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Abstract
A finite-dimensional CAT(0) cube complex X is equipped with several well-studied bound-
aries. These include the Tits boundary ∂T X (which depends on the CAT(0) metric), theRoller
boundary ∂R X (whichdepends only on the combinatorial structure), and the simplicial bound-
ary ∂�X (which also depends only on the combinatorial structure). We use a partial order
on a certain quotient of ∂R X to define a simplicial Roller boundary R�X . Then, we show
that ∂T X , ∂�X , and R�X are all homotopy equivalent, Aut(X)-equivariantly up to homo-
topy. As an application, we deduce that the perturbations of the CAT(0) metric introduced
by Qing do not affect the equivariant homotopy type of the Tits boundary. Along the way,
we develop a self-contained exposition providing a dictionary among different perspectives
on cube complexes.
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1 Introduction

CAT(0) cube complexes, which exist in many guises in discrete mathematics (see e.g. [2]),
were introduced into group theory by Gromov [36] and have since taken on a central role
in that field. As combinatorial objects, CAT(0) cube complexes are ubiquitous due to their
flexible, functorial construction from set-theoretic data [24, 52, 58, 60]. This has led to an
industry of cubulating groups, i.e. constructing group actions on CAT(0) cube complexes
in order to transfer information from the highly organized cubical structure to the group.
Probably the best known application of this method is the resolution of the virtual Haken and
virtual fibering conjectures in 3-manifold theory [1, 63].

The utility of CAT(0) cube complexes comes from the fact that they simultaneously
exhibit several types of structures. They have an organized combinatorial structure coming
from their hyperplanes/half-spaces; this is closely related to the very tractable geometry of
their 1-skeleta, which are median graphs [20]. On the other hand, endowing the complex
with the piecewise-Euclidean metric in which cubes are Euclidean unit cubes, one gets a
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CAT(0) space. So, in studying CAT(0) cube complexes, and groups acting on them, one has
a wide variety of tools.

This paper is about the interplay between the CAT(0) and combinatorial structures, at the
level of boundaries. We construe the term “boundary” broadly: we include not just spaces
arising as frontiers of injections into compact spaces, but also other spaces encoding some
sort of behavior at infinity or large-scale asymptotic structure, such as the Tits boundary.

1.1 A plethora of boundaries

CAT(0) cube complexes have several natural boundaries, each encodingdifferent information,
and each defined in terms of either the CAT(0) metric structure or the combinatorial structure
coming from the hyperplanes. Fixing a finite-dimensional CAT(0) cube complex X , one has
the following list of boundaries:

(1) The visual boundary ∂�X . The visual boundary can be defined for any CAT(0) space;
see [7]. Points are asymptotic equivalence classes of CAT(0) geodesic rays. The visual
topology is defined in such a way that, roughly speaking, rays that fellow-travel for a
long time are close. When X is locally finite, X ∪ ∂�X is a compactification of X . While
it is a very useful object, we do not study the visual boundary in this paper.

(2) The Tits boundary ∂T X . As with ∂�X , the points in ∂T X correspond to asymptotic
equivalence classes of CAT(0) geodesic rays, but the topology is finer than the visual
topology. Specifically, we equip ∂T X with the Tits metric: by taking a supremum of
angles between rays one obtains the angle metric, and the induced length metric is the
Tits metric, which is CAT(1); see [7, Theorem II.9.13]. The Tits boundary encodes much
of the geometry of a CAT(0) space; for example, spherical join decompositions of the
Tits boundary correspond to product decompositions of the space [7, Theorem II.9.24].
Although ∂T X is in general not compact even when X is proper, it is of interest for other
reasons, such as encoding “partial flat regions” in X . For example, endpoints of axes of
rank-one isometries are isolated points, while flats in X yield spheres in ∂T X . We recall
the definition of ∂T X in Definition 7.1.

(3) The simplicial boundary ∂�X , from [39, 40], is an analogue of the Tits boundary depend-
ing on the hyperplane structure, rather than on the CAT(0) metric. The idea is that certain
sets of hyperplanes—termed unidirectional boundary sets (hereafter, UBSes)—identify
“ways of approaching infinity in X .” Containment of UBSes (modulo finite differences)
gives a partial order on UBSes, and this order gives rise to a simplicial complex ∂�X
(see Definition 6.9). Here are three helpful examples. First, the simplicial boundary of a
tree (or, more generally, of a δ-hyperbolic cube complex) is a discrete set of 0-simplices.
Second, the simplicial boundary of the standard square tiling of [0,∞)2 is a 1-simplex,
whose 0-simplices correspond to the sub-UBSes consisting of the vertical hyperplanes
and the horizontal hyperplanes. Third, the staircase obtained from this square tiling by
considering only the cubes below some increasing, unbounded function also has sim-
plicial boundary a 1-simplex. (See Fig. 1.) The maximal simplices of ∂�X encode such
“generalized orthants” (namely, convex hulls of �1-geodesic rays) in X in roughly the
same way that the Tits boundary encodes “partial flats.”
The simplicial boundary has been used to study quasi-isometry invariants like diver-

gence [39] and thickness [8] for groups acting on cube complexes, and has been
generalized in the context of median spaces [29] as a tool for proving a Tits alterna-
tive for groups acting on such spaces.
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(4) The Roller boundary ∂R X gives another way of compactifying X , using the half-space
structure associated to the hyperplanes. Each hyperplane ĥ of X has two complemen-
tary components, called half-spaces, h and h∗, which induce a two-sided partition of
X (0). Each vertex x ∈ X is completely determined by specifying the collection of half-
spaces that contain it. This gives an injective map X (0) → 2H, where H denotes the
set of half-spaces. The closure of the image of X (0) in the Tychonoff topology is the
Roller compactification X , and ∂R X = X � X (0) is the Roller boundary of X . (See
Definition 3.3.)
Of the boundaries of X that are defined in terms of the cubical structure only, the Roller

boundary is perhaps the most well-studied. It has been used to prove a variety of results
about CAT(0) cube complexes and groups acting on them.
For example, the Roller boundary plays a key role in the proof that irreducible lattices
in SL2C× SL2C always have global fixed points in any action on a CAT(0) cube com-
plex, while reducible actions always admit proper cocompact actions on CAT(0) cube
complexes [19].
Nevo andSageev identified theRoller boundary as amodel for the Furstenberg–Poisson

boundary of a cocompact lattice in Aut(X) [54]. Fernós generalized this result to groups
acting properly and non-elementarily on finite dimensional X , and also proved a Tits
alternative [28]. The same paper identifies an important subset of the Roller boundary:
the regular points, which correspond to “hyperbolic” directions in various senses.
In particular, the set of regular points with the induced topology is Aut(X)-equivariantly
homeomorphic with the boundary of the (hyperbolic) contact graph [33]. The set of
regular points is used in [32] to find rank-one isometries under more general conditions
than in previous work [25]. The method in [32] is to use convergence of random walks
to regular points to deduce the existence of regular elements without assuming that the
ambient group is a lattice.
The set of regular points also features in the proof of marked length spectrum rigidity

[5, 6], and was independently identified by Kar and Sageev, who used it to study property
Pnaive and hence C∗-simplicity for cubulated groups [48]. Finally, the Roller boundary
has recently been generalized in the context of median spaces [29].

(5) The simplicial Roller boundary R�X is constructed as follows. The Roller boundary
∂R X carries a natural equivalence relation, first introduced by Guralnik [37], where two
points are equivalent if they differ on finitely many half-spaces. The equivalence classes,
called Roller classes, play a fundamental role in this paper. Part of the reason for this is
that the set ofRoller classes carries a natural partial order,which admits several equivalent
useful characterizations (see Lemma 5.6). The simplicial Roller boundary R�X is the
simplicial complex realizing this partial order (see Definition 5.7).
In this paper, we build on earlier work relating Roller classes to CAT(0) geodesic

rays. Specifically, Guralnik in [37] recognized that each equivalence class of CAT(0)
geodesic rays determines a Roller class. Conversely, in [32], it is shown that each Roller
class determines a subset of the Tits boundary which admits a canonical circumcenter.
These observations are crucial for our arguments: Definition 8.7 depends on the latter
and Definition 8.1 is based on the former.
We also note that R�X is isomorphic to the combinatorial boundary defined and

studied by Genevois [34]. In that work, he explains that the combinatorial boundary is
isomorphic to the face-poset of a naturally-defined subcomplex of ∂�X [34, Proposition
A.1] and is isomorphic toR�X [34, Proposition A.5]. (More precisely, Genevois’ work
yields the map UR� from Corollary 6.33 below, although [34] does not explicitly mention
a homotopy equivalence.)
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Fig. 1 Left: a linear staircase. Right: a sublinear staircase. For both staircases, the simplicial boundary is a
1-simplex, whose vertices correspond to the UBS V of vertical hyperplanes and the UBS H of horizontal
hyperplanes. In both staircases, H is not visible (in either the �1 or the �2 metric), because any geodesic ray
crossing H must also cross V . In the sublinear staircase, V �H is also not �2-visible

For each of these boundaries, the action of the group Aut(X) of cubical automorphisms
of X extends to an action on the boundary preserving its structure. The actions on ∂�X and
∂R X are by homeomorphisms, the action on ∂T X is by isometries of the Tits metric, and the
actions on ∂�X and R�X are by simplicial automorphisms.

The definitions of the simplicial boundary and the simplicial Roller boundary are concep-
tually similar. Part of the work in this paper is making that similarity precise, by establishing
a correspondence between Roller classes and equivalence classes of UBSes. This line of
work culminates in Corollary 6.33, which gives explicit maps between R�X and a natural
subcomplex of ∂�X . These maps are Aut(X)-equivariant homotopy equivalences, although
in general they are not simplicial isomorphisms. Then, in Proposition 10.12, we upgrade this
to a homotopy equivalence between R�X and the whole of ∂�X .

One glimpse of a relationship between ∂�X and ∂T X comes from UBSes associated to
geodesic rays. Given a geodesic ray α → X , in either the CAT(0) metric or the combinatorial
metric, the set of hyperplanes crossing α (denoted W(α)) is always a UBS. A UBS U is
called �1-visible (resp. �2-visible) if it is has finite symmetric difference with W(α) for a
combinatorial (resp. CAT(0)) geodesic α. Figure 1 shows examples of both �1-invisible and
�2-invisible UBSes. Despite those caveats, �2-visible UBSes provide a way to map points of
∂T X to classes in ∂�X ; a similar construction also provides a map to R�X .

1.2 Main result

Our main theorem relates ∂T X , ∂�X , and R�X via maps that are Aut(X)-equivariant up to
homotopy. It helps to introduce the following terminology.

Definition 1.1 Suppose that A, B are topological spaceswith a groupG acting on both spaces
by homeomorphisms. A map f : A → B is called a a G∼homotopy equivalence if f is a
homotopy equivalence, and furthermore g ◦ f and f ◦ g are homotopic for every g ∈ G. If
such an f exists, we say that A, B are G∼homotopy equivalent.

It is immediate to check that the property of being G∼homotopy equivalent is an equiva-
lence relation. Indeed, the composition of two G∼homotopy equivalences is a G∼homotopy
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equivalence. Furthermore, any homotopy inverse of a G∼homotopy equivalence is itself a
G∼homotopy equivalence.

Theorem A Let X be a finite-dimensional CAT(0) cube complex. Then we have the following
commutative diagram of Aut(X)∼homotopy equivalences between boundaries of X:

∂�X
TS

� ∂T X

R�X
T
R

�

R S �

In particular, the spaces ∂�X ,R�X , ∂T X are all Aut(X)∼homotopy equivalent, where ∂T X
is equipped with the metric topology and ∂�X ,R�X are equipped with either the metric or
the weak topology.

In the above diagram, the letter S stands for Simplicial, the letter R for Roller-simplicial,
and the letter T for Tits. Themap TS is an Aut(X)∼homotopy equivalence from the simplicial
boundary to the Tits boundary, and similarly for the other two. The map TR is provided by
Corollary 10.11, and the map RS comes from Proposition 10.12. The map TS is just the
composition TS = TR ◦ RS.

Some intuition behind the theorem can be gleaned from the following simplified situation.
A cube complex X is called fully visible if every UBS is �1-visible. When X is fully visible,
UBSes correspond to combinatorial orthants in X (i.e. products of combinatorial geodesic
rays) [39], and Theorem A can be understood as relating combinatorial orthants to CAT(0)
orthants. See [39, Section 3], where a proof is sketched that the simplicial and Tits boundaries
are homotopy equivalent under the restrictive hypothesis of full visibility. However, full
visibility is a very strong and somewhat mysterious hypothesis: it is not known to hold even
if X admits a proper cocompact group action [45]. Thus Theorem A is more satisfying (and
more difficult) because it does not assume this restrictive hypothesis. In order to prove the
theorem, we have to understand combinatorial convex hulls of CAT(0) geodesic rays, which
is a much more delicate affair when one is not simply assuming that these hulls can be taken
to contain Euclidean orthants.

Theorem A does not have an analogue with the Tits boundary replaced by the visual
boundary. For example, if X has a proper, cocompact, essential action by a group G, and
X is irreducible, then G contains a rank-one isometry [CS11], and therefore the simplicial
boundary has two isolated points. Evan without a cocompact group action, the boundary has
isolated points corresponding to regular points in the Roller boundary, by [28, Proposition
7.4] and [39, Corollary 3.20]. On the other hand, if X is one-ended, then the visual boundary
is connected.

Theorem A also motivates the introduction of several new technical tools for relating the
geometry of CAT(0) geodesic rays to the combinatorics of hyperplanes.We believe that these
tools, explained in Sect. 1.5, are of independent interest.

1.3 Invariance of CAT(0) boundaries for cubulated groups

AgroupG is calledCAT(0) if there is a proper CAT(0) space X onwhichG acts geometrically
(properly and cocompactly). Multiple CAT(0) spaces might admit a geometric G-action and
witness thatG is aCAT(0) group. Sincewe are often interested in invariants of the group itself,
it is natural to look for features of the geometry of X that depend only onG. For instance, in the

123



Geometriae Dedicata (2024) 218 :33 Page 7 of 83 33

context of a Gromov hyperbolic group G, recall that all hyperbolic groups with a geometric
G-action have Gromov boundaries that are G-equivariantly homeomorphic. So one might
wonder whether a similar result might hold for CAT(0) groups that are not hyperbolic.

A famous result of Croke and Kleiner [21, 22], on which we elaborate more below, shows
that this is not the case. Explicitly, they considered the right-angled Artin group

G = 〈a, b, c, d : [a, b], [b, c], [c, d]〉,
whose Cayley 2-complex Xπ/2 is a CAT(0) square complex. The subscript π/2 emphasizes
the angles at the corners of the 2-cells. Viewing the 2-cells as Euclidean squares with side
length 1, we obtain a CAT(0) space whereG acts geometrically. Croke and Kleiner deformed
the squares of X into rhombi that have angles α and π − α, producing a perturbed CAT(0)
metric Xα , and showed that this perturbation changes the homeomorphism type of the visual
boundary ∂�Xα . Subsequently, Wilson [61] showed that the visual boundaries of Xα and
Xβ are homeomorphic only if the angles satisfy α = β, hence these perturbations produce
uncountably many homeomorphism types of boundaries. Further examples are provided by
Mooney [50], who exhibited CAT(0) knot groups G admitting uncountably many geometric
actions on CAT(0) spaces, all with different visual boundaries. Hosaka [44] has given some
conditions on G, X , Y implying that there is an equivariant homeomorphism ∂�X → ∂�Y
continuously extending the quasi-isometry X → Y coming from orbit maps, but the preced-
ing examples show that any such condition will be hard to satisfy.

So, one has to look for weaker results or less refined invariants, or ask slightly different
questions. This has stimulated a great deal of work in various directions.

In the context of 2-dimensionalCAT(0) complexes, there aremore positive results obtained
by replacing the visual boundary ∂�X by the Tits boundary ∂T X , and passing to a natural
subspace. Specifically, the core of ∂T X is the union of all embedded circles in ∂T X . Xie [64]
showed that if G acts geometrically on CAT(0) 2-complexes X and Y , then the Tits bound-
aries ∂T X and ∂T Y have homeomorphic cores. (This is weaker than Xie’s actual statement;
compare [64, Theorem 6.1].) In the Croke–Kleiner example, the core is a G-invariant con-
nected component, while the rest of the Tits boundary consists of uncountably many isolated
points and arcs.

There is a closely related result due to Qing, which inspired us to consider cuboid com-
plexes in the present paper. Another way to perturb the CAT(0) metric on a CAT(0) cube
complex X is to leave the angles alone, but to vary the lengths of the edges in such a way that
edges intersecting a common hyperplane are given equal length. In this perturbation, each
cube becomes a Euclidean box called a cuboid. The resulting path metric is still CAT(0),
at least when there are uniform upper and lower bounds on the edge-lengths. In particular,
this happens when some group G acts on X with finitely many orbits of hyperplanes, and
the edge-lengths are assigned G-equivariantly. We explain the details in Sect. 4, where we
define aG-admissible hyperplane rescaling in Definition 4.1 and show in Lemma 4.2 that the
resulting path-metric space (X , dρ

X ) is CAT(0) and G continues to act by isometries. Cuboid
complexes have been studied by various authors, including Beyrer and Fioravanti [5].

Qing [56] studied the visual boundary of the CAT(0) cuboid metric under perturbation
of the edge-lengths. She showed that the visual boundaries of the CAT(0) cuboid complexes
obtained from the Croke–Kleiner complex Xπ/2 are all homeomorphic. More germane to the
present paper, Qing also showed that the Tits boundaries of the rescaled cuboid complexes
are homeomorphic, but that no equivariant homeomorphism exists. (Roughly, the cores of
any two such Tits boundaries are homeomorphic by the result of Xie mentioned above. Via a
cardinality argument, Qing extends the homeomorphism over the whole boundary by sending
isolated points/arcs to isolated points/arcs. But this extension cannot be done equivariantly
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because equivariance forces some isolated points to be sent to isolated arcs and vice versa.)
We will return to cuboid complexes shortly.

There are other results about homeomorphism type as a CAT(0) group invariant for certain
classes of CAT(0) groups. For example, Bowers and Ruane [17] showed that ifG is a product
of a hyperbolic CAT(0) group and Z

D , then the visual boundaries of the CAT(0) spaces X
and Y with a geometricG-action are equivariantly homeomorphic. However, this equivariant
homeomorphism need not come from a continuous extension of a quasi-isometry X → Y .
Later, Ruane [59] extended this result to the case where G is a CAT(0) direct product of two
non-elementary hyperbolic groups.

Around the same time, Buyalo studied groups of the form G = π1(S) × Z, where S is
a hyperbolic surface [18, Section 14]. He constructed two distinct geometric G-actions on
H

2×R and showed that while the two copies ofH
2×R areG-equivariantly quasi-isometric,

the Tits boundaries do not admit any G-equivariant quasi-isometry.
Since we are interested in G-equivariant results, it makes sense to seek more general

positive results by replacing homeomorphism with a coarser equivalence relation. This has
been a successful idea: Bestvina [4] proved that torsion-free CAT(0) groups have a well-
defined visual boundary up to shape-equivalence. This was generalized by Ontaneda [55],
whose result removes the “torsion-free” hypothesis.

Homotopy equivalence is a finer equivalence relation than shape equivalence. Might there
be some result guaranteeing that the homotopy type of the Tits boundary of X is to some
extent independent of the choice of the CAT(0) space X , even if we allow only homotopy
equivalences between boundaries that respect the G-action in the appropriate sense? One
precise version of this question appears below as Question 1.3.

Motivated by Qing’s results about perturbing the metric on a CAT(0) cube complex by
changing edge lengths, we consider the situation where G acts on the finite-dimensional
CAT(0) cube complex X , and study the Tits boundaries of the CAT(0) spaces that result from
G-equivariantly replacing cubes by cuboids. Now, the hyperplane combinatorics, and hence
the simplicial and Roller boundaries, are unaffected by this change. And, for the unperturbed
X , Theorem A tells us that the homotopy type of the Tits boundary is really a feature of
the hyperplane combinatorics. So, in order to conclude that the homotopy type of the Tits
boundary is unaffected by such perturbations of the CAT(0) metric, we just need to know
that Theorem A holds for cuboid complexes as well as cube complexes. Indeed, we show:

Theorem B Let X be a finite-dimensional CAT(0) cube complex and let G be a group acting
by automorphisms on X. Let (X , dρ

X ) be the CAT(0) cuboid complex obtained from a G-
admissible hyperplane rescaling of X. Then the original Tits boundary ∂T X, the perturbed
Tits boundary ∂T (X , dρ

X ), the simplicial boundary ∂�X, and the simplicial Roller boundary
R�X are all G∼homotopy equivalent.

The proof of this result only requires minor modifications to the proof of Theorem A,
essentially because convexity of half-spaces and the metric product structure of hyperplane
carriers persist in the CAT(0) cuboid metric dρ

X . These small modifications are described in
Sects. 8.4, 9.4, and 10.4.

Remark 1.2 The proofs of Theorem A and B yield a slightly stronger conclusion than
G∼homotopy equivalence. We say that G-spaces A, B are Borel G∼homotopy equiva-
lent if there is a map f : A → B that factors as a composition of finitely many homotopy
equivalences, each of which is eitherG-equivariant or a homotopy inverse of aG-equivariant
map. (This definition is somewhat reminiscent of the notion of cell-like equivalence. Com-
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pare Guilbault andMooney [35], specifically the discussion Bestvina’s Cell-like Equivalence
Question on page 120.)

In the proof of both theorems, the homotopy equivalence from ∂T X (or ∂T (X , dρ
X )) toR�X

is constructed as an explicit composition of maps, each of which is either a G-equivariant
homotopy equivalence, a deformation retraction homotopy inverse to a G-equivariant inclu-
sion map (see Proposition 10.5), or a homotopy equivalence coming from one of the nerve
theorems; the latter are compositions of G-equivariant maps or homotopy inverses of G-
equivariant maps by Remark 2.9. The homotopy equivalence R�X → ∂�X similarly
proceeds by composing G-equivariant maps and their homotopy inverses, in view of the
same remark about the nerve theorems.

From the definitions, Borel G∼homotopy equivalence is a stronger notion than
G∼homotopy equivalence. Furthermore, letting EG be a classifying space for G, Theo-
rem A and the preceding observations imply that the homotopy quotients EG ×G ∂T X and
EG×G R�X are homotopy equivalent and therefore the G-equivariant (Borel) cohomology
of ∂T X is isomorphic to that of R�X and ∂�X .

Theorem B implies, in particular, that if X admits a geometric action by a group G, then
the G∼homotopy type of the Tits boundary is unaffected by replacing the standard CAT(0)
metric (where all edge lengths are 1) with a cuboid metric obtained by rescaling edges G-
equivariantly. This is perhaps evidence in favor of the possibility that the results of Bestvina
and Ontaneda about shape equivalence of visual boundaries [4, 55] can be strengthened to
results about G∼homotopy equivalence if one instead uses the Tits boundary:

Question 1.3 For which CAT(0) groups G is it the case that any two CAT(0) spaces X , Y on
which G acts geometrically have G∼homotopy equivalent Tits boundaries?

If G acts geometrically on CAT(0) cube complexes X , Y , are the simplicial boundaries of
X , Y G∼homotopy equivalent?

1.4 Quasiflats

A remarkable theorem of Huang [46, Theorem 1.1] says that if X is a d-dimensional CAT(0)
cube complex, then any quasi-isometric embedding R

d → X has image that is Hausdorff-
close to a finite union of cubical orthants, where an orthant is a convex subcomplex that splits
as the product of rays. This statement is important for the study of quasi-isometric rigidity in
cubical groups, and it is natural to want to strengthen the statement to cover quasi-isometric
embeddings R

d → X , where d is the largest dimension for which such a map exists, but
dim X is allowed to be larger than d (although still finite). Natural examples where this
strengthened form of Huang’s theorem is useful include right-angled Coxeter groups.

We believe that Theorem A could be used as an ingredient in proving such a result. Very
roughly, the homotopy equivalence ∂T X → ∂�X can be used to produce, given a singular
d-cycle z in ∂T X , a simplicial d-cycle z′ in ∂�X represented by a finite collection of standard
orthants in X . By the latter, we mean there is a finite collection of d-simplices in ∂�X whose
union S carries z′. The proof of Theorem A, specifically Proposition 8.12 and the nerve
arguments in Sects. 9 and 10, should provide enough metric control on the map S → ∂T X to
invoke a result ofKleiner–Lang [47] to deduce the strengthened quasiflats theorem.Given that
the strengthened quasiflats theorem has recently been established by Bowditch [16, Theorem
1.1] and independently Huang–Kleiner–Stadler [43, Theorem 1.7], we have decided not to
pursue the matter in this paper.
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1.5 Ingredients of our proof

As mentioned above, our primary goal is to elucidate the relationships among three bound-
aries: the simplicial boundary ∂�X , the simplicial Roller boundary R�X , and the Tits
boundary ∂T X .

The first two boundaries that we study are combinatorial in nature. The primary difference
is that the central objects in ∂�X are sequences of hyperplanes, whereas the central objects
in R�X are sequences of half-spaces. After developing a number of lemmas that translate
between the two contexts, we prove the following result:

Corollary 6.33 The barycentric subdivision of ∂�X contains a canonical, Aut(X)-invariant
subcomplex ∂UBS� X . There are Aut(X)-equivariant simplicial maps RU� : ∂UBS� X → R�X
and UR� : R�X → ∂UBS� X , with the following properties:

(1) RU� : ∂UBS� X → R�X is surjective.

(2) UR� : R�X → ∂UBS� X is an injective section of RU�.
(3) RU� is a homotopy equivalence with homotopy inverse RU�.

In fact, all of ∂�X deformation retracts to ∂UBS� X in an Aut(X)-equivariant way. See
Remark 6.34.

In contrast to the the two combinatorial boundaries, the Tits boundary ∂T X is inherently
linked to the geometry of the CAT(0) metric on X . To relate the Tits boundary to the other
two boundaries, we need to combinatorialize it: that is, we need to cover ∂T X by a certain
collection of open sets, and then study the nerve of the corresponding covering. Similarly,
we cover each of ∂�X andR�X by simplicial subcomplexes, and study the resulting nerves.
We will use two different versions of the nerve theorem to show that a topological space
(such as one of our boundaries) is homotopy equivalent to the nerve of a covering. The
Open Nerve Theorem 2.7 deals with open coverings and is originally due to Borsuk [13].
The simplicial Nerve Theorem 2.8 deals with coverings by simplicial complexes and is
originally due to Björner [11]. In fact, since TheoremA is aG-equivariant statement, we need
equivariant versions of both theorems, which have not previously appeared in the literature
to our knowledge. Consequently, Sect. 2 contains self-contained proofs of both theorems.

A central object in our construction of nerves is the Tits boundary realization of a Roller
class, or point in the Roller boundary (see Definitions 8.4, 8.5, 8.7). In [32], a Roller class
v, yields a convex, visually compact subset of the Tits boundary ∂T X . Employing the work
of Caprace–Lytchak [23] and Balser–Lytchak [12], this set has radius at most π/2 and a
canonical circumcenter χ(v). A first approach might be to use these compacta to provide the
0-skeleton of a nerve for ∂T X that will be homotopy equivalent to R�X . However, several
issues arise. First, these associated convex closed sets must be made smaller so that their
overlaps can be controlled. This is achieved by considering points in the Roller boundary
versus their classes.

Secondly, the issue of �2-visibility, or rather invisibility must be addressed. A Roller class,
(respectively a UBS) is �2-visible if it is the intersection (respectively union) of the deep half-
spaces (respectively hyperplanes) naturally associated to a CAT(0) geodesic ray α. As Fig. 1
shows, some Roller classes are not �2-visible, and invisible classes cause headaches when
trying to connect this data to the Tits boundary. In particular, if v is an invisible Roller class,
then we will have Q(v) = Q(w) for any Roller class w < v. To confront this challenge, we
have to find a single class which is maximal among the visible Roller classes represented by
rays with endpoints in Q(v). Proving the existence of such a maximal class requires finding
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a single geodesic ray that is diagonal, in the sense that its convex hull is the union of the
convex hulls of two geodesic rays. In particular, we need the following statement, which is
of independent interest:

Proposition 7.16 Let α, β be CAT(0) geodesic rays with α(0) = β(0) ∈ X (0). Suppose that
W(α)∪W(β) is commensurate with a UBS. Then a = α(∞) and b = β(∞) are joined by a
unique geodesic g in ∂T X . Furthermore, any interior point c of g is represented by a CAT(0)
geodesic ray γ such that W(γ ) =W(α) ∪W(β).

Next, we consider maps between ∂T X and RX that relate these boundaries. The first
of these maps, called ψ : ∂T X → RX , is fairly easy to describe. A Tits point a ∈ ∂T X
is represented by a CAT(0) geodesic ray α and the intersection of half-spaces which are
“deep" yields a (principal) Roller classψ(a). See Definition 8.1 and Lemma 8.2. The reverse
map ϕ : RX → ∂T X is somewhat more delicate: given a Roller class v, we start with the
circumcenterχ(v) ∈ Q(v) and then perturbχ(v) to a nearbypointϕ(v) that has slightly better
properties. See Definition 8.17 and Proposition 8.18 for details, and note that the perturbation
uses Proposition 7.16 in a crucial way. The upshot is that ϕ is a section of ψ on exactly the
�2-visible classes: we have v = ψ(ϕ(v)) if and only if v is �2-visible (Lemma 8.20).

We can now construct nerves and prove results about them. We begin by defining the
set MaxVis(X) of all visible Roller classes that are maximal among all �2-visible classes.
Then, we construct a simplicial complexNT whose vertex set is MaxVis(X), with simplices
corresponding to collections of Roller classes vi whose Tits boundary realizations Q(vi ) all
intersect. We check that this is indeed the nerve of a cover of ∂T X (Corollary 9.5). Then, we
prove:

Theorem 9.17 There is an Aut(X)∼homotopy equivalence from the simplicial complexNT

to ∂T X .

The proof of Theorem 9.17 requires an open thickening. The sets Q(v) are closed (in
fact, compact), and we do not have a version of the Nerve Theorem for closed covers.
Thus we thicken up each compact set Q(v) to an open set U (v), in such a way that the
intersection pattern of the open cover {U (v) : v ∈ MaxVis(X)} is the same as that of the
closed cover {Q(v) : v ∈ MaxVis(X)}. The thickening procedure involves some delicate
CAT(0) geometry; see Proposition 9.14. As a result, we obtain an open cover of ∂T X whose
nerve is isomorphic to the nerve of the closed cover, namelyNT . Now, the Equivariant Open
Nerve Theorem 2.7 gives an Aut(X)∼homotopy equivalence NT → ∂T X .

There are two reasons why the Aut(X)∼homotopy equivalence in Theorem 9.17 is not
Aut(X)-equivariant. First, theEquivariantOpenNerveTheorem2.7 does not provideAut(X)-
equivariance on the nose. Second, while the collection of Tits boundary realizations Q(vi )

is Aut(X)-equivariant, the perturbed circumcenter map ϕ might not be. For these reasons,
Aut(X)∼homotopy equivalence is the strongest form of invariance that we can guarantee.

In Sect. 10, we use all of the above results to complete the proof of TheoremA.We already
have an open cover of ∂T X whose nerve is NT . Working in R�X , we focus attention on a
subcomplex R�

�X whose vertex set corresponds to the �2-visible Roller classes, and then
construct a cover of R�

�X by finite simplicial complexes {
v : v ∈ MaxVisX}. It is not too
hard to check that the nerveN� of this cover is isomorphic toNT , which implies thatR�

�X
and ∂T X are Aut(X)∼homotopy equivalent (Proposition 10.5). To complete the construction
of an Aut(X)∼homotopy equivalence TR : R�X → ∂T X , we build an Aut(X)∼deformation
retraction R�

�X → R�X ; see Proposition 10.6. While the construction of this retraction is
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Table 1 Table of notation

Symbol Meaning Where

X Cube complex Section 3.1

d1 �1, combinatorial metric Section 3.1

dX �2, CAT(0) metric Section 3.1

dρ
X Rescaled (cuboid) CAT(0) metric Definition 4.1

H = H(X) Set of half-spaces of X Section 3.2

H+x Set of half-spaces containing x Section 3.3

W =W(X) Set of hyperplanes (walls) of X Section 3.2

W(x, y) Hyperplanes separating x from y Section 3.2

I(x, y) Vertex interval from x to y Definition 3.10

m(x, y, z) Median in X Equation (3.11)

CH(S) Cubical convex hull of set S Definition 3.7

J (x, y) Cubical interval from x to y Definition 3.8, 8.5

γ Geodesic ray in X , either �1 or �2 Definition 3.25

γ (∞) Endpoint of γ at infinity Lemma 3.26

X Roller compactification of X Definition 3.3

∂R X Roller boundary, X � X Definition 3.3

x ∼ y Finite distance in X Definition 5.1

RX Guralnik quotient, ∂R X/ ∼ Definition 5.1

R�X Simplicial Roller boundary Definition 5.7

〈〈S〉〉 Inseparable closure of a set of hyperplanes Section 6.2

U ,V Unidirectional boundary sets (UBS) Definition 6.3

U ∼ V Finite symmetric difference Definition 6.4

∂�X Simplicial boundary of X Definition 6.9

mostly combinatorial, it relies on CAT(0) geometry and the perturbed circumcenter map ϕ

at one crucial step.
Finally, the homotopy equivalence RS : ∂�X → R�X is morally very similar to the

simplicial map RU� : ∂UBS� X → R�X constructed in Corollary 6.33. To make the argument
precise, we construct isomorphic nerves of simplicial covers of ∂�X and R�X and apply
the Equivariant Simplicial Nerve Theorem 2.8 one final time.

1.6 Expository content

Part of our goal in this paper is to provide exposition of varying aspects of cubical theory.
CAT(0) cube complexes are ubiquitous objects that have been well-studied in many different
guises. Accordingly, there are several different viewpoints, and various important technical
statements are stated and proved in a variety of different ways throughout the literature.
Therefore, we have endeavored to give a self-contained discussion of CAT(0) cube complexes
combining some of these viewpoints.

Also, throughout the paper, we make heavy use of the nerve theorem, for both open and
simplicial covers. Results of this sort were originally proved by Borsuk [13], and are now
widely used in many slightly different forms. The versions in the literature closest to what we
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Table 1 continued

Symbol Meaning Where

YU Umbra of a UBS in ∂R X Definition 6.16

YU Principal class of umbra Lemma 6.18

UY UBS representing a Roller class Y Definition 6.21

W(γ ) UBS associated to a geodesic γ Definition 6.23

UBS(X) Equivalence classes of UBSes Theorem 6.27

∂T X Tits boundary of X Definition 7.1

Da Deep set of half-spaces for a ∈ ∂T X Definition 7.5

ψ(a) Roller class associated to a ∈ ∂T X Definition 8.1

Q(y) Tits boundary realization of y ∈ ∂R X Definition 8.4, 8.5

Q(v) Tits boundary realization of v ∈ RX Definition 8.7

χ(v) Circumcenter of Q(v) Definition 8.7

ϕ(v) Pseudocenter, perturbed circumcenter Definition 8.17

Mv Maximal Roller class in ψ(Q(v)) Lemma 8.14

Vis(X) �2-visible Roller classes, ψ(∂T X) Definition 8.19

MaxVis(X) Maximal visible Roller classes Definition 9.1

U (v) Open neighborhood of Q(v) Proposition 9.14

NT Nerve of cover of ∂T X by Q(MaxVis(X)) Corollary 9.5

LT Nerve of cover of ∂T X by U (MaxVis(X)) Theorem 9.17

R��X Visible subcomplex of R�X Definition 10.1


v Subcomplex of R��X for v ∈ Vis(X) Definition 10.1

N� Nerve of simplicial cover of R��X by 
v’s Definition 10.3

need here are for open covers of paracompact spaces [42] and for (possibly locally infinite)
covers of simplicial complexes by subcomplexes [10, 11]. The recent paper [57] contains
generalizations of both statements of the nerve theorem. Since we could not find a written
account of these results incorporating an additional conclusion about G∼equivalences in the
presence of a group action, we have given self-contained proofs (based on arguments in [11,
42]) in Sect. 2.

1.7 Section Breakdown

Section 2 establishes some language about simplicial complexes and proves equivariant ver-
sions of two nerve theorems. Section 3 is devoted to background on CAT(0) cube complexes
and the Roller boundary. In Sect. 4, we discuss CAT(0) cuboid complexes coming from an
admissible rescaling of the hyperplanes. Section 5 introduces the simplicial Roller boundary.
In Sect. 6, we introduce UBSes and the simplicial boundary, and relate these to Roller classes
and the simplicial Roller boundary. In Sect. 7, we introduce the Tits boundary and prove some
technical results relating CAT(0) geodesic rays to Roller classes and UBSes. We apply these
in Sect. 8 to analyze the realizations of Roller classes in the Tits boundary. These results are
in turn used in Sect. 9 to prove that the Tits boundary is homotopy equivalent to a simplicial
complex NT arising as the nerve of the covering by open sets associated to certain Roller
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classes. In Sect. 10, we realize this nerve as the nerve of a covering of the simplicial Roller
boundary by subcomplexes associated to Roller classes, and deduce Theorems A and B.

See Table 1 for a summary of the notation used in this paper.

2 Simplicial complexes and nerve theorems

Throughout the paper, we will make use of simplicial complexes and assume that the reader
is familiar with these objects. For clarity, we recall the definition and describe two topologies
on a simplicial complex. Then, in Sect. 2.1, we prove two group-equivariant homotopy
equivalence theorems about nerves of covers.

A k-simplex is the set

σ =
{
a0e0 + · · · + akek

∣∣∣∣
k∑

i=0
ak = 1 and ai ≥ 0 for all i

}
,

where e0, . . . , ek are the standard basis vectors in R
k+1. A face of σ is a j-simplex obtained

by restricting all but j + 1 of the ai to 0. Note that σ has a CW complex structure where the
0-cells are the 0-dimensional faces and, more generally, the j-cells are the j-dimensional
faces.

A simplicial complex is a CW complex N whose closed cells are simplices, such that

• each (closed) simplex is embedded in N , and
• if σ, τ are simplices, then σ ∩ τ is either empty or a face of both σ and τ . In particular,

simplices with the same 0-skeleton are equal.

We often refer to 0-simplices of N as vertices and 1-simplices as edges.
As a CW complex, N is endowed with the weak topology:

Definition 2.1 (Weak topology) LetN be a simplicial complex. The weak topology Tw onN
is characterized by the property that a set C ⊂ N is closed if and only if C ∩ σ is closed for
every simplex σ ⊂ N .

In some of the arguments in this section, it will bemore convenient to work with themetric
topology on the simplicial complex N .

Definition 2.2 (Metric topology) Let N be a simplicial complex. Let V be the real vector
space consisting of functions f : N (0) → R such that f (v) �= 0 for finitely many v ∈ N (0).
Then there is a canonical inclusion N (0) ↪→ V , where every vertex v ∈ N (0) maps to the
corresponding Dirac function δv ∈ V . This map extends affinely over simplices endowed
with barycentric coordinates to give an inclusion N ↪→ V .

Equip V with the �2 norm

‖ f ‖2 =
∑

v∈N (0)

f 2(v),

which is well-defined since every f ∈ V is finitely supported. The restriction of the resulting
metric topology on V to the subspace N is the metric topology on N , denoted Tm .

The metric topology is coarser than the weak topology, hence the identity map
idN : (N , Tw) → (N , Tm) is always continuous. When a simplicial complex N is locally
infinite, the inverse map (N , Tm) → (N , Tw) is not continuous. However, Dowker proved
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that idN is a homotopy equivalence even when N is locally infinite [27]. Since our interest
is in the homotopy type of N , Dowker’s theorem will be very useful.

Convention 2.3 Unless stated otherwise, a simplicial complex N is presumed to have the
weak topology Tw . The metric topology will only be needed in Lemma 2.6 and Theorem 2.7,
and never afterward.

Some of the simplicial complexes used later will arise from partially ordered sets, as
follows.

Definition 2.4 (Simplicial realization) Given a partially ordered set (P,≤), there is a sim-
plicial complex S in which the k-simplices are the (k + 1)-chains in (P,≤), and the face
relation is determined by containment of chains. We call S the simplicial realization of the
partially ordered set (P,≤).

In several other places, we will work with simplicial complexes arising as nerves of
coverings of topological spaces:

Definition 2.5 (Nerve) Let Y be a topological space and let U = {Yi }i∈I be a covering of
Y , i.e. a family of subsets with Y = ⋃

i∈I Yi . The nerve of U is the simplicial complex
N with a vertex vi for each Yi , and with an n-simplex spanned by vi0 , . . . , vin whenever⋂n

j=0 Yi j �= ∅.

Note that we have defined nerves for arbitrary coverings of arbitrary topological spaces. In
practice, we will restrict Y and U : either Y is a paracompact space and U is an open covering,
or Y is itself a simplicial complex and U is a covering by subcomplexes. These assumptions
provide the settings for the nerve theorems, which relate the homotopy type of Y to that of
the nerve of U .

2.1 Equivariant nerve theorems

In this section, we prove two flavors of nerve theorem that are needed in our proofs of
homotopy equivalence. Theorem 2.7 is a group-equivariant version of the classical nerve
theorem for open coverings, originally due to Borsuk [13]. Similarly, Theorem 2.8 is an
equivariant version of the nerve theorem for simplicial complexes, which is due to Björner
[11, Theorem 10.6].

We need the following standard fact:

Lemma 2.6 (Recognizing homotopic maps) Let Y be a topological space andN a simplicial
complex endowed with the metric topology. Let f0, f1 : Y → (N , Tm) be continuous maps.
Suppose that, for all y ∈ Y , there exists a closed simplex σ ofN such that f0(y), f1(y) ∈ σ .
Then f0 and f1 are homotopic via a straight line homotopy.

Proof By abuse of notation, we identify N with the embedding N ↪→ V described in
Definition 2.2. Then f0, f1 : Y → V are continuous functions. For y ∈ Y and t ∈ [0, 1],
define the affine combination ft (y) = (1 − t) f0(y) + t f1(y). Then (y, t) �→ ft (y) is
a continuous mapping from Y × [0, 1] to V . Furthermore, for every y ∈ Y , the image
ft (y) = (1− t) f0(y)+ t f1(y) belongs to the same simplex σ ⊂ N that contains f0(y) and
f1(y). Thus we get a straight line homotopy ft : Y → N .
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Theorem 2.7 (Equivariant open nerve theorem) Let Y be a paracompact space, on which
a group G acts by homeomorphisms. Let I be a set equipped with a left G-action, and let
U = {Yi }i∈I be an open covering of Y with the following properties:

• gYi = Ygi for all g ∈ G and i ∈ I ;
• for any finite F ⊂ I , the intersection

⋂
i∈F Yi is either empty or contractible.

Let N be the nerve of the covering U .
Then G acts onN by simplicial automorphisms, and there is a G∼homotopy equivalence

f : Y → (N , Tm). Consequently, there is also a G∼homotopy equivalence Y → (N , Tw).

Proof If the G-action is trivial, this result is the classical nerve theorem, proved for instance
in Hatcher [42, Proposition 4G.2, Corollary 4G.3]. We adapt Hatcher’s line of argument,
accounting for the G-action where necessary. Until we say otherwise, at the very end of the
proof, the nerve N will be equipped with the metric topology Tm .

Simplices comprising the nerve: Let F be the set of finite subsets F ⊂ I such that⋂
i∈F Yi �= ∅. Then, by Definition 2.5, every finite set F ∈ F can be canonically identified

with the set of vertices of a simplex σ(F) ⊂ N . The partial order onF given by set inclusion
corresponds to the face relation on N . The action of G on U induces an action on F , hence
a simplicial action on N .

The space �Y and its quotient maps: Let σ = σ(F) be a simplex ofN , corresponding
to a finite set F ∈ F . Let UF = ⋂

i∈F Yi , a contractible open set, and consider the product
UF × σ(F) ⊂ Y ×N . Then, define

�Y =
⋃
F∈F

(
UF × σ(F)

) ⊂ Y ×N .

The diagonal G-action on Y ×N induces a G-action on �Y . The projections from Y ×N
to its factors restrict to G-equivariant projection maps

p : �Y → Y , q : �Y → N .

The homotopy equivalence �Y → N : Given a point x ∈ N contained in the interior of
a simplex σ(F), the fiber q−1(x) = UF × {x} is contractible by hypothesis. Thus, by [42,
Proposition 4G.1], the projection q : �Y → N is a homotopy equivalence.

The fiber p−1(y): Fix y ∈ Y , and consider the fiber p−1(y). Let (y, x) ∈ p−1(y) ⊂
Y ×N . Let σ(F) be a simplex of N containing x = q(y, x). The vertices of σ correspond
to the elements of F , hence to subsets Yi for i ∈ F . We endow σ(F) with barycentric
coordinates, so that x =∑

i∈F βi Yi where
∑

βi = 1. Thus

p−1(y) =
{(

y,
∑
i∈F

βi Yi
) ∣∣∣∣ y ∈ UF , F ∈ F

}
= {y} ×
y

for a simplicial subcomplex 
y ⊂ N . Since the projection p : �Y → Y is G-equivariant,
we have

{gy} × g
y = g
({y} ×
y

) = gp−1(y) = p−1(gy) = {gy} ×
gy,

and in particular g
y = 
gy .
For any pair of points x, x ′ ∈ 
y , belonging to simplices σ(F), σ (F ′) of N , we have

y ∈ UF ∩UF ′ = UF∪F ′ . Thus there is also a simplex σ(F ∪ F ′) containing both σ(F) and
σ(F ′) as faces. It follows that x, x ′ are connected by an affine line segment in the common
simplex σ(F ∪ F ′). In other words, 
y is convex.
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The section s : Y → �Y : Since Y is paracompact, there is a partition of unity {φα}α∈A
subordinate to U = {Yi }i∈I . That is, for each α ∈ A, we have supp(φα) ⊂ Yi(α) for some
i(α) ∈ I . Given y ∈ Y , let A(y) = {α ∈ A : y ∈ supp(φα)}, a finite set. Then, define

f (y) =
∑

α∈A(y)

φα(y)Yi(α) ∈ 
y and s(y) = (
y, f (y)

) ∈ p−1(y).

Wewill eventually show that f : Y → N is the homotopy equivalence claimed in the theorem
statement. For now, we focus on s.

Checking that s is a homotopy inverse of p: Since s(y) ∈ p−1(y), we have p ◦ s = idY
by construction. We claim that the other composition s ◦ p is homotopic to id�Y . To prove
this, consider the following pair of functions from �Y → N :

q0(y, x) = q(y, x) = x, q1(y, x) = f (y).

For every pair (y, x) ∈ �Y , the image points x = q0(y, x) and x ′ = q1(y, x) = f (y)
are both contained in 
y . Above, we have checked both image points x, x ′ are contained
in a common simplex σ(F ∪ F ′) ⊂ 
y ⊂ N . Recall that we are working with the metric
topology on N . Thus, by Lemma 2.6, q0 is homotopic to q1 via a straight line homotopy qt .
For every y, this straight-line homotopy runs through 
y .

We can now define a homotopy ht : �Y → Y ×N as follows:

ht (y, x) = (y, qt (y, x)).

Observe that p ◦ ht is continuous because p ◦ ht (y, x) = y, and q ◦ ht is continuous because
q ◦ ht (y, x) = qt (y, x). Thus, by the universal property of the product topology, ht is
continuous. Restricting t to be 0 or 1 gives

h0(y, x) = (y, q0(y, x)) = (y, x), h1(y, x) = (y, q1(y, x)) = (y, f (y)) = s ◦ p(y, x).

In fact, for every (y, x), the path t �→ qt (y, x) has image in 
y , hence ht (y, x) has image in
{y} ×
y ⊂ �Y . Thus ht is a homotopy from s ◦ p to id�Y , and s is a homotopy inverse of
p.

A G∼homotopy equivalence, for both topologies on N : Thus far, we have homotopy
equivalences s : Y →�Y and q : �Y → N . Hence the composition f = q ◦ s : Y → N is
a homotopy equivalence as well.

It remains to check that f is a G ∼homotopy equivalence. We saw above that s is a
homotopy inverse for p; in particular p is an isomorphism in the homotopy category of
spaces, with inverse s. Moreover, each g ∈ G acts as a homeomorphism, and in particular
an isomorphism in the homotopy category, on both Y and �Y . By construction, we have
g ◦ p = p ◦ g. So, letting � denote homotopy of maps, and using that s ◦ p � I d�Y and
p ◦ s � I dY , we have

s ◦ g � s ◦ g ◦ (p ◦ s) � s ◦ (p ◦ g) ◦ s � g ◦ s,
which is to say that s is a G∼homotopy equivalence. Since q is a G-equivariant homotopy
equivalence, it is a G∼homotopy equivalence, and hence f = q ◦ s : Y → N is as well.
Since idN : (N , Tw) → (N , Tm) is aG-equivariant homotopy equivalence by [27], f is thus
a G∼homotopy equivalence for either topology on N .

We are now finished with having the metric topology on our nerves, and work only with
the weak topology in the remainder of the paper.

The following result is stated (without the group action) as [11, Theorem 10.6]. The proof
given there assumes that V = {
i } is a locally finite cover, and a proof in full generality is
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given in [10, Lemma 1.1]. (See [57] for a more general result.) Since we need to adapt the
proof slightly to account for the group action, we write down a proof using Theorem 2.7,
without any assumptions on local finiteness of the cover {
i }.
Theorem 2.8 (Equivariant simplicial nerve theorem) Let Y be a simplicial complex, and let
G be a group acting on Y by simplicial automorphisms. Let I be a set equipped with a
left G-action, and let V = {
i }i∈I be a covering of Y by subcomplexes, with the following
properties:

• g
i = 
gi for all g ∈ G and i ∈ I ;
• for any finite F ⊂ I , the intersection

⋂
i∈F 
i is either empty or contractible.

Let N be the nerve of the covering V . Then there is a G∼homotopy equivalence f : Y →
(N , Tw).

Proof Let Y ′ be the barycentric subdivision of Y .We think of Y and Y ′ as the same underlying
topological space, with different simplicial structures.

Every subcomplex 
 ⊂ Y can be viewed as a subcomplex of Y ′. Indeed, 
 ⊂ Y is a full
subcomplex of Y ′, in the following sense: for every simplex τ ⊂ Y ′ whose vertices belong
to 
, it follows that τ ⊂ 
. This holds because the vertices of τ correspond to simplices of
Y ; if these vertices belong to 
, then so do the corresponding cells of Y , hence τ ⊂ 
.

Complementary complexes and open neighborhoods:For a subcomplex
 ⊂ Y , define
the complementary complex T
 to be the union of all closed simplices of Y ′ disjoint from
.
Then T
 is also a full subcomplex of Y ′. Indeed, consider a simplex τ ⊂ Y ′ whose vertices
are disjoint from 
. Then τ ∩
 cannot contain any faces of τ , hence τ ∩
 = ∅. Since T


is a subcomplex of Y ′, it is closed (in the weak topology).
Given a subcomplex 
 ⊂ Y , we define an open neighborhood U
 = Y � T
 . Thus U


is the union of all the open simplices of Y ′ whose closures intersect 
.
For every subcomplex 
i , where i ∈ I , we write Ui = U
i . Observe that Ugi = gUi

for all g ∈ G and i ∈ I . We will prove the theorem by replacing the subcomplex cover
V = {
i }i∈I by the open cover U = {Ui }i∈I .

Same nerve: Let
α and
β be a pair of subcomplexes of Y , not necessarily belonging to
V .Weclaim that
α∩
β = ∅ if andonly ifU
α∩U
β = ∅. The “if” direction is obvious. For
the “only if” direction, suppose that 
α ∩
β = ∅. Then T
α∪ T
β = T
α∩
β = T∅ = Y ′,
hence U
α∩U
β = ∅, as desired.

Now, let F ⊂ I be a finite set. By induction on |F |, combined with the argument of the
above paragraph, we see that

⋂
i∈F 
i = ∅ if and only if

⋂
i∈F U
i = ∅. Hence the open

cover U = {Ui }i∈I and the subcomplex cover V = {
i }i∈I have the same nerve N .
Same homotopy type: For every subcomplex 
 ⊂ Y , we claim that the open neigh-

borhood U
 deformation retracts to 
. This is a standard fact about simplicial complexes,
proved e.g. in Munkres [51, Lemma 70.1]. The proof constructs a straight-line homotopy in
every simplex σ ⊂ Y ′ that belongs to neither 
 nor T
 . The proof uses the fullness of 
 and
T
 in Y ′, but does not depend on any finiteness properties of these complexes.

Now, let F ⊂ I be a finite set such that
⋂

i∈F 
i �= ∅. Define 
F = ⋂
i∈F 
i , and

recall that by hypothesis,
F is contractible. SinceU
F =
⋂

i∈F U
i , andU
F deformation
retracts to 
F , it follows that

⋂
i∈F Ui =⋂

i∈F U
i is also contractible.
Conclusion: By a theorem of Bourgin [14], the simplicial complex Y is paracompact

(with the weak topology Tw). We have shown that the open cover U = {Ui }i∈I and the
subcomplex cover V = {
i }i∈I have the same nerve N . We have checked that Ugi = gUi

for all g ∈ G and i ∈ I . Furthermore, for every finite set F ⊂ I , the intersection
⋂

i∈F Ui
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is either empty or contractible. Thus, by Theorem 2.7, we have a G∼homotopy equivalence
f : Y → (N , Tw).

Remark 2.9 Theproof ofTheorem2.7yields a slightly stronger conclusion thanG∼homotopy
equivalence. Indeed, we produced G-equivariant homotopy equivalences �Y → Y and
�Y → N , and G∼homotopy equivalences between Y and N were then obtained by com-
posing one with a homotopy inverse of the other. The same is true for Theorem 2.8, since it is
proved by applying Theorem 2.7 to a G-invariant open cover. Hence, under the hypotheses
of either theorem, we have actually shown that Y and N are Borel G∼homotopy equivalent
(see Remark 1.2).

3 Cube complexes and the Roller boundary

This section recalls some background about CAT(0) cube complexes and their Roller bound-
aries. Many facts about CAT(0) cube complexes, median graphs, wallspaces, and related
structures occur in various places in the literature, inmany equivalent guises.We have endeav-
ored to connect some of the perspectives, in part becausewewill need to use these connections
in the sequel. We refer the reader to [60] and [62] for more background.

3.1 CAT(0) cube complexes andmetrics

A cube is a copy of a Euclidean unit cube [− 1
2 ,

1
2 ]n for 0 ≤ n < ∞. A face of [− 1

2 ,
1
2 ]n is

a subspace obtained by restricting some of the coordinates to ± 1
2 . A cube complex is a CW

complex whose cells are cubes and whose attaching maps restrict to isometries on faces. A
cube complex with embedded cubes is nonpositively curved if, for all vertices v and all edges
e1, . . . , ek incident to v such that ei , e j span a 2-cube for all i �= j , we have that e1, . . . , ek
span a unique k-cube. If X is nonpositively-curved and simply connected, then X is aCAT(0)
cube complex. The dimension of X , denoted dim X , is the supremum of the dimensions of
cubes of X .

Throughout this paper, X will denote a finite-dimensional CAT(0) cube complex. We let
Aut(X) denote the group of cellular automorphisms of X . We do not assume that X is locally
finite.

The cube complex X carries ametric dX such that (X , dX ) is aCAT(0) space, the restriction
of dX to each cube is the Euclideanmetric on a unit cube, and each cube is geodesically convex
(see [7, 36]). We refer to dX as the �2 metric or the CAT(0) metric on X .

One can view X (1) as a graph whose vertices are the 0-cubes and whose edges are the
1-cubes. (We often refer to 0-cubes as vertices of X , and 1-cubes as edges.) We let d1 denote
the �1 metric on the vertex set X (0), which is the restriction of the usual graph metric on
X (1). We refer to d1 as the combinatorial metric on X (0). A combinatorial geodesic between
x, y ∈ X (0) is an edge path in X (1) that realizes d1(x, y).

3.2 Hyperplanes, half-spaces, crossing, and separation

Let [− 1
2 ,

1
2 ]n be an n-dimensional cube. A midcube of [− 1

2 ,
1
2 ]n is the subset obtained by

restricting one coordinate to be 0.
A hyperplane of a CAT(0) cube complex X is a connected subset whose intersection

with each cube is either a midcube of that cube, or empty. The open 1/2-neighborhood of
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a hyperplane ĥ in the metric dX is denoted N (ĥ) and is called the open hyperplane carrier
of ĥ. It is known that every open carrier N (ĥ) is geodesically convex in dX . Furthermore,
X �N (ĥ) consists of two connected components, each of which is also convex [60, Theorem
4.10].

A component of X � N (ĥ) is called a CAT(0) half-space. The intersection of one of these
components with the vertex set X (0) is called a vertex half-space.

The two vertex half-spaces associated to a hyperplane ĥ are denoted h, h∗. Note that
ĥ∗ = ĥ. Given a vertex half-space h, the corresponding CAT(0) half-space is the union of
all cubes of X whose vertices lie in h. We will use the unmodified term half-space to mean
either a CAT(0) half-space or a vertex half-space when the meaning is clear from context.

The collection of all vertex half-spaces is denoted byH, orH(X) if we wish to specify the
space X . If h ∈ H, then h∗ = X (0)

� h is exactly the complementary half-space associated
to the same hyperplane ĥ.

The collection of all hyperplanes of X is denoted W (for “walls”). Generally speaking,
calligraphic letters denote collections of hyperplanes, while gothic letters denote collections
of half-spaces. There is a two-to-one map H→W , namely h �→ ĥ. Given a subset S ⊂W ,
an orientation on S is a choice of a lift S → H.

Apair of half-spacesh, k ∈ H are called transverse (denotedh � k) if the four intersections
h ∩ k, h ∩ k∗, h∗ ∩ k and h∗ ∩ k∗ are nonempty. In terms of the underlying hyperplanes ĥ
and k̂, transversality is equivalent to the condition that ĥ �= k̂ and ĥ ∩ k̂ �= ∅. In this case,
we also write ĥ � k̂. We sometimes say that transverse hyperplanes cross.

Given subsets A, B ⊂ X , we say that ĥ separates A, B if A is contained in one CAT(0)
half-space associated to ĥ, and B is contained in the other. We will usually be interested
in situations where A, B are subcomplexes, sets of vertices, or hyperplanes, in which case
this notion is equivalent to another notion of separation: namely that A, B lie in distinct
components of X � ĥ. Later in the paper, we will occasionally use the latter notion when we
need to talk about points in N (ĥ) being separated by ĥ. (Elsewhere in the literature, e.g. [60],
the half-spaces associated to ĥ are defined to be the components of X � ĥ, or sometimes their
closures. This small difference in viewpoint is usually irrelevant.)

If e is an edge, i.e. a 1-cube, of X , then there is a unique hyperplane ĥ separating the
two vertices of e. We say that ĥ is dual to e, and vice versa. Note that ĥ is the unique
hyperplane intersecting e. More generally, if k ≥ 0 and c is a k-cube, then there are exactly k
hyperplanes intersecting c. These hyperplanes pairwise cross, and their intersection contains
the barycenter of c. We say that c is dual to this family of hyperplanes. Any set of k pairwise-
crossing hyperplanes is dual to at least one k-cube. In particular, dim X bounds the cardinality
of any set of pairwise crossing hyperplanes in X .

For any points x, y ∈ X , define W(x, y) to be the set of hyperplanes separating x from
y. If x, y ∈ X (0), then an edge path γ from x to y is a geodesic in X (1) if and only if γ never
crosses the same hyperplane twice. Consequently,

d1(x, y) = |W(x, y)|.
In view of this, the following standard lemma relates the metrics dX and d1. See Caprace and
Sageev [25, Lemma 2.2] or Hagen [41, Lemma 3.6] for proofs.

Lemma 3.1 There are constantsλ0 ≥ 1, λ1 ≥ 0, depending on dim X, such that the following
holds. For any pair of points x, y ∈ X,

1

λ0
dX (x, y)− λ1 ≤ |W(x, y)| ≤ λ0dX (x, y)+ λ1.
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For an arbitrary set B ⊂ X , let W(B) be the union of all W(x, y) for all x, y ∈ B. In
practice, we will often be interested in the following special cases. First, if B is a hyperplane,
thenW(B) coincides with the set of hyperplanes ĥ that cross B. If B is a convex subcomplex
(see Definition 3.7), then W(B) coincides with the set of ĥ with ĥ ∩ B �= ∅. If B is a
combinatorial geodesic in X (1), then, because of the above characterization of d1, the set
W(B) is the set of hyperplanes dual to edges of B, or equivalently the set of hyperplanes
intersecting B, or equivalently the set of hyperplanes separating the endpoints of B.

Remark 3.2 One can extend the �1 metric on X (0) to all of X as follows. On a single cube
c, let d1|c×c → R be the standard �1 metric. This can be extended to a path-metric on all
of X by concatenating paths in individual cubes. Miesch [49] showed that this procedure
gives a geodesic path metric on X that extends the graph metric on X (1). With this extended
definition, d1 becomes bilipschitz to dX , with the Lipschitz constant λ0 depending only on
dim(X).

3.3 The Roller boundary@RX

Next, we define the Roller boundary and Roller compactification of X .
Every vertex v ∈ X (0) defines the collection H+v = {h ∈ H : v ∈ h} of half-spaces

containing v. Going in the opposite direction, the collection H+v uniquely determines v:

⋂
h∈H+v

h = {v}.

Weendow the set 2Hwith the product topology,which is compact byTychonoff’s theorem.
Recall that a basis for this topology consists of cylinder sets defined by the property that
finitely many coordinates (i.e. finitely many half-spaces) take a specified value (0 or 1).
Cylinder sets are both open and closed.

There is a continuous one-to-one map X (0) ↪→ 2H defined by v �→ H+v . (In fact, X (0) is
homeomorphic to its image if and only if X is locally compact. We will not need this fact.)

Definition 3.3 (Roller compactification, Roller boundary) The Roller Compactification of
X (0), denoted by X or X(H), is the closure of the image of X (0) in 2H. The Roller Boundary
of X is ∂R X = X � X (0).

Recall that Aut(X) is the group of cubical automorphisms of X . We observe that the action
of Aut(X) extends to a continuous action on X and therefore on ∂R X .

Definition 3.4 (Extended half-spaces)Let h ∈ H(X). The extension of h to X is defined to be
the intersection in 2H between X and the cylinder set corresponding to h. It is straightforward
to check that the extensions of h and h∗ form a partition of X . We think of the extensions of
h and h∗ as complementary (vertex) half-spaces in X . By a slight abuse of notation, we use
the same symbol h to refer to both a half-space in X and its extension in X .

By the above discussion of the topology on 2H, the basic open sets in X are intersections
between X and cylinder sets. Therefore, every basis set is a finite intersections of (extended)
half-spaces.

The duality between points and half-spaces in X , described above, extends to all of X =
X (0) ∪ ∂R X . Let y ∈ X , and let H+y be the set of extended half-spaces that contain y. Then
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y and H+y determine one another: ⋂
h∈H+y

h = {y}. (3.5)

Chatterji and Niblo [24], and independently Nica [52], extended Sageev’s construction
[60] to prove the following.

Theorem 3.6 Let H′ ⊂ H(X) be an involution-invariant collection of half-spaces. Then
H′ determines a CAT(0) cube complex X(H′) and the Roller compactification X(H′). In
particular, X(H(X)) = X.

If x ∈ X (0), the corresponding set H+x ∈ 2H satisfies the descending chain condition:
any decreasing sequence of elements of H+x is eventually constant. On the other hand, the
collection of half-spaces H+y corresponding to a boundary point y ∈ ∂R X will fail the

descending chain condition. Namely, for y ∈ X we have that y ∈ ∂R X if and only if there
exists a sequence {hn}n∈N ⊂ H+y such that hn+1 � hn for each n ∈ N.

3.4 Convexity, intervals, andmedians

Here, we discuss the related notions of convexity and intervals in X and X . Since we are
interested in two different metrics on X , there are several distinct definitions of convexity (�1

geodesic convexity, cubical convexity, interval convexity) that turn out to be equivalent for
cubical subcomplexes of X .

We then introduce a median operation on X and its restriction to X .

Definition 3.7 (Convexity in X (0), convex subcomplexes) A set A ⊂ X (0) is called vertex-
convex if it is the intersection of vertex half-spaces in X . For a set S ⊂ X (0), the vertex
convex hull of S is the intersection of all vertex-convex sets containing S, or equivalently the
intersection of all vertex half-spaces containing S.

A subcomplex C ⊂ X is called cubically convex if it is the intersection of CAT(0) half-
spaces. For a set S ⊂ X , the cubical convex hull, denoted CH(S), is the intersection of all
cubically convex sets containing S, or equivalently the intersection of all CAT(0) half-spaces
containing S. We remark that for subcomplexes of X , this definition coincides with geodesic
convexity in the CAT(0) metric dX ; see [38, Remark 2.10] and [60, Theorem 4.10].

Observe that if C is a full subcomplex of X (meaning, C contains a cube c whenever it
contains the 0-skeleton of c), then C is cubically convex whenever C (0) is vertex–convex.
For this reason, we can use the two notions of convexity interchangeably when referring to
full subcomplexes.

Definition 3.8 (Intervals in X) Given x, y ∈ X (0), define the (vertex) interval I(x, y) to be
vertex convex hull of {x, y}. Define the cubical interval J (x, y) to be the cubical convex
hull of {x, y}.

Observe that J (x, y) is a full, convex subcomplex, and is the union of all the cubes
whose vertex sets are contained in I(x, y). In addition, J (1)(x, y) is the union of all of the
combinatorial geodesics from x to y. In fact, intervals can be used to characterize convexity
as follows:
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Lemma 3.9 Aset A ⊂ X (0) is vertex-convex if andonly if the following holds: for all x, y ∈ A,
the interval I(x, y) ⊂ A.

A subcomplex C ⊂ X is cubically convex if and only if the following holds: for all
x, y ∈ C (0), the cubical interval J (x, y) ⊂ C.

Proof Suppose C is a cubically convex subcomplex and x, y ∈ C . Since J (x, y) is the
intersection of all convex subcomplexes containing x, y, and C is one such set, we have
J (x, y) ⊂ C .

Toward the converse, suppose that C is interval-convex, meaning J (x, y) ⊂ C for every
pair x, y. We wish to prove that C is convex.

We claim the following: for every hyperplane ĥ that intersects C and is dual to an edge
e with endpoints x, y such that x ∈ C , the other endpoint y belongs to C as well. This
can be shown as follows. Since ĥ intersects C , there is an edge e′ ⊂ C that is dual to
ĥ. Let x ′, y′ be the endpoints of e′, such that x and x ′ are on the same side of ĥ. Then
W(x, y′) =W(x, x ′)� ĥ = ĥ�W(y, y′). In particular, there exists a combinatorial geodesic
from x to y′ whose initial edge is e. Since C is interval-convex, this proves the claim.

We can now show that C is cubically convex. Suppose z ∈ X (0)
� C . Let γ ⊂ X (0) be

a shortest combinatorial geodesic from z to C , and let x be the terminus of γ , and let e be
the last edge of γ . Since the next-to-last vertex of γ is not in C , the above claim implies that
the hyperplane ĥ dual to e is disjoint from C , and separates C from z. Thus C is contained
in a CAT(0) half-space disjoint from z. Since z was arbitrary, it follows that C is cubically
convex.

The proof for vertex-convex subsets is identical, up to replacing all the appropriate sets
by their 0-skeleta.

Our next goal is to extend the notion of convexity to X . It turns out that in X , the correct
definition of convexity begins with intervals. After developing some definitions and tools, we
will eventually prove a generalization of Lemma 3.9 to X , using a very different argument.

Definition 3.10 (Intervals and convexity in X)Given x, y ∈ X , define the interval I(x, y) to
be the intersectionof all (extended, vertex) half-spaces that contain both x and y. Equivalently,

I(x, y) = {
z ∈ X : H+z ⊃ (H+x ∩ H+y )

}
.

A nonempty set A ⊂ X is called convex if it contains I(x, y) for all x, y ∈ A.

As a very particular case, half-spaces and hence also their intersections are convex in X .
Observe that for x, y ∈ X (0), the interval I(x, y) will in fact be contained in X (0), and

coincides with the previous definition of I(x, y). Consequently, X (0) is convex in X . By
Lemma 3.9, any vertex-convex subset of X (0) is also convex in X .

Since X ⊂ 2H(X) is by definition a set of vertices, we do not define convex subcomplexes
of X .

As in [58], the fact that X is a median space is captured by the following property: for
every x, y, z ∈ X there is a unique point m = m(x, y, z) ∈ X such that

{m} = I(x, y) ∩ I(y, z) ∩ I(x, z). (3.11)

This unique point m = m(x, y, z) is called the median of x , y, and z. We will not need the
general definition of an (extended) median metric space; the only property of medians that
we will need is that m : X × X × X → X satisfies (3.11). In terms of half-spaces, we have:

H+m = (H+x ∩ H+y ) ∪ (H+y ∩ H+z ) ∪ (H+x ∩ H+z ).
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Remark 3.12 (Median in X (0)) Since intervals between points in X (0) are contained in X (0),
we see that m(x, y, z) ∈ X (0) if x, y, z ∈ X (0). So, the median m on X restricts to a median
m on X (0). The point m(x, y, z) is the unique vertex m for which any two of x, y, z can be
joined by a geodesic in X (1) passing through m. In other words, we also get an analogue of
(3.11) with I(·, ·) replaced by J (·, ·):

{m} = J (x, y) ∩ J (y, z) ∩ J (x, z) for x, y, z ∈ X (0).

In fact, a graph with this property—called a median graph—is always the 1-skeleton of a
uniquely determined CAT(0) cube complex [20].

3.5 Lifting decompositions and convexity

A set of half-spaces s ⊂ H is called consistent if the following two conditions hold: if h ∈ s

then h∗ /∈ s, and if k ⊃ h ∈ s then k ∈ s. Given a subset H′ ⊂ H, a lifting decomposition
for H′ is a consistent set of half-spaces s ⊂ H � H′ such that H = H′ � s � s∗. Lifting
decompositions do not necessarily exist, and are not necessarily unique.

Lifting decompositions naturally occur in the following way. Consider a set A ⊂ X .
Analogous to H+x , we define a set H+A = {h ∈ H : A ⊂ h} of half-spaces that contain A, and
observe that H+A is consistent. Define H−A = (H+A)∗ to be the set of half-spaces disjoint from
A, and finally a set

HA = {h ∈ H : A ∩ h �= ∅, A ∩ h∗ �= ∅}
of half-spaces that cut A. Then we get a lifting decomposition H = HA � H+A � H−A , where
s = H+A .

Remark 3.13 Observe that if A ⊂ B, then H+B ⊂ H+A .

Given points x, y ∈ X , let H(x, y) = H+x �H+y denote the set of half-spaces that separate

x from y. More generally, given two disjoint convex sets A, B ⊂ X , letH(A, B) = H+A�H+B
denote the set of half-spaces that separate A from B.

In an analogous fashion, we generalize the definition of W(x, y) from Sect. 3.2 to con-
vex subsets A, B ⊂ X . For subsets of this form, W(A, B) = ̂H(A, B) consists of all the
hyperplanes that separate A from B. We also extend the �1 metric on X (0) to X , where
d1(x, y) = |W(x, y)| = 1

2 |H+x �H+y | is allowed to take the value∞.
The following result says that lifting decompositions are in one-to-one correspondence

with Roller-closed subcomplexes of X .

Proposition 3.14 The following are true:

(1) Suppose that H′ ⊂ H(X). If there exists a lifting decomposition s for H′, then there is
a d1-isometric embedding X(H′) ↪→ X induced from the map 2H

′
↪→ 2H(X) where

U �→ U � s. The image of this embedding is⋂
h∈s

h ⊂ X .

(2) Similarly, if s ⊂ H(X) is a consistent set of half-spaces, then, settingHs = H(X)�(s�s∗)
we get an isometric embedding X(Hs) ↪→ X, obtained as above, onto⋂

h∈s
h ⊂ X .
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(3) The set s satisfies the descending chain condition if and only if the image of X(Hs) is in
X.

Furthermore, if the set s is G-invariant, for some group G ≤ Aut(X), then, with the restricted
action on the image, the above natural embeddings are G-equivariant.

This result is a slightly strengthened version of [19, Lemma 2.6]. See also [28, Proposition
2.11] for a very similar statement.

We remark that Proposition 3.14 includes the possibility that s = ∅ and hence H�∅�∅

is a legitimate lifting decomposition of H. In this case, recall that an intersection over an
empty collection of sets is everything, i.e.

⋂
h∈∅

h = X .

Proof Suppose that there is a lifting decomposition s for H′. Then, since s ∩ s∗ = ∅ and
H = H′ � s � s∗, we deduce that H′ = H � (s � s∗) is involution invariant.

Next, we claim that H′ ⊂ H has a property called tightly nested, meaning that for every
pair h, k ∈ H′, and for every � ∈ H with h ⊂ � ⊂ k, we have � ∈ H′. Assume, for a
contradiction, that h, k ∈ H′, and � ∈ H with h ⊂ � ⊂ k, but � /∈ H′. Then (up to replacing
the three half-spaces with their complements) we may assume that � ∈ s. But then k ∈ s, a
contradiction.

With the verification that H′ is involution invariant and tightly nested, our hypotheses
imply those of [19, Lemma 2.6]. Now, conclusions (1)–(3) follow from that lemma.

Finally, the conclusion about G-invariance follows because the embeddings are canoni-
cally determined by the associated half-spaces.

Remark 3.15 In Proposition 3.14, the isometric embeddings of X(H′) and X(Hs) restrict
to isometric embeddings of X(H′) and X(Hs), respectively. Although ∂R X is typically not
closed, the images under the isometric embedding of ∂R X(H′) and ∂R X(Hs) always lie in
∂R X . Indeed, recall from the discussion following Theorem 3.6 that a point belongs to the
Roller boundary if and only if there is an infinite descending chain of half-spaces containing
the point in question. Hence, if U has an infinite descending chain, then so does U � s.

As a first application of Proposition 3.14, we will prove a generalization of Lemma 3.9 to
X . Observe that a naive generalization of Lemma 3.9 does not hold, because X is (interval)
convex in X by Definition 3.10, but is not an intersection of extended half-spaces. However,
the following lemma says that a closed, convex set in X is always an intersection of extended
half-spaces.

Lemma 3.16 Let A ⊂ X be a convex set. Then the Roller closure A in X is the image of
X(HA) under the embedding of Proposition 3.14, and

A =
⋂

h∈H+A
h =

⋂
A⊂h

h.

Proof Observe that H+A is a consistent set of half-spaces. Thus Proposition 3.14.(2) gives an
embedding X(HA) ↪→ X whose image is

W =
⋂
A⊂h

h =
⋂

h∈H+A
h =

⋂
h∈H+

A

h.

Here, the first equality is the definition ofW , the second equality is the definition of H+A , and
the third equality holds because half-spaces are closed, meaning H+A = H+

A
.
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It remains to show that A = W . The inclusion A ⊂ W is obvious, because A ⊂ h for
every h ∈ H+

A
. To prove the reverse inclusion, suppose for a contradiction that there is a

point y ∈ W � A. Since X � A is open, there is a basic open neighborhood of y of the form⋂n
i=1 hi , such that

y ∈
( n⋂

i=1
hi

)
⊂ X � A.

Therefore, A ⊂ h∗1 ∪ · · · ∪ h∗n . Without loss of generality, assume that n is minimal in the
sense that for each j = 1, . . . , n there is a point

a j ∈ A �

( n⋃
j �=i=1

h∗i
)
= A ∩

( n⋂
j �=i=1

hi

)
.

One crucial observation is that n ≥ 2: otherwise, if A ⊂ h∗1, then h1 ∩W = ∅, but we know
that y ∈ h1 ∩W .

Now, define p = m(y, a1, a2). Recall that I(a1, a2) ⊂ A, because A is convex. By the
definition of medians, we have

p ∈ I(a1, a2) ⊂ A, p ∈ I(y, a1) ⊂
( n⋂

j=2
hi

)
, p ∈ I(y, a2) ⊂ h1.

Consequently, we have p ∈ A ∩ ( ⋂n
i=1 hi

) = ∅, a contradiction. Thus A = W .

3.6 Gates and bridges

A very useful property of a convex subset A ⊂ X (0) is the existence of a gate map πA : X →
A; this is a well-known notion, see e.g. [41, Section 2.2] and the citations therein. Metrically,
πA : X (0) → A(0) is just closest-point projection, but gates can be characterized entirely in
terms of the median (see e.g. [30, Section 2.1] and citations therein). Since we saw that X has
a median satisfying (3.11), convex subsets of X do similarly admit gates. This is the content
of Proposition 3.17, which has the advantage of showing an important relationship between
gates and walls.

Recall thatW(x, Y ) is the set of hyperplanes separating x from Y , where Y ⊂ X is convex.

Proposition 3.17 (Gate projection in X ) Let C ⊂ X be closed and convex. There is a unique
projection πC : X � C such that for any x ∈ X we have

W(x, πC (x)) =W(x,C).

Proof Let H = HC � H+C � H−C be the lifting decomposition associated to C . The map
2H → 2HC defined by U �→ U � (H+C � H−C ) restricts to a surjection X � X(HC ). Next,
Proposition 3.14 gives an embedding X(HC ) → X , namely V �→ V � H+C . Composing
the surjection X � X(HC ) with the embedding X(HC ) → X yields a map πC : X → X .
The image πC (X) is C since, by Lemma 3.16, the image of the embedding X(HC ) → X is
exactly C = C .

To prove the equality in the statement, first observe thatW(x,C) ⊂W(x, πC (x)) because
πC (x) ∈ C . For the opposite inclusion, consider a hyperplane ĥ ∈W(x, πC (x)), and choose
an orientation h ∈ H+x . By the definition of πC , we have

H+πC (x) = (H+x � H−C ) ∪ H+C .
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Since h ∈ H+x � H+πC (x), we must have h ∈ H−C , hence ĥ ∈ W(x,C). Thus W(x,C) =
W(x, πC (x)).

Finally, for x ∈ C , we must have x = πC (x) because W(x, πC (x)) = W(x,C) = ∅.
Thus πC is indeed a projection to C .

Note that πC restricts to the identity on C . We call πC the gate map to C , which is
consistent with the terminology used in the theory of median spaces because of the following
lemma:

Lemma 3.18 Let πC be the map from Proposition 3.17. Then for all x ∈ X and y ∈ C, we
have m(x, y, πC (x)) = πC (x). In particular, πC (x) ∈⋂

y∈C I(x, y).

Proof By Proposition 3.17 and the fact that y ∈ C , we have W(x, πC (x)) ⊂ W(x, y), so
I(x, πC (x)) ⊂ I(x, y). So, πC (x) ∈ I(x, y) ∩ I(x, πC (x)) ∩ I(y, πC (x)), hence m =
πC (x).

The above lemma has two corollaries. First, we can characterize medians in terms of
projections:

Corollary 3.19 Suppose that x, y, z ∈ X (0). Then πI(x,y)(z) = m(x, y, z).

Proof By Lemma 3.18, we have πI(x,y)(z) ∈ I(x, z) and πI(x,y)(z) ∈ I(y, z). On the other
hand, πI(x,y)(z) ∈ I(x, y) by definition. So, by (3.11), we get πI(x,y)(z) = m(x, y, z).

Second, Lemma 3.18 allows us to project from X to convex subcomplexes of X .

Corollary 3.20 Let A ⊂ X be a convex subcomplex. Then, for all vertices x ∈ X (0), we have
πA(x) ∈ A. Consequently, we get a projection πA = πA : X (0) → A(0).

Proof Let x ∈ X (0) and y ∈ A(0). By Lemma 3.18, we have πA(x) ∈ I(x, y) ⊂ X (0). But
A ∩ X (0) = A(0).

Remark 3.21 In fact, it is possible to extend πA over higher-dimensional cubes to get a map
πA : X → A. This is done as follows (see also [9, Section 2.1]). First let e be a 1-cube
of X joining 0-cubes x, y and dual to a hyperplane ĥ. From Proposition 3.17, one has the
following: if ĥ does not cross A, then πA(x) = πA(y), and, otherwise, πA(x) and πA(y) are
joined by an edge ē ⊂ A dual to ĥ. In the former case, πA extends over e by sending every
point to πA(x) = πA(y); in the latter case, we extend by declaring πA : e → ē to be the
obvious isometry.

Now, if c is a d-cube for d ≥ 2, then for some s ∈ {0, . . . , d}, there are 1-cubes
e1, . . . , es ⊂ c that span an s-cube c′ and have the property that the hyperplanes ĥ1, . . . , ĥs
respectively dual to e1, . . . , es are precisely the hyperplanes intersecting both c and A. (The
case s = 0 corresponds to the situation where no hyperplane intersecting c intersects A, and
c′ is an arbitrary 0-cube of c.) So for 1 ≤ i ≤ s, we have that ēi = πA(ei ) is a 1-cube of
A dual to ĥi , and the 1-cubes ē1, . . . , ēs span an s-cube c̄′. We extend πA over c′ using the
obvious cubical isometry c′ → c̄′ extending the map πA on 1-cubes. By construction, for
each v ∈ c(0), there is a unique 0-cube v′ ∈ c′ such that πA(v) = πA(v′), the assignment
v �→ v′ extends to a cubical map c → c′ (collapsing the hyperplanes not in {ĥ1, . . . , ĥs}),
and composing this with πA : c′ → A gives the (extended) gate map πA : c→ A. Note that
c′ ⊂ c is only unique up to parallelism, but any two allowable choices of c′ give the same
map c→ A.
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We conclude that gates enjoy the following properties:

Lemma 3.22 Let A ⊂ X be a convex subcomplex. Then:

(1) For all x, y ∈ X, we have W(πA(x), πA(y)) =W(x, y) ∩W(A), and W(x, πA(x)) =
W(x, A).

(2) The map πA is 1-lipschitz on X (0) with the d1 metric and the CAT(0) metric dX .

Proof For 0-cubes, the first part of conclusion (1) appears in various places in the literature;
see e.g. [41, Lemma 2.5], or one can deduce it easily from Proposition 3.17. The second part
of the first assertion (again for 0-cubes) restates Proposition 3.17. The generalization of (1)
to arbitrary points in X follows immediately from the corresponding assertion for 0-cubes,
together with the construction in Remark 3.21.

Finally, (1) implies the first part of (2), since d1(x, y) = |W(x, y)| for 0-cubes x, y.
For the second part, first note that the restriction of πA to each cube is 1-lipschitz for the
CAT(0) metric, since it factors as the natural projection of the cube onto one of its faces
(which is lipschitz for the Euclidean metric) composed with an isometric embedding. Now,
fix x, y ∈ X and let γ be the CAT(0) geodesic joining them, which decomposes as a finite
concatenation of geodesics, each lying in a single cube. Each such geodesic is mapped to a
path whose length has not increased, so πA ◦ γ is a path from πA(x) to πA(y) of length at
most dX (x, y), as required.

The following standard application of gates is often called the bridge lemma.

Lemma 3.23 (Bridge Lemma) Let I , J ⊂ X be convex subcomplexes. Let πI : X → I and
πJ : X → J be the gate maps. Then the following hold:

(1) πI (J ) and πJ (I ) are convex subcomplexes.
(2) W(πI (J )) =W(πJ (I )) =W(I ) ∩W(J ).
(3) The map πI : πJ (I ) → πI (J ) is an isomorphism of CAT(0) cube complexes.
(4) The cubical convex hull CH(πI (J ) ∪ πJ (I )) is a CAT(0) cube complex isomorphic to

πJ (I )× I(x, πJ (x)) for any vertex x ∈ πI (J ).
(5) If I ∩ J �= ∅, then πI (J ) = πJ (I ) = I ∩ J , and W(I ∩ J ) =W(I ) ∩W(J ).

Proof This can be assembled from results in the literature in various ways. For example, the
first statement is part of [30, Lemma 2.2]; the second and last statements follow from [9,
Lemmas 2.1 and 2.6]. The third follows from [9, Lemma 2.4]. For the fourth, see [19, Lemma
2.18] or [9, Lemmas 2.4 and 2.6].

3.7 Facing tuples and properness

A facing k-tuple of hyperplanes is a set {ĥ1, . . . , ĥk} of hyperplanes such that, for each i ≤ k,
we can choose a half-space hi such that hi ∩ h j = ∅ for i �= j . We are often particularly
interested in facing triples, since many of the subcomplexes of X considered later in the paper
will be CAT(0) cube complexes that do not contain facing triples.

One useful application of the notion of a facing tuple is the following lemma, which in
practice will be used to guarantee properness of certain subcomplexes of X . See [41, Section
3] for a more detailed discussion. See also [19, Lemma 2.33] for a related result, where X is
required to isometrically embed into Z

D for some D.

Lemma 3.24 Let X be a CAT(0) cube complex of dimension D < ∞. Suppose that there
exists T such that X does not contain a facing T -tuple. Then (X , dX ) is a proper CAT(0)
space.
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Proof Let R ≥ 0 and let B be a ball of radius R in X (with respect to the CAT(0) metric dX ).
Let W(B) be the set of hyperplanes intersecting B.

We say that hyperplanes ĥ1, . . . , ĥn in W(B) form a chain if (up to relabelling), each ĥi
separates ĥi−1 from ĥi+1 for 2 ≤ i ≤ n − 1.

We claim that there exists N , depending only on D and R, such that any chain in W(B)

has cardinality at most N . Indeed, if ĥ1, . . . , ĥn is a chain, then any edge dual to ĥ1 lies at
�1 distance at least n − 2 from any edge dual to ĥn . Now, Lemma 3.1 implies there exists
N (depending only on D and R) such that n > N implies that dX (ĥ1, ĥn) > 2R. This is
impossible, since ĥ1, ĥn intersect a common R-ball.

On the other hand, [41, Proposition 3.3] provides a constant K = K (D, T ) such that any
finite set F ⊂W(B) must contain a chain of length at least |F |/K . So, |W(B)| ≤ K N .

Let CH(B) be the cubical convex hull of B. The set of hyperplanes of the CAT(0) cube
complex CH(B) is W(B), which we have just shown is finite. Hence CH(B) is a compact
CAT(0) cube complex, and hence proper. Since B̂ ↪→ X is an isometric embedding (with
respect to CAT(0) metrics), B is a ball in CH(B), and is therefore compact. This completes
the proof.

The use of the above lemma will be the following. Given x ∈ X (0) and y ∈ ∂R X , we can
consider the intervalI(x, y) in X . The intersectionI(x, y)∩X is a vertex-convex set, which is
the 0-skeleton of a uniquely determined convex subcomplex A. Note thatW(A) =W(x, y).
This infinite set of hyperplanes cannot contain a facing triple. Hence, Lemma 3.24 shows
that A is proper. We will need this in the proof of Lemma 9.9, to arrange for a sequence of
CAT(0) geodesic segments in A to converge uniformly on compact sets to a CAT(0) geodesic
ray. In this way, we avoid a blanket hypothesis that X is proper.

Note that we therefore only use a special case of the lemma, namely properness of cubical
intervals. Properness of intervals follows from a much stronger statement: intervals endowed
with the �1 metric isometrically embed into R

dim(X) (i.e. are Euclidean). It follows that inter-
vals are proper in the CAT(0) metric, since the two metrics are bilipschitz. This embedding
into R

dim(X) goes back at least to [3, Theorem 1.16]. This embedding is closely related to
[19, Lemma 2.33], which bounds the cardinality of facing tuples in Euclidean CAT(0) cube
complexes, which include, but are more general than, cubical intervals.

3.8 Combinatorial Geodesic Rays

Next, we develop some basic facts about combinatorial geodesics in CAT(0) cube complexes
that will be needed when we relate different types of boundaries.

Definition 3.25 (Combinatorial geodesic rays) A map γ : [0,∞) → X (1) is said to be a
combinatorial geodesic ray ifγ (N) ⊂ X (0) and for eachn,m ∈ Nwehaved1(γ (n), γ (m)) =
|n − m| and γ is an isometry on each interval [n, n + 1].

Lemma 3.26 Let γ : [0,∞) → X be a combinatorial geodesic ray. There exists a unique
point y ∈ ∂R X such that γ (n)→ y in X as n →∞.

In the sequel, we will write y = γ (∞) to mean γ (n) → y.

Proof Consider the set

D(γ ) = {h ∈ H : γ ([N ,∞) ∩ N) ⊂ h for some N ∈ N}.
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This is clearly a consistent choice of half-spaces. We claim that for each h ∈ H, either h or
h∗ belongs to D(γ ). Indeed, up to replacing h by h∗, there must be a monotonic sequence
nk →∞ such that γ (nk) ∈ h. Since h is convex, it follows that γ ([n1,∞) ∩ N) ⊂ h.

Now, define C = ⋂
h∈D(γ ) h. We claim that C consists of exactly one point. Note that

C �= ∅ because it is a nested intersection of compact sets in X . On the other hand, if x, x ′ ∈ C
are distinct points, then consider a half-space h such that x ∈ h and x ′ ∈ h∗. This half-space
must satisfy both h ∈ D(γ ) and h∗ ∈ D(γ ), a contradiction. Thus C = {y}, as desired.
Lemma 3.27 For every x ∈ X (0) and every y ∈ ∂R X, there is a combinatorial geodesic ray
γ : [0,∞) → X such that γ (0) = x and γ (∞) = y.

Theproof ofLemma3.27 ismodeled on the construction of normal cubedpaths, introduced
by Niblo and Reeves in [53].

Proof Without loss of generality, let us assume that X = I(x, y), that is, H(X) = H+x �H+y .
The collection of half-spaces H+x �H+y is partially ordered by set inclusion. Consider h, k ∈
H+x �H+y . Since x ∈ h∩k and y ∈ h∗ ∩k∗, the possible relations between h and k are: h ⊂ k
or k ⊂ h or h � k. In other words, incomparable elements are transverse. In particular, all
minimal elements of H+x �H+y must be pairwise transverse. By finite dimensionality, the set
M1 of minimal elements is finite. Let x1 be the vertex obtained by replacing every h ∈ M1

by h∗, that is, H+x1 = (H+x � M1) ∪ M∗
1 , a clearly consistent and total choice of half-spaces.

In other words, x1 is diagonally across from x in the unique maximal cube containing x in
the vertex interval I(x, y).

Proceeding by induction, suppose that xn−1 has been defined. LetMn be the set ofminimal
elements of H+xn−1 � H+y . Let xn be the vertex obtained by replacing every h ∈ Mn by h∗,
corresponding to the half-space interval H+xn = (H+xn−1 � Mn) ∪ M∗

n .
Observing that M∗

k ∩ Mj = ∅ for j < k, we conclude that

H+xn =
(
H+x �

n−1∪
j=1Mj

)
∪

(
n−1∪
j=1M

∗
j

)
.

Fix k < m ∈ N. We claim that for any integer � ∈ [k,m], x� lies on every geodesic path
from xk to xm . Equivalently, we claim that the median of xk , x�, and xm is x�. Recall that this
will be the case if every half-space containing xk and xm also contains x�. This containment
can be established as follows

H+xk ∩ H+xm =
(
H+x �

m−1∪
j=1Mj

)
∪

(
k−1∪
j=1M

∗
j

)

⊂
(
H+x �

�−1∪
j=1Mj

)
∪

(
�−1∪
j=1M

∗
j

)
= H+x�

.

This proves the claim.
Set x0 = x and choose an edge-geodesic γk : [0, d(xk−1, xk)] → I(xk−1, xk) from xk−1 to

xk . Finally, define γ as the infinite concatenation γ1γ2 · · · . Then, by construction, γ (∞) = y.

We will discuss further properties of combinatorial geodesic rays in Sect. 6.

4 Cuboid complexes withmodified CAT(0) metrics

A cuboid is a box of the form [0, a1] × . . . × [0, an] ⊂ R
n . In this section, we describe

a way to modify the metric on a finite-dimensional CAT(0) cube complex X to produce a

123



Geometriae Dedicata (2024) 218 :33 Page 31 of 83 33

new CAT(0) space whose cells are cuboids rather than cubes. Our results relating the Tits
boundary and simplicial boundary of a CAT(0) cube complex will carry over to this context
with small changes to some proofs, which we will indicate in the relevant places.

The reader only interested in CAT(0) cube complexes with the standard CAT(0) metric
can safely skip this section, apart from the statements of Lemmas 4.6 and 4.7. Those lemmas
are cuboid generalizations of standard results in the literature, namely [25, Lemma 2.5] and
[5, Proposition 2.8]. Thus, in the standard metric, one can substitute those results from the
literature for the lemmas of this section.

Let X be a finite-dimensional CAT(0) cube complex and let G → Aut(X) be a group
acting on X by cubical automorphisms. Let W be the set of hyperplanes in X .

Definition 4.1 (G-admissible hyperplane rescaling) A hyperplane rescaling of X is a map
ρ : W → (0,∞). The rescaling is called G-admissible if it is G-invariant, and in addition
we have mρ = inf ĥ∈W ρ(ĥ) > 0 and Mρ = supĥ∈W ρ(ĥ) <∞.

Let ρ be aG-admissible hyperplane rescaling of X . Fix a cube c of X . For each hyperplane
ĥi intersecting c, let ρi = ρ(ĥi ). Regarding c as an isometric copy of

∏
i [0, ρi ], with the

Euclidean metric, let dρ
X be the resulting piecewise-Euclidean path metric on X .

The following result is a special case of a theorem of Bowditch [15], but we are able to
give a direct proof.

Lemma 4.2 Suppose that G acts on X by cubical automorphisms, and letρ be aG-admissible
hyperplane rescaling of X. Then (X , dρ

X ) is a CAT(0) space, and the action of G on (X , dρ
X )

is by isometries.

Proof Let x ∈ X be an arbitrary point. Then the link of x in (X , dρ
X ) is isometric to the link

of x in (X , dX ), and is hence a CAT(1) space. Since the amount of rescaling in bounded,
there is a small ε depending on x and ρ such that the ε-balls about x in the two metrics are
(abstractly) isometric. Thus (X , dρ

X ) is locally CAT(0). Recalling that X is contractible (the
homeomorphism type has not changed), we conclude that (X , dρ

X ) is globally CAT(0) by
Cartan–Hadamard theorem [7, Theorem II.4.1]. Since ρ is G-equivariant, G takes cuboids
to dρ

X -isometric cuboids, hence G acts by isometries.

One can also prove Lemma 4.2 using a result of Bridson andHaefliger [7, Theorem II.5.2].
Our proof is essentially the same argument, but the cubical structure allows us to assume
bounded rescaling rather than finitely many shapes.

Definition 4.3 (CAT(0) cuboid metric) Consider a finite-dimensional CAT(0) cube complex
X , a groupG acting on X by cubical automorphisms, and aG-admissible hyperplane rescaling
ρ of X . We say that the CAT(0) metric dρ

X from Lemma 4.2 is a CAT(0) cuboid metric on X ,
and (X , dρ

X ) is a CAT(0) cuboid complex.

Definition 4.4 (Automorphism group of cuboid complex)Suppose thatG acts on X by cubical
automorphisms, and let ρ be a G-admissible hyperplane rescaling of X . Define Aut(Xρ) ⊂
Aut(X) to be the automorphism group of the rescaled complex (X , dρ

X ). By construction, the
representation G → Aut(X) has image in Aut(Xρ).

Corollary 4.5 Every cubically convex subcomplex Y ⊂ X is also geodesically convex in the
rescaled metric dρ

X . In particular, every CAT(0) half-space CH(k) is convex in dρ
X .
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Proof By Definition 3.7, a cubically convex subcomplex is an intersection of CAT(0) half-
spaces. Since any intersection of dρ

X -convex sets will be dρ
X -convex, it suffices to prove that

CAT(0) half-spaces are dρ
X -convex.

Now, let k ∈ H(X), and let CH(k) be the the corresponding CAT(0) half-space. Observe
that CH(k) is a CAT(0) cube complex in its own right with half-space structure H(k) = {h ∈
H : h � k}. Let Gk = stabG(k) which then acts by isometries on Aut(CH(k)). Clearly the
restriction ρ|H(k) is Gk-admissible. By Lemma 4.2 we have (CH(k), dρ|H(k)

CH(k) ) is a CAT(0)
space, so that

dρ
X

∣∣
CH(k) = d

ρ|H(k)
CH(k) .

Therefore, the identity inclusionCH(h) ↪→ X is isometricwith respect to this newCAT(0)
metric, and in particular CH(k) is dρ

X -convex.

The following result is a generalization of [25, Lemma 2.5] for CAT(0) cuboid complexes.

Lemma 4.6 Let X be a CAT(0) cube complex and let ρ be a G-admissible hyperplane rescal-
ing. Suppose that W(X) =W1 �W2, where ĥ, v̂ cross whenever ĥ ∈W1, v̂ ∈W2.

Then X = X1 × X2 (as a product cube complex), where X1 and X2 are CAT(0) cube
complexes dual to W1 and W2.

Letting pi : X → Xi denote the natural projection, for i ∈ {1, 2}, the map pi induces a
bijection on the sets of hyperplanes such that the preimages of the hyperplanes in Xi are the
hyperplanes in Wi .

Moreover, restricting ρ toWi , we obtain rescaled CAT(0) metrics d
ρ
Xi

such that (Xi , d
ρ
Xi

)

is a CAT(0) cuboid complex and we have

dρ
X (x, y) =

√
dρ
X1

(p1(x), p1(y))2 + dρ
X2

(p2(x), p2(y))2

for all x, y ∈ X.

Proof (Sketch.)The statement about X decomposing as a product cube complex follows from
[25, Lemma 2.5] and the discussion in [25] preceding it. So, it remains to prove the statement
about rescaled CAT(0) metrics.

Admissibility of the rescalings on X1, X2 follows from admissibility of ρ and the fact that
pi is a restriction quotient in the sense of [25, Section 2.3], meaning it sends hyperplanes to
hyperplanes. So, Lemma 4.2 makes each (Xi , d

ρ
Xi

) a CAT(0) cuboid complex.

We now verify the metric statement. Let x, y ∈ X . Let α be the dρ
X -geodesic from

x = (p1(x), p2(x)) to y = (p1(y), p2(y)). Let β be the dρ
X -geodesic from (p1(x), p2(y))

to (p1(x), p2(x)), and let γ be the dρ
X -geodesic from (p1(y), p2(y)) to (p1(x), p2(y)). So,

αγβ is a geodesic triangle.
Note that every point on β has the form (p1(x), z) and every point on γ has the form

(z, p2(y)), because the pi are restriction quotients and therefore have convex fibers by
Lemma 4.5. In particular, ‖β‖ = dρ

X2
(p2(x), p2(y)) and ‖γ ‖ = dρ

X1
(p1(x), p1(y)) and

p1, p2 are respectively isometries on γ and β. Moreover, the Alexandrov angle (see Defini-
tion 7.1) formed by β and γ at their common point is π/2. Perform the same construction
with (p1(x), p2(y)) replaced by (p1(y), p2(x)). This yields a geodesic quadrilateral in
(X , dρ

X ), with all angles π/2, two adjacent sides having length dρ
X2

(p2(x), p2(y)) and
dρ
X1

(p1(x), p1(y)), and x and y as opposite corners. The Flat Quadrilateral Theorem ([7,
Theorem II.2.11]) now implies that

dρ
X (x, y) =

√
dρ
X1

(p1(x), p1(y))2 + dρ
X2

(p2(x), p2(y))2,
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as required.

We also need the following standard lemma. In the context of CAT(0) cube complexes,
this is [5, Proposition 2.8]. We state it here for cuboid complexes. The proof from [5] goes
through with tiny changes that we indicate below.

Lemma 4.7 Let X be a D-dimensional CAT(0) cube complex and let ρ be a G-admissible
hyperplane rescaling. Let (X , dρ

X ) be the resulting CAT(0) cuboid complex. Let γ : [0,∞) →
X be a geodesic ray for the metric dρ

X , with γ (0) ∈ X (0). Then X contains a combinatorial
geodesic ray α in X (1) such that α(0) = γ (0) and such that α fellow-travels with γ at
distance depending only on D and ρ.

Proof The proof from [5, Section 2.2] works with almost no change. First, [5, Lemma 2.9] is
about the combinatorial structure of X only, which does not change when we rescale edges to
pass from the CAT(0) metric dX to the CAT(0) metric dρ

X . The proof of [5, Proposition 2.8]
needs this lemma, plus CAT(0) convexity of half-spaces, which continues to hold in view
of Corollary 4.5. The proof of [5, Proposition 2.8] produces a combinatorial ray α such that
each point of α lies in a common cube as a point of γ , and vice versa. Hence the two rays
fellow travel at CAT(0) distance bounded by the diameter of a cube. In the metric dX , this is
bounded in terms of D; in the metric dρ

X , this is bounded in terms of D and the constant Mρ

from Definition 4.1, as required by the statement.

Since dX and dρ
X are path-metrics, and for each cube c of X , the standard CAT(0) metric

dX on c is bilipschitz to the restriction of dρ
X (with constant depending only on the rescaling

constant), the identity map (X , dX ) → (X , dρ
X ) is bilipschitz. Combining this fact with

Lemma 3.1 yields a version of Lemma 3.1 for the rescaled metric dρ
X :

Lemma 4.8 There are constants λ
ρ
0 ≥ 1, λρ

1 ≥ 0, depending on dim X and ρ, such that the
following holds. For any pair of points x, y ∈ X,

1

λ
ρ
0

dρ
X (x, y)− λ

ρ
1 ≤ |W(x, y)| ≤ λ

ρ
0 d

ρ
X (x, y)+ λ

ρ
1 .

In a similar fashion, by Remark 3.2, there is a bilipschitz relationship between (X , dρ
X )

and (X , d1).

5 The simplicial Roller boundaryR�X

In this section,we discuss one of themain objects in the paper: the simplicial Roller boundary.

Definition 5.1 (Roller class) Let x, y ∈ X . Recall that H(x, y) = H+x �H+y is the set of
half-spaces that separate x from y. We say that x is commensurate to y, and write x ∼ y, if
|H(x, y)| <∞. Observe that X (0) forms a single commensurability class in X . Commensu-
rability classes contained in ∂R X = X � X (0) are also called Roller classes.

Definition 5.2 (Guralnik quotient) The Guralnik quotient of the Roller Boundary is RX =
∂R X/∼, the set of commensurability classes of points in the Roller boundary [37]. We shall
often implicitly consider elements [x] ∈ RX as subsets [x] ⊂ X .

In most cases, the quotient topology on RX = ∂R X/ ∼ is not Hausdorff (in fact, it
does not even satisfy the T1 axiom). We think of RX as only a set, without a topology. In
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Definition 5.7, we will use a partial order on RX to define a simplicial complex R�X with
far nicer topological properties.

Following [54], we say a set S ⊂ H is non-terminating if S contains no minimal elements:
given any half-space h ∈ S, there is a half-space k � h with k ∈ S.

Lemma 5.3 Let C ⊂ ∂R X be a closed, convex set. The following are equivalent:

(1) There is a point y ∈ ∂R X such that C = [y].
(2) There exists k ≤ dim(X) and a family (h1m)m≥0, (h2m)m≥0, . . . , (hkm)m≥0 of descending

chains of half-spaces such that

C =
k⋂

i=1

⋂
m≥0

him .

(3) C is a union of Roller classes.
(4) The set of half-spaces H+C is non-terminating.

Proof We will prove (1)⇒ (2)⇒ (3)⇒ (1) and ¬ (3)⇔ ¬ (4).
The claim that (1) implies (2) is a restatement of [32, Lemma 6.17].
To prove that (2) implies (3), assume that y ∈ C = ⋂k

i=1
⋂

m≥0 him and y′ ∼ y meaning
that |H(y, y′)| < ∞. Since H+y � H+y′ is finite, it follows that there exists an N for which

him ∈ H+y′ (i.e. y
′ ∈ him) for each m ≥ N and i = 1, . . . , k. That is to say,

y′ ∈
k⋂

i=1

⋂
m≥N

him =
k⋂

i=1

⋂
m≥0

him = C .

To prove (3) implies (1), suppose that C is a union of Roller classes. Let HC be the
collection of half-spaces that cut C . By Theorem 3.6, there is an associated cube complex
X(HC ). Since C is closed and convex, Proposition 3.14 and Lemma 3.16 give an embedding
iC : X(HC ) ↪→ X whose image is C , and furthermore C =⋂

h∈H+C h.

Let y0 ∈ X(HC )(0) and note that [y0] = X(HC ). Let y = iC (y0) ∈ C and note that
iC ([y0]) ⊂ [y], hence C = iC ([y0]) ⊂ [y]. Since C is a union of equivalence classes, we
have [y] ⊂ C . Since C is closed, we have that [y] ⊂ C and hence C = [y].

To prove¬(4) implies¬(3), suppose there exists a minimal half-space h0 ∈ H+C . We claim
that H+C � {h0} is consistent. Indeed, if h ∈ H+C � {h0} then h∗ /∈ H+C � {h0}. If h ⊂ k then
k ∈ H+C , and since h0 is minimal, h0 �= k so k ∈ H+C � {h0}.

We may therefore consider the CAT(0) cube complex associated to HC � {h0, h∗0}. Fix
y, y′ ∈ X(HC � {h0, h∗0}) such that y ∈ h0 and y′ ∈ h∗0. Then, by Proposition 3.14 there is a
unique point ỹ ∈ C associated to the total and consistent choice of half-spaces

{h ∈ HC : y ∈ h} � H+C .

Similarly, there is a unique point ỹ′ ∈ ∂R X � C associated to

{h ∈ HC : y′ ∈ h} � {h∗0} � (H+C � {h0}).
By construction, |H(ỹ, ỹ′)| = 2, hence C is not a union of Roller classes.

Finally, to prove ¬(3) implies ¬(4), suppose that C is not a union of Roller classes. Then
there are commensurate elements y ∈ C and y′ ∈ ∂R X � C . Convexity means

C =
⋂

h∈H+C
h,
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hence there is a half-space h ∈ H+C with y ∈ C ⊂ h and y′ /∈ h. Under the assumption
that |H(y, y′)| < ∞, we may choose a minimal such h and conclude that H+C fails to be
non-terminating.

Definition 5.4 (Principal class)Given a closed, convex setC satisfying one of the equivalent
conditions of Lemma 5.3, the class [y] whose closure is C is called the principal class of C .
Compare Guralnik [37, Section 3.1].

Definition 5.5 (Partial order on RX) Let [x], [y] ⊂ ∂R X be Roller classes. We define a
partial order onRX by setting [x] ≤ [y]wheneverH+[x] ⊂ H+[y], or equivalentlyH

+
[x] ⊂ H+[y].

The following result is essentially a corollary of Lemma 5.3.

Lemma 5.6 For Roller classes [x], [y] ⊂ ∂R X, the following are equivalent:

(1) [x] ≤ [y]
(2) H+[x] ⊂ H+[y]
(3) [y] ⊂ [x]
(4) [y] ∩ [x] �= ∅

Proof Conditions (1) and (2) are equivalent by Definition 5.5. Since H+[x] = H+[x], by
Lemma 3.16, Remark 3.13 implies that (2) and (3) are equivalent. Next, (3) trivially implies
(4). Finally, (4) implies (3) by Lemma 5.3.

Definition 5.7 (Simplicial Roller boundary)The simplicial Roller boundaryR�X is the sim-
plicial realization of the partial order of Definition 5.5. That is: vertices ofR�X correspond
to points of RX , or equivalently Roller classes in ∂R X . Simplices in R�X correspond to
totally ordered chains of Roller classes.

Observe that the action of Aut(X) on ∂R X preserves commensurability classes and the
order ≤, yielding a bijective action on RX and a simplicial action on R�X .

Remark 5.8 [Dimension of R�X ] The characterization of Lemma 5.3.(2) implies that any
simplex in R�X has k ≤ dim X vertices, hence dimR�X ≤ dim X − 1.

6 The simplicial boundary

In this section, we recall the definition of the simplicial boundary ∂�X [39]; see Defini-
tion 6.9. Then, we develop some connections between ∂�X , the Roller boundary ∂R X , and
the simplicial Roller boundary R�X . See Theorem 6.27 and Corollary 6.33 for the most
top-level statement. The lemmas used to prove those top-level results will be extensively
used in later sections.

6.1 Unidirectional boundary sets

Recall that H is the set of half-spaces of X and W is the set of hyperplanes of X . In this
section, we mainly focus on collections of hyperplanes.

Definition 6.1 (Facing triple)A triple h1, h2, h3 ∈ H is called a facing triple if their comple-
ments h∗1, h∗2, h∗3 are pairwise disjoint. Similarly, a triple of hyperplanes ĥ1, ĥ2, ĥ3 ∈ W is
called a facing triple if there exists a choice of orientation such that h1, h2, h3 form a facing
triple.
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Caprace and Sageev [25] showed that in a non-elementary essential CAT(0) cube complex,
given any half-space h ∈ H there exist half-spaces k, � ∈ H such that {h, k, �} is a facing
triple.

Definition 6.2 (Unidirectional, inseparable) A collection of hyperplanes S ⊂ W is called
unidirectional if for every ĥ ∈ S, atmost one side of ĥ contains infinitelymany other elements
of S. A collection S ⊂ W is called inseparable if whenever ĥ, k̂ ∈ S and �̂ is a hyperplane
that separates ĥ and k̂, then �̂ ∈ S. This is closely related to the “tightly nested” condition in
Proposition 3.14.

Definition 6.3 (UBS) A set U ⊂W is a unidirectional boundary set (abbreviated UBS) if it
is infinite, unidirectional, inseparable, and does not contain a facing triple.

Definition 6.4 (Partial order on UBSes) Let U and V be UBSes. Define a relation � where
U � V if all but finitely many elements of U lie in V . Say that U and V are commensurate
(denoted U ∼ V) if U � V and V � U .

The relation � on UBSes descends to a partial order on commensurability classes of
UBSes. We say that V is minimal if its commensurability class is minimal—that is, if U � V
implies U ∼ V . Similarly, we say that V is maximal if V � V ′ implies V ∼ V ′.

Example 6.5 For disjoint subsets A, B ⊂ X , letW(A, B) be the set of hyperplanes separating
A from B. It is straightforward to check that W(A, B) is inseparable and does not contain
a facing triple. Furthermore, if A ⊂ X then W(A, B) is unidirectional. If, in addition,
B ⊂ ∂R X , then W(A, B) is infinite. Under these last two conditions, we conclude that
W(A, B) =W(A, B) is a UBS. Compare Lemma 6.20.

Definition 6.6 (Pruned UBS, canonical half-space) Let U be a UBS.We say that U is pruned
if every hyperplane ĥ ∈ U has exactly one associated half-space h containing infinitely many
elements of U . In this situation, we call h the canonical orientation of ĥ or the canonical
half-space associated to ĥ.

Lemma 6.7 Let U be a UBS. Then U contains a canonical pruned sub-UBS U ′ ⊂ U that is
commensurate to U .

Proof Let FU be the set the hyperplanes ofU with the property thatboth associated half-spaces
contain finitely many elements of U . We claim that FU is finite. To see this, let ĥ1, . . . , ĥD

be a maximal family of pairwise transverse hyperplanes in FU . This family is finite because
D ≤ dim X . For any ĥ ∈ FU � {ĥ1, . . . , ĥD} there is at least one i for which ĥ is parallel
(i.e. not transverse) to ĥi . By the definition of FU , there are finitely many hyperplanes in U
parallel to each ĥi , hence FU is finite.

Now, define U ′ = U � FU . By construction, every ĥ ∈ U ′ has exactly one associated
half-space containing infinitely many elements of U , hence infinitely many elements of U ′
as well.

We claim thatU ′ is a UBS. Since FU is finite, it follows thatU ′ is infinite. Unidirectionality
and the lack of facing triples are properties that pass to subsets ofU , hence toU ′. Next, suppose
that ĥ, k̂ ∈ U ′ with �̂ in between. Since ĥ, k̂ ∈ U and U is inseparable, observe that �̂ ∈ U .
But �̂ /∈ FU , because ĥ, k̂ both bound half-spaces containing infinitely many elements of U .
We conclude that �̂ ∈ U ′, verifying that U ′ is a UBS. Since U and U ′ differ by finitely many
hyperplanes, they are commensurate.

Hagen proved that every (commensurability class of) UBS U decomposes in a well-
defined fashion into a disjoint union of minimal UBSes. The following is a restatement of
[39, Theorem 3.10] and [40, Theorem A].
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Lemma 6.8 Let U be a UBS. Then there is a decomposition U ∼⊔k
i=1 Ui , where:

(1) each Ui is a minimal UBS;
(2) any UBS V ⊂ U is commensurate with the disjoint union of some of the Ui ;
(3) if 1 ≤ j < i ≤ k, then every hyperplane in Ui crosses all but finitely many of the

hyperplanes in U j .

Consequently, there are finitely many commensurability classes of UBSes V � U .

Lemma 6.8 enables the following definition.

Definition 6.9 (Simplicial boundary) For a UBS U , the dimension of U is the number k
appearing in the decomposition of Lemma 6.8. This is an invariant of the commensurability
class. An immediate consequence of Lemma 6.8.(3) is that dim(U) ≤ dim(X).

The simplicial boundary ∂�X is the following simplicial complex. For each commensu-
rability class of a UBS U , there is a (k−1)-simplex σU , where k is the dimension of the class
of U . The face relation is defined as follows: σU is a face of σV if and only if U � V .

Note that ∂�X has a vertex for each commensurability class of a minimal UBS. Further-
more, a finite collection of vertices spans a maximal simplex if and only if the union of the
corresponding minimal UBSes is commensurate with a maximal UBS. However, there can
exist non-maximal simplices that do not correspond to a UBS; see Example 6.32. For this
reason, ∂�X is not the simplicial realization of the partial order �.

Observe that Aut(X) acts on UBSes in a way that preserves the � relation, and hence
preserves commensurability. Thus Aut(X) acts simplicially on ∂�X .

6.2 Minimal and dominant UBSes

Next, we establish some structural results about minimal UBSes. Given a set S consisting of
hyperplanes, the inseparable closure of S, denoted 〈〈S〉〉, is the intersection of all inseparable
sets containing S.

Lemma 6.10 Let U ⊂ W(X) be a minimal UBS. Then there exists an infinite descending
chain {hn : n ∈ N} ⊂ H with ĥn ∈ U , such that U ∼ 〈〈{ĥn : n ∈ N}〉〉.

Conversely, for every descending chain {hn : n ∈ N} ⊂ H, there exists N ≥ 0 such that
〈〈{ĥn : n ≥ N }〉〉 is a minimal UBS.

Proof Let U be a minimal UBS. Let {hn : n ∈ N} ⊂ H be a descending chain such that
{ĥn} ⊂ U , which exists because U is infinite, unidirectional, contains no facing triple, and
contains no infinite collection of pairwise-crossing hyperplanes. Let U ′ = 〈〈{ĥn}〉〉 be the
inseparable closure of {ĥn}. Since U is inseparable, we have U ′ ⊂ U by the definition of the
inseparable closure. Note that U ′ is a UBS (compare the proof of [39, Lemma 3.7] or [19,
Caprace Lemma B.6]). Since U ′ ⊂ U and U is minimal, we have U ′ ∼ U , which proves the
first assertion of the lemma.

Now we prove the second assertion. For each m ≥ 0, let Cm = {hn : n ≥ m} and let
〈〈Cm〉〉 be its inseparable closure. As before, each 〈〈Cm〉〉 is a UBS. Note that 〈〈Cm〉〉 ⊂ 〈〈Cm′ 〉〉
wheneverm ≥ m′. In particular, 〈〈Cm〉〉 � 〈〈Cm′ 〉〉 form′ ≥ m. So, by Lemma 6.8, there exists
M ≥ 0 such that 〈〈Cm〉〉 ∼ 〈〈CM 〉〉 for allm ≥ M . Hence, ifm ≥ M and {ki } is any descending
chain of half-spaces corresponding to hyperplanes in 〈〈CM 〉〉, then there exists I ≥ 0 such
that {k̂i : i ≥ I } ⊂ 〈〈Cm〉〉. This implies that 〈〈CM 〉〉 is commensurate with 〈〈{k̂i : i ≥ 0}〉〉,
by, for example [29, Lemma 4.4]. See also the proof of [29, Proposition 4.7.(2)].
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Now let V ⊂ 〈〈CM 〉〉 be a minimal UBS, which exists by [39, Lemma 3.7]. By the first
part of the lemma, V is commensurate with the inseparable closure of some chain contained
in 〈〈CM 〉〉. By the preceding paragraph, 〈〈CM 〉〉 ∼ V , so 〈〈CM 〉〉 is minimal, as required.

Remark 6.11 Lemma 6.10 has been generalized to the setting of median spaces by Fioravanti
[29, Proposition 4.7]. In fact, the same result of Fioravanti also generalizes many other basic
facts about UBSes, such as [39, Lemma 3.7 and Theorem 3.10].

The second assertion of Lemma6.10 corrects a slightmisstatement in [19, CapraceLemma
B.6]: it is true that minimal UBSes are commensurate with inseparable closures of chains,
but inseparable closures of chains need not be minimal; one might first need to pass to a
(cofinite) sub-chain (see e.g. [29, Figure 1] and the paragraph following). We emphasize that
this does not affect the use of [19, Caprace Lemma B.6] in [19], because what’s being used
is the (correct) statement that, up to commensurability, minimal UBSes arise as inseparable
closures of chains.

In this paper, we primarily use the first assertion of Lemma 6.10, in conjunction with
Lemma 6.8, to decompose a UBS U as a disjoint union of minimal UBSes (up to commen-
surability), each of which has the additional property that it is the inseparable closure of a
chain.

The following consequence of Lemma 6.10 neatly sums up the special properties of chains
whose inseparable closures are minimal UBSes:

Corollary 6.12 Let {hn : n ≥ 0} be an infinite descending chain of half-spaces. For each
m ≥ 0, let Um be the inseparable closure of {ĥn : n ≥ m}. Then the following are equivalent:
(1) The UBS Um is minimal for all m ≥ 0.
(2) Um ∼ U0 for all m ≥ 0.

In particular, if U0 is minimal, then U0 ∼ Um for all m ≥ 0.

Proof Since Um � U0 for all m, the first statement immediately implies the second. For the
reverse direction, Lemma 6.10 provides M ≥ 0 such that Um is minimal for m ≥ M . If the
second assertion holds, it then follows that the first must also.

Definition 6.13 (Chain of hyperplanes) Following Corollary 6.12, for the rest of this subsec-
tion we shall refer to a sequence of disjoint hyperplanes {ĥn} whose inseparable closure is a
minimal UBS as a chain of hyperplanes.

In particular, a chain of hyperplanes {ĥn}n≥0 defines a descending chain of half-spaces
{hn}n≥0. A descending chain of half-spaces {hn}n≥0 has the property that for all sufficiently
large N , the sequence {ĥn}n≥N is a chain of hyperplanes, in view of Lemma 6.10.

Definition 6.14 (Dominant) Let U be a UBS. A hyperplane ĥ ∈ U is called dominant for U
if ĥ = ĥ0 is the base of a chain of hyperplanes {hn} ⊂ U such that ĥ crosses all but finitely
many hyperplanes in U � 〈〈{hn}〉〉.

Recall that by definition of a chain of hyperplanes, 〈〈{hn}〉〉 is a minimal UBS. See Fig. 2
for an example. By Lemma 6.8, the inseparable closure 〈〈{hn}〉〉 is commensurate to some
minimal UBS Ui in the decomposition U ∼ ⊔k

i=1 Ui of that lemma. Furthermore, Ui is
unique: since a dominant hyperplane ĥ ∈ U is the base of a chain in Ui , then ĥ must intersect
all but finitely many hyperplanes of U j (for j �= i), hence ĥ cannot be disjoint from a chain
in U j .
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Fig. 2 Part of a CAT(0) cube complex for which the set of hyperplanes is a UBS. Each horizontal hyperplane
is the base of a chain of horizontal hyperplanes whose inseparable closure consists of all but finitely many
of the horizontal hyperplanes. Each horizontal hyperplane crosses all but finitely many vertical ones. So each
horizontal hyperplane is dominant. The vertical hyperplanes are not dominant. Indeed, if v is vertical, it is
the base of a chain of vertical hyperplanes whose inseparable closure consists of vertical hyperplanes, while
v fails to cross infinitely many horizontal hyperplanes. On the other hand, v is also the base of a sequence
of hyperplanes consisting of v and infinitely many horizontal hyperplanes, whose canonical half-spaces form
a descending chain. The inseparable closure of this set of hyperplanes contains all but finitely many of the
hyperplanes, and therefore is not a minimal UBS, so this set is not a chain of hyperplanes

We also observe that if U is minimal and pruned, then every hyperplane of U is vacuously
dominant.

The following lemma is only stated in the special case whereW(X) is already a UBS. In
practice, we will apply Lemma 6.15 to convex subcomplexes (such as the convex hull of a
geodesic ray) where this hypothesis holds.

Lemma 6.15 (Dominant hyperplane combinatorial properties) Suppose that U = W(X) is
a pruned UBS of dimension k. Then U contains minimal UBSes Dd , . . . ,Dk such that the
following hold:

(1) Each Di is a set of dominant hyperplanes for U , and all but finitely many dominant
hyperplanes belong to

⋃k
i=d Di .

(2) For each i ∈ {d, . . . , k} and each ĥ0 ∈ Di , there is a chain {ĥn}n≥0 ⊂ Di such that Di

is commensurate with 〈〈{ĥn}〉〉, the inseparable closure of the chain.
(3) For any such chain {ĥn}, there is N > 0, such that for all n ≥ N, we have

W(ĥn+1) � Di ⊂W(ĥn) � Di .

Furthermore, for all n ≥ 0, we have

|W(ĥn)−W(ĥn+1)| < ∞.

(4) For every hyperplane û ∈ U , there exists i ∈ {d, . . . , k} and a dominant hyperplane
ĥ ∈ Di such that ĥ lies in the canonical half-space associated to û.

We will not use item (3) later in the paper, but we record it as a potentially useful fact
about UBSes.

Proof By Lemma 6.8, there is a decomposition U ∼ ⊔k
i=1 Ui , with an ordering such that

for j < i , every hyperplane in Ui crosses all but finitely many of the hyperplanes in U j . The
ordering is only partially determined: if every hyperplane in Ui crosses all but finitely many
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Fig. 3 The sets U ′i ,U j in the
proof of Lemma 6.15.(4)

û

U ′
i

Uj

hyperplanes in Ui+1, then we can reverse the order of Ui ,Ui+1 while keeping the conclusion
of Lemma 6.8.(3). Let d be the smallest index i such that Ui can be placed at the top of the
order in such a decomposition.

Now, fix an index i ≥ d . By Lemma 6.10, Ui is commensurate with Di = 〈〈{ĥn}〉〉, where
{ĥn} ⊂ Ui is a chain. Thus Di ∼ Ui is a minimal UBS.

We claim that every ĥ ∈ Di is dominant. Given ĥ ∈ Di and the canonical associated
half-space h (recall Definition 6.6), there exists N ≥ 0 such that ĥN ⊂ h. Thus ĥ is the
base of the infinite chain {ĥ, ĥN , ĥN+1, · · · }. Furthermore, ĥ ∈ Di ⊂ Ui intersects all but
finitely many hyperplanes in U j for j �= i , because we have chosen an index i ≥ d . Thus ĥ
is dominant by Definition 6.14. Thus we have found dominant minimal UBSes Dd , . . . ,Dk

satisfying conclusions (1) and (2).
Now we verify assertion (3). Fix i ≥ d and let ĥ, ĥ′ ∈ Di . Since the minimal UBS Di is

the inseparable closure of a chain, ĥ, ĥ′ both cross finitely many hyperplanes in Di . Indeed,
ifW(ĥ)∩Di is infinite, it must contain a chain of hyperplanes whose inseparable closureD′
belongs to Di , and is contained inW(ĥ) since the latter is inseparable. Since Di is minimal,
D′ ∼ Di . Hence W(ĥ) contains all but finitely many elements of Di ; since ĥ ∈ Di , this
contradicts thatDi is the inseparable closure of a chain. ThusW(ĥ)∩Di is finite. Moreover,
since Di is dominant, ĥ, ĥ′ both cross all but finitely many hyperplanes of U � Di , and we
can therefore conclude that

|W(ĥ)�W(ĥ′)| <∞.

So, it suffices to show that, for all sufficiently large n, we haveW(ĥn+1)�Di ⊂W(ĥn)�

Di . If this doesn’t hold, then for infinitely many n we can find a hyperplane ûn /∈ Di that
crosses ĥn+1 but not ĥn ; note that ûn does not separate any two elements of our chain since
ûn /∈ Di . Since there are no facing triples, ûn crosses ĥm for m ≥ n+ 1. Since the collection
of violating hyperplanes {ûn} is infinite and contains no hyperplanes crossing ĥ0, dominance
of ĥ0 is therefore contradicted. Thus there exists N such thatW(ĥn+1) �Di ⊂W(ĥn) �Di

for n ≥ N , establishing (3).
We now prove assertion (4). Let û ∈ U be a hyperplane, and let u be the canonical

half-space associated to û. Given the fixed decomposition U ∼ ⊔k
i=1 Ui , let i be the largest

index such that u contains a chain of hyperplanes in U , whose inseparable closure U ′i is
commensurate to some Ui . Such an i exists because U is pruned. We claim that i ≥ d . This
claim implies that u contains infinitely many hyperplanes of Di , which will suffice to prove
the lemma.

Suppose for a contradiction that i < d . Fix v̂ ∈ U ′i , and consider a minimal UBS U j for
j > i . If any hyperplane in U j fails to cross v̂, then it fails to cross û, hence u contains a
chain in U j , contradicting the maximality of i . See Fig. 3.
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Furthermore, since v̂ ∈ Ui , it must cross all but finitely many hyperplanes of U� for � < i
by Lemma 6.8.(3). Thus v̂ crosses all but finitely many hyperplanes of U � U ′i , hence v̂ is
dominant. Since v̂ ∈ U ′i was arbitrary, this shows that i ≥ d by the definition of d .

6.3 Connections between@�X and@RX

The next several lemmas develop tools for comparing the Roller boundary and the simplicial
boundary.

Definition 6.16 (Umbra of a UBS) Let U ⊂ W(X) be a UBS, and let U ′ ∼ U be a pruned
UBS commensurate to U . For every ĥ ∈ U ′, let h ∈ H(X) be the canonical orientation of ĥ,
that is, the (extended, vertex) half-space containing infinitely many hyperplanes of U ′. The
umbra YU associated to U is

YU =
⋂
ĥ∈U ′

h ⊂ X .

ByDefinition 3.10, the umbra YU is a convex subset of ∂R X , one may think of it as the Roller
realization of the UBS U . In Lemma 6.18, we will show that YU satisfies the equivalent
conditions of Lemma 5.3. Then, YU will denote the principal class of YU : that is, the unique
Roller class whose closure is YU .

Lemma 6.17 Let U ⊂ W(X) be a UBS. Then the umbra YU associated to U is a nonempty
subset of ∂R X. Furthermore,

• If U ∼ V then YU = YV .
• If U ∼ U1 ∪ · · · ∪ UN for some UBSes U1, . . . ,UN then

YU =
N⋂
i=1

YUi .

Proof Let U ′ be the pruned UBS commensurate to U . As in Definition 6.16, let h be the
canonical orientation of every ĥ ∈ U ′, and define U′ = {h : ĥ ∈ U ′} ⊂ H. Then YU :=⋂

h∈U′ h.
Since X is compact, to show that YU is not empty, it is sufficient to show that U′ has the

finite intersection property. By the Helly property for half-spaces [58, Section 2.2] this is
equivalent to showing that every pair of half-spaces h, k ∈ U′ has nonempty intersection.
But a disjoint pair h, k ∈ U′ contradicts the unidirectionality of U ′, as both sides of ĥ would
contain infinitely many elements of U ′.

Using the same argument, we observe that for every h ∈ U′ there is an infinite descending
chain {hn}with h0 = h and hn ∈ U′. Indeed, fix h ∈ U′. SinceU ′ is pruned, there are infinitely
many hyperplanes in U ′ contained in h. Since U ′ is unidirectional, k̂ ⊂ h and k̂ ∈ U ′ implies
k ⊂ h. Applying induction, we find the infinite descending chain. Thus YU ⊂ ∂R X .

We now turn to the commensurability class of U . Suppose that V is a UBS commensurate
to U . Since commensurability is an equivalence relation, we conclude that U ′ and V ′ are
commensurate as well. Let V′ = {h : ĥ ∈ V ′} ⊂ H be the set of canonical half-spaces
associated to V ′.

We claim that U′ and V′ are also commensurate. Since the map taking half-spaces to
hyperplanes is 2-to-1, it suffices to show that under this map, the set U′ � V′ has image in
the finite set U ′ � V ′, and vice versa. Let h ∈ U′ � V′. Then ĥ ∈ U ′. By definition of U′, we
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know that the set {k̂ ∈ U : k̂ ⊂ h} is infinite. The commensurability of U and V implies that
{k̂ ∈ V : k̂ ⊂ h} is infinite as well. But h /∈ V ′, hence it must be the case that ĥ /∈ V ′.

To see that YU = YV it is sufficient to show that if h ∈ U′ then there is k ∈ V ′ ∩ U′
with k ⊂ h. But this is immediate. As was proved above, for any h ∈ U′ there is an infinite
descending chain {hn} ⊂ U′ with h0 = h. Since U′ and V′ are commensurate, for N
sufficiently large, we must have that hN ∈ V′.

Finally, the construction above makes it clear that if U is commesurate to U1 ∪ · · · ∪ UN

for some UBSes U1, . . . ,UN then YU =⋂N
i=1 YUi .

Lemma 6.18 For every UBS U , there is a Roller class Z ⊂ ∂R X such that YU = Z. Fur-
thermore, the assignment U �→ Z = YU is Aut(X)-equivariant.

Proof By Lemmas 6.8 and 6.10, U is commensurate to a UBS V = ⊔k
i=1 Ui , where Ui =

〈〈{ĥin}〉〉 for a descending chain of half-spaces {hin}. Note that every Ui is pruned. Thus

YU =
⋂

1≤i≤k
YUi =

⋂
1≤i≤k

⋂
ĥ∈Ui

h =
⋂

1≤i≤k

⋂
n∈N

hin . (6.19)

Here, the first equality holds by Lemma 6.17, the second equality holds by Definition 6.16,
and the third equality holds because the hyperplanes added in the inseparable closure do not
affect the intersection. By Lemma 5.3, a set of this form is the closure of a unique (principal)
Roller class YU .

We observe that the above construction is independent of the choice of descending chains
with the desired properties, and hence the map U �→ YU is Aut(X)-equivariant.

Lemma 6.20 Let x ∈ X (0) and let Y ⊂ ∂R X be a convex set. Then the set of separating
hyperplanes W(x, Y ) = W(x, πY (x)) is a pruned UBS. If x ′ ∈ X (0), then W(x ′, Y ) ∼
W(x, Y ). Finally, W(x, [y]) ∼W(x, y) for every y ∈ ∂R X.

Proof We begin by showing that V := W(x, Y ) is a UBS. Recall that W(x, Y ) is the set
of hyperplanes associated to H+x �H+Y . Since x ∈ X (0), it follows that H+x satisfies the
descending chain condition and since Y ⊂ ∂R X , it follows that H

+
Y = H+

Y
has an infinite

descending chain. Hence, V is unidirectional and infinite. Since V =W(x, Y ) is an interval,
it follows that it is inseparable and does not contain a facing triple, hence V is a UBS. The fact
that W(x, Y ) =W(x, πY (x)) follows from Proposition 3.17 and shows that V is pruned.

Let x, x ′ ∈ X (0).We claim thatW(x, Y )�W(x ′, Y ) ⊂W(x, x ′). By symmetry, it suffices
to observe that a hyperplane ĥ separating x from Y but not x ′ from Y necessarily separates
x from x ′. Since the cardinality of W(x, x ′) is the distance d(x, x ′) < ∞, we conclude that
the two UBSes are commensurate.

Finally, fix y ∈ ∂X . We show that W(x, [y]) ∼ W(x, y). Proposition 3.17 says that
W(x, [y]) =W(x, π[y](x)), which implies thatW(x, [y])∪W(π[y](x), y) =W(x, y). But
π[y](x) ∈ [y] by definition, hence |W(π[y](x), y)| <∞, completing the proof.

Definition 6.21 (UBS of a Roller class) Let Y ∈ RX be a Roller class, and fix a basepoint
x ∈ X (0). Following Lemma 6.20, we call W(x, Y ) a UBS representing the class Y , and
denote it UY . Since the commensurability class [UY ] is independent of x , by Lemma 6.20,
we do not include the basepoint x in the notation UY .

It follows immediately that the assignment Y �→ [UY ] is Aut(X)-equivariant.

With this notation in place, we conclude:
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Corollary 6.22 Fix x ∈ X (0) and Y ∈ RX. Then Y = YUY . In particular, every Roller class
arises as the principal class of the umbra of some UBS.

Proof Since UY = W(x, Y ) is a UBS, by Lemma 6.18 it is commensurate to
⊔k

i=1〈〈{ĥin}〉〉
for descending chains {hin}, hence Eq. (6.19) gives

YUY =
⋂

1≤i≤k

⋂
n∈N

hin .

By construction, Y ⊂ hin for every ĥin ∈ Ui , hence Y ⊂ YUY .
As in Lemma 6.18, let YUY denote the principal Roller class of YUY . We claim that

Y = YUY . So far, we have shown that YUY ≤ Y in the partial order of Lemma 5.6 and so we
are left to show that Y ≤ YUY . To this end, we fix a half-space h ∈ H with Y ⊂ h and now
show that YUY ⊂ h.

Let x ′ ∈ h∗ ∩ X (0) and set U ′Y = W(x ′, Y ). Observe that ĥ ∈ U ′Y by construction. Then
by Lemma 6.20 we have that U ′Y is a pruned UBS commensurate to UY and so Lemma 6.17
implies YUY = YU ′Y . Finally, by Definition 6.16 we have that YUY ⊂ YUY ⊂ h.

Definition 6.23 (�1-visible) Let γ ⊂ X be a geodesic ray, in either the CAT(0) or combina-
torial metric. Let W(γ ) be the collection of hyperplanes intersecting γ , which is a UBS by
[39, Section 3.5.1]. If U is a UBS and U ∼ W(γ ) for some combinatorial geodesic ray γ ,
we say that the class of U is �1-visible.

Remark 6.24 Let Y ∈ RX . Then, for any x ∈ X (0) and any y ∈ Y , Lemma 3.27 provides a
combinatorial geodesic ray γ such that γ (0) = x and γ (∞) = y ∈ Y . By Definition 6.23
and Lemma 3.16, we have

W(γ ) =W(x, y) ∼W(x, [y]) =W(x, [y]).
Furthermore, by Lemma 6.20, the commensurability class [W(γ )] = [UY ] does not

depend on the choice of x ∈ X (0) and y ∈ Y . In particular, every UBS representing a class
Y is �1-visible.

Lemma 6.25 Let U be a UBS. Let y ∈ YU and let γ be a combinatorial geodesic in X such
that γ (∞) = y. Then U �W(γ ). In particular, if U is maximal, then U ∼W(γ ).

Proof As in Lemma 6.18, U is commensurate to
⊔k

i=1 Ui , where the Ui are minimal and
Ui = 〈〈{ĥin}〉〉 for a descending chain of half-spaces {hin}. Thus Eq. (6.19) gives

YU =
⋂

1≤i≤k
YUi =

⋂
1≤i≤k

⋂
ĥ∈Ui

h =
⋂

1≤i≤k

⋂
n∈N

hin .

Since γ (m) → y ∈ YU , we must have y ∈ hin for every i and every n. At the same time,
since the sequence {hin} is a descending chain for each i , we have that x = γ (0) /∈ hin for
sufficiently large n. Thus all but finitely many hyperplanes ĥin belong to W(x, y) = W(γ ).
The inseparable closure of this cofinite subset of {ĥin}must belong toW(γ ), and byminimality
of Ui and Corollary 6.12, it follows that all but finitely many elements of each Ui belong to
W (γ ).

Corollary 6.26 Let U be a maximal UBS. Then, for every y ∈ YU , there is a combinatorial
geodesic γ limiting to y, such that U ∼W(γ ). In particular, the commensurability class [U]
is �1-visible.
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Proof Let y ∈ YU . By Lemma 3.27, there is a combinatorial geodesic ray γ limiting to y.
By Lemma 6.25, we have U ∼W(γ ). Thus, by Definition 6.23, U is �1-visible.

In Corollary 6.26, the conclusion that [U] is visible was previously shown by Hagen
[39, Theorem 3.19]. The above proof, using the Roller boundary viewpoint, is considerably
simpler.

6.4 Order-preservingmaps

Recall fromDefinitions 5.5 and 6.4 that the partial order≤ onRoller classes is set containment
of the associated sets of half-spaces, while the partial order � on commensurability classes
of UBSes is set containment up to commensurability. The following theorem says that these
partial orders are closely related.

Theorem 6.27 Let UBS(X) be the collection of commensurability classes of UBSes in
X. Then there are Aut(X)-equivariant functions RU : UBS(X) → RX and UR : RX →
UBS(X), with the following properties.

(1) The assignment RU : [U] �→ YU is order-preserving and onto.
(2) The assignment UR : Y �→ [UY ] is an order-preserving section of RU.
(3) RU restricts to a bijection between the set of �-maximal classes of UBSes and the set of

≤-maximal Roller classes, with inverse UR.

The notation UR stands for “Roller to unidirectional,” while RU stands for “unidirectional
to Roller.” This is inspired by the classical notation denoting the collection of maps from a
set A to a set B as BA.

Proof To prove (1), let U be a UBS. By Lemma 6.18, there is a well-defined Roller class YU
such that the umbra YU is the Roller closure of YU . By Lemma 6.17, YU only depends on the
commensurability class [U]. Hence the assignment [U] �→ YU gives a well-defined function
RU : UBS(X)→ RX . This function RU is Aut(X)-equivariant by Lemma 6.18, and onto by
Corollary 6.22.

Next, we check that RU respects the ordering. Lemma 6.17 implies that if U � V , then
YV ⊂ YU , hence the Roller classes satisfy YU ≤ YV by Lemma 5.6. Thus RU is order-
preserving, proving (1).

To prove (2), let Y ∈ RX . By Definition 6.21, there is a well-defined commensurability
class of UBS representing Y , namely [UY ] = RU(Y ) ∈ UBS(X). Thus UR is well-defined.
Equivariance also follows from Definition 6.21. Next, observe that

RU ◦ UR(Y ) = RU([UY ]) = YUY = Y ,

where the last equality follows from Corollary 6.22. Thus UR is a section of RU.
To check that UR is order-preserving, let Y , Z be Roller classes with Y ≤ Z . By

Lemma5.6, thismeans Z ⊂ Y . Fix a base vertex x ∈ X (0). ByLemma3.27, there exist combi-
natorial geodesic rays γy, γz , originating at x , such that γy(∞) = y ∈ Y and γz(∞) = z ∈ Z .
Now, Remark 6.24 says that

UY ∼W(x, Y ) ⊂W(x, Z) ∼ UZ ,

hence [UY ] � [UZ ], as desired.
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To prove (3), let U be a maximal UBS. Choose a point y ∈ YU = RU([U]). By Corol-
lary 6.26, there is a combinatorial geodesic ray γ limiting to y, such that U ∼W(γ ). Thus,
by Remark 6.24, we have

[U] = [W(γ )] = [UYU ] = UR(YU ) = UR ◦ RU([U]). (6.28)

Thus the restriction of RU to maximal classes in UBS(X) is invertible, and in particular
bijective.

Equation (6.28) also shows that RU sends maximal classes in UBS(X) to maximal classes
in RX . Indeed, suppose that [U] is maximal but RU([U]) = YU < Z for some Roller class
Z . Then we would have [U] = UR(YU ) < UR(Z), contradicting the maximality of U . That
UR sends maximal classes to maximal classes is checked in the same way.

The following example shows that RU can fail to be injective.

Example 6.29 Consider the standard 1/8th-plane staircase, corresponding to squares whose
vertices (x, y) satisfy x ≥ y ≥ 0. In this case, there are exactly 2 equivalence classes of
minimal UBS, corresponding to vertical hyperplanes UV and horizontal hyperplanes UH .
These are almost transverse, hence UH � UV ∪ UH . However, RU[UH ] = RU([UV ∪ UH ]).
Thus RU is not injective.

On the other hand, the following corollary shows that RU is finite-to-one.

Corollary 6.30 Let Y ∈ RX be a Roller class. Then there are finitely many other Roller
classes Z such that Z ≤ Y .

Proof For each Z ≤ Y , Theorem 6.27.(2) says that UR(Z) � UR(Y ). Furthermore, UR

is injective. By Lemma 6.8, there are only finitely many commensurability classes [W] �
UR(Y ). Thus there are finitely many Z ≤ Y .

Definition 6.31 Let (∂�X)′ be the barycentric subdivision of ∂�X . Recall fromDefinition 6.9
that ∂�X is the union of simplices corresponding to commensurability classes of UBSes.
However, a simplex of ∂�X may have proper faces that do not come from commensurability
classes, as illustrated in Example 6.32 below. Hence, a vertex of (∂�X)′ might fail to be
associated to a UBS commensurability class.

Let ∂UBS� X be the simplicial realization of the partial order � on UBS(X). Then ∂UBS� X
naturally embeds into (∂�X)′. By the above paragraph, this embedding is not in general onto.

The following example, constructed by Dan Guralnik and Alessandra Iozzi, illustrates a
subtlety in the definition of ∂�X which shows the difference between ∂�X and ∂UBS� X .

Example 6.32 (Weird faces of simplices of ∂�X ) Let X be the 3-dimensional CAT(0) cube
complex given by the following data:

• The set of hyperplanes has the form W(X) = {Bi }i≥0 � {S j } j≥0 � {Dk}k≥0.
• For each A ∈ {B, S, D} and each n ≥ 1, the hyperplanes An±1 are separated by An .
• Bi crosses S j if and only if i ≥ j .
• S j crosses Dk if and only if j ≥ k.
• Bi crosses Dk if and only if i ≥ k.
• If i < j < k, then S j separates Bi from Dk .
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B0

B1

B2

S0

S1

S2

D0

D1

D2

Fig. 4 The cube complex X in Example 6.32, whose simplicial boundary has a “weird” 1-simplex. The
hyperplanes Bi are shown in broken lines, the hyperplanes S j are solid, and the hyperplanes Dk are dotted.

This non-perspective drawing represents an embedding into R
3 where the solid hyperplanes have also been

rescaled by a factor of 2

Part of X is shown in Fig. 4.
Then ∂�X is a single 2-simplex represented by the UBS {Bi }i≥0 ∪ {S j } j≥0 ∪ {Dk}k≥0.

The 0-simplices are represented by the minimal UBSes {Bi }, {S j }, {Dk}. The sets {Bi }∪{S j }
and {S j } ∪ {Dk} are UBSes representing 1-simplices, but {Bi } ∪ {Dk} is not a UBS, because
it is not inseparable (consider the last bullet). The complex ∂UBS� X is therefore obtained from
the barycentric subdivision of the 2-simplex by deleting all of the cells that contain a vertex
at the barycenter of {Bi } ∪ {Dk}.

We remark that by [39, Theorem 3.23], a face of a simplex of ∂�X can only fail to
correspond to a commensurability class of UBSes when one of the 0-simplices of that face
is �1-invisible.

Having passed from ∂�X to ∂UBS� X , Theorem 6.27 has the following corollary.

Corollary 6.33 The order-preserving maps RU and UR of Theorem 6.27 induce Aut(X)-
equivariant simplicial maps RU� : ∂UBS� X → R�X and UR� : R�X → ∂UBS� X, as follows:

(1) RU� : ∂UBS� X → R�X is surjective.

(2) UR� : R�X → ∂UBS� X is an injective section of RU�.
(3) RU� is a homotopy equivalence with homotopy inverse RU�.

123



Geometriae Dedicata (2024) 218 :33 Page 47 of 83 33

Proof Bydefinition,R�X is the simplicial realization of the partial order≤onRX . Similarly,
∂UBS� X is the simplicial realization of the partial order � on UBS(X). So, the first two
enumerated assertions follow from Theorem 6.27.

To prove (3), let Y be a Roller class. Let [V] ∈ (RU)−1(Y ). Then YV = YUY . By
Remark 6.24 and Lemma 6.25, we have V � UY .

Using the notation Y for the 0-simplex of R�X corresponding to the Roller class Y , we

have just shown that RU�
−1

(Y ) is a subcomplex of ∂UBS� X spanned by 0-simplices adjacent

or equal to the 0-simplex [UY ], so RU�
−1

(Y ) is topologically a cone. In particular, RU�
−1

(Y )

is contractible. Quillen’s fiber theorem (see e.g. [11, Theorem 10.5]) implies that RU� is a

homotopy equivalence, such that any section is a homotopy inverse. In particular, UR� is a

homotopy inverse of RU�.

Remark 6.34 [Alternate strategy] The preceding corollary provides an explicit Aut(X)-
equivariant homotopy equivalence ∂UBS� X → R�X . Furthermore, it is possible, although
somewhat tedious, to construct an explicit, Aut(X)-equivariant homotopy equivalence
∂�X → ∂UBS� X . Composing these maps gives a homotopy equivalence ∂�X → R�X ,
which is Aut(X)-equivariant on the nose. This is slightly stronger than Proposition 10.12,
which asserts that ∂�X and R�X are Aut(X)∼homotopy equivalent. We have chosen a
different proof of Proposition 10.12 that is somewhat shorter, relying on the nerve theorem,
and only yielding Aut(X)-equivariance up to homotopy. Our ultimate goal is to relate the
homotopy type of ∂�X and R�X to that of the Tits boundary ∂T X , and in any case our
homotopy equivalence R�X → ∂T X , provided by Theorem 9.17, is only equivariant up to
homotopy.

7 The Tits boundary

In this section, we recall the definition of the Tits boundary ∂T X , and establish some con-
nections between points on the Tits boundary and UBSes. The main result of this section,
Proposition 7.16, is a technical result about combining UBSes that will be crucial in the next
section.

In this section, we will work extensively with the CAT(0) metric dX on the cube complex
X , hence most half-spaces considered here are CAT(0) half-spaces. Recall from Sect. 3.2 that
if ĥ is a hyperplane with open carrier N (ĥ), the two vertex half-spaces associated to ĥ are
denoted h, h∗. The twoCAT(0) half-spaces associated to ĥ are the cubical convex hulls CH(h)

and CH(h∗), respectively. Observe that CH(h) and CH(h∗) are exactly the components of
X � N (ĥ).

Definition 7.1 (Themetric dT )TheTits boundary of X , denoted ∂T X , is the set of equivalence
classes ofCAT(0) geodesic rays in X , where rays γ, γ ′ are equivalent if theHausdorff distance
between them is finite. As a set, ∂T X coincides with the visual boundary of X .

We endow ∂T X with a metric, as follows. Given CAT(0) geodesic rays α, β : [0,∞) → X
with α(0) = β(0) = x , the Alexandrov angle formed by α, β at x is

∠x (α, β) = cos−1
(

lim
t,t ′→0

dX (α(t), β(t ′))2 − t2 − (t ′)2

2t t ′

)
(7.2)

In other words, ∠x (α, β) is computed by applying the law of cosines to a triangle with sides
along α and β, and then taking a limit as the triangle shrinks. Let a = [α] ∈ ∂T X and

123



33 Page 48 of 83 Geometriae Dedicata (2024) 218 :33

b = [β] ∈ ∂T X be the the equivalence classes of α, β respectively. Following [7, Definition
II.9.4], we define

∠T (a, b) = ∠T ([α], [β]) := sup
x∈X

∠x (αx , βx ), (7.3)

where αx , βx are the rays emanating from x and representing a, b respectively. Then ∠T

induces a length metric dT on ∂T X in the standard way, making it a CAT(1) space. See [7,
Theorem II.9.13 and Definition II.9.18]. We always equip ∂T X with the metric dT . By [7,
Proposition II.9.5], the automorphism group Aut(X) acts on ∂T X by isometries.

We remark that the original definition of the Alexandrov angle [7, Definition I.1.12] is
somewhat more involved. In our setting, since X is a CAT(0) space, [7, Proposition II.3.1]
says the limit in (7.2) exists and is equal to the Alexandrov angle in the original definition.
Compare [7, Remark I.1.13.(4)].

Definition 7.1 has the following generalization to the cuboid setting.

Definition 7.4 (Cuboid Tits boundary) Fix a groupG acting on X by cubical automorphisms,
as well as aG-admissible hyperplane rescaling ρ, as in Definition 4.3. Then the cuboidmetric
dρ
X is still a CAT(0) metric by Lemma 4.2. Applying Definition 7.1 to the CAT(0) space

(X , dρ
X ), we obtain the cuboid Tits boundary ∂

ρ
T X = ∂T (X , dρ

X ), with an associated CAT(1)
metric dρ

T . The restricted automorphism group Aut(Xρ) acts on ∂
ρ
T X by isometries. Since ρ

is aG-admissible rescaling, we haveG ⊂ Aut(Xρ) by Definition 4.4, hence ∂
ρ
T X still admits

a G-action.

All of the results of this section extend to a cuboid metric dρ
X . See Remarks 7.8, 7.12,

and 7.15 for details.
Throughout this section, we use Greek letters α, β, γ to denote geodesic rays, and the

correspondingRoman lettersa, b, c to denote equivalence classes.Wewrite a = [α] = α(∞)

to denote the endpoint of α in ∂T X .

7.1 Deep sets

Every point of the Tits boundary has an associated deep set of half-spaces.

Definition 7.5 (Deep set of a Tits point) Let a ∈ ∂T X , and let α : [0,∞) → X be a CAT(0)
geodesic representing a. We define the deep set

Da = {h ∈ H : for all R > 0 there is tR > 0 s.t. NR(α[tR,∞)) ⊂ CH(h)}.
It is immediate to check that the definition does not depend on the representative geodesic
α. If h ∈ Da , we say that h is deep for a.

Lemma 7.6 Let α : [0,∞) → X be a CAT(0) geodesic ray with α(0) ∈ X (0), and let ĥ ∈
W(α). Then the following hold:

(1) Define f (t) = dX (α(t), ĥ), and let t0 = α−1(ĥ). Then, for t0 ≤ s ≤ t , we have

f (t)− f (s) ≥ A0 · (t − s),

where A0 > 0, and A0 may depend on ĥ and α but not on s, t .
(2) The hyperplane ĥ has a deep half-space h ∈ Da.

Consequently, W(α) is a pruned UBS.
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Proof By [7, Corollary II.2.5], f is a convex, 1-Lipschitz function. By convexity, f has
left and right derivatives at every point in (0,∞), and these are non-decreasing. Since f is
Lipschitz and convex, the left and right derivatives coincide almost everywhere, hence f ′ is
well-defined almost everywhere, and non-decreasing at all points where it is defined.

Let t0 = α−1(ĥ). Since the carrier N (ĥ) ∼= ĥ × (− 1
2 ,

1
2 ) is an �2 product and α(t0) ∈ ĥ

lies on the midcube of a cube, there is an initial segment of α after crossing ĥ on which f (t)
is an increasing linear function. Therefore, f ′(t) = f ′(t0) = A0 > 0 on this segment. (In
fact, f ′(t0) = sin θ0, where θ0 is the angle between α and ĥ in the �2 metric on a cube.)
Hence f ′(t) ≥ A0 for all t ≥ t0 at which f ′(t) is defined. Since f is Lipschitz, it follows
that for all t0 ≤ s ≤ t , we have

f (t)− f (s) =
t�
s

f ′(z) dz ≥ A0 · (t − s),

proving (1). Now, (1) immediately implies (2). The conclusion that W(α) is pruned is then
immediate from Definition 6.6.

The following lemma is a strengthening of [19, Lemma 2.27]. While [19, Lemma 2.27]
proves that Da contains an infinite descending chain, we prove the stronger statement that
Da is non-terminating.

Lemma 7.7 For a point a ∈ ∂T X, define Y a = ⋂
h∈Da

h. Then Da and Y a have the following
properties:

(1) Da is consistent, and therefore Da = H+
Ya
.

(2) Every half-space h0 ∈ Da belongs to a descending chain {h0, h1, . . .} ⊂ Da. Further-
more, if ĥ0 ∈W(α) for a ray α ∈ a, then ĥn ∈W(α) for all n.

(3) Y a ⊂ ∂R X is the closure of a (unique, principal) Roller class Ya.

Proof The consistency of Da is immediate from the definition. Thus, by Proposition 3.14.(2),
we obtain Da = H+

Ya
. This proves (1).

To prove (2), let h0 ∈ Da . By [7, Proposition II.8.2], there exists a geodesic ray α

representing a such that α(0) ∈ h∗0. Since h0 ∈ Da , Definition 7.5 implies that α must
deviate arbitrarily far from ĥ0. Thus, by Lemma 3.1, a point α(t) for large t has the property
that |W(α(t), y)| ≥ 1 for every y ∈ N (ĥ0). Now, Proposition 3.17 says that there is at least
one hyperplane ĥ1 separating α(t) from N (ĥ0). Observe that ĥ1 ∈ W(α) by construction,
and orient ĥ1 by choosing the half-space h1 ⊂ h0. Now, Lemma 7.6 says that h1 ∈ Da .
Continuing inductively, we obtain a descending chain {h0, h1, . . .} ⊂ Da where ĥn ∈W(α)

for all n, proving (2).
By (1), Da = H+

Ya
is consistent, and by (2), Da contains an infinite descending chain.

Thus Ya = ⋂
h∈Da

h is a convex, nonempty subset of ∂R X . Since Da is non-terminating

by (2), Lemma 5.3 implies that Y Da is the closure of a principal Roller class Ya ∈ RX .
(Compare Definition 5.4.) This proves (3).

Remark 7.8 The previous lemmas generalize readily to a cuboid metric dρ
X . Indeed,

Lemma 7.6 generalizes because because hyperplane carriers are still �2 products, and because
[7, Corollary II.2.5] works in any CAT(0) space. Similarly, Lemma 7.7 generalizes because
[7, Proposition II.8.2] works in every CAT(0) space and, because dρ

X is quasi-isometric to
the �1-metric on X (0).
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7.2 CAT(0) rays and their UBSes

Given a CAT(0) geodesic ray γ in X , starting at a point of X (0), recall that W(γ ) denotes
the set of hyperplanes h that intersect γ . It is easy to see (cf. [39, Section 3]) that W(γ ) is a
UBS.

Throughout this subsection, fix a, b ∈ ∂T X and let α, β be CAT(0) geodesic rays repre-
senting a and b, respectively. We can assume that α(0) = β(0) = x ∈ X (0).

The following lemma says that whenW(α)∪W(β) has finite symmetric difference with a
UBS, it actually is a UBS. Several subsequent lemmas build toward Proposition 7.16, which
will show that W(α) ∪W(β) is in fact a UBS associated to a ray γ .

Lemma 7.9 Suppose that W(α) ∪ W(β) is commensurate with a UBS. Define sets A =
W(α) � W(β) and B =W(β) � W(α) and C =W(α) ∩W(β). Then

(1) Each of A,B is infinite or empty.
(2) Every element of A crosses every element of B.
(3) W(α) ∪W(β) = A � B � C is a UBS.

Proof Let U =W(α)∪W(β). Since U is commensurate with a UBS by hypothesis, it must
be infinite and unidirectional. We will check the other properties of a UBS at the end of the
proof.

By Lemma 7.6, every hyperplane ĥ = ĥ0 ∈ W(α) corresponds to a deep half-space
h0 ∈ Da , and by Lemma 7.7, h0 is the start of a descending chain {h0, h1, . . .} ⊂ Da , where
hn ∈W(α) for every n. Similarly, every hyperplane k0 ∈W(β) defines a descending chain
{k0, k1, . . .} ⊂ Db, where km ∈W(β) for every m.

If A =W(α) � W(β) �= ∅, then any hyperplane ĥ0 ∈ A defines a chain {ĥ0, ĥ1, . . .} ⊂
W(α), as above. Furthermore, ĥ0 separates every ĥn from β. Thus ĥn ∈ A, andA is infinite.
Similarly, B must be empty or infinite, proving (1).

Next, suppose for a contradiction that ĥ0 ∈ A is disjoint from k̂0 ∈ B. Then the deep
half-spaces h0 ∈ Da and k0 ∈ Db are also disjoint. But then the disjoint chains {ĥn} ⊂W(α)

and {k̂m} ⊂W(β) contradict the fact that U =W(α) ∪W(β) is unidirectional. This proves
(2).

Finally, we show that U is a UBS.We have already checked that U is infinite and unidirec-
tional. To check inseparability, suppose that �̂ is a hyperplane of X that separates ĥ, k̂ ∈ U .
Since we already know that W(α) and W(β) are inseparable, it suffices to check the case
that ĥ ∈ A and k̂ ∈ B. But then ĥ and k̂ must cross by (2), a contradiction. Similarly, since
W(α) and W(β) contain no facing triples, any potential facing triple in U must contain at
least one hyperplane ĥ ∈ A and at least one hyperplane k̂ ∈ B. But then ĥ and k̂ must cross,
hence U cannot contain any facing triples. Thus U is a UBS, proving (3).

Recall from Definition 6.16 that given a UBS U , we have the umbra YU ⊂ X . Following
Proposition 3.17, let πYU = πYU : X → YU be the gate projection to YU .

Lemma 7.10 Suppose α and β are geodesic rays starting at x ∈ X (0), and that U =W(α)∪
W(β) is commensurate with a UBS. Then U =W(x, πYU (x)).

Proof Since the geodesic rays start at the vertex x , Lemma 7.7 says that all the hyperplanes
they cross are deep, i.e.W(x, Ya) =W(α) andW(x, Yb) =W(β), hence U =W(x, Ya) ∪
W(x, Yb). In addition, Lemma 7.9 says that U is a UBS.

Now, Lemma 6.17 gives YU = Ya ∩ Yb, and in particular H+
YU
= Da ∪ Db. By Lemma

6.20 and Remark 6.24, we have W(x, YU ) = W(x, YU ) = W(x, πYU (x)). We must show
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that this UBS equals U =W(x, Ya) ∪W(x, Yb). To this end we have by Proposition 3.14:

H+πYa (x) = [H+x � D∗a ] ∪ Da,

H+πYb (x) = [H+x � D∗b ] ∪ Db,

H+πYU (x) = [H+x � (D∗a ∪ D∗b)] ∪ (Da ∪ Db).

Then a standard Venn diagram argument shows that

H+x � H+πYU (x) = H+x �

([H+x � (D∗a ∪ D∗b)] ∪ (Da ∪ Db)
)

= (
H+x ∩ (D∗a ∪ D∗b)

)
� (Da ∪ Db).

The set of hyperplanes on the left-hand side is W(x, πYU (x)), while the set of hyperplanes
on the right-hand side is W(x, Ya) ∪W(x, Yb).

Lemma 7.11 (Tits distance bound) Suppose thatW(α)∪W(β) is commensurate with a UBS.
Then dT (a, b) ≤ π/2.

Proof We will show that π/2 is an upper bound on the Alexandrov angle between rays
representing a, b based at an arbitrary point, and then use (7.3). The bound will be produced
by finding a convex subspace, isometric to a Euclidean cube, which has one corner at the
basepoint and which contains nontrivial initial segments of the rays.

Angle bound at a vertex: Let y ∈ X be an arbitrary vertex. Let α′, β ′ be CAT(0) geodesic
rays emanating from y and representing a, b respectively (so, α is asymptotic to α′ and β

is asymptotic to β ′). Let U = W(α) ∪ W(β), and let U ′ = W(α′) ∪ W(β ′). Then U is
commensurate to U ′, and hence commensurate to a UBS. Lemma 7.9 then implies that U ′ is
actually a UBS.

Now let Xy ⊂ X be the cubical convex hull of α′∪β ′. Then the set of hyperplanes crossing
Xy is exactly U ′. Moreover, by Lemma 7.10, there exists a point ȳ in the Roller boundary
such that U ′ is precisely the set of hyperplanes separating y from ȳ.

Let � be the partial order onU ′ defined by declaring that ĥ� ĥ′ if the hyperplane ĥ separates
y from ĥ′. Since every hyperplane of Xy separates y from ȳ, any hyperplanes ĥ, ĥ′ ∈ U ′ are
either �-comparable, or they cross.

Note that if ĥ ∈ U ′ is dual to a 1-cube of Xy incident to y, then ĥ is �-minimal. Hence the
set U ′min of �-minimal hyperplanes is nonempty. Since �-incomparable hyperplanes cross,
U ′min is a set of pairwise-crossing hyperplanes of X . Since Xy is convex and every hyperplane
in U ′ crosses Xy , we have a cube C ⊂ Xy such that the hyperplanes crossing C are exactly
those in U ′min.

Note y ∈ C . Also note that any cube C ′ of Xy with y ∈ C ′ satisfies C ′ ⊂ C . Thus
any nontrivial CAT(0) geodesic segment in Xy emanating from y has a nontrivial initial
subsegment lying in C . In particular, α′ and β ′ have nontrivial initial segments lying in
C . Since the ambient CAT(0) metric restricts to the Euclidean metric on the cube C , the
Alexandrov angle made by α′, β ′ at y satisfies

∠y(α
′, β ′) = lim

t,t ′→0
∠y(α

′(t), β ′(t)) ≤ π/2,

because any two segments in a cube emanating from a common corner make an angle at most
π/2.

Angle bound at arbitrary points: We now bound the angle made by rays representing
a, b and emanating from non-vertex points, by an identical argument taking place in an
appropriate cubical subdivision of X . Let y ∈ X be an arbitrary point. Perform a cubical
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subdivision of X to obtain a CAT(0) cuboid complex X ′ in which y is a vertex, so that the
CAT(0) cuboid metric coincides with the original metric on X .

More precisely, for each hyperplane ĥ, identify its carrierwith ĥ×[− 1
2 ,

1
2 ]. For each ĥ such

that y ∈ ĥ × (− 1
2 ,

1
2 ), let εĥ be such that y ∈ ĥ × {εĥ}. The (geodesically convex) subspace

ĥ × {εĥ} has a natural cubical structure with an n-cube for each (n + 1)-cube intersecting ĥ.

We subdivide X so that the cubes of ĥ×{εĥ} are subdivided cubes whose edges are segments
in X whose lengths are inherited from X . The result is a cuboid complex X ′ such that the
identity map X → X ′ is an isometry in the CAT(0) metric, preserves the median, and sends
y to a vertex. Since the hyperplanes of X ′ are parallel copies of hyperplanes of X , the set
of hyperplanes of X ′ that cross α ∪ β continues to be a UBS, so Lemma 7.10 still applies.
(Compare Remark 7.8.) We can thus argue exactly as before to see that ∠y(α

′, β ′) ≤ π/2.
Conclusion: We have shown that, for all y ∈ X , letting α′, β ′ be the rays based at y

and representing a, b respectively, we have ∠y(α
′, β ′) ≤ π/2. Taking the supremum over

all y ∈ X , as in (7.3), we see that the angular metric satisfies ∠T (a, b) ≤ π/2. Now,
Definition 7.1 gives dT (a, b) ≤ π/2, as required.

Remark 7.12 Lemmas 7.9 and 7.10 extend immediately to the cuboid setting, because they
use only hyperplane combinatorics and prior lemmas. The above proof of Lemma 7.11 also
extends to cuboids, because it uses prior lemmas combined with CAT(0) geometry. Indeed,
the above argument uses cuboids in combination with Remark 7.8 to prove the desired angle
bound for arbitrary basepoints in X . The key conceptual reason why the argument works for
cuboids is that every pair of geodesic segments in a cuboid, emanating from a corner, meets
at angle at most π/2.

The reliance on cuboids to prove the desired result for cubes can be avoided, as follows.
First, prove the angle bound at a vertex of X , exactly as above. Then, let X ′ be the cubical
subdivision of X , and observe that the CAT(0) geodesics in X ′ are exactly the same as those
in X . (See e.g. [31, Section 2.1.6].) Thus the same argument proves the angle bound at every
vertex of X ′.

Continuing to subdivide by induction, we obtain a set V∞ ⊂ X of points that are vertices
of the subdivision at some (and hence all subsequent) stages. Note that V∞ intersects each of
the original cubes of X in a dense subset, and in particular contains all the original vertices.
The desired angle bound holds when the rays in question are based at any point in V∞. Now,
fixing a, b ∈ ∂T X , we can consider the function x �→ ∠x (α, β), where α, β are the rays
representing a, b and starting at x . This function need not be continuous on X (it is upper
semicontinuous [7, Proposition II.9.(2)]), but it can be shown to be continuous on each open
cube of X (of any dimension). Since it is bounded above by π/2 on a dense subset of each
such cube, we conclude that supx ∠x (α, β) = ∠T (a, b) ≤ π/2.

Finally, observe that the statement and proof of Lemma 7.11 fail completely if we mod-
ify the angles of the cubes, precisely because two segments emanating from a vertex of a
parallelogram might meet at a large angle.

Our main goal in this section is to show that if α, β are geodesic rays with common initial
point, and W(α) ∪W(β) is a UBS, then any geodesic ray γ representing an interior point
on the Tits geodesic from α(∞) to β(∞) must cross all the hyperplanes in W(α) ∪W(β).
Before proving this in Proposition 7.16, we will need a few auxiliary results, starting with a
corollary of Lemma 6.15.

Corollary 7.13 (Crossing all dominants implies crossing everyone) Suppose U = W(α) ∪
W(β) is a UBS. Let Y be the cubical convex hull of α ∪ β. Let γ : [0,∞) → X be a CAT(0)
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geodesic ray with γ (0) = α(0) = β(0). Suppose that γ is contained in Y and crosses every
dominant hyperplane in U . Then γ crosses every hyperplane in U .

Proof This follows immediately from Lemma 6.15.(4) applied to U =W(Y ).

Next, we study angles at which rays cross dominant hyperplanes.

Lemma 7.14 (Lower angle bound for single rays) Letα be aCAT(0) geodesic ray withα(0) ∈
X (0). Then there exists κ > 0 such that the following holds. Let Dd , · · · ,Dk ⊂W(α) be the
dominant minimal UBSes provided by applying Lemma 6.15 toW(α), and let i ∈ {d, . . . , k}.
Then Di contains a chain {ûn}n≥0 of hyperplanes such that Di is commensurate with the
inseparable closure of {ûn}n≥0, and

∠yn (α, ûn) ≥ κ

for all n ≥ 0, where yn is the point α ∩ ûn .

Proof Recall from Lemma 7.6 that W(α) is a pruned UBS. Thus Lemma 6.15 applies to
W(α).

Now, fix i ∈ {d, . . . , k}. Lemma 6.15 says that Di = 〈〈{ĥm}m≥0〉〉, where each ĥm is
dominant. This means each ĥm crosses all but finitely many hyperplanes in W(α) � Di .

The divergence f (t) of α from ĥ0: Define f (t) = dX (α(t), ĥ0), and let T0 = α−1(ĥ0).
By Lemma 7.6.(1), there is a constant A0 > 0 (depending on ĥ0 but not s, t) such that

f (t)− f (s) ≥ A0 · (t − s)

for all T0 ≤ s ≤ t .
Hyperplane count: We wish to produce a constant C such that any length-C subpath of

α crosses an element of Di .
Let s0 ≥ T0 be sufficiently large that α([0, s0)) crosses all of the finitelymany hyperplanes

in W(α) � Di not crossing ĥ0. Suppose that s0 ≤ s ≤ t . Then all hyperplanes crossing
α([s, t]) either cross ĥ0 or belong toDi . Assume that α([s, t]) does not cross any element of
Di .

Let Hst = CH(α([s, t])) denote the cubical convex hull of α([s, t]). There may be hyper-
planes crossing Hst that do not cross α([s, t]), because α(s), α(t) need not be vertices.
However, we can bound the number of such hyperplanes as follows. LetWbad ⊂W(Hst ) ⊂
W(α) be the set of hyperplanes that cross Hst but do not cross α([s, t]). Note that W(Hst )

inherits a partial order from W(α), by restricting the partial order � from the proof of
Lemma 7.11. Suppose that ĥ ∈ W(Hst ) is neither �-maximal nor �-minimal in W(Hst ).
Then there exist û, v̂ ∈ W(Hst ) such that ĥ separates û from v̂. By the definition of the
convex hull, ĥ cannot separate û or v̂ from α([s, t]), so ĥ must cross α([s, t]). Thus every
hyperplane in Wbad is �-minimal or �-maximal. Since incomparable hyperplanes have to
cross, we conclude that |Wbad| ≤ 2 dim(X), hence there are at most D = 2 dim X hyper-
planes that cross Hst but not α([s, t]). The rest of the hyperplanes crossing Hst must cross ĥ0,
since they cross α([s, t]), and we have chosen s ≥ s0 and assumed W(α([s, t])) ∩Di = ∅.

Consider the CAT(0) closest-point projections p : X → ĥ0 and q : X → Hst . By [46,
Lemma 2.10], the dX -convex hull of p(Hst )∪q(ĥ0) is isometric to p(Hst )×[0, dX (ĥ0, Hst )],
where p(Hst ) is identified with p(Hst ) × {0}, and q(ĥ0) is identified with p(Hst ) ×
{dX (ĥ0, Hst )}. By [46, Lemma 2.14], the hyperplanes that cross q(ĥ0) are precisely those
that cross ĥ0 and Hst . So, there are at most D hyperplanes crossing Hst but not q(ĥ0). By
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Lemma 3.1, the points α(s), α(t) are thus both within distance λ0D+ λ1 of points in q(ĥ0),
where λ0D + λ1 depends only on D. Thus

dX (α(t), ĥ0) ≤ λ0D + λ1 + dX (Hst , ĥ0) ≤ λ0D + λ1 + dX (α(s), ĥ0).

In other words, since s, t ≥ s0 ≥ T0, we have shown

A0(t − s) ≤ f (t)− f (s) ≤ λ0D + λ1.

Thus, for any 0 ≤ s ≤ t (without assuming s ≥ s0), we get

t − s ≤ λ0D + λ1

A0
+ s0.

Letting C = λ0D+λ1
A0

+ s0+ 1, we have shown that any subsegment of α of length at least
C crosses an element of Di . Hence, for any 0 ≤ s ≤ t , we have that α([s, t]) crosses at least
�(t − s)/C� elements of Di .

Big angle hyperplanes: Let σ be a subsegment of α. Consider the hyperplanes in Di

crossing σ . Any two such hyperplanes are either disjoint or not, and any collection of pairwise
crossing hyperplanes has size at most dim X . So, if there are more than Ram(3, dim X + 1)
hyperplanes inDi crossing σ , then there are three disjoint such hyperplanes, where Ram(·, ·)
denotes the Ramsey number. Hence, if σ has length |σ | = C ·Ram(3, dim X + 1)+ 1, then
σ crosses three disjoint hyperplanes û, v̂, ŵ ∈ Di . Without loss of generality, say v̂ separates
û, ŵ. Hence α ∩ N (v̂) is a subpath of α lying between the points α ∩ û and α ∩ ŵ ∈ σ , so

|α ∩ N (v̂)| ≤ C · Ram(3, dim X + 1)+ 1 = L.

Note that L is independent of the hyperplane v̂. Indeed, L depends on A0, λ0, λ1, s0, and
hence is determined by X , the hyperplane ĥ0 and the geodesic α. Now, using the fact that
N (v̂) is isometric to a product of the form v̂ × (− 1

2 ,
1
2 ), we see that

∠α∩v̂(v̂, α) ≥ sin−1( 1
L ),

which we denote by κ .
Since we can do the above procedure for infinitely many disjoint length-L segments in

α, we find infinitely many hyperplanes in Di making an angle at least κ with α. Since any
infinite subset of a UBS contains a chain, we thus have a chain {ûn}n≥0 ⊂ Di with this
property. Finally, the inseparable closure of {ûn}n≥0 is a UBS contained in Di , and hence
commensurate withDi sinceDi is minimal. This verifies the statement for the givenDi , and
we conclude by replacing κ with the minimal κ for the various i ∈ {d, . . . , k}.
Remark 7.15 Extending Lemma 7.14 to a cuboid metric dρ

X requires a bit of care. The above
proof relies on some results of of Huang [46], which are written in the context of a cube
complex with finitely many isometry types of cells. This hypothesis may fail in (X , dρ

X ).
Fortunately, we only need to use Huang’s results in a finite cuboid complex, namely the
convex hull of Hst ∪ p(Hst ), where Hst is itself finite and p is a certain CAT(0) projection.
Thus Huang’s results [46, Lemmas 2.10 and 2.14] apply to the subcomplex we need.

Some constants in the proof would need to be adjusted for the cuboid metric. The con-
stants λ0, λ1 of Lemma 3.1, used in the definition of C , would have to be replaced by the
constants λ

ρ
0 , λ

ρ
1 of Lemma 4.8. In the constant sin−1( 1

L ), the numerator 1 is the thickness of
a hyperplane carrier, and would have to be replaced by the minimal thickness of a hyperplane
carrier in the metric dρ

X .

Now we can prove the main result of this section.
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Proposition 7.16 (Combining UBSes for interior points of Tits geodesic) Let α, β be CAT(0)
geodesic rays with α(0) = β(0) ∈ X (0). Suppose that W(α) ∪ W(β) is commensurate
with a UBS. Then a = α(∞) and b = β(∞) are joined by a unique geodesic g in ∂T X.
Furthermore, any interior point c of g is represented by a CAT(0) geodesic ray γ such that
W(γ ) =W(α) ∪W(β).

Proof ByLemma 7.11, we have dT (a, b) ≤ π/2, so the CAT(1) space ∂T X contains a unique
geodesic g from a to b. This proves the first assertion of the lemma.

Let c ∈ ∂T X be an interior point of g. Let γ be the unique CAT(0) geodesic ray starting
at α(0) and representing c. We need to show that W(γ ) =W(α) ∪W(β).

Working in the convex hull of α ∪ β: Let Y be the cubical convex hull of α ∪ β. We
claim that g lies in ∂T Y ⊂ ∂T X . Indeed, applying Lemma 7.11 inside of Y shows that a, b
can be joined by a unique geodesic g′ in ∂T Y . Since the Tits distance in ∂T Y from a to b
depends only on {dY (α(t), β(t)) : t ≥ 0} and dY (α(t), β(t)) = dX (α(t), β(t)) by convexity
of Y , we have that g′ is a geodesic of ∂T X . Since g′ has length less than π , it is the unique
geodesic in ∂T X from a to b, i.e. g = g′ and g lies in ∂T Y .

For the rest of the proof, we work entirely in Y . For any y ∈ Y , we can choose rays αy, βy

with αy(0) = βy(0) = y and αy(∞) = a, βy(∞) = b, and note that the cubical convex hull
Yy of αy ∪βy is contained in Y , and crosses all but finitely many of the hyperplanes crossing
Y . By convexity, ∂T Yy = ∂T Y . So, when convenient, we can move the basepoint.

What we will actually verify: The plan is as follows. Let ĥ be a hyperplane of Y that
is dominant in the UBS U = W(Y ) = W(α) ∪W(β). We will show that c /∈ ∂T ĥ. Since
the shallow side of any hyperplane in Y is contained in a neighborhood of that hyperplane,
it follows that γ must cross ĥ. Once we show that γ crosses every dominant hyperplane,
Corollary 7.13 will then imply that γ crosses every hyperplane, i.e.W(γ ) =W(α)∪W(β),
as required. So, it remains to argue that c /∈ ∂T ĥ when ĥ is a dominant hyperplane.

Initial segments of α and β inside a cube: For each r ≥ 0, let yr = α(r). Let αyr and
βyr be geodesics asymptotic to α and β, defined as above. Note that Yyr ⊂ Y contains a ray
based at yr and representing each element of ∂T Y . As in the proof of Lemma 7.11, there is
a single cube Cyr ⊂ Yyr , with yr ∈ Cyr , such that any ray in Yyr emanating from yr has a
nontrivial initial segment in Cyr .

Let α′yr , β
′
yr , γ

′
yr be themaximal (nontrivial) segments of αyr , βyr , γyr that lie inCyr . Then

the Alexandrov angle between any two of the rays αyr , βyr , γyr at yr is just the Euclidean
angle in Cyr between the corresponding segments.

By [7, Proposition II.9.8.2], ∠yr (αyr , βyr ) converges to ∠T (a, b) = dT (a, b), where the
equality follows from Lemma 7.11 because the distance is less than π .

Angle computation: Let ĥ be a dominant hyperplane in U . By Lemma 6.15, we can
assume that ĥ ∈ D, where D = D j is a minimal UBS consisting of dominant hyperplanes.
SinceD ⊂W(α)∪W(β) is a minimal UBS, we must have eitherD �W(α) orD �W(β).
We assume without loss of generality that D �W(α).

Note that every hyperplane inD is dominant inW(α), because any hyperplane crossing all
but finitelymany hyperplanes inU�D crosses all but finitelymany hyperplanes inW(α)�D.
We now apply Lemma 7.14 to W(α) and D to produce a constant κ and a chain {ĥn} ⊂ D
whose inseparable closure is D and whose (necessarily dominant) hyperplanes all cross α at
an angle at least κ:

∠yn (αyn , ĥn) ≥ κ,
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yn

Mn β′
yn

α′
yn

γ′
yn

ηn

1− s s

Fig. 5 The figure shows a portion of the cubeCyn , where the back wall is Mn = Cyn ∩ ĥn . The angle between
α′yn and Mn is at least κ , so the angle between ηn and Mn is bounded away from 0 by κ1 = κ(1− s). But the
angle between γ ′yn and ηn can be made much smaller than κ(1− s) by taking n large. So γ ′yn makes a positive

angle with ĥn

where yn = ĥn ∩α and αyn is the sub-ray of α emanating from yn . Since all but finitely many
of the ĥn lie on the deep side of ĥ, it suffices to show that γ crosses ĥn for sufficiently large
n. As explained above, it suffices to show that c /∈ ∂T ĥn for sufficiently large n.

Let βyn be the ray emanating from yn and asymptotic to β. Working in the cube Cyn
constructed above, we have that the segment α′yn makes a Euclidean angle at least κ with the

midcube Mn = Cyn ∩ ĥn . Meanwhile, the segment β ′yn makes some angle θ ≥ 0 with Mn .
See Fig. 5.

Let s ∈ (0, 1) be such that dT (a, c) = s ·dT (a, b) and dT (c, b) = (1− s) ·dT (a, b). Such
an s exists since c is an interior point of the Tits geodesic g from a to b.

Let ηn ⊂ Cyn be the maximal segment that emanates from yn and makes an angle s ·
∠yn (α

′
yn , β

′
yn ) with α′yn and and angle (1 − s) · ∠yn (α

′
yn , β

′
yn ) with β ′yn . Then there exists

κ1 = (1 − s)κ > 0 such that ∠yn (ηn, Mn) ≥ κ1. Crucially, κ1 is independent of n. On the
other hand, as n →∞, we have convergent sequences
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∠yn (α
′
yn , β

′
yn ) → dT (a, b),

∠yn (α
′
yn , γ

′
yn ) → dT (a, c) = s · dT (a, b),

∠yn (β
′
yn , γ

′
yn ) → dT (b, c) = (1− s) · dT (a, b),

Thus, for all sufficiently large n,

∠yn (ηn, γ
′
yn ) <

κ1

2
,

so by the triangle inequality for Alexandrov angles, ∠yn (γ
′
n, Mn) > κ1/2 > 0. Hence the

ray γyn is not contained in ĥn and, since its initial point is in ĥn , we thus have c /∈ ∂T ĥn . This
completes the proof.

We observe that the proof of Proposition 7.16 extends to the cuboid setting with minimal
effort. The proof combines prior results and the local Euclidean geometry of a cube; all of
the local arguments work equally well in a rescaled cuboid.

8 Connections between Tits and Roller boundaries

In this section, we establish some important connections between ∂T X andRX . Every Roller
class v ∈ RX is assigned a canonicalCAT(1)-convexTits boundary realization Q(v) ⊂ ∂T X .
We define a pair of maps ψ : ∂T X → RX and ϕ : RX → ∂T X that will play a major role
in the proof of our main theorem. See Proposition 8.12 for the properties of Q(v) and
Proposition 8.18 for the relationship between ϕ and ψ .

Toward the end of this section, we focus on �2-visible Roller classes, namely all v ∈ RX
such that ψ ◦ϕ(v) = v. In Sect. 9, we will use the visible Roller classes to construct a closed
covering of ∂T X that is compatible with a covering of a large part ofR�X , denoted R�

�X .
All of the results of this section extend with minimal effort to a cuboid metric dρ

X obtained
via a G-admissible hyperplane rescaling (recall Definitions 4.3 and 7.4). This extension is
described in Sect. 8.4.

Definition 8.1 (Map ψ : ∂T X → RX) Given a ∈ ∂T X , define ψ(a) = Ya ∈ RX to be the
Roller class Ya constructed in Lemma 7.7. That is, ψ(a) is the principal Roller class of the
intersection of half-spaces in the deep set Da .

Our definition of ψ generalizes Guralnik’s boundary decomposition map [37, Definition
4.8], because ∂T X agrees as a set with the visual boundary ∂�X .

Lemma 8.2 Let a = [α] ∈ ∂T X. Let W(α) be the UBS consisting of hyperplanes crossing
the geodesic α. Then ψ(a) = Ya = YW(α).

Proof By Lemma 7.7 we have that Da = H+
Ya

and Ya ∈ RX . Fix x ∈ X (0). By definition,

̂Da � H+x = W(x, Ya) = W(x, [y]) for any y ∈ Ya . Finally by Lemma 6.20 W(x, [y]) ∼
W(x, y).

By Lemma 3.27, there is a combinatorial geodesic α′ : [0,∞) → X with α′(0) = x and
α′(∞) = y. By Remark 6.24, we have W(α′) =W(x, y).

Now, Lemma 4.7 implies that α and α′ can be chosen to lie at finite Hausdorff distance.
Thus α and α′ cross the same hyperplanes, except possibly for finitely many. In symbols,
W(α′) ∼W(α). By Lemma 6.17, we conclude that Ya = YW(α).
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8.1 Tits boundary realizations

Defining a map ϕ : ∂R X→ ∂T X that serves as a partial inverse to ψ takes considerably more
effort. As a first step, we will define a Tits boundary realization Q(v) associated to a Roller
class v.

A family F of subsets of X is called filtering if for every E, F ∈ F there is a D ∈ F such
that D ⊂ E ∩ F . For example, for y ∈ ∂R X , the family

F := {CH(h1) ∩ · · · ∩ CH(hn) : h1, . . . , hn ∈ H+y , n ∈ N}
is a filtering family of closed convex subspaces.

The following theorem combines results of Caprace–Lytchak [23, Theorem 1.1] and
Balser–Lytchak [12, Proposition 1.4].

Theorem 8.3 Let {Xi }i∈I be a filtering family of closed convex subsets of a finite-dimensional
CAT(0) space X. If the intersection

⋂
i∈I Xi is empty, then the intersection

⋂
i∈I ∂T Xi of

their boundaries is nonempty, and furthermore
⋂

i∈I ∂T Xi has intrinsic radius at most π/2
and therefore a canonical circumcenter.

Next, we present two definitions that will turn out to be equivalent (compare Lemma 8.6).
The first of these definitions appears in [32, Corollary 6.2].

Definition 8.4 Let y ∈ ∂R X . Define Q(y) = ⋂
h∈H+y ∂T CH(h). Note that Q(y) �= ∅ by

Theorem 8.3. We call Q(y) the Tits boundary realization of y.

Definition 8.5 Let x ∈ X (0) and let y ∈ ∂R X . Recall that I(x, y) ⊂ X is the vertex interval
between x and y, so that I(x, y)∩ X is a vertex–convex subset of X (0). Generalizing Defini-
tion 3.8, let J (x, y) be the union of all of the cubes in X whose 0-skeleta lie in I(x, y)∩ X .
Then J (x, y) is a convex subcomplex of X , and hence has a well-defined Tits boundary
naturally embedded in ∂T X . We define Q′(y) = ∂TJ (x, y).

In fact, the two definitions are equivalent:

Lemma 8.6 Let y ∈ ∂R X and let x, x ′ ∈ X (0). Then:

(1) ∂TJ (x, y) = ∂TJ (x ′, y), hence Q′(y) is well-defined.
(2) Q(y) = Q′(y).
(3) If y ∼ y′, then Q′(y) = Q′(y′) and Q(y) = Q(y′).

Proof. To prove conclusion (1), observe that J (x, y) and J (x ′, y) lie at Hausdorff distance
bounded by d1(x, x ′). Hence J (x, y) and J (x ′, y) have the same Tits boundary.

Next, we consider conclusion (2). For any given vertex half-space h ∈ H+y , let CH(h)

be the associated CAT(0) half-space containing y. By (1), we can assume that x ∈ CH(h).
Hence J (x, y) ⊂ CH(h), so Q′(y) = ∂TJ (x, y) ⊂ ∂T CH(h). Therefore Q′(y) ⊂ Q(y).

For the reverse inclusion, suppose q /∈ Q′(y). Then there is a CAT(0) half-space CH(h)

such that J (x, y) ⊂ CH(h) and q /∈ ∂T CH(h). (To find such a half-space, let γ be any
CAT(0) geodesic ray representing q . Since γ leaves every finite neighborhood of J (x, y),
it must cross a hyperplane ĥ disjoint from J (x, y).) The associated vertex half-space h
satisfies h ∈ H+y but q /∈ ∂T CH(h). By Definition 8.4, it follows that q /∈ Q(y). Hence
Q(y) ⊂ Q′(y).

Finally, consider conclusion (3). If y ∼ y′, the Hausdorff distance from J (x, y) to
J (x, y′) is bounded by d1(y, y′) < ∞. Using (2), we obtain

Q(y) = Q′(y) = ∂TJ (x, y) = ∂TJ (x, y′) = Q′(y′) = Q(y′).
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Following Theorem 8.3 and Lemma 8.6, we can make the following definition.

Definition 8.7 (Tits boundary realization) Let v ∈ RX be a Roller class. Define Q(v) =
Q(y) for any representative element y ∈ v. The reader can think of Q(y) according to either
Definition 8.4 or Definition 8.5. We call Q(v) the Tits boundary realization of the Roller
class v.

Observe that the collection of half-spaces H+y containing y has empty intersection in X .
Thus, by Theorem 8.3, Q(v) has a canonical circumcenter. We define χ(v) ∈ ∂T X to be the
circumcenter of Q(v).

Corollary 8.8 For every v ∈ RX and every g ∈ Aut(X), we have Q(gv) = gQ(v) and
χ(gv) = gχ(v). Furthermore, Q(v) and Q(gv) have the same intrinsic radius.

Proof Let y ∈ ∂R X , and let v = [y]. Then, for every h ∈ H+y , the map g gives an isom-
etry from ∂T CH(h) to ∂T CH(gh). Thus g : Q(v) → Q(gv) is an isometry, hence Q(v)

and Q(gv) have the same intrinsic radius. By Theorem 8.3, χ(v) and χ(gv) are uniquely
determined by the geometry of Q(v) and Q(gv), respectively, hence χ(gv) = gχ(v).

Consider a Roller class v ∈ RX . We say that a combinatorial geodesic ray γ in X
represents v if γ (∞) = y ∈ v, or equivalently if the UBS W(γ ) represents the class v.
Setting x = γ (0), observe thatJ (x, y) is the cubical convex hull of γ , andW(γ ) =W(x, y)
is exactly the collection of hyperplanes crossing J (x, y). This leads to

Lemma 8.9 Let v ∈ RX be a Roller class and let a ∈ Q(v). Then ψ(a) ≤ v.

Proof Let γ be a combinatorial geodesic ray representing v, with γ (0) = x and γ (∞) =
y ∈ v. Then the cubical convex hull of γ , namely J (x, y), is also CAT(0) geodesically
convex. Since a ∈ Q(v) = ∂TJ (x, y) by Lemma 8.6, we may choose a CAT(0) geodesic
α representing a such that α ⊂ J (x, y). Then W(α) ⊂ W(γ ) = W(x, y). Thus every
hyperplane crossing α crosses J (x, y) and hence γ . Hence ψ(a) ≤ v.

Remark 8.10 In Definition 8.17, we will define a map ϕ : RX → ∂T X with the property that
ϕ(v) ∈ Q(v) for each Roller class v. This map will be defined by slightly perturbing the
circumcenter χ(v). In view of Lemma 8.9, we will have ψ(ϕ(v)) ≤ v.

Lemma 8.11 Let v,w ∈ RX satisfy w ≤ v. Then Q(w) ⊂ Q(v).

Proof Fix a basepoint x0 ∈ X (0) and let γv, γw be combinatorial geodesic rays emanat-
ing from x0 and representing v,w respectively. Since w ≤ v, Theorem 6.27.(2) says
that W(γw) � W(γv). Without moving x0, we can replace γw by its image under the
gate map to the cubical convex hull of γv , ensuring that W(γw) ⊂ W(γv). Hence, set-
ting yw = γw(∞) ∈ w and yv = γv(∞) ∈ v, the cubical convex hulls of these
geodesics satisfy J (x0, yw) ⊂ J (x0, yv). Taking boundaries and applying Lemma 8.6 gives
Q(w) ⊂ Q(v).

8.2 Diameter, intrinsic radius, and Tits-convexity ofQ(v)

Let v ∈ RX be a Roller class. Recall that Q(v) is the intersection of the Tits boundaries of
the half-spaces corresponding to a representative element of v. We will need the following
properties of Q(v):
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Proposition 8.12 (Features of Q(v)) For any Roller class v, the Tits boundary realization
Q(v) has the following properties:

(1) Q(v) has diameter at most π/2.
(2) Q(v) is Tits–convex.
(3) Q(v) is contractible in the Tits metric topology and compact in the visual topology.
(4) Q(v) has intrinsic radius rv < π/2.
(5) Q(v) ⊂ BT (χ(v), rv).

Proof Let v be an arbitrary Roller class and x0 ∈ X (0) an arbitrary basepoint. Let γ be a
combinatorial geodesic ray based at x0 and representing v. Let H = H(x0, v, γ ) denote the
cubical convex hull of γ . Then, for an arbitrary point y ∈ [y] = v, the cubical hull H and the
interval J (x0, y) lie within bounded Hausdorff distance of each other. Thus, by Lemma 8.6,
Q(v) is equal to the closed subset ∂T H = ∂TJ (x0, y) ⊂ ∂T X .

Diameter: To bound diamT (Q(v)), let a, b ∈ Q(v). Represent a, b by CAT(0) rays
α, β with initial point x0. Note that α, β ⊂ H because H is a convex subcomplex. Then
W(α),W(β) are both subsets ofW(γ ), which is a UBS representing v. So,W(α)∪W(β) ⊂
W(γ ). Now,W(α)∪W(β) is infinite.Moreover,W(α)∪W(β) is unidirectional and contains
no facing triple, since W(γ ) has those properties. Thus W(α) ∪ W(β) is a UBS, hence
Lemma 7.11 implies dT (a, b) ≤ π/2.

Convexity: Since H = H(x0, v, γ ) ↪→ X is an isometric embedding in the CAT(0)
metric, the inclusion ∂T H = Q(v) ↪→ ∂T X is a Tits-metric isometric embedding. Indeed,
let a, b ∈ Q(v) be represented by CAT(0) rays α, β ⊂ H with initial point x0. Since Q(v)

has diameter less than π , we have dT (a, b) = ∠(a, b) by [7, Remark II.9.19.(2)]. Since
α, β ⊂ H , the angle ∠T (a, b) is determined entirely by the set {dX (α(t), β(t))}t≥0, by
[7, Proposition II.9.8.(4)]). By convexity of H , this set coincides with {dH (α(t), β(t))}t≥0.
Hence the Tits distance from a to bmeasured in ∂T X is the same as the Tits distancemeasured
in ∂T H = Q(v).

Now, Q(v) contains a unique geodesic joining a, b. Since this geodesic realizes the dis-
tance from a to b in ∂T X , this shows that Q(v) is Tits-convex.

Intrinsic radius:Since Q(v) is a CAT(1) space of diameter less thanπ , the intrinsic radius
rv satisfies rv < diam Q(v), by [12, Proposition 1.2]. Since diam Q(v) ≤ π/2, we have
rv < π/2, proving assertion (4). Now, observe that Q(v) ⊂ BT (χ(v), rv) by Definition 8.7
and Theorem 8.3, proving (5).

Topological properties: Since Q(v) is a uniquely geodesic CAT(1) space, a standard
straight-line homotopy allows one to deformation retract Q(v) to a single point. Thus Q(v)

is contractible.
Finally, recall from Lemma 8.6 (and from earlier in this proof) that Q(v) = ∂TJ (x0, y)

for an arbitrary point y ∈ [y] = v. By Lemma 3.24, the subcomplex J (x0, y) is proper,
hence Q(v) is compact in the visual topology. (The visual topology is defined in [7, Section
II.8], where it is called the cone topology.)

8.3 Visibility and perturbing the circumcenter

Recall the Aut(X)-equivariant circumcenter map χ : RX → ∂T X , mentioned in Corol-
lary 8.8. In this subsection, we perturb χ to obtain a map ϕ : RX → ∂T X with slightly nicer
properties. First, like χ , the map ϕ will have the property that ϕ(v) ∈ Q(v) for each Roller
class v, and hence ψ(ϕ(v)) ≤ v. Compare Remark 8.10.

We will define ϕ so that Roller classes v for which ψ(ϕ(v)) = v are exactly those for
which there is some CAT(0) geodesic ray representing v. (Note that a combinatorial geodesic
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i

π/2

β

Q(v)

Q(w)

χ(w) = χ(v)

Fig. 6 For the cube complex X in Example 8.13, the Tits boundary ∂T X is the spherical triangle shown here.
We have ∂T X = Q(v) for a single Roller class v, and χ(v) = χ(w) for a Roller class w < v

exists for every v, but a CAT(0) geodesic is not guaranteed.) Later, we will work with only
such Roller classes, which we term �2-visible; see Definition 8.19. See also Lemma 8.20 for
several equivalent characterizations of visibility. While the map ϕ is not guaranteed to be
equivariant, the set of �2-visible Roller classes will still be invariant.

The following example illustrates the point that χ(v) can lie in Q(w) � Q(v) for some
w < v.

Example 8.13 Consider the cone of R
3 cut out by the planes z = 0, z = y, and z = x , and

let X be the union of all cubes (in the standard cubical tiling of R
3) contained in this cone.

Then RX has four classes, described in coordinates as u = [(∞, 0, 0)], u′ = [(0,∞, 0)],
w = [(∞,∞, 0)], and v = [(∞,∞,∞)], all of which are represented by �2 geodesic
rays. Furthermore, Q(v) = Q(∞,∞,∞) = ∂T X is isometric to an isosceles triangle of S2

whose base has length π/2 and whose height is arctan(1/
√
2). The base of the triangle is

Q(w) = Q(∞,∞, 0). See Fig. 6.
First, observe that χ(w) is the midpoint of the geodesic segment Q(w). Next, we claim

that χ(v) = χ(w). To see this, let β be the altitude from χ(w) to the the apex of Q(v).
Because Q(v) has a reflective symmetry in β, its circumcenter must be contained in β. In
addition, since len(β) = arctan(1/

√
2) < π/4, any point b ∈ β must have distance less than

π/4 to the apex but distance at least π/4 to the two endpoints of Q(w). Thus χ(w) = χ(v)

even though w < v and Q(w) � Q(v).

The phenomenon of Example 8.13 will be inconvenient later. To remedy this problem, we
will define ϕ(v) by perturbing χ(v) slightly, to get a point in the interior of Q(v) that retains
the property that all of Q(v) is contained in the rv-neighborhood of ϕ(v) for some rv < π/2.
(This latter property will also be necessary later.)

To achieve this, we need some preliminary discussion and lemmas.

Lemma 8.14 For every Roller class v, there is a unique Roller class Mv ∈ ψ(Q(v)) that is
maximal among all Roller classes in ψ(Q(v)). Furthermore Q(Mv) = Q(v).

Proof If w ∈ ψ(Q(v)), then w = ψ(a) for some a ∈ Q(v), so w ≤ v by Lemma 8.9. Since
there is a bound on the length of ≤-chains, it follows that ψ(Q(v)) contains ≤-maximal
elements.

Suppose that m,m′ ∈ ψ(Q(v)) are ≤-maximal. Let a, a′ ∈ Q(v) be such that ψ(a) = m
and ψ(a′) = m′. Let α, α′ be CAT(0) geodesic rays in X representing a, a′ respectively,
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chosen so that α(0) = α′(0). Then Um ∼ W(α) and Um′ ∼ W(α′). Since m,m′ ≤ v,
Theorem 6.27 gives W(α) � Uv and W(α′) � Uv , hence W (α) ∪W(α′) is commensurate
with a UBS by Lemma 6.8. Thus, by Proposition 7.16, there exists a CAT(0) geodesic ray β

with W(β) =W(α) ∪W(α′). By construction,

m ≤ ψ(β(∞)) ≤ v, m′ ≤ ψ(β(∞)) ≤ v

where the first inequality for m or m′ is strict if m �= m′. So, β(∞) ∈ Q(v) by Lemma 8.11
and the second inequality. Hence the first inequality contradicts the maximality of m,m′ in
ψ(Q(v)), unless m = m′. This proves the uniqueness of a maximal element Mv .

Next, Mv ≤ v, so Q(Mv) ⊂ Q(v) by Lemma 8.11. On the other hand, if a ∈ Q(v), then
ψ(a) ∈ ψ(Q(v)), so ψ(a) ≤ Mv . Hence a ∈ Q(ψ(a)) ⊂ Q(Mv) by Lemma 8.11. Thus
Q(v) ⊂ Q(Mv), and we conclude that Q(v) = Q(Mv).

For a Roller class v, define Q0(v) = Q(v) �

⋃
u<Mv

Q(u).

Lemma 8.15 Let v,w be Roller classes, and let a ∈ Q(v). Then a ∈ Q0(v) if and only if
ψ(a) = Mv . Furthermore, if Q(v) = Q(w), then Mv = Mw and Q0(v) = Q0(w).

Proof First, suppose that a ∈ Q0(v). Then ψ(a) ≤ Mv by the definition of Mv . If ψ(a) =
u < Mv , then a ∈ Q(u), contradicting the definition of Q0(v). Thusψ(a) = Mv , as desired.

Conversely, suppose that ψ(a) = Mv . If a ∈ Q(u) for some u < Mv , then ψ(a) ≤ u by
Lemma 8.9, so ψ(a) < Mv , a contradiction. Hence a ∈ Q0(v).

Finally, suppose Q(v) = Q(w). Then Lemma 8.14 says that Mv = Mw is the unique
maximal element of ψ(Q(v)) = ψ(Q(w)). Thus, by the above equivalence, Q0(v) =
Q0(w).

Lemma 8.16 Let v be a Roller class. Then Q0(v) contains points arbitrarily close to χ(v)

in the Tits metric.

Proof By Lemma 8.14, there is a point a ∈ Q(v) such thatψ(a) = Mv . By Lemma 8.15, we
have a ∈ Q0(v). Let g be the geodesic in ∂T X from a to b = χ(v). By Proposition 8.12.((2)),
g lies in Q(v). For any ε > 0, choose c ∈ g so that 0 < dT (c, χ(v)) < ε. We will show
c ∈ Q0(v).

ByProposition 7.16, theTits pointsa, b, c are represented byCAT(0) geodesic raysα, β, γ

such thatW(γ ) =W(α)∪W(β) ⊃W(α). Thus, by Lemma 8.2, we haveψ(c) = YW(γ ) ⊂
YW(α) = ψ(a). By Lemma 5.6, we have ψ(c) ≥ ψ(a) = Mv , hence ψ(c) = Mv by the
maximality of Mv . Therefore, c ∈ Q0(v) by Lemma 8.15.

Definition 8.17 (The pseudocenter ϕ) Let v be a Roller class, and fix Q = Q(v). Let
r < π/2 be the intrinsic radius of Q. Using Lemma 8.16, choose pQ ∈ Q0(v) such that
dT (pQ, χ(v)) ≤ π/4− r/2. We call pQ the pseudocenter of Q, and denote it ϕ(v).

Using Lemma 8.15, we ensure that ϕ(v) = ϕ(w) = pQ for every Roller class w such that
Q(w) = Q(v) = Q.

In the following proposition we collect the facts about the pseudocenter map ϕ that will
be needed later, in conjunction with Lemma 8.20 and the definition of ϕ.

Proposition 8.18 (ϕ and ψ facts) The pseudocenter map ϕ has the following properties. Let
v ∈ RX. Then:

(1) ϕ(v) ∈ Q(v).
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(2) ψ(ϕ(v)) ≤ v.
(3) Q(v) = Q(ψ(ϕ(v))).
(4) If Q(w) = Q(v), then ϕ(w) = ϕ(v).

Proof Assertion (1) holds by construction, and, together with Lemma 8.9, implies asser-
tion (2). Since ϕ(v) ∈ Q0(v), we have ψ(ϕ(v)) = Mv by Lemma 8.15, and Q(v) = Q(Mv)

by Lemma 8.14, yielding assertion (3). Assertion (4) follows from the definition of ϕ and
Lemma 8.15.

We can now define (�2)-visible Roller classes:

Definition 8.19 (�2-visible) Let v ∈ RX . Then v is �2-visible if v ∈ ψ(∂T X). Let Vis(X) =
ψ(∂T X) denote the set of visible Roller classes. Observe that Aut(X) stabilizes Vis(X),
because the map ψ is Aut(X)-equivariant.

Lemma 8.20 (Characterizing visibility) Let v ∈ RX. Then the following are equivalent:

(1) v is �2-visible.
(2) There exists a CAT(0) geodesic ray α such that W(α) represents v.
(3) v = Mv .
(4) v = ψ(ϕ(v)).

Proof To begin with, we have (1)⇔(2) by Lemma 8.2.
For (2)⇒(3), let α be a CAT(0) geodesic ray such that W(α) represents v.

Let a = α(∞) ∈ ∂T X .
Then, by Lemma 8.2, we have ψ(a) = v. Now, recall from Lemma 8.14 that Mv is

maximal among all Roller classes in ψ(Q(v)). By Lemma 8.9, every class w ∈ ψ(Q(v))

satisfies w ≤ v, hence Mv ≤ v. On the other hand, v = ψ(a) ∈ ψ(Q(v)), hence v ≤ Mv by
the maximality of Mv . Thus v = Mv .

For (3)⇒(4), suppose v = Mv . By Definition 8.17, we have ϕ(v) ∈ Q0(v). Thus, by
Lemma 8.15, we have ψ(ϕ(v)) = Mv = v.

For (4)⇒(2), suppose v = ψ(ϕ(v)). Then ϕ(v) ∈ Q0(v) ⊂ Q(v). Choose a CAT(0)
geodesic ray α representing ϕ(v). The associated UBS W(α) represents ψ(ϕ(v)) = v.

Lemma 8.21 Let v ∈ RX be a ≤-minimal Roller class. Then v is �2-visible.

Proof Lemma 8.9 gives v ≥ ψ(ϕ(v)). By minimality of v, we thus have v = ψ(ϕ(v)).

8.4 Cuboid generalization

Here, we explain how to generalize the results of this section to a cuboid metric dρ
X . A reader

who is only interested in cube complexes with the standard �1 and �2 metrics is invited to
skip ahead to Sect. 9.

For the duration of this subsection, fix a G-admissible hyperplane rescaling ρ (Def-
inition 4.3) and the resulting cuboid metric dρ

X . Recall that the cuboid Tits boundary
∂

ρ
T X = ∂T (X , dρ

X )was defined inDefinition 7.4.All of the constructions and results involving
∂

ρ
T X will be invariant under the restricted automorphism group Aut(Xρ) of Definition 4.4.
To start, we can define a map ψρ : ∂ρ

T X → RX exactly as in Definition 8.1. Generalizing
Lemma 8.2, we can characterize ψρ(a) = ψρ([α]) as the principal class of the umbra of a
UBS representing a ray α:

ψρ(a) = ψρ([α]) = YW(α).
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This characterization holds because the proof of Lemma 8.2works forψρ : its proof combines
previous lemmas and combinatorial properties of hyperplane sets.

Now, consider a point y ∈ ∂R X . Since (X , dρ
X ) is a CAT(0) space and the collection

of half-spaces H+y is a filtering family, we can define the Tits boundary realization Qρ(y)
exactly as in Definition 8.4. Following Lemma 8.6, whose proof extends to cuboids because
cubical half-spaces are convex in dρ

X , we learn that the boundary realization Qρ(y) is also the
boundary of a cubical interval, and depends only on the Roller class v = [y]. Thus we may
define a Tits-convex set Qρ(v) and its circumcenter χρ(v), as in Definition 8.7. Following
Corollary 8.8, both Qρ(v) and χρ(v) are invariant under the restricted automorphism group
Aut(Xρ).

The partial order properties of the Tits boundary realization Q(v) that are proved in
Lemmas 8.9 and 8.11 still hold for Qρ(v), because the proofs of those results are essentially
combinatorial. The features of Q(v) described in Proposition 8.12 also hold for Qρ(v),
because the proof of the Proposition uses prior results and the convexity of the cubical
convex hull of a geodesic ray.

Next, Sect. 8.3 contains several results about perturbing the circumcenter χ(v) ∈ Q(v)

to a pseudocenter ϕ(v). The definition of the pseudocenter ϕ(v) is enabled by Lemmas 8.14,
8.15, and 8.16. All of these lemmas generalize immediately to the cuboid setting, because
their proofs are essentially a top-level assembly of prior results. Thus we may generalize
Definition 8.17 to define a pseudocenter ϕρ(v) ∈ Qρ(v). This pseudocenter ϕρ(v) has all
of the properties described in Proposition 8.18, because the proof of that proposition merely
assembles previously established results.

Finally, Definition 8.19 generalizes immediately to define Visρ(X) = ψρ(∂
ρ
T X), the set

of Roller classes that are visible after the rescaling ρ. Since ψρ is Autρ(X)-equivariant, the
set Visρ(X) is Autρ(X)-equivariant as well. Lemmas 8.20 and 8.21 generalize immediately
to the cuboid setting, because their proofs are top-level assemblies of previous lemmas.

Remark 8.22 [The set Vis(X) and cuboids] In Definition 8.19, the set Vis(X) = ψ(∂T X)

is defined in terms of the CAT(0) metric on X . When we change the metric on X using a
G-admissible rescaling ρ, there is no a priori reason to expect Vis(X) = ψ(∂T X) to coincide
with Visρ(X) = ψρ(∂

ρ
T X). Instead, our whole argument simply goes through for whichever

of Vis(X) or Visρ(X) we are considering.
In fact, it turns out that Vis(X) = Visρ(X). Since we do not use this fact in any proofs,

we only sketch a proof. Let v ∈ Vis(X) be a visible Roller class, and let α : [0,∞) → X
be a CAT(0) geodesic ray for the metric dX with W(α) representing v. We will produce a
geodesic ray β for the CAT(0) metric dρ

X , satisfying W(α) = W(β), from which it follows
that v ∈ Visρ(X). This shows Vis(X) ⊆ Visρ(X), and a symmetric argument gives the
reverse inclusion.

Since cubical convexity of subcomplexes is independent of which CAT(0) metric we
consider, we assume for convenience that X is the cubical convex hull of α, i.e. W(α) =
W(X).

First, use Lemma 7.14 to produce chains {ĥ1n}n, · · · , {ĥkn}n of dominant hyperplanes such
that there exists a constant C ≥ 0 with the property that, for all j ≤ k, any subpath of α of
length at least C crosses ĥ j

n for some n. The lemma allows us to choose these to be dominant
hyperplanes in the UBS W(α); therefore, if we construct a dρ

X -geodesic β that crosses each

h j
n , then by Lemma 6.15, we get W(α) =W(β).
By admissibility of the rescaling, there exists m ≥ 1 such that the identity map

(X , dX )→ (X , dρ
X ) is m-bilipschitz. Since X is the convex hull of α and contains no facing

triples, Lemma 3.24 guarantees properness of (X , dX ) and implies properness of (X , dρ
X ).
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Thus, letting βt be the d
ρ
X -geodesic from α(0) to α(t), and letting t tend to infinity, the βt

subconverge uniformly on compact sets to a dρ
X -geodesic β with β(0) = α(0).

Fix j ≤ k. Now, for any t , the hyperplanes crossing βt are exactly those crossing α([0, t]).
Indeed, any hyperplane separating α(0), α(t) crosses βt , and any hyperplane crossing βt does
so in a single point (and hence separates α(0), α(t)), since βt is a d

ρ
X -geodesic. In particular,

α([0, t]) crosses h j
1, . . . , h

j
Nt
, where Nt = �t/C�. Hence βt crosses the same hyperplanes

while having dρ
X -length at mostmt . From this one deduces the following: there exists L such

that for all n, and all sufficiently large t , the path βt crosses h11, . . . , h
1
n and intersects each

of those carriers in a subpath of length at most L . In other words, there is a uniform bound
on how long each βt can fellow-travel any of the ĥ j

n , whence β cannot be parallel to a ray
in any ĥnj . This implies that β must cross ĥ j

n for all j, n, and hence, as explained above,
W(β) =W(α) and v ∈ Visρ(X).

Looking ahead to Definition 9.1, the above argument also shows that MaxVis(X) =
MaxVisρ(X) for any admissible rescaling ρ. In the next section, we will heavily use
MaxVis(X) to construct open and closed coverings of ∂T X , so that the nerves of those
coverings can be used to prove homotopy equivalence. In an analogous fashion, we will use
MaxVisρ(X) to construct open and closed coverings of ∂ρ

T X . One can then apply Lemma 8.9
and Lemma 8.11 to show that the nerves of the coverings of ∂T X coincide with the nerves of
the corresponding coverings of ∂

ρ
T X , and one can use Lemma 10.4 to see that the covering

ofR�
�X coming from visible Roller classes of X coincides with the corresponding covering

constructed using visible classes of Xρ . However, as we mentioned, the cuboid version of
our argument does not rely on this; one instead just substitutes MaxVisρ(X) for MaxVis(X)

everywhere, and runs all the arguments.

9 Open and closed coverings of @TX

In this section, we study the closed covering of ∂T X by the sets Q(v) corresponding to
maximal �2-visible Roller classes (see Definition 9.1). Our goal, achieved in Theorem 9.17,
is to show that ∂T X is homotopy equivalent to the nerve NT of this cover.

Definition 9.1 (Maximal visible Roller classes) Let MaxVis(X) denote the set of Roller
classes v such that:

• v is �2-visible;
• if w is visible and v ≤ w, then w = v.

The plan for this section is as follows. We will first show that {Q(v) : v ∈ MaxVis(X)} is
a closed covering of ∂T X . Then, we will thicken each closed set Q(v) to an open set U (v),
in such a way that the intersection pattern of the open cover {U (v) : v ∈ MaxVis(X)} is the
same as that of the closed cover {Q(v) : v ∈ MaxVis(X)}. Then we will apply the Nerve
Theorem to conclude that ∂T X is homotopy equivalent to the nerves of these covers.

The main result of this section is Theorem 9.17. Section 9.1 is about the initial closed cov-
ering. Section 9.2 describes the thickening procedure. Section 9.4 describes how to generalize
these results to a cuboid metric dρ

X .

9.1 The closed covering

The maximal visible Tits boundary realizations Q(v) provide a closed covering of the Tits
boundary. We use this covering to define a nerve, as follows.
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Definition 9.2 (Simplicial complex NT ) Let NT be the simplicial complex with vertex set
MaxVis(X), where vertices v0, . . . , vn ∈ MaxVis(X) span an n-simplex if and only if⋂n

i=0 Q(vi ) �= ∅.

Lemma 9.3 (Covering ∂T X) Let v ∈ RX. Then there exists w ∈ MaxVis(X) with ϕ(v) ∈
Q(w). Hence {Q(v) : v ∈ MaxVis(X)} covers ∂T X.

Proof Note that ψ(ϕ(v)) ∈ Vis(X), by Definition 8.19. Hence there exists w ∈ MaxVis(X)

such that ψϕ(v) ≤ w. By Lemma 8.11, ϕ(v) ∈ Q(ψϕ(v)) ⊂ Q(w).
Now, given a point a ∈ ∂T X , we can apply the above argument to v = ψ(a). Then, for

some w ∈ MaxVis(X), Lemma 8.20 implies

a ∈ Q(ψ(a)) = Q(ψϕψ(a)) ⊂ Q(w).

Hence {Q(v) : v ∈ MaxVis(X)} covers ∂T X .

Lemma 9.4 Let v,w ∈ Vis(X). Then Q(v) = Q(w) if and only if v = w. In particular, the
assignment v �→ Q(v) gives a bijection fromMaxVis(X) to its image.

Proof Suppose Q(v) = Q(w). Then Proposition 8.18.(4) implies ϕ(v) = ϕ(w). By visibility
and Lemma 8.20, we have ψϕ(v) = v and ψϕ(w) = w, hence v = w.

Now, Lemmas 9.3 and 9.4 combine to yield:

Corollary 9.5 NT is the nerve of the covering of ∂T X by the collection of closed sets {Q(v) :
v ∈ MaxVis(X)}.

9.2 The open covering

The goal of this subsection is to thicken up the closed sets Q(v) for v ∈ MaxVis(X) to be
open setsU (v), such that the intersection pattern of theU (v) is the same as that of the Q(v).
This is needed since the Nerve Theorem 2.7 works for open covers only.

Lemma 9.6 Let v,w ∈ Vis(X) be points such that Q(v) ∩ Q(w) = ∅.
Then dT (Q(v), Q(w)) > ε0, where ε0 > 0 is a constant depending only on dim X.

Proof Let a ∈ Q(v) and b ∈ Q(w). By definition, a ∈ Q(ψ(a)). Since v ≥ ψ(a), we have
Q(ψ(a)) ⊂ Q(v) and similarly Q(ψ(b)) ⊂ Q(w), by Lemma 8.11. Since we have assumed
Q(v) ∩ Q(w) = ∅, it follows that Q(ψ(a)) ∩ Q(ψ(b)) = ∅.

Choose CAT(0) geodesic rays α, β such that α(0) = β(0) ∈ X (0) and α(∞) = a,
β(∞) = b. Since X is finite-dimensional, Lemma 4.7 provides �1 geodesic rays ᾱ, β̄ with
common basepoint α(0) = β(0), that lie at uniformly bounded Hausdorff distance from α, β

respectively. Note that W(α) ∼W(ᾱ) and W(β) ∼W(β̄).
We claim that W(ᾱ) ∩W(β̄) is finite. Suppose not. By Lemma 8.6, Q(ψ(a)) = ∂TJᾱ ,

where Jᾱ = J (ᾱ(0), ᾱ(∞)) is the cubical convex hull of ᾱ. Similarly, Q(ψ(b)) = ∂TJβ̄ .

Since C = Jᾱ ∩ Jβ̄ �= ∅, we have W(C) = W(ᾱ) ∩ W(β̄) by Lemma 3.23.(5). Now
Jᾱ is a proper CAT(0) space, by Lemma 3.24. Thus C is also a proper CAT(0) space,
hence |W(C)| = ∞ implies C is unbounded and ∂TC is a nonempty subspace of Q(ψ(a)).
Similarly, ∂TC is a nonempty subspace of Q(ψ(b)). Thus ∂TC ⊂ Q(ψ(a))∩Q(ψ(b)) = ∅,
a contradiction. This proves the claim.
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Since W(α) ∼ W(ᾱ) and W(β) ∼ W(β̄), we may define N = |W(α) ∩W(β)| < ∞.
Recall that α(0) = β(0). Then, for all t ≥ 0, we have

|W(α(t), β(t))| ≥ |W(α(t), α(0))| + |W(β(0), β(t))| − 2N .

Applying Lemma 3.1 to both sides gives

λ0 · dX (α(t), β(t))+ λ1 ≥
(

t

λ0
− λ1

)
+

(
t

λ0
− λ1

)
− 2N = 2t

λ0
− 2(N + λ1).

Here, λ0 ≥ 1 and λ1 are constants depending only on dim X . Taking limits gives

lim
t→∞

dX (α(t), β(t))

2t
≥ 1

λ20
.

By [7, Proposition II.9.8.(4)], we thus have sin(∠T (a, b)/2) ≥ 1/λ20. Now,

dT (a, b) ≥ ∠T (a, b) ≥ sin−1(1/λ20) > 1/λ20.

Setting ε0 = 1/λ20 completes the proof.

In the next lemma, we show that, given a collection of Roller classes, the intersection of
the associated Tits boundary realizations coincides with the Tits boundary of the intersection
of the convex hulls of the corresponding CAT(0) geodesic rays.

Lemma 9.7 Let v1, . . . , vk ∈ Vis(X) be Roller classes. Then there exist convex subcomplexes
J1, . . . ,Jk ⊂ X such that the following holds. EachJi is the cubical convex hull of a CAT(0)
geodesic ray γi , with a common basepoint. Furthermore, for every subset J ⊂ {1, . . . , k},
we have

⋂
i∈J Q(vi ) = ∂T

(⋂
i∈J Ji

)
.

Proof Fix a basepoint x ∈ X (0). For 1 ≤ i ≤ k, let πvi : X → vi be the gate map of
Proposition 3.17, and let yi = πvi (x). Let Ji = J (x, yi ) be the convex subcomplex of X
determined by the vertex interval between x and yi as in Definition 8.5. Then W(Ji ) =
W(x, yi ) = W(x, vi ), where the last equality holds by Proposition 3.17. By Lemma 8.6,
Q(vi ) = ∂TJi .

For each i , let γi be a CAT(0) geodesic ray that emanates from x and represents ϕ(vi ).
We want to show that Ji = CH(γi ), the cubical convex hull of γi .

First, we claim that CH(γi ) ⊂ Ji . SinceJi is convex in the CAT(0)metric dX , it contains a
CAT(0) geodesic from every point in the interior to every point on the boundary. In particular,
it contains the unique CAT(0) geodesic γi from γi (0) = x ∈ Ji to γi (∞) ∈ Q(vi ) = ∂TJi .
Thus γi ⊂ Ji . Since Ji is cubically convex, it follows that CH(γi ) ⊂ Ji .

Next,we claim thatJi ⊂ CH(γi ), or equivalentlyW(Ji ) ⊂W(γi ). Since γi (0) = x ∈ Ji ,
any hyperplane ĥ ∈W(Ji )�W(γi )would separate the entire ray γi from the entire class vi ,
contradicting thatψ(γi (∞)) = ψ(ϕ(vi )) = vi , where the second equality holds by visibility
and Lemma 8.20. Hence W(Ji ) ⊂W(γi ), and we conclude that Ji = CH(γi ).

Finally, consider an arbitrary subset J ⊂ {1, . . . , k}. The inclusion ∂T
(⋂

i∈J Ji
) ⊂⋂

i∈I Q(vi ) is immediate. For the other inclusion, let b ∈ ⋂
i∈J Q(vi ). Then each convex

set Ji contains the unique CAT(0) ray β starting at x and ending at b. Thus β ⊂ ⋂
i∈J Ji ,

hence b ∈ ∂T
(⋂

i∈J Ji
)
.

Remark 9.8 The following related statement about �1 geodesics can be proved by an easier
analogue of the proof of Lemma 9.7. Let v1, . . . , vk be arbitrary Roller classes. Then there
exist convex subcomplexes J1, . . . ,Jk (defined in exactly the same way, namely Ji =
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J (x, πvi (x)) such that each W(Ji ) is a UBS representing vi . Furthermore, each Ji is the
cubical convex hull of a combinatorial geodesic, with a common basepoint. The intersection⋂

i Ji itself has the property that W(
⋂

i Ji ) = ⋂
i W(Ji ). In particular, if W(

⋂
i Ji ) is

infinite, then it is an �1-visible UBS.

The next lemma is crucial. We will later replace the closed covering of ∂T X by Tits
boundary realizations with an open covering, by slightly thickening each Tits realization.
The lemma says, roughly, that for a collection of Tits boundary realizations corresponding
to a simplex in the nerve of the closed covering, any point in the intersection of small
ε-neighborhoods of the Tits boundary realizations is still in a f (ε)-neighborhood of the
intersection of the Tits boundary realizations.

Lemma 9.9 There exists a constant ε1 > 0, depending on dim(X), and a function
f : (0, ε1) → (0, π/2) such that limε→0 f (ε) = 0 and such that the following holds. Fix
ε ∈ (0, ε1) and let v0, . . . , vk ∈ Vis(X) satisfy

⋂k
i=0 Q(vi ) �= ∅. For every a ∈ ∂T X such

that dT (a, Q(vi )) ≤ ε for all i , there is a point b ∈ ⋂k
i=0 Q(vi ) such that dT (a, b) ≤ f (ε).

Proof We begin by defining the constant ε1 and the function f : (0, ε1) → (0, π/2).
Let λ0, λ1 be the constants of Lemma 3.1, which depend only on dim(X). Define K =
4λ20 dim(X). Then, we set

ε1 = 4

5K
, f (ε) = cos−1

(
1− K ε

) ≤ cos−1( 15 ) < π
2 .

The bound f (ε) ≤ cos−1( 15 ) holds because K ε < K ε1 = 4
5 . The property limε→0 f (ε) = 0

is now immediate.
Plan of the proof. Let v0, . . . , vk ∈ Vis(X) be Roller classes such that

⋂k
i=0 Q(vi ) �=

∅. By Lemma 9.7, there exist convex subcomplexes J0, . . . ,Jk such that
⋂k

i=0 Q(vi ) =
∂T

(⋂k
i=0 Ji

)
. Choose a basepoint x ∈ ⋂k

i=0 Ji .

Fix ε < ε1, and let a ∈ ∂T X be a point such that dT (a, Q(vi )) ≤ ε for all i . Let
α : [0,∞) → X be a CAT(0) geodesic ray, such that α(0) = x and α(∞) = a. To prove the
lemma, we will find a point b ∈⋂k

i=0 Q(vi ) such that dT (a, b) ≤ f (ε).
We locate the point b using gate projections. Let π : X → ⋂k

i=1 Ji be the gate map.
For t ≥ 0, let xt = π(α(t)). Since

⋂k
i=0 Ji is a finite-dimensional CAT(0) cube complex

with no facing triple of hyperplanes, it is proper by Lemma 3.24. We will check that the
sequence {xt }t∈N is unbounded. Thus the segments joining x0 to the elements of {xt }t∈N

subconverge uniformly on compact sets to a CAT(0) geodesic ray representing some point
b ∈⋂k

i=0 Q(vi ).
To prove that dT (a, b) ≤ f (ε), we will estimate the Alexandrov angle at x = α(0)

between α(t) and xt . In order to do this, we will control the number of hyperplanes that
separate α(t) from

⋂k
i=0 Ji .

Main hyperplane estimate.For each t ≥ 0, letU(t) be the set of hyperplanes that separate
α(t) from

⋂k
i=0 Ji . We will prove the following double-sided estimate for all large t :

1

λ0
dX (α(t), xt )− λ1 ≤ |U(t)| ≤ dim(X)(λ0 · 2tε + λ1)+ D, (9.10)

where D is a constant independent of t .
The lower bound of (9.10) is straightforward. By Lemma 3.22, the gate map π : X →⋂k
i=0 Ji is characterized by the property that a hyperplane ĥ separatesα(t) from xt = π(α(t))
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if and only if ĥ separates α(t) from
⋂k

i=0 Ji . In other words, U(t) = W(α(t), xt ). Hence
Lemma 3.1 gives

1

λ0
dX (α(t), xt )− λ1 ≤ |U(t)|,

as desired. By contrast, the upper bound requires some hyperplane combinatorics.
Hyperplane sets. For each i , let Bi (t) be the set of hyperplanes that separate α(t) from

Ji . Note that U(t) ⊃⋃k
i=0 Bi (t). We claim that U(t) =⋃k

i=0 Bi (t).
Suppose that ĥ ∈ U(t) �

⋃k
i=0 Bi (t). Then ĥ crosses each Ji , so by a standard cubical

convexity argument, ĥ crosses
⋂k

i=0 Ji and hence cannot separate any point from
⋂k

i=0 Ji .
This is a contradiction, and thus U(t) = ⋃k

i=0 Bi (t).
Let A0(t) = B0(t). For i ≥ 1, let Ai (t) = Bi (t) �

⋃
j<i A j (t). Then the sets

A0(t), . . . ,Ak(t) are pairwise disjoint, and their union is U(t). For each i , let Ai =⋃
t≥0 Ai (t). Observe that every Ai is inseparable, by definition. Furthermore, Ai is uni-

directional. Indeed, Ai ⊂ Bi = ⋃
t≥0 Bi (t), and Bi separates Ji from the tail of the ray

α. Unidirectionality passes to subsets, hence Ai is unidirectional. Consequently Ai is either
finite or a UBS.

Let J ⊂ {0, . . . , k} be the set of i such that Ai is a UBS. Observe that Ai ∩ A j = ∅

for i �= j and
⊔

i∈J Ai ⊂ W(α), which is itself a UBS. Thus, by Lemma 6.8, we have
|J | ≤ dim(X). We define D = ∑

i /∈J |Ai |.
The upper bound of (9.10). Next, we will use the decomposition U(t) = ⊔k

i=1 Ai (t) to
prove the upper bound of (9.10).

For each i ∈ {0, . . . , k}, let ξi be a ray in Ji issuing from x = α(0), such that ξi (∞) is
a closest point in Q(vi ) = ∂TJi to a. Now, for all i and all t , any hyperplane ĥ ∈ Ai (t)
separates α(t) from Ji and hence separates α(t) from ξi (t). Thus Lemma 3.1 gives

|Ai (t)| ≤ |W(α(t), ξi (t))| ≤ λ0 · dX (α(t), ξi (t))+ λ1.

Now, by [7, Proposition II.9.8.(4)], for any δ > 0 there exists t0 such that for all t > t0,
we have dX (α(t), ξi (t)) ≤ t(2 sin ε

2 + δ). Since ε is independent of t , it follows that for all
sufficiently large t , we have

dX (α(t), ξi (t)) ≤ 4t sin ε
2 < 2tε.

Summing |Ai (t)| over all i gives

|U(t)| =
∑
i∈J
|Ai (t)| +

∑
i /∈J
|Ai (t)|

≤
∑
i∈J

(
λ0 · dX (α(t), ξi (t))+ λ1

)
+

∑
i /∈J
|Ai |

≤ |J |(λ0 · 2tε + λ1)+ D,

which proves (9.10) because |J | ≤ dim(X).
Angle estimate. Let x = α(0). Set A = dX (α(0), α(t)) = t (latter equality since α is

a geodesic), and B = dX (α(0), xt ), and C = dX (α(t), xt ). Let θ̄t be the Euclidean angle
at the vertex corresponding to x in the Euclidean comparison triangle with sides of length
A, B,C , i.e. the comparison angle between α(t) and xt at x . Let θt be the Alexandrov angle
at x = α(0) between xt and α(t), so that θt ≤ θ̄t .
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We can estimate θ̄t using the law of cosines, starting with an estimate of C . Multiplying
every term of (9.10) by λ0 and choosing t sufficiently large yields

C = dX (α(t), xt ) ≤ 4λ20 dim(X) · εt = K εt . (9.11)

Meanwhile, B can be estimated as follows:

t(1− K ε) ≤ dX (α(0), α(t))− dX (α(t), xt )) ≤ dX (α(0), xt ) = B ≤ t . (9.12)

Here, the first inequality is by (9.11), the second inequality is the triangle inequality, and
the final inequality holds because the projection π is 1-Lipschitz for the CAT(0) metric by
Lemma 3.22.

By the cosine law and the CAT(0) inequality, we have

2AB cos(θt ) ≥ 2AB cos(θ̄t ) = A2 + B2 − C2.

The equality is the cosine law applied to the Euclidean comparison triangle, and the inequality
holds for the corresponding CAT(0) triangle. We are interested in the former, since we will
need a bound on θ̄t (which will incidentally bound θt ). Substituting the bounds (9.11) and
(9.12) into the cosine law shows that for all large t , we have

2t2 cos θ̄t ≥ t2 + t2(1− K ε)2 − t2(K ε)2,

which simplifies to cos θ̄t ≥ 1− K ε. Since we have chosen ε ∈ (0, 4
5K ), this ensures that θ̄t

is a small angle; more precisely θ̄t ≤ cos−1(1− K ε).
Conclusion. Since K ε < 4

5 , equation (9.12) implies dX (α(0), xt ) ≥ (1 − K ε)t > 1
5 t .

Thus the sequence {xt }t∈N is unbounded, and some subsequence converges to a point b ∈⋂k
i=0 Q(vi ), as mentioned above. By [7, Lemma II.9.16], which relates the Tits angle∠(a, b)

to the Euclidean comparison angles θ̄t , we have

∠(a, b) ≤ lim inf
t→∞ θ̄t ≤ cos−1(1− K ε) = f (ε).

Since we have already checked that f (ε) < π
2 , this ensures ∠(a, b) ≤ f (ε) < π/2. In

particular, dT (a, b) = ∠(a, b) ≤ f (ε).

Recall from Proposition 8.12.(4),(5) that for each v ∈ Vis(X), there is a radius rv < π/2
such that Q(v) is contained in the closed ball BT (χ(v), rv) in the Tits metric.

Definition 9.13 (Thickening constant ε(w)) Let ε0 be the constant of Lemma 9.6. Let
f : (0, ε1) → R be the function fromLemma 9.9. Since limε→0 f (ε) = 0, that lemma allows
us to choose a constant ε2 < ε1, depending only on dim(X), so that f (ε)+ ε ≤ ε0 whenever
ε ≤ ε2. For each Roller class w, fix a thickening constant ε(w) = min{ε0/2, ε2, rw/4} > 0.

Since the constants ε0, ε2 depend only on dim(X), and the intrinsic radius rw depends
only on the Aut(X)-orbit of w by Corollary 8.8, it follows that ε(w) itself depends only on
the the Aut(X)-orbit of w.

Proposition 9.14 (Open neighborhood U (v)) For every v ∈ Vis(X), there exists a subset
U (v) ⊂ ∂T X such that the following hold:

• Q(v) ⊂ U (v) ⊂ Nε(v)(Q(v));
• U (v) has diameter less than 3π/4;
• U (v) is open;
• U (v) is convex and contractible;
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• U (gv) = gU (v) for all g ∈ Aut(X).

Proof Let Y be the Euclidean cone on ∂T X , with cone-point denoted 0. By [7, Theorem
II.3.14], the usual cone metric dY on Y has the property that (Y , dY ) is a CAT(0) geodesic
space. We use the notation νδ(A) to denote the open δ-neighborhood of a set A ⊂ Y in this
CAT(0) metric.

We identify ∂T X with the unit sphere about 0 in Y . We also set Q = Q(v) for simplicity
of notation. Recall from Proposition 8.12.(4) that the intrinsic radius of Q is rv ∈ [0, π/2).

The convex sub-cone Z = Z(v): Let Z ⊂ Y be the subspace arising as the union of all
rays in Y emanating from 0 and passing through Q ⊂ ∂T X . We claim that Z is convex in
(Y , dY ). Indeed, let x, y ∈ Z . Then x, y respectively lie on rays αx , αy emanating from 0
and intersecting Q in points x ′, y′. By [7, Proposition I.5.10(1)], the rays αx , αy determine a
convex sector S ⊂ Y intersecting ∂T X in the unique Tits geodesic from x ′ to y′, which lies
in Q by Tits convexity of Q. Hence S lies in Z , and thus so does the dY -geodesic from x to
y, since x, y ∈ S.

The horoball B = B(v): Let c = χ(v) be the circumcenter of Q = Q(v). Let α = αc

be the parametrized geodesic ray in Y such that α(0) = 0 and α(1) = c. Let p : Y → R be
the associated horofunction, defined by

p(y) = lim
s→∞[dY (α(s), y)− s].

Let t0 = cos rv , which is positive since rv ∈ [0, π/2).
Let B = B(v) = p−1((−∞,−t0]). Recall from e.g. [26, Lemma 3.88] that B is a convex

subset of Y . Let K (v) = B ∩ Z . See Fig. 7.
Q lies in K (v): We claim that Q ⊂ K (v). Since Q is the unit sphere in Z by the definition

of Y and Z , it suffices to show that Q ⊂ B. To that end, fix q ∈ Q, and observe that
dY (q, 0) = 1. Let s ! 0 and consider the convex Euclidean triangle in Y with vertices at
0, q, α(s). The angle in this triangle at 0 is denoted θ , and we note that θ ≤ rv . From the
cosine law, we obtain dY (q, α(s))2 = s2 + 1− 2s cos θ . Hence

p(q) = lim
s→∞

[√
s2 + 1− 2s cos θ − s

]
= − cos θ ≤ − cos rv = −t0.

Thus, by the definition of B, we have q ∈ B, as required. Since Z ∩ ∂T X = Q, we have in
fact shown that K (v) ∩ ∂T X = Q.

K (v) satisfies d(0, K (v)) = t0: We claim that K (v) is disjoint from the open t0-ball
in Y about 0. Indeed, let b ∈ K (v). Then p(b) ≤ −t0. Hence, for any fixed δ > 0, and
any sufficiently large s > 0, we have dY (b, α(s)) < s − t0 + δ. By the triangle inequality,
s ≤ dY (0, b) + s − t0 + δ, i.e. dY (0, b) > t0 − δ. Hence dY (b, 0) ≥ t0, as required. At the
same time, α = αc is a parametrized geodesic ray and α(t0) is a point of K (v) at distance
exactly t0 from 0, hence d(0, Kv) = t0.

The projection � and the open set U ′(v): Let � : Y � {0} → ∂T X be the radial
projection. Recall that νρ(0) is the open ρ-neighborhood of 0. We claim that for every
0 < ρ ≤ 1, the restriction of � to Y � νρ(0) is 1/ρ-Lipschitz. Indeed, by [7, Proposition
I.5.10(1)], it suffices to check this claim on a sector of R

2. In polar coordinates on R
2, the

distance element ds satisfies ds2 = dr2 + r2dθ2, hence the projection � rescales ds by a
factor of at most r−1, hence � is 1/ρ-Lipschitz when r ≥ ρ.

Recall the constant ε(v) defined in Definition 9.13, and define a positive constant

ε′ = ε′(v) = ε(v)

1+ ε(v)
t0 ∈ (0, t0), which satisfies

ε′

t0 − ε′
= ε(v). (9.15)
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0

α

∂TX

B
Q

K

Fig. 7 Construction of U ′ = U ′(v) as a small-radius neighborhood of K = B ∩ Z , where Z ⊂ Y is the cone
on Q ⊂ ∂T X and B is an appropriately chosen horoball determined by α. The radius is chosen so that U ′
avoids the (t0 − ε′)-ball around 0

Let U ′(v) = νε′(K (v)) be the open ε′-neighborhood of K (v) in Y . Since K (v) = B ∩ Z
is convex and Y is CAT(0), it follows that U ′(v) is convex. Furthermore, U ′(v) is open and
disjoint from the ball of radius t0 − ε′ about 0. See Fig. 7.

Definition and properties of U (v): Let U (v) = �(U ′(v)) ⊂ ∂T X . We claim that this
has all of the properties claimed in the lemma statement. First, since Q(v) ⊂ K (v) by
construction, and � is the identity map on ∂T X ⊂ Y , it follows that Q(v) = �(K (v)) ⊂
U (v). On the other hand, since d(0,U ′(v)) ≥ t0−ε′, the projection� is 1/(t0−ε′)-Lipschitz
on U ′(v). Therefore, (9.15) implies

U (v) = �(νε′(K (v))) ⊂ νε(v)(�(K (v))) = νε(v)(Q(v)),

proving the first bullet of the lemma.
Second, recall from Definition 9.13 that ε(v) ≤ rv/4. Thus Proposition 8.12.(4) implies

diam(U (v)) ≤ diam(Q(v))+ 2ε(v) ≤ π

2
+ rv

2
<

π

2
+ π

4
= 3π

4
.

Third, observe that� is an open map. Indeed, Y �{0} is homeomorphic to ∂T X×(0,∞),
and � is projection to the first factor, which is an open map. Thus U (v) = �(U ′(v)) is
open.

Fourth, it follows from [7, Proposition I.5.10.(1)] and the convexity of U ′(v) that U (v)

is convex in ∂T X . Since U (v) has diameter less than π , it is uniquely geodesic, hence
contractible.

Fifth, observe that all of the ingredients in the definition ofU (v) are Aut(X)-equivariant.
Indeed, the intrinsic radius rv is invariant under Aut(X), hence the number t0 = cos(rv) is
as well. Thus the definitions of the sub-cone Z(v), the horoball B(v), and the set K (v) =
Z(v) ∩ B(v) are all Aut(X)-equivariant. The constant ε′(v), defined in (9.15) is invariant
under Aut(X), because both t0 and ε(v) are. It follows that U (v) = �(νε′(K (v))) is also
Aut(X)-equivariant.
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Recall that in Sect. 9.1, we have defined a simplicial complex NT . By Corollary 9.5, NT

coincides with the nerve of the cover of ∂T X by the closed sets Q(v) for v ∈ MaxVis(X).
By Lemmas 9.3 and 9.14, the open sets U (v) for v ∈ MaxVis(X) also cover ∂T X .

By analogy with Definition 9.2, we define a simplicial complex CT with vertex set
MaxVisX , where vertices v0, . . . , vn ∈ MaxVisX span an n-simplex if and only if⋂n

i=0U (vi ) �= ∅. The content of the following lemma is that CT is isomorphic to NT .

Lemma 9.16 For Roller classes v0, . . . , vn ∈ MaxVis(X), we have
⋂n

i=0U (vi ) �= ∅ if and
only if

⋂n
i=0 Q(vi ) �= ∅. Consequently, the identity mapMaxVis(X) → MaxVis(X) induces

an Aut(X)-equivariant simplicial isomorphism CT → NT .

Proof Observe that
⋂n

i=0 Q(vi ) �= ∅ trivially implies
⋂n

i=0U (vi ) �= ∅. For the other
direction, we assume

⋂n
i=0U (vi ) �= ∅ and aim to show

⋂n
i=0 Q(vi ) �= ∅.

Wewill argue by induction on n. In the base case, n = 1, suppose thatU (v0)∩U (v1) �= ∅.
Since U (vi ) ⊂ Nε(vi )(Q(vi )), and ε(vi ) ≤ ε0/2 by Definition 9.13, it follows that there are
points ai ∈ Q(vi ) such that dT (a0, a1) < ε0. But then Lemma 9.6 implies Q(v0)∩ Q(v1) �=
∅, proving the base case.

For the inductive step, assume that
⋂n

i=0U (vi ) �= ∅ and
⋂n−1

i=0 Q(vi ) �= ∅. We claim
that there is a Roller class w ∈ Vis(X) such that

⋂n−1
i=0 Q(vi ) = Q(w).

By Lemma 9.7, we have convex subcomplexes J0, . . . ,Jn−1 ⊂ X , such that Q(vi ) =
∂TJi and

⋂n−1
i=0 Q(vi ) = ∂T

⋂n−1
i=0 Ji . By Lemma 6.20, the hyperplane collection W(Ji )

is a UBS. Furthermore, since each Ji is convex, we have W(
⋂

Ji ) = ⋂
W(Ji ), which

is a UBS because
⋂

Ji is unbounded. By Lemma 6.18, the UBS W(
⋂

Ji ) represents a
Roller class w′, which means that Q(w′) = ∂T

⋂n−1
i=0 Ji = ⋂n−1

i=0 Q(vi ). Now, we let
w = ψ(ϕ(w′)). Then Definition 8.19 says that w ∈ Vis(X), and Proposition 8.18.(3) says
that Q(w) = Q(w′) =⋂n−1

i=0 Q(vi ), proving the Claim.
Next, we claim that Q(vn)∩ Q(w) �= ∅. Since Q(w) =⋂n−1

i=0 Q(vi ), this will complete
the inductive step and prove the Lemma.

Suppose for a contradiction that Q(vn) ∩ Q(w) = ∅. Then, by Lemma 9.6, we
have dT (Q(vn), Q(w)) > ε0. Let ε2 be as in Definition 9.13. Fix a ∈ ⋂n

i=0U (vi ) ⊂⋂n
i=0 Nε(vi )(Q(vi )), which ensures that dT (a, Q(vn)) < ε2. Since ε(vi ) ≤ ε2 for each

vi , Lemma 9.9 implies dT (a, Q(w)) < f (ε2). Thus dT (Q(vn), Q(w)) < ε2 + f (ε2) ≤
ε0, a contradiction. This proves the Claim and the equivalence

⋂n
i=0 Q(vi ) �= ∅ ⇔⋂n

i=0U (vi ) �= ∅.
This gives the simplicial isomorphism CT → NT . This isomorphism is Aut(X)-

equivariant, by Corollary 8.8 and Proposition 9.14.

9.3 Homotopy equivalence of@TX andNT

Theorem 9.17 There is an Aut(X)∼homotopy equivalence from the simplicial complex NT

to ∂T X.

Proof. By Corollary 9.5, NT is the nerve of the covering of ∂T X by the closed sets Q(v),
where v varies over MaxVis(X).

By Proposition 9.14, ∂T X admits an open covering {U (v) : v ∈ MaxVis(X)}, with each
U (v) a convex, uniquely geodesic subspace of ∂T X . Hence, if v0, . . . , vn ∈ MaxVis(X),
then either

⋂n
i=0U (vi ) = ∅, or

⋂n
i=0U (vi ) is contractible. Let LT be the nerve of this

open covering. By the Equivariant Open Nerve Theorem 2.7, there is an Aut(X)∼homotopy
equivalence LT → ∂T X .
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As above, let CT be the simplicial complex with one vertex for each v ∈ MaxVis(X), with
v0, . . . , vn spanning an n-simplexwhenever

⋂n
i=0U (vi ) �= ∅. Note that CT is not necessarily

isomorphic to LT , since we may have U (vi ) = U (v j ) for some pair vi , v j with i �= j . But
CT is homotopy-equivalent to LT , which can be seen as follows. The Aut(X)-equivariant
assignment v �→ U (v) (i.e. the surjection C(0)

T → L(0)
T ) determines an equivariant simplicial

map CT → LT such that the preimage of each 0-simplex U (v) is the full subcomplex of CT
spanned by the set of w with U (v) = U (w). Since any finite set of such w span a simplex
of CT , this preimage is contractible: it is homeomorphic to the cone on the link of any of
its vertices. Now, let σ be a simplex of CT . Then by the definition of LT , the preimage of
σ is the join of the preimages of the vertices of σ , each of which we have just shown to be
contractible, so the preimage of σ is contractible. Hence the map CT → LT is a homotopy
equivalence, by Quillen’s fiber theorem (see e.g. [11, Theorem 10.5]).

To conclude, recall that by Lemma 9.16, we have an equivariant simplicial isomorphism
CT → NT . Hence we have a chain of Aut(X)∼homotopy equivalences

NT
∼=−→ CT

∼−→ LT
∼−→ ∂T X .

9.4 Cuboid generalization

All of the results of this section have a straightforward generalization to the cuboid setting.
In the following description, we refer to the notation introduced in Sect. 8.4.

Definition 9.1 generalizes immediately to give a set of maximal �2 visible Roller classes,
namely MaxVisρ(X) ⊂ Visρ(X). Following Definition 9.2, we get a simplicial complex
N ρ

T with vertex set MaxVisρ(X), where vertices v0, . . . , vn span an n-simplex if and only if⋂n
i=1 Qρ(vi ) �= ∅. Then, Lemmas 9.3 and 9.4 generalize immediately because their proofs

are assembled from the results of Sect. 8, and we have already checked that those results
generalize to cuboids. Thus Corollary 9.5 generalizes as well, and we learn that N ρ

T is the
covering of ∂

ρ
T X by the closed sets {Qρ(v) : v ∈ MaxVisρ(X)}.

(Recall that Remark 8.22 outlined an argument that Vis(X) = Visρ(X) for every admissi-
ble rescaling ρ. It follows that MaxVis(X) = MaxVisρ(X) as well. The nerves NT and N ρ

T
can then be shown to coincide, as mentioned in Remark 8.22. However, we do not use this.)

Moving ahead to Sect. 9.2, the results generalize as follows. The existence statement of
Lemma 9.6 extends, with the modification that the constant ε0 depends on dim(X) and ρ.
This is because the proof of Lemma 9.6 uses the constants λ0, λ1 of Lemma 3.1, which needs
to be replaced by the constants λ

ρ
0 , λ

ρ
1 of Lemma 4.8. Lemma 9.7 extends to cuboids as well,

because the proof of that lemma uses combinatorial arguments in combination with the dρ
X -

convexity of cubical convex hulls. Similarly, Lemma 9.9 extends: its proof works perfectly
well in the cuboid metric dρ

X , once we substitute Lemma 4.8 for Lemma 3.1. As above, the
outputs of that lemma depend on both dim(X) and ρ. Combining these ingredients, we can
follow Definition 9.13 to define a thickening constant ερ(w) > 0 for every Roller class w.
This constant depends only ρ and the Autρ(X)-orbit of w.

Proposition 9.14 extends verbatim to cuboids. Indeed, its proof is a CAT(0) argument that
takes place in the Euclidean cone on ∂T X , which works equally well in the Euclidean cone
on ∂

ρ
T X . (The proof also uses Proposition 8.12, which works for cuboids.) At the end of the

lemma, we get a collection of open sets Uρ(v) for v ∈ Visρ(X), which is invariant under
Autρ(X).

By analogy with Definition 9.2, we define a simplicial complex Cρ
T , where the simplices

are defined by intersection patterns of the open sets U (vi ) for vi ∈ MaxVisρ(X). Now,
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Lemma 9.16 extends verbatim to give anAutρ(X)-equivariant simplicial isomorphism Cρ
T →

N ρ
T . The proof of Theorem 9.17 also extends verbatim, because all of its ingredients extend.

Thus we obtain the following cuboid extension of Theorem 9.17:

Theorem 9.18 Let ρ be a G-admissible hyperplane rescaling of X. Then there is a
G∼homotopy homotopy equivalence N ρ

T → ∂
ρ
T X.

10 Proof of theMain Theorems

In this section, we prove Theorem A, which was stated in the Introduction. That is, we
construct the following commutative diagram of Aut(X)∼homotopy equivalences:

∂�X
TS

� ∂T X

R�X
T
R

�
R S �

The homotopy equivalence RS : ∂�X → R�X will be proved in Proposition 10.12, while
the homotopy equivalence TR : R�X → ∂T X will be proved in Corollary 10.11. At the end
of the section, we check that all of the arguments extend to cuboids, proving Theorem B.

To prove Corollary 10.11, we first study a subcomplex of R�X .

Definition 10.1 (Visible subcomplexes ofR�X) LetR�
�X be the subcomplex ofR�X con-

sisting of all simplices corresponding to chains v0 ≤ · · · ≤ vn such that vi ∈ Vis(X) for
0 ≤ i ≤ n.

For each v ∈ Vis(X), let 
v be the connected subcomplex of R�
�X consisting of all

simplices corresponding to chains v0 ≤ · · · ≤ vn for which:

• each vi ∈ Vis(X);
• vn = v.

10.1 Closed cover ofR�
�X

Next, we show that the complexes 
v yield a closed covering ofR�
�X , and use this covering

to build a nerve.

Lemma 10.2 The set {
v : v ∈ MaxVis(X)} is a closed covering ofR�
�X. Moreover, for all

v, v0, . . . , vn ∈ Vis(X), we have the following:

(1) 
v is finite.
(2) 
vi = 
v j only if vi = v j .
(3)

⋂n
i=0 
vi is either empty or contractible.

(4) For every g ∈ Aut(X), we have g
v = 
gv .

Proof Let w ∈ Vis(X). Then there exists v ∈ MaxVis(X) with w ≤ v, and hence w ∈ 

(0)
v .

Thus {
v : v ∈ MaxVis(X)} is a closed covering of R�
�X .

Let v be a (visible) Roller class. By Corollary 6.30, there are finitely many other classes
w such that w ≤ v. This proves assertion (1).
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Now suppose that vi , v j are (visible) Roller classes satisfying
vi = 
v j . Since v j ∈ 
vi ,
we have v j ≤ vi . Likewise, vi ≤ v j . Hence vi = v j , proving assertion (2).

Next, let v0, . . . , vn ∈ Vis(X) and suppose that
⋂n

i=0 
vi �= ∅. First, note that 
vi =
vi�Lvi , where Lvi (the link of vi in
vi ) is a subcomplex ofR�

�X and � denotes the simplicial
join operation. Hence 
vi is topologically a cone, and is thus contractible.

For each i , let Vi be a UBS representing vi (recall Definition 6.21). Then
⋂n

i=0 Vi is
unidirectional and contains no facing triple, since those properties hold for each Vi and are
inherited by subsets. Second,

⋂n
i=0 Vi is inseparable, because each Vi is.

Now, if u ∈⋂n
i=0 
vi is a 0-simplex, then u ≤ vi for all i , so u is represented by a UBS of

the form U �⋂n
i=0 Vi . Hence

⋂n
i=0 Vi is infinite. Combined with the above discussion, this

shows that
⋂n

i=0 Vi is a UBS. Let v be the corresponding Roller class. Since U � ⋂
i=0 Vi ,

we have u ≤ v.
Since each such u is �2-visible, the set of visible Roller classesw withw ≤ v is nonempty.

Hence there is a unique Roller class m such that m ≤ v, and m is �2-visible, and m is ≤-
maximalwith those properties, by Lemma 8.14 andDefinition 8.19. Since each u ∈ ⋂n

i=0 
vi

satisfies u ≤ m ∈ R�
�X , there is a subcomplex L ⊂ R�

�X such that
⋂n

i=0 
vi = m�L , so⋂n
i=0 
vi is contractible in R

�
�X .

Finally, statement (4) follows from the equivariance of Vis(X) and the partial
order ≤.
Definition 10.3 (Simplicial complex N�) Let N� be the nerve of the closed covering
{
v : v ∈ MaxVis(X)} of R�

�X . By Lemma 10.2.(2), N� has vertex-set MaxVis(X),
and v0, . . . , vn span an n-simplex if and only if

⋂n
i=0 
vi �= ∅. By Lemma 10.2.(4), Aut(X)

acts by simplicial automorphisms on N�.

Lemma 10.4 Let v0, . . . , vn ∈ Vis(X). Then

n⋂
i=0


vi �= ∅ ⇔
n⋂

i=0
Q(vi ) �= ∅.

Consequently, there is an Aut(X)-equivariant simplicial isomorphism N� → NT .

Proof Suppose that there exists a ∈⋂n
i=0 Q(vi ). Then Lemma 8.9 says ψ(a) ≤ vi for all i .

Hence, by Definition 10.1, we have ψ(a) ∈ 
vi for all i .
Conversely, suppose that there exists a vertex (i.e. a Roller class) w ∈ ⋂n

i=0 
vi . Then
w ≤ vi for all i , by definition. Hence, by Lemma 8.11, Q(w) ⊂ Q(vi ) for all i , from which
it follows that ϕ(w) ∈ ⋂n

i=0 Q(vi ).
Finally, the simplicial isomorphism N� → NT comes from identifying the 0-skeleta of

N� and NT with MaxVis(X).

10.2 Homotopy equivalence betweenR�X and@TX

We can now assemble the proof thatR�X is homotopy equivalent to ∂T X . We do this in two
propositions:

Proposition 10.5 There is an Aut(X)∼homotopy equivalenceR�
�X → ∂T X.

Proof. Consider the covering {
v : v ∈ MaxVis(X)} ofR�
�X by the subcomplexes
v , com-

ing from Lemma 10.2. By Definition 10.3, the nerve of this cover isN�. By Lemma 10.2.(3),
the intersection of any finite collection of the 
v is either empty or contractible. Hence, by
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the Equivariant Simplicial Nerve Theorem 2.8, there is an Aut(X)∼homotopy equivalence
R�
�X → N�.
By Lemma 10.4, there is a simplicial isomorphismN� → NT . Finally, by Theorem 9.17,

there is an Aut(X)∼homotopy equivalence NT → ∂T X . Putting it all together, we obtain a
chain of Aut(X)∼homotopy equivalences

R�
�X

∼−→ N�
∼=−→ NT

∼−→ ∂T X .

Proposition 10.6 The inclusion R�
�X ↪→ R�X is an Aut(X)-equivariant homotopy equiv-

alence. Its homotopy inverse is an Aut(X)∼deformation retraction R�X → R�
�X.

Proof First, observe that sinceR�X is Aut(X)-invariant byDefinition 5.7, and the set Vis(X)

is Aut(X)-invariant by Definition 8.19, the inclusionR�
�X ↪→ R�X is Aut(X)-equivariant.

In the remainder of the proof, we will construct a deformation retractionR�X → R�
�X that

serves as a homotopy inverse to the inclusion R�
�X ↪→ R�X .

Let w be an invisible Roller class (viewed as a 0-simplex of R�X ). By Lemma 8.21, w
is not minimal, so there exists a minimal Roller class m with m < w. Let n(w) ≥ 1 be the
maximum length of a chain of the form m < · · · < w with m a minimal Roller class.

Let D be the maximal number such that there exists an invisible Roller class w with
n(w) = D. By Remark 5.8, every simplex in R�X has at most dim X vertices, hence
D ≤ dim X .

Let In be the set of invisible Roller classes v with n(v) = n. Then

(R�X)(0) = (R�
�X)(0) �

D⊔
n=1

In .

Let (SX)0 = R�
�X . For 1 ≤ N ≤ D, let (SX)N be the subcomplex spanned by (R�

�X)(0)�⊔N
n=1 In , so

R�
�X = (SX)0 ⊂ (SX)1 ⊂ · · · ⊂ (SX)D = R�X .

Given a Roller class w and a positive integer n ≤ D, define the open star stn(w) to be the
union of {w} and all of the open simplices of (SX)n whose closures contain w. Let Stn(w)

be the union of all (closed) simplices of (SX)n containing w. Define the (downward) link
Ln(w) = Stn(w) � stn(w).

Claim 10.7 For w ∈ In, we have Ln(w) ⊂ (SX)n−1.

Let w ∈ In ⊂ (SX)n . Let σ be a maximal simplex of (SX)n containing w and lying
in (SX)n . Let v0 < · · · < vm be the corresponding chain, with w = vi for some i . Since
n(w) = n, the chain v0 < · · · < vi has length at most n.

First, consider v j for j < i . If v j is visible, then v j ∈ (SX)0 ⊂ (SX)n−1. If v j is
invisible, then since v0 < · · · < v j is a chain of length less than n, and σ is maximal,
n(v j ) < n, hence v j ∈ (SX)n−1.

Next, consider v j for j > i . If v j is visible, then v j ∈ (SX)0 ⊂ (SX)n−1. If v j is
invisible, then v j /∈ In , since there is a chain v0 < · · · < v j of length more than n = n(vi ),
which would contradict the containment σ ⊂ (SX)n .

Hence the simplex σ ′ corresponding to the chain v0 < · · · < vi−1 < vi+1 < · · · < vm
lies in (SX)n−1. This proves the claim.

Contractibility of links: Now, fix w ∈ In . We will show that Ln(w) is contractible.
Establishing this involves several claims, leading up to Claim 10.10.
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Claim 10.8 For a minimal Roller class with m ∈ Ln(w), let St(m) =⋃
n Stn(m) denote the

star of m in R�X. Then:

(1) Ln(w) ∩ St(m) is topologically a cone with cone-point m.
(2) Ln(w) is the union of the subcomplexes Ln(w) ∩ St(m), as m varies over the finitely

many minimal Roller classes with m ≤ w.

Let L(m) denote the link of m inR�X . Then, by definition, St(m) decomposes as a join:
St(m) = m�L(m). Moreover, m ∈ Ln(w), so

Ln(w) ∩ St(m) = Ln(w) ∩ (m�L(m)) = m�(Ln(w) ∩ L(m)),

which proves the first assertion.
By Corollary 6.30, there are finitely many minimal Roller classes m ≤ w. For each such

m, we clearly have Ln(w) ∩ St(m) ⊂ Ln(w). Conversely, if v ∈ Ln(w), then there exists a
minimal class m such that m ≤ v and m ≤ w, hence v ∈ Ln(w) ∩ St(m). This proves the
claim.

Claim 10.9 Let m0, . . . ,mk be distinct minimal Roller classes with mi < w for all i . Then⋂k
i=0 St(mi ) ∩ Ln(w) is topologically a cone, and is in particular nonempty.

By Lemma 8.21, each mi is �2-visible, so we can choose CAT(0) geodesic rays ξi :
[0,∞) → X such that ξi (0) = ξ j (0) for all i , and such that ξi (∞) = ϕ(mi ) for each i .
For each i , define Mi = W(ξi ), a UBS representing mi . Since mi is minimal for all i ,
Lemma 6.8 implies the intersectionMi ∩M j is finite whenever i �= j . Moving the common
basepoint ξ1(0) = . . . = ξk(0) ensures that Mi ∩M j = ∅ for all i �= j , and that each Mi

is the inseparable closure of an infinite descending chain. Indeed, by moving the basepoint
across each of the finitely many hyperplanes appearing in some Mi ∩M j , we arrange the
first property, and the inseparable closure property holds by Lemma 7.6, Lemma 7.7, and
minimality of the mi .

Let A be a UBS representing w. Since mi ≤ w for all i , we have Mi � A for each i .
Thus it is readily checked that

⋃k
i=0 Mi is a UBS.

Consider a pair of indices i �= j . Then since
⋃k

i=0 Mi is unidirectional andMi∩M j = ∅,
any pair of hyperplanes ĥi ∈ Mi and ĥ j ∈ M j must cross. Indeed, ĥi �= ĥ j , and ĥi is the
base of a chain in Mi , and ĥ j is the base of a chain in M j . If ĥi , ĥ j did not cross, then the
union of this pair of chains would violate unidirectionality of Mi ∩M j .

Thus, by Lemma 4.6, the convex hull of
⋃k

i=0 ξi is isometric to
∏k

i=0 Yi , where Yi is the
cubical convex hull of ξi . For each t > 0, let xt be the image of (ξ0(t), . . . , ξk(t)) under
the isometric embedding

∏k
i=0 Yi → X . Then segments joining the basepoint to the points

xt converge uniformly on compact sets to a geodesic ray representing a point b ∈ ∂T X
with the property that ψ(b) = u is represented by U = ⊔k

i=0 Mi . Hence u is visible by
Definition 8.19. Moreover,mi ≤ u ≤ w for all i . To complete the proof of the claim, we will
show that u is the promised cone point of

⋂k
i=0 St(mi ) ∩ Ln(w).

For each i , the fact that mi ≤ u implies u ∈ St(mi ). On the other hand, u �= w since
u is visible but w is not. Thus u < w, so u ∈ Ln(w). Thus far, we have shown that⋂k

i=0 St(mi ) ∩ Ln(w) �= ∅. Now, suppose v ∈ Ln(w) ∩ St(mi ) for all i . To complete
the claim, we must show that u and v are ≤-comparable. By definition, mi ≤ v for all i ,
hence Mi � V for all i , where V is a UBS representing V . Therefore, U = ⊔k

i=0 Mi � V ,
which implies u ≤ v. Thus

⋂k
i=0 St(mi ) ∩ Ln(w) is a cone with cone point u, completing

Claim 10.9.
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Claim 10.10 Ln(w) is contractible.

By Claim 10.8, Ln(w) is a finite union of subcomplexes Ln(w)∩ St(m), where m varies
over the minimal Roller classes satisfying m ≤ w. By Claim 10.9, any collection of the
Ln(w) ∩ St(m) intersect in a contractible subcomplex. Hence, by the Simplicial Nerve
Theorem 2.8, Ln(w) is homotopy equivalent to the nerve of this covering. (We do not need
to check equivariance at this step.) But, since any collection of the Ln(w) ∩ St(m) have
nonempty intersection, this nerve is a finite simplex and thus contractible. Hence Ln(w) is
contractible.

Conclusion: We have shown that the following hold for 1 ≤ n ≤ D:

• Claim 10.7 says that for each vertex v ∈ (SX)n � (SX)n−1, the link in (SX)n of v is
contained in (SX)n−1;

• Claim 10.10 says that for each vertex v ∈ (SX)n � (SX)n−1, the link in (SX)n of v is
contractible.

The first fact says that the open stars stn(v) of the vertices v ∈ (SX)n�(SX)n−1 are pairwise
disjoint. Together with the second fact, this implies that (SX)n is homotopy equivalent to

(SX)n−1 = (SX)n �

( ⋃
v∈(SX)

(0)
n �(SX)

(0)
n−1

stn(v)

)
.

It follows that we can independently deformation retract the various open stars stn(v) to
the corresponding links Ln(v) to get a deformation retraction (SX)n → (SX)n−1 that is a
homotopy inverse for the inclusion. Composing these retractions (for 1 ≤ n ≤ D) gives the
desired deformation retraction R�X → R�

�X .
Finally, recall from the discussion after Definition 1.1 that every homotopy inverse of a

Aut(X)-equivariant inclusion R�
�X → R�X is itself an Aut(X)∼homotopy equivalence.

Thus we have an Aut(X)∼deformation retraction R�X → R�
�X .

Combining Propositions 10.5 and 10.6 gives a proof of half of Theorem A.

Corollary 10.11 There is an Aut(X)∼homotopy equivalence TR : R�X → ∂T X.

10.3 Homotopy equivalence between@�X andR�X

The following proposition proves the homotopy equivalence of the simplicial boundary and
the simplicial Roller boundary, completing the proof of Theorem A.

Proposition 10.12 There is an Aut(X)∼homotopy equivalence RS : ∂�X → R�X.

Proof Let σ be a maximal simplex of ∂�X , corresponding to a class [Vσ ] ∈ UBS(X). Then,
by Theorem 6.27, vσ = RU([Vσ ]) is a maximal Roller class.

Let A be the nerve of the covering of ∂�X by maximal simplices. Now, since any col-
lection of maximal simplices intersect in ∅ or a simplex, and simplices are contractible,
the Equivariant Simplicial Nerve Theorem 2.8 provides an Aut(X)∼homotopy equivalence
∂�X → A.

Now, for each maximal Roller class v, consider the subcomplex ϒv of R�X consisting
of all simplices corresponding to chains in which v is the maximal element. Note that the set
of such ϒv is a cover of R�X .

A simpler version of the proof of Lemma 10.2 implies that for all finite collections
{v1, . . . , vn} of maximal Roller classes,

⋂n
i=1 ϒvi is empty or contractible. Indeed, suppose
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this intersection is nonempty. Exactly as in the proof of Lemma 10.2, each vi corresponds
to a commensurability class [Vi ] of UBSes whose intersection is a UBS V , which in turn
determines a ≤-maximal Roller class v such that v ≤ vi for all i . As in Lemma 10.2, this
implies that

⋂n
i=1 ϒvi is a cone with cone-point v. (In the context of Lemma 10.2, there is an

additional step to check that v is visible, but that is unnecessary here since we are working
in all of R�X rather than in R�

�X .)
Let B be the nerve of the covering ofR�X by the subcomplexes ϒv , as v varies over the

maximal Roller classes. Observe that the assignment v �→ ϒv is a bijection from the set of
maximal Roller classes to B(0). By Theorem 2.8, as above, there is an Aut(X)∼homotopy
equivalence R�X → B.

To conclude, we will show that A and B are equivariantly isomorphic. The vertex set of
A is the set of maximal simplices σ of ∂�X , so we may define a function f : A(0) → B(0)

via the composition

σ �→ [Vσ ] �→ vσ �→ ϒvσ ,

where the middle arrow is the equivariant map RU of Theorem 6.27. Since both σ and vσ

are maximal by definition, the map f is a bijection by Theorem 6.27.(3). Every arrow is
Aut(X)-equivariant by construction.

To extend f to a simplicial isomorphism f : A → B, it suffices to check that for all
maximal simplices σ0, . . . , σn of ∂�X , we have

⋂n
i=0 σi �= ∅ if and only if

⋂n
i=0 ϒvσi

�= ∅;
that this is sufficient follows sinceA is the nerve of the covering of ∂�X bymaximal simplices
and B is the nerve of the covering of R�X by the subcomplexes ϒv .

Suppose that
⋂n

i=0 σi �= ∅. Let Vi be a UBS representing σi . So, Vi also represents
the corresponding Roller class f (σi ). Let V = ⋂n

i=0 Vi , and note that V is infinite. Then
by Remark 9.8, V is an �1-visible UBS. Hence V represents a Roller class w such that
w ≤ vσi for all i . Thus

⋂n
i=0 ϒvσi

contains w. The converse is similar. Hence f extends to
an isomorphism, and it follows that

RS : ∂�X ∼−→ A f−→ B ∼−→ R�X

is an Aut(X)∼homotopy equivalence.

10.4 Cuboid generalization

We can now conclude the proof of Theorem B.

Proof of Theorem B LetG be a group acting on X by cubical automorphisms, and let ρ be aG-
admissible rescaling of X , with rescaled metric dρ

X . Recall from Definition 4.4 that the action
of G factors through Autρ(X). In Sect. 8.4, we have checked that all of the constructions and
results about the Tits boundary ∂T X also apply to ∂

ρ
T X , the Tits boundary of the rescaled

metric (X , dρ
X ), in a G-equivariant way.

In Sect. 9.4, we have checked that the constructions of open and closed nerves for ∂T X
also work for ∂

ρ
T X . In particular, by Theorem 9.18, there is a G∼homotopy equivalence

between ∂
ρ
T X and the nerve N ρ

T of the closed cover {Qρ(v) : v ∈ MaxVisρ(X)}.
Now, we inspect the results of this section. In Lemma 10.2, one simply needs to replace

MaxVis(X) by MaxVisρ(X) and Aut(X) by Autρ(X); the same exact proof then applies.
In Definition 10.3, replacing MaxVis(X) by MaxVisρ(X) yields a nerve N ρ

�. The proof of
Lemma10.4 extends verbatim togive anAutρ(X)-equivariant simplicial isomorphismN ρ

� →
N ρ

T . Proposition 10.5 extends verbatim, because its proof is a top-level assembly of previous

123



Geometriae Dedicata (2024) 218 :33 Page 81 of 83 33

results. Similarly, Proposition 10.6 extends immediately to cuboids, because its proof is a
topological argument about simplicial complexes. (The proof of Proposition 10.6 does use
several lemmas from Sects. 7 and 8, particularly in Claim 10.9, but all of those lemmas
have been extended to cuboids. Compare Remark 7.8.) Combining the cuboid versions of
Propositions 10.5 and 10.6 gives a G∼homotopy equivalence R�X → ∂

ρ
T X .

Finally, note that the Aut(X)∼homotopy equivalence ∂�X → R�X established in Propo-
sition 10.12 is also a G∼homotopy equivalence, because G acts by cubical automorphisms.
Thus we have both of the G∼homotopy equivalences claimed in the theorem.
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