tensor and D
dt the covariant derivative along γ

with respect to the Levi-Civita connection. Any Jacobi field along γ is uniquely determined
by the initial conditions J (0), DJ

dt (0). The space of Jacobi fields along γ forms a real 2n-
dimensional vector space.

On completemanifolds, Jacobi fields are uniquely characterised as the vector fields arising
from smooth one-parameter families of geodesics γs with γ0 = γ . The Jacobi field corre-
sponding to (γs)s is given by J (t) = d

ds |s=0γs(t). A Jacobi field is called perpendicular, if
J (t) ⊥ γ ′(t) for all t . A Jacobi field is called stable if supt≥0{‖J (t)‖2} <∞. A Jacobi field
is called parallel if ‖J (t)‖2 is constant along all of γ .

We now define a subset of X that consists of all the points that have ‘asymptotic features
of flatness’. Specifically,

FX := {x ∈ X |∃ γ geodesic ray, starting at x and

∃ J perpendicular, parallel Jacobi field along γ }.
We first note that, whenever x ∈ FX , we find a geodesic γ as in the definition of FX and

every point on γ is contained in FX . We note that, whenever there exists a perpendicular,
parallel Jacobi field J along a geodesic γ , a standard calculation gives us

0 = 1

2

d2

dt2
‖J (t)‖2 =

〈

D2

Dt2
J (t), J (t)

〉

+
∥

∥

∥

∥

D

Dt
J (t)

∥

∥

∥

∥

2

= −sect .curv.
(〈

J (t), γ ′(t)
〉)+

∥

∥

∥

∥

D

Dt
J (t)

∥

∥

∥

∥

2

.

Since X has non-positive sectional curvature, we see that every point in FX has to contain
a 2-dimensional tangent plane whose sectional curvature vanishes. (In fact, these 2-planes
have to fit together nicely.) This provides a method to recognize that FX is small for a given
Hadamard-manifold X .

The following result that goes back to Eberlein connects the complement of FX with a
convexity property of horospheres (another way to control the size of FX ).

Proposition 2.25 (Lemma 3.1 in [25]) Let X be a Hadamard manifold, � the radial field in
the direction of ξ ∈ ∂X and B a Busemann function centered at ξ . Then � = −grad(B),�
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is C1 and ∇v� = DJ
dt (0) for all v ∈ Tx X, where J is the unique stable Jacobi field along

the geodesic ray ξx such that J (0) = v.

The covariant derivative ∇v� can be thought of as a second derivative of the Busemann
function B, because for all v,w ∈ Tx X ,

d

dt
|t=0 d

ds
|s=0B(x, γ (t, s), ξ) = 〈∇v�,w〉,

where γ (t, s) = expx (tv + sw).

3 Construction of8 and F

For the rest of this paper, let X , Y be n-dimensional, connected, simply connected, geodesi-
cally complete Riemannian manifolds such that their sectional curvatures are bounded by
−b2 ≤ curv ≤ 0. Further, assume that ∂X and ∂Y satisfy (4v) and that all points in ∂X and
∂Y are in a rank 1 hinge. We denote the unit tangent bundle of X by T 1X . Further, we have
the tangent bundle projection πX : T X → X . If the manifold X is clear from the context,
we simply write π . For all x ∈ X , ξ ∈ ∂X we denote the unit tangent vector in T 1

x X that

‘points to ξ ’, i.e. whose induced geodesic ray represents ξ , by
−→
xξ . This provides us with a

homeomorphism between ∂X and T 1
x X equipped with the standard topology [9, Example

II.8.11]. Analogously, for any two points x, x ′ ∈ X , we denote the tangent vector of the

arc-length geodesic from x to x ′ at x by
−→
xx ′.

Let f : ∂X → ∂Y be a Möbius homeomorphism such that f and f −1 both preserve
visible pairs. Our goal is to extend f to a map F : X → Y . The construction presented in
this section is a generalisation of a construction by Biswas for CAT(−1) spaces. Its most
similar presentation to the one below can be found in [12].

3.1 Constructing8

We start by constructing a map between the tangent bundles of X and Y . The idea of this
construction goes back to the construction of a geodesic conjugacy in [14],which also features
in [10]. However, it turns out that, in our context, thismap can only be defined after identifying
certain vectors in the tangent bundle.

Let v ∈ T X . The geodesic flow on X provides us with a unique bi-infinite geodesic γ

such that γ ′(0) = v. Denote the two endpoints of γ at infinity by v−∞ := γ (−∞) and
v∞ := γ (∞). Let v,w ∈ T 1X and denote their projection in X by x and x ′ respectively.
We say that v ∼ w, if ‖v‖ = ‖w‖, v∞ = w∞, v−∞ = w−∞ and B(x, x ′, v∞) = 0. Note
that this is equivalent to the convex hull of the geodesics induced by v and w being a flat
strip (see Theorem 2.13 in Part II of [9]) and the foot points of v and w being on the same
horosphere with respect to either endpoint of the strip. This defines an equivalence relation
on T X and we denote the quotient by T X . Denote the quotient of the unit tangent bundle by
the same equivalence relation by T 1X . The equivalence class of a vector v will be denoted
by [v]. Since v ∼ w⇔ −v ∼ −w, we define −[v] := [−v].

We construct a map � : T 1X → T 1Y which will be a geodesic conjugacy in the sense
of Lemma 3.3. Let v ∈ T 1

x X be a unit-vector. As above, we obtain two points v∞, v−∞ at
infinity. Since f preserves visible pairs, there exists at least one geodesic from f (v−∞) to
f (v∞). Choose one such geodesic and denote it by γ . The image of [v] under � will be the
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Fig. 5 The vector v is sent to the vector �(v). The derivative ∂ f∗ρx
∂ρy

( f (v∞)) determines which horosphere

�(v) needs to be placed on. If f (v′∞), f (v′−∞) have several connecting bi-infinite geodesics, the choice of
�(v′) is no longer unique and we obtain a non-trivial equivalence class

equivalence class of a unit-vector on the geodesic γ pointing towards f (v∞). All that is left
is to choose the foot point on γ .

Lemma 3.1 (cf. [10]) There exists a unique y ∈ γ , such that ∂ f∗ρx
∂ρy

( f (v∞)) = 1.

Furthermore, if γ ′ is another geodesic from f (v−∞) to f (v∞) and y′ the unique point
on γ ′ such that ∂ f∗ρx

∂ρ′y
( f (v∞)) = 1, then

−−−−→
y f (v∞) ∼ −−−−−→y′ f (v∞).

Finally, if v ∼ v′ and π(v′) =: x ′, then for all y ∈ Y , ∂ f∗ρx
∂ρy

( f (v∞)) = ∂ f∗ρx ′
∂ρy

( f (v∞)).

We define �([v]) to be the equivalence class of the unit vector at this unique point y
that points to f (v∞) (see Fig. 5). By Lemma 3.1, � is well-defined. Whenever we use an
equivalence class [v] as an input for �, we simply write �(v).

Proof We first note that, since X and Y are non-positively curved, simply connected, and
geodesically complete, they are CAT(0). We thus know from Remark 2.19 that for all y, y′ ∈
Y and η ∈ ∂Y ,

∂ρy

∂ρy′
(η) = eB(y,y′,η).

Let γ be a bi-infinite geodesic from f (v−∞) to f (v∞) and y, y′ ∈ γ . By the Chain Rule for
metric derivatives, we have

∂ f∗ρx

∂ρy′
( f (v∞)) = ∂ f∗ρx

∂ρy
( f (v∞))

∂ρy

∂ρy′
( f (v∞))

= ∂ f∗ρx

∂ρy
( f (v∞))eB(y,y′, f (v∞)).

Put y′ = γ (0). Since for any geodesic representative γ of ξ , B(γ (t), γ (t ′), ξ) = t − t ′,
we obtain

∂ f∗ρx

∂ρy
( f (v∞)) = ∂ f∗ρx

∂ρy′
( f (v∞))e−t .

The right-hand-side of this equation is equal to 1 if and only if t = ln
(

∂ f∗ρx
∂ρy′

( f (v∞))
)

.

(Note that ∂ f∗ρx
∂ρy′

( f (v∞)) > 0 by the definition of metric derivatives.) Thus, there exists a
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unique t and a unique y = γ (t) ∈ γ such that ∂ f∗ρx
∂ρy

( f (v∞)) = 1. This implies existence
and uniqueness.

For the second statement, let γ ′ be another geodesic from f (v−∞) to f (v∞) and y′ the
unique point on γ ′ such that ∂ f∗ρx

∂ρy′
( f (v∞)) = 1. Using the Chain Rule and Remark 2.19, we

get

B(y′, y, f (v∞)) = ln

(

∂ρy′

∂ρy
( f (v∞))

)

= ln

(

∂ρy′

∂ f∗ρx
( f (v∞)) · ∂ f∗ρx

∂ρy
( f (v∞))

)

= ln(1) = 0.

Since γ and γ ′ have the same endpoints, it follows that the unit vectors at y and y′
respectively, pointing at f (v∞) are equivalent.

To prove the last statement, let v ∼ v′, π(v′) =: x ′ and y ∈ Y . For the same reasons as
above, we have

∂ f∗ρx

∂ρy
( f (v∞)) = ∂ρx

∂ρx ′
(v∞) · ∂ f∗ρx ′

∂ρy
( f (v∞))

= eB(x,x ′,v∞) ∂ f∗ρx ′

∂ρy
( f (v∞))

= ∂ f∗ρx ′

∂ρy
( f (v∞)).

�


Lemma 3.2 For all v ∈ Tx X, we have �(−v) = −�(v).

Proof By the Geometric mean value theorem, for all y on a geodesic γ from f (v−∞) to
f (v∞),

∂ f∗ρx

ρy
( f (v∞))

∂ f∗ρx

ρy
( f (v−∞)) = ρy( f (v∞), f (v−∞))2

ρx (v∞, v−∞)2
= 1

1
= 1.

This implies that ∂ f∗ρx
ρy

( f (v∞)) = 1 if and only if ∂ f∗ρx
ρy

( f (v−∞)) = 1. �


Throughout the following, wewill want to consider Busemann functions that are evaluated
on a point in the set π([v]). We denote π ◦�(v) to be the foot point of a chosen representative
of �(v).

Lemma 3.3 (cf. [10]) For all x, x ′ ∈ X , ξ ∈ ∂X,

B(π ◦�(
−→
xξ), π ◦�(

−→
x ′ξ), f (ξ)) = B(x, x ′, ξ).

By Lemma 3.1, the left-hand-side does not depend on the choice of representative and is
thus well-defined.
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Proof

B(π ◦�(
−→
xξ), π ◦�(

−→
x ′ξ), f (ξ)) = ln

(

∂ρ
π◦�(

−→
xξ)

∂ρ
π◦�(

−→
x ′ξ)

( f (ξ))

)

= ln

(

∂ρ
π◦�(

−→
xξ)

∂ f∗ρx
( f (ξ)) · ∂ f∗ρx

∂ f∗ρx ′
( f (ξ)) · ∂ f∗ρx ′

∂ρ
π◦�(

−→
x ′ξ)

( f (ξ))

)

= ln

(

∂ρx

∂ρx ′
(ξ)

)

= B(x, x ′, ξ).

�

The map � is natural in the following sense.

Lemma 3.4 Given two Möbius bijections f : ∂X → ∂Y , g : ∂Y → ∂Z that are homeomor-
phisms and preserve visible pairs, we have

�g ◦� f = �g◦ f .

Furthermore, �I d = I d.

Proof Let u ∈ T 1X with π(u) = x . Choose v ∈ � f (u), w ∈ �g(v), w′ ∈ �g◦ f (u) and
denote y := π(v), z := π(w), z′ := π(w′). By construction of �, w′∞ = g( f (u∞)) =
w∞, w′−∞ = g( f (u−∞)) = w−∞ and ∂(g◦ f )∗ρx

∂ρz
(w′∞) = 1. By the Chain Rule,

∂g∗ρy

∂ρz
(w∞) · ∂ f∗ρx

∂ρy
(v∞) = ∂g∗ f∗ρx

∂ρz
(w∞) = 1

and therefore, w is in the equivalence class of �g◦ f (v). The identity �I d = I d is imme-
diate. �

Remark 3.5 With the above Lemma in mind, it is tempting to think of � as part of a functor.
We avoid this idea because there are open questions regarding a good definition of a category
of boundaries. Specifically, for a space to be an object in a ‘boundary category’ on which
the construction above makes sense, this object needs to admit a ‘filling’ by a Hadamard
manifold. This is sometimes called the inverse problem for Möbius geometry. The only case
where the author is aware of a solution to the inverse problem is the case when the boundary
is a circle (see [16]).

Lemma 3.4 implies in particular that � is invertible and its inverse is the map induced
by f −1. In [10], Biswas shows that, if X and Y are both CAT(−1) spaces, the map � is a
homeomorphism. Since X , Y can contain flat strips under our assumptions, his proof does
not generalize directly. We will present a way around this in the next section. Nevertheless,
we raise the following

Question Is the map � : T 1X → T 1Y a homeomorphism?

3.2 Constructing F

Let x ∈ X . Consider the unit-tangent sphere T 1
x X at x . Every point ξ ∈ ∂X can be represented

by a unit vector
−→
xξ ∈ T 1

x X . Applying the map � to all
−→
xξ , we obtain a collection of
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equivalence classes in T 1Y . Note that we may not be able to choose representatives of these
equivalence classes such that all representatives share the same foot point.Wewant F(x) ∈ Y
to be ’in the middle’ of the family �(T 1

x X). For all x ∈ X , y ∈ Y , ξ ∈ ∂X , we define

ux,y(ξ) := B(π ◦�(
−→
xξ), y, f (ξ)).

By Lemma 3.1, the expression above is independent of the choice of π ◦ �(
−→
xξ). We

immediately observe that ux,y(ξ) is convex in y, because Busemann functions are convex
in their second variable (second variable with respect to our notation). We start by showing
important properties of ux,y(ξ).

Lemma 3.6 (cf. [10]) For all x ∈ X, y ∈ Y , ξ ∈ ∂X,

∂ f∗ρx

∂ρy
( f (ξ)) = eux,y(ξ).

Proof We have

∂ f∗ρx

∂ρy
( f (ξ)) = ∂ f∗ρx

∂ρ
π◦�(

−→
xξ)

( f (ξ))
∂ρ

π◦�(
−→
xξ)

∂ρy
( f (ξ))

= 1 · eB(π◦�(
−→
xξ),y, f (ξ))

= eux,y(ξ),

where we used the definition of � and Remark 2.19 in the second step. �

Lemma 3.7 The map ux,y(ξ) is continuous in x, y and ξ .

Proof Clearly, u is continuous in y. To show continuity in x , let � : T 1Y → T 1X denote
the geodesic conjugacy constructed from f −1. By Lemma 3.4, � = �−1. By Lemma 3.3,
we have

ux,y(ξ) = B(π ◦�(
−→
xξ), π ◦�(�(

−−−→
y f (ξ))), f (ξ)) = B(x, π ◦�(

−−−→
y f (ξ)), ξ),

which is continuous in x .
To prove continuity in ξ , we note that this is equivalent to continuity of ∂ f∗ρx

∂ρy
( f (ξ)) in

ξ by Lemma 3.6. Since f is continuous by assumption, we are left to prove continuity of
specific metric derivatives. By definition,

∂ f∗ρx

∂ρy
( f (ξ)) = ρx (ξ, η)ρx (ξ, ζ )ρy( f (η), f (ζ ))

ρx (η, ζ )ρy( f (ξ), f (η))ρy( f (ξ), f (ζ ))

for any η, ζ ∈ ∂X such that (ξ, η, ζ ) is an algebraically visible triple. Since every point
in ∂X is in a rank 1 hinge, we can additionally choose η and ζ , such that (ξ, η) and (ξ, ζ ) are
connected by a rank 1 geodesic. Since f preserves visible pairs, Lemma 2.11, implies that
( f (ξ), f (η)) and ( f (ξ), f (ζ )) can be connected by a rank 1 geodesic. Corollary 2.12 then
implies that the expression above is continuous in ξ . This proves continuity of u in ξ . �


Since ∂X is compact, continuity implies that the supremum-norm ‖ux,y‖∞ <∞. Using
the fact that ux,y(ξ) is convex in y, Lemma 2.22 implies that ‖ux,y‖∞ is convex in y.
Furthermore, the function y 	→ ‖ux,y‖∞ is proper, since for any diverging sequence yn in
Y , we have

sup
ξ∈∂X
{ux,yn (ξ)} = sup

ξ∈∂X
{ux,y0(ξ)+ B(y0, yn, f (ξ))} n→∞−−−→∞,
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because for every n, we can choose ξ such that f (ξ) is the endpoint of the geodesic from y0
to yn which yields supξ∈∂X {B(y0, yn, f (ξ))} = d(y0, yn)→∞, while ‖ux,y0‖∞ <∞.

We now define several functions and sets that are key to the construction of F : X → Y .

Notation 3.8 Since y 	→ ‖ux,y‖∞ is proper and convex, it attains its infimum and thus the
function

M(x) := min
y∈Y {‖ux,y‖∞}

is well-defined. In addition, we define

Mx := {y ∈ Y |‖ux,y‖∞ = M(x)}
the set of points where the minimum is attained. Finally, we define for any x ∈ X , y ∈ Y

Kx,y := {ξ ∈ ∂X |ux,y(ξ) = ‖ux,y‖∞}
the set of points in the boundary where the function ux,y attains its maximum. Analogously,
for every y ∈ Y , we obtain sets My ⊂ X and Ky,x ⊂ ∂Y by working with f −1 and �−1.
Lemma 2.20 and Lemma 3.6 together imply that

∀y ∈ Mx : M(x) = max
ξ∈∂X{ux,y(ξ)} = − min

ξ∈∂X{ux,y(ξ)}.

In particular, we conclude that Kx,y is non-empty for all x ∈ X , y ∈ Mx.

Wewould like to define F(x) to be the unique point inMx . However, if Y is not a CAT(−1)
space, it is absolutely not clear thatMx consists only of one point. Aswewill see in amoment,
issues arise whenever �(

−→
xξ) is an equivalence class that contains more than one vector. We

will solve this by defining F(x) to be the circumcenter of the set Mx . Since Y is a CAT(0)
space, this circumcenter is unique and well-defined, provided that Mx is a compact, convex
set. The rest of this section is devoted to proving several useful properties of Mx which
culminate in a proof that Mx is compact and convex.

We can characterise elements of Mx as follows.

Lemma 3.9 (cf. [12]) Let x ∈ X , y ∈ Y . The following are equivalent:

(1) y ∈ Mx

(2) For all w ∈ T 1
y Y , there exists ξ ∈ Kx,y such that 〈w,

−−−→
y f (ξ)〉 ≤ 0.

(3) The convex hull of the set {−−−→y f (ξ)|ξ ∈ Kx,y} in TyY contains the zero vector.

Proof of Lemma 3.9 (1)⇒ (2): Suppose not. Then, we find x ∈ X , y ∈ Mx and w ∈ T 1
y Y

such that for all ξ ∈ Kx,y , 〈w,
−−−→
y f (ξ)〉 > 0. Let γ be the geodesic passing through y at time

zero with tangent vector w. Since the inner product is continuous and Kx,y is compact, we

find ε, ε′ > 0 and a neighbourhood N of Kx,y , such that for all ξ ′ ∈ N , 〈w,
−−−→
y f (ξ ′)〉 > ε

and for all ξ ′ ∈ X�N , ux,y(ξ ′) < M(x) − ε′. Using the fact that the gradient of the map
y 	→ B(y′, y, η) is equal to −−→yη, we obtain for all ξ ′ ∈ N and t sufficiently small

ux,γ (t)(ξ
′) = B(π ◦�(

−→
xξ), γ (t), f (ξ))

= B(π ◦�(
−→
xξ), y, f (ξ))+ B(y, γ (t), f (ξ))

≤ M(x)+ t(−〈−−−→y f (ξ), w〉)+ o(t)

< M(x)
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For ξ ′ ∈ ∂X�N , we have ux,γ (t)(ξ
′) = ux,y(ξ ′)+ B(y, γ (t), f (ξ ′)) < M(x)− ε′ + t <

M(x) for t sufficiently small. We conclude that, for t > 0 sufficiently small, ‖ux,γ (t)‖∞ <

M(x), which contradicts the definition M(x) = inf y∈Y ‖ux,y‖∞. Therefore, such a vector w

cannot exist.
(2)⇒ (3): Suppose not. Then, there exists an affine hyperplane h ⊂ TyY separating the

zero vector from the convex hull C of {−−−→y f (ξ)|ξ ∈ Kx,y}. Let n be the unit normal vector of
the hyperplane parallel to h, going through zero, pointing towards h. Then, 〈n, w〉 > 0 for
all w ∈ C . This is a contradiction to (2), hence h cannot exist. This implies (3).

(3)⇒ (1): Suppose not. Then, there exists y′ ∈ Y such that ‖ux,y′ ‖∞ < ‖ux,y‖∞. Let γ
be the geodesic from y to y′ and let ξ ∈ Kx,y . Then,

B(π ◦�(
−→
xξ), y, f (ξ)) = ux,y(ξ) > ‖ux,y′ ‖∞ ≥ ux,y′(ξ) = B(π ◦�(

−→
xξ), y′, f (ξ)).

Since B(z, y, f (ξ)) is convex in y, we conclude that B(π ◦�(
−→
xξ), γ (t), f (ξ)) is strictly

decreasing for t ≥ 0 sufficiently small. Therefore, for all ξ ∈ Kx,y ,

0 >
d

dt
|t=0B(π ◦�(

−→
xξ), γ (t), f (ξ)) = −〈γ ′(0),−−−→y f (ξ)〉.

If there were points ξ1, . . . , ξk ∈ Kx,y and a convex combination such that

k
∑

i=1
αi
−−−→
y f (ξi ) = 0,

then we compute

0 = 〈γ ′(0),
k
∑

i=1
αi
−−−→
y f (ξi )〉 > 0.

This is a contradiction to (3). We conclude that (3) implies (1), which completes the proof. �

The following is an important property of the function M .

Lemma 3.10 (cf. [13]) The map M : X → R is 1-Lipschitz continuous. Furthermore, the
maps x 	→ ‖ux,y‖∞ for fixed y and y 	→ ‖ux,y‖∞ for fixed x are both 1-Lipschitz.

Proof of Lemma 3.10 Let x, x ′ ∈ X , y ∈ Mx , y′ ∈ Mx ′ , ξ ∈ Kx ′,y . Using Lemma 3.3, we
compute

M(x ′) = ‖ux ′,y′ ‖∞ ≤ ‖ux ′,y‖∞
= B(π ◦�(

−→
x ′ξ), y, f (ξ))

= B(x ′, x, ξ)+ B(π ◦�(
−→
xξ), y, f (ξ))

≤ d(x, x ′)+ ‖ux,y‖∞.

We conclude that M(x ′) ≤ d(x, x ′) + M(x). Since the argument is symmetric in x, x ′,
we conclude that M is 1-Lipschitz continuous. This estimate also proves the 1-Lipschitz
continuity of the map x 	→ ‖ux,y‖∞. For the last map, the proof is analogous with ξ ∈ Kx,y′ .
�


The set Mx can only contains several points if it is contained in a certain region of Y that
can be expressed in geometric terms. To describe this region, recall that we defined FY to be
the set of all points in Y that admit a perpendicular, parallel Jacobi field along some geodesic
ray (cf.Sect. 2.6).
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Proposition 3.11 The union EY :=⋃

x∈X :|Mx |≥2 Mx satisfies EY ⊂ FY . In particular, when-
ever Mx contains an element in Y \ FY , it consists of exactly that point.

In order to prove this, we need to do some preparation which will be of further use in later
sections.

Definition 3.12 Let x ∈ X , ξ ∈ ∂X . We define ax : ∂X → ∂X to be the map that sends
ξ ∈ ∂X to the forward endpoint of the geodesic ray induced by the vector −−→xξ . We call ax
the antipodal map with respect to x .

By definition, ax = expx ◦(−I d) ◦ exp−1x . Since the visual topology coincides with
the standard topology on the unit tangent sphere T 1

x X , we immediately see that ax is a
homeomorphism.

Proposition 3.13 (cf. [13]) Fix x ∈ X and y ∈ Mx. Let ξ ∈ ∂X. If ∂ f∗ρx
∂ρy

( f (ξ)) is minimal

among all ξ , then there exists a bi-infinite geodesic γ ∈ [ f (ax (ξ)), f (ξ)] such that y lies on
γ . In particular, f (ax (ξ)) = ay( f (ξ)).

Proof Apoint y lies on a geodesic from f (ax (ξ)) to f (ξ) if and only ifρy( f (ax (ξ)), f (ξ)) =
1. Combining Lemma 2.20 and Lemma 3.6, we know that the minimal value obtained by
∂ f∗ρx
∂ρx

( f (ξ)) is equal to e−M(x). We compute

ρy( f (ax (ξ)) f (ξ))2 = ∂ρy

∂ f∗ρx
( f (ax (ξ)))

∂ρy

∂ f∗ρx
( f (ξ)) f∗ρx ( f (ax (ξ)), f (ξ))2

= ∂ρy

∂ f∗ρx
( f (ax (ξ)))eM(x)12

≥ e−M(x)eM(x) = 1,

where we used the fact that x ∈ (ax (ξ), ξ) by construction. This concludes the proof. �

Corollary 3.14 (cf. [13]) If x ∈ X , y ∈ Mx , ξ ∈ ∂X, then ∂ f∗ρx

∂ρy
( f (ξ)) is maximal if and

only if ∂ f∗ρx
∂ρy

( f (ax (ξ))) is minimal.

Proof If ∂ f∗ρx
∂ρy

( f (ax (ξ))) is minimal, then y lies on a geodesic from f (ax (ξ)) to f (ξ). Then,
∂ f∗ρx
∂ρy

( f (ξ)) = ∂ f∗ρx
∂ρy

( f (ax (ξ)))−1 = eM(x) by the Geometric mean value theorem.

On the other hand, if ∂ f∗ρx
∂ρy

( f (ξ)) is maximal, then ∂ f −1∗ ρy
∂ρx

(ξ) is minimal by the Chain

rule. By Proposition 3.13, this implies that ax (ξ) = f −1(ay( f (ξ))). The argument above

implies that ∂ f −1∗ ρy
∂ρx

(ax (ξ)) is maximal and therefore, ∂ f∗ρx
∂ρy

( f (ax (ξ))) is minimal. �


Corollary 3.15 For all x ∈ X , y ∈ Mx, the set Kx,y contains at least three points.

Proof ByLemma3.9, Kx,y contains at least twopoints, as anynon-trivial convex combination
requires at least two vectors. Suppose it consisted of exactly two points ξ, η. Then 0 =
α1
−−−→
y f (ξ) + α2

−−−→
y f (η) for α1, α2 > 0. Since this is a sum of unit vectors, we conclude that

ay( f (ξ)) = f (η). As ξ ∈ Kx,y , Corollary 3.14 implies that ux,y(ax (ξ)) is minimal. By
Proposition 3.13, f (ax (ξ)) = ay( f (ξ)) = f (η). Thus, ux,y(η) is bothmaximal andminimal.
Since minξ∈∂X {ux,y(ξ)} = −maxξ∈∂X {ux,y(ξ)}, we obtain that ux,y(η) = 0 and ux,y ≡ 0.
Therefore, Kx,y = ∂X , which contains infinitely many points. �
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The following result provides us with more information about Mx , which may be of
general interest in further study of this construction.

Lemma 3.16 Let x ∈ X. The set Mx is convex and contained in an intersection of at least three
horospheres in Y . Furthermore, diam(Mx ) ≤ 2M(x) < ∞. In particular, Mx is compact
and has codimension at least two in Y .

Proof If Mx consists of exactly one point, this is trivial. Suppose, Mx contains at least two
points. Let y 
= y′ ∈ Mx and denote the geodesic from y to y′ by γ . Since t 	→ ‖ux,γ (t)‖∞
is convex, greater or equal to M(x) and equal to M(x) at both endpoints, we conclude that
‖ux,γ (·)‖∞ ≡ M(x). Therefore, Mx is convex.

Let p be any point on γ strictly between y and y′. Since ux,p is continuous, we find
at least one ξ ∈ Kx,p. Since t 	→ ux,γ (t)(ξ) is convex (for any ξ ∈ ∂X ), we obtain that
it is either constant or increasing in one direction. If it was increasing, then ‖ux,γ (t)‖∞ >

|ux,p(ξ)| = M(x) for some γ (t) near, but not equal, to p. This contradicts the fact that
‖ux,γ (·)‖∞ ≡ M(x). Therefore, ux,γ (·)(ξ) ≡ M(x) along γ .

By Proposition 3.13, we conclude that every y ∈ Mx lies on a geodesic from f (ax (ξ))

to f (ξ). Therefore, γ is contained in a horosphere centered at f (ξ) intersected with a flat
strip from f (ax (ξ)) to f (ξ). Furthermore, we see that for every point p on γ that is not an
end point, any element ξ ∈ Kx,p realises the supremum ‖ux,γ (t)‖∞ at every point on the
geodesic γ . In particular, if we extend γ to its maximal length such that it is still contained
in Mx , the points in ∂X that obtain ux,γ (ξ) = M(x) are the same along the entire geodesic,
except for some extremal points that appear only at the endpoints of the extended geodesic.

Choose y0 on γ not an endpoint. By Lemma 3.9 and Corollary 3.15, there exist k ≥
3, ξ1, . . . , ξk ∈ Kx,y0 and α1, . . . , αk > 0 such that

∑k
i=1 αi = 1 and

∑k
i=1 αi

−−−→
y f (ξi ) = 0.

In particular, γ is contained in the intersection of horospheres centered at f (ξ1), . . . f (ξk).
Suppose, Mx is not contained in the intersection of these horospheres. Then we find y ∈ Mx

such that B(y, y0, ξi ) 
= 0 for some i . Without loss of generality, B(y, y0, ξ1) 
= 0. Since
M(x) ≥ ux,y(ξi ) = ux,y0(ξi ) + B(y0, y, ξi ) = M(x) + B(y0, y, ξi ), we conclude that
B(y0, y, ξi ) ≤ 0 for all i and B(y0, y, ξ1) < 0. Let δ be the geodesic from y0 to y. By
convexity, B(y0, δ(t), ξ1) is decreasing for small, positive t . Therefore,

0 >
d

dt
|t=0B(y0, δ(t), f (ξ1)) = 〈δ′(0),−−−→y f (ξ1)〉.

On the other hand,

0 = 〈δ′(0),
k
∑

i=1
αi
−−−→
y f (ξi )〉 = α1〈δ′(0),−−−→y f (ξ1)〉 +

k
∑

i=2
αi 〈δ′(0),−−−→y f (ξi )〉.

Since αi > 0 for all k, we conclude that

d

dt
|t=0B(y0, δ(t), f (ξi )) = 〈δ′(0),−−−→y f (ξi )〉 > 0

for some i ≥ 2. In particular, ux,δ(t)(ξi ) = ux,y0(ξi ) + B(y0, δ(t), f (ξi )) > ux,y0(ξi ) =
M(x) for t > 0 sufficiently small. Since y, y0 ∈ Mx and Mx is convex, we have found
an element δ(t) in Mx for which ‖ux,δ(t)‖∞ is not minimal, a contradiction. Therefore,
there can be no point y outside of the intersection of the horospheres centered at the points
f (ξ1), . . . , f (ξk). Since, among any three distinct horospheres with non-empty intersection,
at least two of them intersect transversely and horospheres have codimension one, we con-
clude that Mx has codimension at least two. This proves the Lemma except for the bound on
the diameter.
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To estimate the diameter, consider y, y′ ∈ Mx , let δ be the geodesic from y to y′ and let
ξ ∈ ∂X such that f (ξ) is the forward end-point of the geodesic ray induced by δ. Then

ux,y(ξ) = ux,y′(ξ)+ B(y′, y, f (ξ)) = ux,y′(ξ)+ d(y, y′).

Since y, y′ ∈ Mx , the expressions ux,y(ξ), ux,y′(ξ) are both bounded in absolute value
by M(x). The equation above shows that, whenever d(y, y′) > 2M(x), i.e. the length of δ

greater than 2M(x), this bound is violated by at least one of the two terms. We obtain that
any two points in Mx are connected by a geodesic of length at most 2M(x). This provides
the bound on the diameter. �

Proof of Proposition 3.11 By the proof of Lemma 3.16, if Mx contains at least two points,
any geodesic in Mx is contained within a flat strip. Therefore, EY is contained in the union
of all flat strips in Y . Since every bi-infinite geodesic in a flat strip admits a perpendicular,
parallel Jacobi field, every flat strip in Y is contained in FY . Therefore, EY ⊂ FY . �


We are now able to define F(x) precisely.

Definition 3.17 For every x ∈ X , we define F(x) to be the unique barycenter of the compact,
convex set Mx ⊂ Y . We observe that, whenever Mx is not fully contained in FY , it consists
of a single point and one does not have to take the barycenter.

Another consequence of Lemma 3.16 is that “F does not make any jumps larger than
2M(x) at x”. This is made precise in the following Lemma.

Lemma 3.18 Let xn → x bea converging sequence in X. Then (F(xn))n is boundedand every
accumulation point y of (F(xn))n satisfies y ∈ Mx. In particular, d(y, F(x)) ≤ 2M(x).

Proof We first show that (F(xn))n is bounded. Suppose not. Since the map y 	→ ‖ux,y‖∞
is proper, we conclude that there is a subsequence, also denoted (F(xn))n , such that
‖ux,F(xn)‖∞ → ∞. On the other hand, since M is 1-Lipschitz, ‖uxn ,F(xn)‖∞ = M(xn)→
M(x) = ‖ux,F(x)‖∞. In addition, since x 	→ ‖ux,y′ ‖∞ is 1-Lipschitz for all y′, we conclude
that

M(x) ≥ M(xn)− d(x, xn) ≥ ‖ux,F(xn)‖∞ − 2d(x, xn)→∞.

This is a contradiction, hence (F(xn))n is bounded.
Let y ∈ Y be an accumulation point of (F(xn))n . Then there exists a subsequence (xni )i

such that F(xni )→ y. Since x, y 	→ ‖ux,y‖∞ is 1-Lipschitz continuous in both variables,
we have

‖ux,F(x)‖∞ = M(x)
i→∞←−−− M(xni ) = ‖uxni ,F(xni )

‖∞ i→∞−−−→ ‖ux,y‖∞.

Therefore, y ∈ Mx . By Lemma 3.16, the diameter of Mx is at most 2M(x), which implies
that d(y, F(x)) ≤ 2M(x). This completes the proof. �


Based on Lemma 3.16, it makes sense to define the set

Kx := {ξ ∈ ∂X |∀y ∈ Mx : ux,y(ξ) = M(x)}.
The set Kx is non-empty, compact and, by the proof of Lemma 3.16, contains at least

three points.
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Fig. 6 If we flow the images �(vi ) backwards in Y , we increase the drawn horoballs until they all intersect
(which happens for the first time in the case of the dashed horoballs). The candidates for F(x) are all the
points in the mutual intersection of the dashed horoballs when going over all v ∈ T 1

x X

In [11], the map F is constructed as the limit of a sequence of circumcenters. There is
another geometric interpretation ofMx andM(x), whichwe present here. Any vector v ∈ T X
defines a horoball in X , namely the set

HB(v) := {x ∈ X |B(π(v), x, v∞) ≤ 0}.

Consider the horoballs HB(�(v)) for all v ∈ T 1
x X . Define�(v)t to be the vector obtained

by applying the geodesic flow on Y to the vector �(v) (the geodesic flow sends equiva-
lence classes in TyY to equivalence classes). Since �(−v) = −�(v), we know that the
intersection

⋂

v∈T 1
x X

H B(�(v)) is the smallest non-empty intersection in the sense that
⋂

v∈T 1
x X

H B(�(v)t ) = ∅ for all t > 0. If this intersection is empty, there is a minimal t ,

such that
⋂

v∈T 1
x X

H B(�(v)−t ) is non-empty. This minimal t equals M(x) and the intersec-

tion of the horoballs �(v)−t equals Mx (see Fig. 6 for the situation where Mx consists of
one point).

4 Hölder and Lipschitz continuity of F

Recall that, in Sect. 2.6, we defined FX to be the set of all points in X that admit a geodesic
ray γ starting at x and a perpendicular, parallel Jacobi field along γ . The goal of this section
is to prove that F is locally Hölder continuous on F−1(Y�FY ) and to provide a sufficient
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condition for F to be locally Lipschitz continuous. To do so, we will use geometric properties
arising from bounds on the second derivative of the Busemann function.

We first introduce some notation. Given a function g : Y → R that is twice continu-
ously differentiable, we can consider its Hessian, i.e. the bilinear form induced by its second
differential. Since Busemann functions on CAT(0) manifolds are twice continuously differ-
entiable, we can consider the Hessian of the Busemann function y 	→ B(y′, y, η), which
we denote by Hy2 B

η(y). Since a change of y′ changes the function y 	→ B(y′, y, η) by a
constant independent of y, Hy2 B

η(y) is independent of y′. Since Busemann functions are
convex in their second variable, Hy2 B

η(y) is semi-positive definite.
Let γ be the geodesic ray from y to η. Since d

dt |t=0B(y′, γ (t), η) = −1, we see that
Hy2 B

η(y)(γ ′(0), w) = 0 for all w ∈ TyY . Therefore, we are interested in the restriction
of the Hessian to the orthogonal complement of γ ′(0) = −→yη, which we denote by −→yη⊥. Let
w ∈ TyY , η ∈ ∂Y . We write w⊥η for the orthogonal projection of w onto −→yη⊥.
Lemma 4.1 Let y0 ∈ Y�FY . Then there exists an open neighbourhood U ⊂ Y�FY of y0
and a constant ε > 0, such that for all y ∈ U, w ∈ TyY , we have

Hy2 B
η(w,w) ≥ ε‖w⊥η‖2.

Proof Since y0 ∈ Y�FY , we know that for all η ∈ ∂Y and all w ∈ −→y0η⊥ with ‖w‖ = 1, the
unique stable Jacobi field Jw along the geodesic ray ηy0 satisfies

d

dt
|t=0‖Jw(t)‖2 < 0.

Since d
dt |t=0‖Jw(t)‖2 depends continuously on y0, η and w and since ∂Y and−→yη⊥ ∩T 1

y Y
are compact for all y ∈ Y , we find some constant ε > 0 and an open neighbourhood U of
y0, such that U ⊂ Y�FY and for all y ∈ U , all η ∈ ∂Y , all w ∈ −→yη⊥ with ‖w‖ = 1 and all
stable Jacobi fields Jw along the geodesic from y to η, we have

d

dt
|t=0‖Jw(t)‖2 ≤ −2ε.

Using Proposition 3.1 in [25] (see Sect. 2.6), we have for all y ∈ U , η ∈ ∂Y , w ∈ −→yη⊥
with ‖w‖ = 1:

Hy2 B
η(y)(w,w) = 〈∇w(−−→yη),w〉 = −1

2

d

dt
|t=0‖Jw(t)‖2 ≥ ε.

Since Hy2 B
η(y)(−→yη,w) = 0 for all w ∈ TyY and since the Hessian is bilinear, we obtain

the estimate stated in the Lemma. �

We need one more piece of notation before stating the results on local Hölder and local

Lipschitz continuity. We define the sets

DX := F−1(Y�FY )

LX := {x ∈ DX |∃U open neighbourhood of x, ∃ε > 0 :
∀x ′ ∈ U ,∀w ∈ T 1

F(x ′)Y , ∃ξ ∈ Kx : 〈w,
−−−−−−→
F(x ′) f (ξ)〉 > ε}.

Remark 4.2 By Lemma 3.9, any x ∈ X and any w ∈ T 1
F(x)Y admits ξ ∈ Kx such that

〈w,
−−−−−−→
F(x) f (ξ)〉 ≥ 0. However, in dimension three and higher, it is very unclear if strict

inequality can be obtained in general and if it can be obtained uniformly in an open neigh-
bourhood of x .
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Proposition 4.3 The map F is locally 1
2 -Hölder continuous on DX and locally Lipschitz

continuous on LX .

This is analogous to a result in [11], where Biswas shows local 1
2 -Hölder continuity for

circumcenter extensions on CAT(−1)-spaces. The proof is, however, different.
Proof Let x0 ∈ DX . By Lemma 4.1, we find an open neighbourhood U of x and ε > 0,
such that for all x ∈ U , the Hessian Hy2 B

f (ξ)(F(x)) is positive definite on the subspace−−−−−−→
F(x) f (ξ)⊥ and its positive eigenvalues are at least ε. Let x, x ′ ∈ U and let f (ξ0) be the
point represented by the geodesic ray obtained by extending the geodesic from F(x ′) to

F(x). Note that
−−−−−−→
F(x)F(x ′) = −−−−−−−→F(x) f (ξ0). There are two cases.

Case 1: If ξ0 ∈ Kx , then

d(F(x), F(x ′)) = B(F(x), F(x ′), f (ξ0))

= B(F(x), π ◦�(
−→
xξ0), f (ξ0))+ B(x, x ′, ξ0)+ B(π ◦�(

−−→
x ′ξ0), F(x ′), f (ξ0))

≤ −M(x)+ d(x, x ′)+ M(x ′)
≤ 2d(x, x ′),

where we use that M is 1-Lipschitz continuous by Lemma 3.10.
Case 2: Suppose, ξ0 /∈ Kx . By continuity of theRiemannianmetric, there exists δ > 0, such

that for all ξ ∈ Kx , 〈−−−−−−−→F(x)F(x ′),−−−−−−→F(x) f (ξ)〉 ≤ 1−δ2. By Lemma 3.9, we find ξ ∈ Kx such

that 〈−−−−−−−→F(x)F(x ′),−−−−−−→F(x) f (ξ)〉 ≥ 0. In particular, this ξ satisfies ‖−−−−−−→F(x)F(x ′)⊥ f (ξ)‖2 ≥ δ2.
By Taylor approximation, we know that

B(F(x), F(x ′), f (ξ)) = −
〈−−−−−−→
F(x)F(x ′),−−−−−−→F(x) f (ξ)

〉

d(F(x), F(x ′))

+ Hx2 B
f (ξ)

(−−−−−−→
F(x)F(x ′),

−−−−−−→
F(x)F(x ′)

)

d(F(x), F(x ′))2

+ o
(

d(F(x), F(x ′))2
)

.

Let 0 < λ < 1. For d(F(x), F(x ′)) sufficiently small (‘sufficiently small’ depending on λ),
this implies

B(F(x), F(x ′), f (ξ)) ≥ λε

∥

∥

∥

−−−−−−→
F(x)F(x ′)⊥ f (ξ)

∥

∥

∥

2
d(F(x), F(x ′))2

≥ λεδ2d(F(x), F(x ′))2

LetUλ ⊂ U be an open neighbourhood of x0, such that for all x, x ′ ∈ U , d(F(x), F(x ′))
is sufficiently small in the sense above. On the other hand,

B(F(x), F(x ′), f (ξ)) = B(F(x), π ◦�(
−→
xξ), f (ξ))+ B(x, x ′, ξ)+ B(π ◦�(

−→
x ′ξ), F(x ′), f (ξ))

≤ −M(x)+ d(x, x ′)+ M(x ′)
≤ 2d(x, x ′).

We conclude that for all x, x ′ ∈ Uλ ⊂ U ,

d(F(x), F(x ′))2 ≤ 2

λεδ2
d(x, x ′).

Combining both cases, we conclude that F is locally 1
2 -Hölder continuous.

The proof of local Lipschitz continuity follows the same line of computation. Let x0 ∈ LX .
We find an open neighbourhood U of x0 and ε > 0, such that for all x ∈ U , w ∈ T 1

F(x)Y ,
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there is a ξ ∈ Kx such that −〈w,
−−−−−−→
F(x) f (ξ)〉 > ε. Additionally, we choose U sufficiently

small such that for all x ∈ U , the positive eigenvalues of the Hessian Hy2 B
f (ξ)(F(x)) are

at least ε′ > 0. Let x, x ′ ∈ U and let f (ξ0) be the point represented by the geodesic ray
obtained by extending the geodesic from F(x ′) to F(x). We have the same cases as before.

Case 1: If ξ0 ∈ Kx , then d(F(x), F(x ′)) ≤ 2d(x, x ′) by the same argument as above.
Case 2: If ξ0 /∈ Kx , then – as before – we find δ > 0, such that for all ξ ∈ Kx ,

〈−−−−−−−→F(x)F(x ′),−−−−−→F(x) f ξ)〉 ≤ 1 − δ2. By construction of U , we find ξ ∈ Kx , such that

ε < 〈−−−−−−−→F(x)F(x ′),−−−−−−→F(x) f (ξ)〉 ≤ 1− δ2 and ‖−−−−−−→F(x)F(x ′)⊥ f (ξ)‖2 ≥ δ2. Therefore, we have

B(F(x), F(x ′), f (ξ)) = −〈−−−−−−→F(x)F(x ′),−−−−−−→F(x) f (ξ)〉d(F(x), F(x ′))

+ Hy2 B
f (ξ)(F(x))

(−−−−−−→
F(x)F(x ′),

−−−−−−→
F(x)F(x ′)

)

d(F(x), F(x ′))2

+ o(d(F(x), F(x ′))2)
≥ εd(F(x), F(x ′))+ ε′δ2d(F(x), F(x ′))2 + o(d(F(x), F(x ′))2)

For d(F(x), F(x ′)) sufficiently small, we obtain

εd(F(x), F(x ′)) ≤ B(F(x), F(x ′), f (ξ))

≤ −M(x)+ d(x, x ′)+ M(x ′)
≤ 2d(x, x ′).

Let x0 ∈ V ⊂ U with V open such that for all x, x ′ ∈ V , d(F(x), F(x ′)) is sufficiently small
in the sense of the inequality above. We conclude that, for all x, x ′ ∈ V , d(F(x), F(x ′)) ≤
2
ε
d(x, x ′). Therefore, F is locally Lipschitz continuous near all x0 ∈ LX . �


Corollary 4.4 The map F : LX → Y is differentiable almost everywhere, i.e. there exists a
Lebesgue zero set in LX , such that F is differentiable outside of this zero set.

This is an immediate application of Rademacher’s theorem, exploiting the fact that man-
ifolds are second countable.

Remark 4.5 It is important to note that it is a-priori not clear whether DX 
= ∅. One of the
most crucial obstacles to proving thatDX is non-empty is the lack of injectivity results for the
map F . If F was locally injective, some assumptions about FY being small would carry over
to F−1(FY )—e.g. FY having codimension one. If we additionally understood more about the
topology of Y , even more general conditions about FY being small—e.g. FY being nowhere
dense—would translate into statements about F−1(FY ) being small.

As we will see in the next section, there are results of this type for certain special cases,
but at the time of writing, little is known about injectivity in the general case.

Summarising the last two sections, we have proven the following theorem.

Theorem 4.6 Let X , Y beHadamardmanifoldswhose sectional curvatures are bounded from
below by−b2 such that ∂X , ∂Y satisfy (4v) and all points in ∂X and ∂Y are in a rank 1 hinge.
Let f : ∂X → ∂Y be a Möbius homeomorphism, such that f and f −1 send visible pairs
to visible pairs. Then there exists a map F : X → Y , which is locally 1

2 -Hölder continuous
on X\F−1(FY ). Furthermore, for any converging sequence xn → x and any accumulation
point y of (F(xn))n, we have d(y, F(x)) ≤ 2M(x).
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5 Applications

We now turn to several special cases, in which we can show additional properties of the map
F . The proofs below are all based either on getting more out of the continuity proof in Sect. 4,
or on a better understanding of the function M .

5.1 Surfaces

The goal of this section is to prove the following result.

Theorem 5.1 Let X , Y be 2-dimensional Hadamard manifolds whose sectional curvature is
bounded from below by −b2, such that ∂X and ∂Y satisfy (4v) and all points in ∂X and ∂Y
are in a rank 1 hinge. Suppose, f : ∂X → ∂Y is a Möbius homeomorphism such that f
and f −1 preserve visible pairs. Then the circumcenter extension of f is a homeomorphism
F : X → Y . In addition, it is locally Lipschitz continuous on a dense subset and differentiable
almost everywhere.

Furthermore, if F and M are differentiable at x and Kx contains at least five points,
then DFx : Tx X → TF(x)Y is an isometry of tangent spaces equipped with their respective
Riemannian metric. In particular, if Kx has at least five points for almost every x, then F is
a metric isometry.

We start by showing that F is a map between X and Y in this instance. Let x ∈ X . By
Lemma 3.16, the set Mx is contained in an intersection of at least three distinct horospheres.
Since two horospheres centered at ξ1, ξ2 can only intersect non-transversally in points that lie
on a geodesic line connecting ξ1 with ξ2, we conclude that at least two of these horospheres
intersect transversally. Consequently, codim(Mx ) ≥ 2. Since Y is 2-dimensional, this implies
that Mx has dimension 0. Since Mx is convex, this implies that Mx is a single point. We
conclude that F : X → Y is well-defined on all of X .

Next, we show that F is invertible.

Proposition 5.2 Let F denote the circumcenter extension of f and G the circumcenter exten-
sion of f −1. Then G = F−1.

The proof relies on an elementary result about 2-dimensional vector spaces. Let V be a
2-dimensional, real vector space with an inner product. The set of all unit vectors in V with
respect to this inner product is homeomorphic to the 1-dimensional circle. After choosing an
orientation on the circle, we can speak of the order of a set of points on the unit-sphere in V .
We have the following result.

Lemma 5.3 Let V be a 2-dimensional, real vector space with an inner product. Let v1, v2, v3
be unit-vectors with respect to this inner product. Then, the following are equivalent:

(1) The zero vector is contained in the convex hull of {v1, v2, v3}.
(2) After reordering the indices, the vectors {±v1,±v2,±v3} are ordered as (v1,−v2, v3,

−v1, v2,−v3).

Proof of Proposition 5.2 By Lemma 3.9, we know that F(x) is characterised as the unique

point y ∈ Y such that 0 ∈ TyY is contained in the convex hull of the set {−−−→y f (ξ)|ξ ∈ Kx,y}.
By Carathéodory’s theorem on convex hulls and since Y is 2-dimensional, we know that the
zero vector can be expressed by a convex combination of at most three vectors of the form
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−−−→
y f (ξ) with ξ ∈ Kx,y . Combining this with Corollary 3.15, we find ξ1, ξ2, ξ3 ∈ Kx such that

the convex hull of {−−−−−−→F(x) f (ξi )|i ∈ {1, 2, 3}} contains 0 ∈ TyY . By Lemma 5.3, this means
that, after rearranging the indices, the following six points have the following ordering in
∂Y :

( f (ξ1), aF(x)( f (ξ2)), f (ξ3), aF(x)( f (ξ1)), f (ξ2), aF(x)( f (ξ3))).

Since f is a homeomorphism, we conclude that, after changing the orientation of ∂X if
necessary, we have the following ordering on ∂X :

(ξ1, ax (ξ2), ξ3, ax (ξ1), ξ2, ax (ξ3)).

Using Lemma 5.3 again, we conclude that the convex hull of the vectors {−−→xξi |i ∈ {1, 2, 3}}
contains 0 ∈ Tx X . By Lemma 2.20, Corollary 3.14 and the Chain rule for metric derivatives,
we know that KF(x),x = ax (Kx,F(x)), and therefore, the zero vector in Tx X is contained in

the convex hull of the set {−→xξ |ξ ∈ KF(x),x }. By Lemma 3.9, this implies that G(F(x)) = x .
We conclude that G ◦ F = I dX . By symmetry, the same argument also proves that

F ◦ G = I dY . Therefore, G = F−1. �

Next, we show that F is differentiable almost everywhere. We do this by showing that the

pointwise Lipschitz constant of F is finite for all x ∈ X .

Proposition 5.4 The map F is locally Lipschitz continuous on a dense subset of X. Further-
more, the pointwise Lipschitz constant Lipx (F) := lim supx ′→x

d(F(x),F(x ′))
d(x,x ′) is finite for all

x ∈ X.

Proof Let x0 ∈ X . We need to distinguish two cases.
Case 1: Suppose, M(x0) = 0. Let x ∈ X and ξ ∈ ∂X such that f (ξ) is the endpoint of

the geodesic ray obtained by extending the geodesic segment from F(x) to F(x0). As in the
proof of Proposition 4.3, we have

d(F(x0), F(x)) = B(F(x0), F(x), f (ξ))

≤ M(x0)+ B(x0, x, ξ))+ M(x)

≤ 2d(x0, x).

If x0 lies in the interior of the set {x ∈ X |M(x) = 0}, then we find an open neighbourhood
U of x0, such that the estimate above becomes d(F(x), F(x ′)) ≤ d(x, x ′) for all x, x ′ ∈ U .

Case 2: Suppose, M(x0) > 0. The proof has three steps.
Step 1: We show that there exists ε > 0 and an open neighbourhood U of x0, such that

for all x ∈ U , ξ ∈ Kx and ξ ′ ∈ ∂X such that 〈−−−−−−→F(x) f (ξ),
−−−−−−→
F(x) f (ξ ′)〉 ≤ −1 + ε, we have

ξ ′ /∈ Kx .
Since M(x) 
= 0, we know that for all ξ ∈ Kx , ax (ξ) /∈ Kx . In fact, ux,F(x)(ax (ξ)) =

−M(x) < 0. Suppose, the statement of Step 1 was not true. Then we find a sequence

xn → x0 and sequences ξn, ξ
′
n ∈ Kxn such that 〈−−−−−−−→F(xn) f (ξn),

−−−−−−−→
F(xn) f (ξ ′n)〉 < −1 + 1

n .
Since ∂X is compact, we can assume without loss of generality that ξn → ξ and ξ ′n → ξ ′
(choosing subsequences if necessary). Since ux,F(x)(ξ) is Lipschitz continuous in its two
index variables and continuous in ξ , we have

uxn ,F(xn)(ξn)→ ux,F(x)(ξ).

On the other hand, ξn ∈ Kxn and therefore,

uxn ,F(xn)(ξn) = M(xn)→ M(x).
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We conclude that ξ, ξ ′ ∈ Kx . However,

〈−−−−−−−→F(xn) f (ξn),
−−−−−−−→
F(xn) f (ξ

′
n)〉 ≤ −1+

1

n
→−1,

which implies that
−−−−−−→
F(x) f (ξ ′) = −−−−−−−→F(x) f (ξ). Therefore, ξ ′ = ax (ξ) and both of them are

contained in Kx by the argument above. This is a contradiction. We thus find U and ε > 0
as described in the statement of Step 1.

Step 2: Let U be the open neighbourhood from Step 1. We show that there exists δ > 0

such that for all x ∈ U , w ∈ T 1
F(x)Y there exists ξ ∈ Kx such that 〈w,

−−−−−−→
F(x) f (ξ)〉 ≥ δ.

We first introduce the following notation. Given a vector w ∈ TyY and α > 0, we define

Sα(w) := {w′ ∈ TyY |∠(w,w′) ≤ α}.
This is a sector in TyY , whose middle line is generated by the vector w. Note that the
angle-width of the sector Sα(w) is 2α.

Suppose the statement of Step 2 is not true. We find sequences xn ∈ U and wn ∈ T 1
F(xn)

Y

such that for all ξ ∈ Kxn , 〈wn,
−−−−−−−→
F(xn) f (ξ)〉 < 1

n . Equivalently, the angle between these two

vectors satisfies ∠(wn,
−−−−−−−→
F(xn) f (ξ)) > π

2 − αn with αn → 0. Define α := π − cos−1(−1+
ε) ∈ (0, π), where ε is the number found in Step 1. Choose n so that αn < α

2 . We conclude
that the sector

S π
2 − α

2
(wn) = {w′ ∈ TF(xn)Y |∠(w′, wn) ≤ π

2
− α

2
}

does not contain any elements of the form
−−−−−−−→
F(xn) f (ξ) with ξ ∈ Kx .

By Step 1, we know that for all ξ ∈ Kxn , the sector

Sα(−−−−−−−−→F(xn) f (ξ)) =
{

w′ ∈ TF(xn)Y |∠(w′,−−−−−−−−→F(xn) f (ξ)) ≤ α
}

does not contain any elements of the form
−−−−−−−→
F(xn) f (ξ ′) with ξ ′ ∈ Kxn .

Since TF(xn)Y is 2-dimensional, Lemma 3.9 implies that there exists ξ ∈ Kxn such that

π

2
> ∠(wn,

−−−−−−−→
F(xn) f (ξ)) >

π

2
− α

2
.

We conclude that, for this ξ ,

π

2
< ∠(wn,−−−−−−−−→F(xn) f (ξ)) <

π

2
+ α

2
.

This implies that the two sectors Sα(−−−−−−−−→F(xn) f (ξ)) and S π
2 − α

2
(wn) intersect. Thus, their

union is a sector Sβ(u). Since −−−−−−−−→F(xn) f (ξ) /∈ S π
2 − α

2
(wn), the angle-width of this union

is strictly greater than 2( π
2 − α

2 ) + α = π . Since both Sα(−−−−−−−−→F(xn) f (ξ)) and S π
2 − α

2
do

not contain any vector of the form
−−−−−−−→
F(xn) f (ξ ′) with ξ ′ ∈ Kxn , we conclude that the set

{−−−−−−−→F(xn) f (ξ ′)|ξ ′ ∈ Kxn } is contained in the complement of Sβ(u), which is a sector with

angle-width strictly less than π . Therefore, the convex hull of {−−−−−−−→F(xn) f (ξ ′)|ξ ′ ∈ Kxn } cannot
contain the zero-vector of TF(xn)Y , which is a contradiction to Lemma 3.9. We conclude that

for all x ∈ U , w ∈ TF(x)Y , we find ξ ∈ Kx , such that ∠(w,
−−−−−−→
F(x) f (ξ)) ≤ π

2 − α
2 . Applying

cosine to this inequality, we find δ > 0, such that for all x ∈ U , w ∈ T 1
F(x)Y , we find ξ ∈ Kx

such that 〈w,
−−−−−−→
F(x) f (ξ)〉 ≥ δ. This proves Step 2.
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Step 3:We showLipschitz-continuity onU . Let x, x ′ ∈ U . By Step 2, we find ξ ∈ Kx such

that− cos(∠F(x)(F(x ′), f (ξ))) = 〈−−−−−−−→F(x)F(x ′),−−−−−−→F(x) f (ξ)〉 ≥ δ. Since Y is non-positively

curved, we know that ∠(0)
F(x)(F(x ′), f (ξ)) ≥ ∠F(x)(F(x ′), f (ξ)) and, therefore,

− cos(∠(0)
F(x)(F(x ′), f (ξ))) ≥ − cos(∠F(x)(F(x ′), f (ξ))) ≥ δ.

We have

δd(F(x), F(x ′)) ≤ − cos(∠(0)
F(x)(F(x ′), f (ξ)))d(F(x), F(x ′))

= B(F(x), F(x ′), f (ξ))

≤ B(F(x), π ◦�(
−→
xξ), f (ξ))+ B(x, x ′, ξ)+ B(π ◦�(

−→
x ′ξ), F(x ′), f (ξ))

≤ −M(x)+ d(x, x ′)+ M(x ′)
≤ 2d(x, x ′).

We conclude that for all x, x ′ ∈ U ,

d(F(x), F(x ′)) ≤ 2

δ
d(x, x ′).

Therefore, F is Lipschitz continuous on U .
Combining the two cases, we conclude that F is locally Lipschitz-continuous on

X�∂{x |M(x) = 0}. Since the set {x |M(x) = 0} is closed, the complement of its topo-
logical boundary is dense in X . This completes the proof. �


UsingStepanov’s theorem,we conclude that F is differentiable almost everywhere.Apply-
ing Stepanov’s theorem (or Rademacher’s) to M , we conclude that M is differentiable almost
everywhere as well. We conclude that for almost every x , both F and M are differentiable at
x . We are left to prove the sufficient condition for isometry from Theorem 5.1.

Lemma 5.5 Let x ∈ X such that F and M are differentiable at x. For all v ∈ Tx X and
ξ ∈ Kx , we have

〈∇Mx , v〉 = 〈v,
−→
xξ 〉 − 〈DFx (v),

−−−−−−→
F(x) f (ξ)〉.

Proof Let v ∈ Tx X and let x ′ vary along the geodesic that starts at x and goes in direction v.
For ξ ∈ Kx , we compute

M(x ′)− M(x) ≥ B(π ◦�(
−→
x ′ξ), F(x ′), f (ξ))− B(π ◦�(

−→
xξ), F(x), f (ξ))

= B(x ′, x, ξ)+ B(π ◦�(
−→
xξ), F(x), f (ξ))+ B(F(x), F(x ′), f (ξ))

− B(π ◦�(
−→
xξ), F(x), f (ξ))

= 〈v,
−→
xξ 〉t − 〈DFx (v),

−−−−−−→
F(x) f (ξ)〉t + O(t2).

We obtain that, for all v ∈ Tx X and for all ξ ∈ Kx ,

〈∇Mx , v〉 ≥ 〈v,
−→
xξ 〉 − 〈DFx (v),

−−−−−−→
F(x) f (ξ)〉.

Replacing v by −v yields the opposite inequality, which implies equality. �

Lemma 5.6 Let x ∈ X such that F and M are differentiable at x. Suppose Kx contains at
least five points. Then DFx is an isometry between tangent spaces.
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Proof By definition of adjoint maps, Lemma 5.5 implies that for every ξ ∈ Kx ,

DF∗x (
−−−−−−→
F(x) f (ξ)) = −→xξ − ∇Mx .

Furthermore, since F is invertible by Proposition 5.2, the map DF∗x is invertible. Therefore,
the map DF∗x +∇Mx : TF(x)Y → Tx X is an invertible affine map that sends a subset of the

unit circle T 1
F(x)Y – namely the set {−−−−−−→F(x) f (ξ)|ξ ∈ Kx } – to a subset of the unit circle T 1

x X .
We are given an invertible, affine map x 	→ Ax + b between 2-dimensional vector spaces

with an inner product. Since affine maps send ellipses to ellipses and thus circles to ellipses,
there are three possibilities what the image of the unit circle under this map may look like.

(1) The image of the unit circle is an ellipse with non-vanishing eccentricity. It can intersect
the unit circle in the target space in at most four points.

(2) The image of the unit circle is a circle, but not the unit circle of the target space. It can
intersect the unit circle in the target space in at most two points.

(3) The image of the unit circle is equal to the unit circle in the target space. Then the affine
map is of the form x 	→ Ax and A is norm-preserving. Since an inner product can be
expressed purely in terms of its induced norm, A is orthogonal.

Since every point in Kx corresponds to a unit vector in TF(x)Y which is sent to a unit
vector by DF∗x +∇Mx , we see that, if Kx contains at least five points, the map DF∗x +∇Mx

has to be the last of the options above. This implies that Mx = 0 and DF∗x is orthogonal.
Thus, DFx is orthogonal, i.e. an isometry of tangent spaces equipped with the Riemannian
metric.

�

If Kx contains at least five points for almost every x , then the Lemma above implies

that for almost every x , F is differentiable and DF has operator norm at most 1. It is a
standard result that such a map is 1-Lipschitz. Since F−1 equals the circumcenter extension
of f −1 and, therefore, KF(x) = f (ax (Kx )), we conclude that F−1 is 1-Lipschitz as well.
This implies that F is a metric isometry and concludes the proof of Theorem 5.1.

Remark 5.7 If X and Y are higher-dimensional and we have a situation where we can show
that F is differentiable, then Lemma 5.5 implies that Kx is contained in the intersection of
an (n − 1)-dimensional ellipsoid with the (n − 1)-dimensional unit sphere, or, if DFx is
not invertible, in the intersection of a ‘full’ ellipsoid of dimension at most n − 1 with the
(n−1)-dimensional unit sphere. In either case, this tells us that DFx is an isometry of tangent
spaces, whenever Kx is not distributed in a rather specific way. This criterion may be worth
further investigation. However, differentiability of F remains an issue in higher dimensions
for now.

5.2 Rough isometries for CAT(-1) spaces

Wenow restrict our attention to the casewhere X , Y areHadamardmanifoldswhose curvature
is bounded from below by−b2 and from above by−1. We find ourselves in a class of spaces
to which Biswas’ construction and results apply. In particular, by Theorem 1.5 in [10], F
is a (1, ln(2))-quasi-isometry. In this section, we provide a different argument to obtain
these quasi-isometry-constants and we use this argument to obtain better constants for 2-
dimensional manifolds.
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Theorem 5.8 Let X , Y be 2-dimensional Hadamard manifolds whose sectional curvature is
bounded from below by−b2 and suppose that X , Y are alsoCAT(−1) spaces. Let f : ∂X →
∂Y be aMöbius homeomorphism. Then the circumcenter extension of f is a

(

1, ln
( 4
3

))

-quasi-
isometry.

Proof We first provide a general argument as to how one can obtain the quasi-isometry
constants. We then specialise to the 2-dimensional case.

Since Y is CAT(−1), it contains no flat strips and Mx consists of exactly one point for
every x ∈ X . Let x, x ′ ∈ X and ξ ∈ ∂X such that f (ξ) is represented by the geodesic ray
obtained by extending the geodesic from F(x ′) to F(x). We compute

d(F(x), F(x ′)) = B(F(x), F(x ′), f (ξ))

= B(F(x), π ◦�(
−→
xξ), f (ξ))+ B(x, x ′, ξ)+ B(π ◦�(

−→
x ′ξ), F(x ′), f (ξ))

≤ M(x)+ d(x, x ′)+ M(x ′).

Putting ξ ′ ∈ ∂X to be represented by the geodesic ray obtained by extending the geodesic
from x ′ to x , we obtain

d(F(x), F(x ′)) ≥ B(F(x), F(x ′), f (ξ ′))

= B(F(x), π ◦�(
−→
xξ), f (ξ ′))+ B(x, x ′, ξ ′)+ B(π ◦�(

−→
x ′ξ), F(x ′), f (ξ ′))

≥ −M(x)+ d(x, x ′)− M(x ′).

We conclude that, if M is bounded on X , then F is a (1, 2‖M‖∞)-quasi-isometry. We are
left to prove that M is bounded.

Let x ∈ X and ξ, ξ ′ ∈ Kx,F(x). Since
∂ f∗ρx
∂ρF(x)

(ξ ) = eux,F(x)(ξ) and M(x) = ux,F(x)(ξ) =
ux,F(x)(ξ

′), we have

ρx (ξ, ξ ′)2 = e2M(x)ρF(x)( f (ξ), f (ξ ′))2

and therefore,

( f (ξ)| f (ξ ′))F(x) − M(x) = (ξ |ξ ′)x .
Since Gromov products are non-negative, this implies that M(x) ≤ ( f (ξ)| f (ξ ′))F(x) for all
ξ, ξ ′ ∈ Kx,F(x).

Let Y be of dimension at least three and let ξ ∈ Kx,F(x). By Lemma 3.9, we know that

there exists ξ ′ ∈ Kx,F(x) such that 〈−−−−−−→F(x) f (ξ),
−−−−−−→
F(x) f (ξ)〉 ≤ 0, i.e. the angle between f (ξ)

and f (ξ ′) at F(x) is at least π
2 . Since Y is CAT(−1), we have that
( f (ξ)| f (ξ ′))F(x) ≤ (η|η′)z,

where η, η′ ∈ ∂H
2 such that their representing geodesic rays starting at z ∈ H

2 depart at an
angle of π

2 . We are left to compute the Gromov product of two specific geodesics in H
2.

If Y is 2-dimensional, since Kx,F(x) contains at least three points by Corollary 3.15, we

conclude that there are ξ, ξ ′ ∈ Kx,F(x) such that ∠F(x)

(−−−−−−→
F(x) f (ξ),

−−−−−−→
F(x) f (ξ ′)

)

≥ 2π
3 . We

are left to compute the Gromov product of two geodesic rays in H
2 that start at the same

point and depart at an angle of 2π
3 .

The Theorem now follows from the following formula, which is a standard computation.
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Lemma 5.9 Let γ, γ̃ be geodesic rays in H
2 that start at the same point o and depart at an

angle α. Then

(γ |γ̃ )o = − ln
(

sin
(α

2

))

.

Let α = π
2 . Since sin

(

π
4

) = 1√
2
, we obtain

(γ π
8
|γ̃ π

8
)i = ln

(√
2
)

.

In the 2-dimensional case, we put α = 2π
3 . Since sin

(

π
3

) =
√
3
2 , we obtain

(γ π
8
|γ̃ π

8
)i = ln

(

2√
3

)

≈ 0.143841.

Since F is a (1, 2‖M‖∞)-quasi-isometry, we recover Biswas’ constants (1, ln(2)) in the
higher-dimensional case and obtain a

(

1, ln
( 4
3

))

-quasi-isometry in the 2-dimensional case.
This proves the Theorem. �


5.3 Adding a cocompact action

In this section, we prove the following result.

Theorem 5.10 Let X , Y be Hadamard manifolds whose sectional curvature is bounded from
below by −b2, such that ∂X and ∂Y satisfy (4v) and all points in ∂X and ∂Y are in a
rank 1 hinge. Suppose, there is a group G which acts cocompactly by isometries on X and
Y . Let f : ∂X → ∂Y be a G-equivariant Möbius homeomorphism such that f and f −1
preserve visible pairs. Then, the function M : X → R is bounded and F is a G-equivariant
(1, 2‖M‖∞)-quasi-isometry.

Proof Since f is G-equivariant and G acts by isometries, we have for all g ∈ G, x ∈ X , y ∈
Y , ξ ∈ ∂X .

∂ f∗ρx

∂ρy
( f (ξ)) = ∂ f∗ρgx

∂ρgy
(g f (ξ)).

This implies that, ugx,gy(gξ) = ux,y(ξ), ‖ugx,gy‖∞ = ‖ux,y‖∞ and therefore, Mgx =
g(Mx ). Since circumcenters and barycenters are preserved under isometries, we obtain that
F is G-equivariant, i.e. F(gx) = gF(x). Since F is G-equivariant and G acts cocompactly
on Y , F is coarsely surjective.

The same argument as in the proof of Theorem 5.8 shows that F is a (1, 2‖M‖∞)-quasi-
isometry, if M is bounded. Since

M(gx) = ‖ugx,F(gx)(·)‖∞ = ‖ux,F(x)(g
−1·)‖∞ = M(x),

we obtain that it is sufficient to bound M on a compact fundamental domain of the G-action
on X . Since M is Lipschitz continuous, M is bounded on any compact set. We conclude that
M is bounded and F is a G-equivariant (1, 2‖M‖∞)-quasi-isometry. �
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