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Abstract
Geometric structures on a manifold M arise from a covering of M by charts with values
in a homogeneous space G/H , with chart transitions restrictions of elements of G. If M is
aspherical, then such geometric structures are given by a homomorphism of the fundamental
group of M into G. Rigidity of such structures means that the conjugacy class of the homo-
morphism can be reconstructed from topological or geometric information on M . We give
an overview of such rigidity results, focusing on topological type and length functions.

Mathematics Subject Classification 53C30 · 57N16 · 57M50 · 37C15

1 Introduction

A geometric structure on a manifold M is defined by an atlasA = {(Uφ, φ) | Uφ ⊆ M open}
of M , with chart maps φ taking values in a homogeneous space X = G/H where G is a
Lie group and H < G is a closed subgroup. Furthermore, it is required that chart transitions
φ ◦ ψ−1 : ψ(Uψ ∩ Uφ) → φ(Uψ ∩ Uφ) are given by the restrictions of an element of
G to ψ(Uψ ∩ Uφ). In this survey we are interested in geometric structures on aspherical
manifolds, that is, manifolds M whose universal coverings are contractible (see [55] for
more information). An example of a geometric structure on M is a locally symmetric metric
of non-positive curvature, which is a geometric structure defined by a homogeneous space
X = G/K where G is a semi-simple Lie group of non-compact type and K < G is a
maximal compact subgroup. Namely, X = G/K is just a symmetric space of non-compact
type, and a geometric structure on M defines an atlas of charts into X whose chart transitions
are isometries. As a consequence, the pull-back of the metric defined by the charts is globally
defined on M . If the (G, X)-structure is complete then the Riemannian universal covering
of M is isometric to X and hence M = �\G/K where � < G is discrete and torsion-free.

In the sequel we assume for simplicity that the Lie group G is simple. This is equivalent
to stating that the de Rham decomposition of the symmetric space X is trivial. We then
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call a locally symmetric space M = �\G/K irreducible, that is, the (local) holonomy
representation of M is irreducible.

Locally symmetric metrics on aspherical manifolds have various rigidity properties. The
most fundamental rigidity result is Mostow rigidity which states that two closed irreducible
aspherical locally symmetric manifolds of dimension at least 3 are homotopy equivalent if
and only if they are homothetic.

On the other hand, locally symmetric manifolds form a rich class of aspherical mani-
folds. Uniformization shows that any closed oriented surface of genus at least 2 admits a
hyperbolic metric, that is, a metric of constant curvature −1, modeled on the hyperbolic
plane H

2 = PSL(2, R)/PSO(2). Perelman’s solution to the geometrization conjecture
yields a topological characterization of closed locally symmetric manifolds in dimension 3.
Closed irreducible aspherical locally symmetric 3-manifolds are precisely the hyperbolic 3-
manifolds, and this class of manifolds coincides with the class of closed aspherical atoroidal
3-manifolds. Here a 3-manifold is called atoroidal if its fundamental group does not contain
a subgroup isomorphic to Z × Z. Furthermore, this class coincides with the class of closed
3-manifolds which admit a Riemannian metric of negative sectional curvature.

In higher dimension, locally symmetric manifolds seem to be rare among all closed man-
ifolds, even among those closed manifolds which admit a metric of negative curvature. Up to
now this is mainly witnessed by constructions of closed negatively curved manifolds which
do not admit locally symmetric metrics (see [34, 61]). Number theoretic tools allow for the
construction of closed locally symmetric manifolds in any dimension. Hyperbolic manifolds
of dimension at least 4 can be counted in dependence on their volumes (see [16] [29, Theorem
1.11]), but specific information on their geometry and topology is not available (see however
[43]).

The search for characterizations of manifolds which admit locally symmetric metrics or,
more generally, geometric structures, by some special geometric or topological properties is a
fruitful line of research. Furthermore, whenever theMostow rigidity theorem is not available,
there may be a rich deformation space of such geometric structures. We survey some of the
rigidity and flexibility results which can be described in terms of the topology of the manifold
and length functions associated to geometric structures.

We begin with looking at geometric structures which enjoy the conclusion of the Mostow
rigidity theorem, namely closed irreducible locally symmetricmanifolds of dimension at least
3. The fundamental group of such a manifold is known to be residually finite and hence there
are interesting towers of finite covers. In general, not much is known about these covering
spaces in spite of substantial progress towards the understanding of towers of congruence
covers (see [30, 54]). In Sect. 2we point out that finite quotients of compact locally symmetric
manifolds are homotopy locally symmetric. A special case of the following statement is due
to Kapovich ([46, Theorem 8.36]), with a somewhat different proof. We expect that the full
statement is known to the experts, however we did not find a reference in the literature.

Theorem (Manifolds covered by locally symmetric spaces) Let M be a closed manifold of
dimension n ≥ 2. Assume that there is a finite sheeted cover M̂ → M of M where M̂ is
an irreducible locally symmetric space. Then M is homotopy equivalent to an irreducible
locally symmetric space N. If n ≥ 5 then M is homeomorphic to N, and if n = 2, 3 then M
is diffeomorphic to N.

Note that the case n = 2 is a classical consequence of uniformization.We expect that in all
dimensions, closedmanifoldswhich admit locally symmetric finite covers are homeomorphic
to locally symmetric manifolds. However, we illustrate by example that they need not be
diffeomorphic to a locally symmetric manifold.
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In Sects. 3 and 4 we turn to a discussion of geometric rigidity which seeks to characterize
non-positively curved locally symmetric metrics on closed manifolds by global geometric
invariants. Namely, for a closed non-positively curved manifold M , every conjugacy class
in the fundamental group of M can be represented by a closed geodesic. Any two such
geodesics have the same length. The marked length spectrum of M is the function which
associates to each such conjugacy class the length of such a geodesic. We explain the relation
between the marked length spectrum and cross ratios, and we summarize some of the results
regarding the so-called marked length spectrum rigidity question which asks to characterize
such manifolds up to isometry by their marked length spectrum, a natural question which is
interesting but challenging beyond the world of locally symmetric metrics.

In Sect. 5 we look at representations of surface groups, that is, fundamental groups of
closed surfaces, into the isometry group PSL(2, C) of hyperbolic 3-space. Such represen-
tations can be obtained by deforming homomorphisms arising from embeddings π1(S) →
PSL(2, R) → PSL(2, C). We describe what is known about the marked length spectrum,
cross ratios and geometric and topological rigidity.

In Sect. 6 we turn to real projective structures, that is, geometric structures modeled on
PSL(n, R)/H where H is the stabilizer of a point for the transitive projective action of
the group PSL(n, R) on real projective space RPn−1. If the holonomy group for such a
projective structure preserves an open convex subset �, contained in the complement of a
projective hyperplane, then the usual cross ratio on Sn−1 defines a so-called Hilbert metric
on � and once again, we obtain a marked length spectrum. We summarize results related to
marked length spectrum rigidity. We conclude by specializing to homomorphisms of surface
groups into PSL(n, R) contained in the so-called Hitchin component. Such representations
are deformations of homomorphisms which factor through an embedding PSL(2, R) →
PSL(n, R) corresponding to an irreducible representation of SL(2, R) on R

n .

2 Topological rigidity

In this section we prove the theorem from the introduction. Since this is classical if the
dimension n of M equals 2 we may assume that n ≥ 3.

Let M̂ be a closed irreducible locally symmetric space and let M̂ → M be a finite sheeted
covering. Then M̂, M are aspherical, and the fundamental group π1(M̂) of M̂ is a finite
index subgroup of the fundamental group π1(M) of M . As a consequence, {⋂ gπ1(M̂)g−1 |
g ∈ π1(M)} is a finite index normal subgroup of π1(M). By replacing M̂ by a finite sheeted
cover, we therefore may assume that the covering π : M̂ → M is regular. This is equivalent
to stating that the deck group Deck(π) acts simply transitively on the fibers π−1(x) over any
point x ∈ M .

For any homotopy self-equivalence of M̂ there exists, due to Mostow-rigidity, a unique
isometry homotopic to it (see [59, Theorem 24.1′]). In particular, there is a group
homomorphism

� : Deck(π) → Isom(M̂), σ 	→ �(σ) (2.1)

sending any deck transformation σ : M̂ → M̂ to the unique isometry �(σ) homotopic to it.
Note that � is a homomorphism due to the uniqueness of the isometry. The following result
is the key ingredient for the proof of the theorem from the introduction.

Lemma 2.1 For every σ ∈ Deck(π)\{idM̂ } the isometry �(σ) has no fixed point.
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In particular, � : Deck(π) → Isom(M̂) is injective, so that Deck(π) ∼= �(Deck(π)).
Lemma 2.1 will follow immediately from the following general result.

Lemma 2.2 Let X be a finite dimensional aspherical CW-complex such thatπ1(X) has trivial
center, and let σ : X → X be a homeomorphism of finite orderm ≥ 2 such that the projection
X → X/〈σ 〉 is a covering projection and X/〈σ 〉 has the homotopy type of a finite dimensional
CW-complex. Then σ is not homotopic to a map ψ : X → X with non-empty fixed point set
and ψm = idX .

The proof of Lemma 2.2 only uses standard group homological arguments.

Proof Arguing by contradiction, assume thatσ is homotopic to somemapψ with Fix(ψ) = ∅
and ψm = idX . Fix x0 ∈ Fix(ψ) and set X̄ = X/〈σ 〉. As X → X̄ is a covering map of
degree m, there is a short exact sequence

1 → π1(X , x0) → π1(X̄ , x̄0) → Z/mZ → 1. (2.2)

It follows from the properties of ψ that the short exact sequence (2.2) splits.
Indeed, (2.2) induces an action ρ̄ : Z/mZ → Out(π1(X , x0)). As x0 ∈ Fix(ψ) and

ψm = idX , the homomorphism ρ : Z/mZ → Aut(π1(X , x0)), 1̄ 	→ ψ∗ is well-defined, and
it is a lift of ρ̄ : Z/mZ → Out(π1(X , x0)) because ψ is homotopic to σ .

Consider the short exact sequence

1 → π1(X , x0) → π1(X , x0) �ρ Z/mZ → Z/mZ → 1. (2.3)

The action Z/mZ → Out(π1(X , x0)) induced by (2.3) agrees with the induced action ρ̄ :
Z/mZ → Out(π1(X , x0)) of (2.2) because ρ is a lift of ρ̄. Hence, as π1(X , x0) has trivial
center, [15, Corollary 6.8 in Chapter IV] implies that the short exact sequences (2.2) and
(2.3) are equivalent. Therefore, (2.2) splits because (2.3) splits.

Because the short exact sequence (2.2) splits, there is an injection Z/mZ ↪→ π1(X̄).
However, it is well-known (and follows from standard group homological arguments) that
the fundamental group π1(X̄) of a topological space X̄ with the homotopy type of an
aspherical finite dimensional CW-complex is torsion-free (see [15]). Namely, as X̄ has
the homotopy type of an aspherical and finite dimensional CW-complex, there is a finite
dimensional CW-model for the classifying space Eπ1(X̄). Restricting the action of π1(X̄)

on Eπ1(X̄) to Z/mZ ↪→ π1(X̄), there is a finite dimensional model for EZ/mZ. Hence
BZ/mZ has a finite dimensional CW-model, and thus Hk(BZ/mZ) can only be non-zero for
finitely many k. But it is well-known (see [15, (3.1) on page 35]) that the group homology
Hk(Z/mZ; Z) ∼= Hk(BZ/mZ; Z) of Z/mZ with Z-coefficients is non-zero for all odd k.
This is a contradiction. ��

As an easy consequnce we obtain Lemma 2.1.

Proof of Lemma 2.1 Since M̂ is a closed irreducible non-positively curved manifold, M̂ has
the structure of a finite dimensional aspherical CW-complex and π1(M̂) has trivial center.
Fix any σ ∈ Deck(π)\{idM̂ }, and set m := ord(σ ) ≥ 2. It holds �(σ)m = idM̂ because the

map � : Deck(π) → Isom(M̂) defined in (2.1) is a group homomorphism. Therefore, as
�(σ) is homotopic to σ , Lemma 2.2 yields that �(σ) has no fixed points. This completes
the proof. ��

By Lemma 2.1, the isometries �(σ) : M̂ → M̂ (σ = idM̂ ) have no fixed points. As a

consequence, the action of �(Deck(π)) on M̂ is free and properly discontinuous. Thus the
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quotient

N := M̂/�(Deck(π))

is a manifold, and the quotient map M̂ → N is a covering map. As �(Deck(π)) acts via
isometries on M̂ , N admits ametric that turns it into a non-positively curved locally symmetric
space.

Lemma 2.3 The fundamental groups of M and N are isomorphic.

Proof The regular covering maps M̂ → M and M̂ → N induce short exact sequences

1 → π1(M̂) → π1(M) → Deck(π) → 1

and

1 → π1(M̂) → π1(N ) → �(Deck(π)) → 1.

Because the maps σ and �(σ) are homotopic for every σ ∈ Deck(π), it follows that, under
the identification Deck(π) ∼= �(Deck(π)), the induced actions Deck(π) → Out(π1(M̂))

of these short exact sequences agree. Recall that π1(M̂) has trivial center. So [15, Corollary
6.8 in Chapter IV] implies π1(N ) ∼= π1(M). ��
Corollary 2.4 If the closed manifold M has a finite sheeted cover which is an irreducible
locally symmetric manifold of non-compact type, then M is homotopy equivalent to an
irreducible locally symmetric manifold (the manifold N defined above).

Proof AsM has afinite sheeted coverwhich is aspherical,M is aspherical. Thus the homotopy
type of M is determined by its fundamental group (see [55, Theorem 1.1 (i)] or [40, Theorem
1B.8]). By Lemma 2.3, the fundamental group of M equals the fundamental group of an
irreducible locally symmetric manifold. This shows the corollary. ��

As a consequence, for the proof of the theorem in the introduction, it remains to promote
the homotopy equivalence given in Corollary 2.4 to a homeomorphism provided that n = 4.

A closed aspherical manifold M is called topologically rigid if every homotopy equiva-
lence to another closed manifold is homotopic to a homeomorphism. The Borel conjecture
asserts that closed aspherical manifolds are topologically rigid. This conjecture is open in
general, but it is known for aspherical manifolds of dimension at least 5 which admit a
non-positively curved Riemannian metric.

Proof of the theorem in the introduction Since M and N are both aspherical, it follows from

Corollary 2.4 that there is a homotopy equivalenceM
�−→ N . Since N admits a non-positively

curved metric, if dim(M) ≥ 5 it follows from the solution of the Borel conjecture [25,

Theorem 1], [2, Theorem A] that the homotopy equivalence M
�−→ N is homotopic to a

homeomorphism M
∼=−→ N .

If dim(M) = 3, then the manifold N is hyperbolic by irreducibility. As N is hyperbolic
and M has a finite cover diffeomorphic to a finite cover of N , the universal covering of
M is diffeomorphic to R

3. Thus M is irreducible, and [28, Theorem 0.1] shows that the

homotopy equivalence M
�−→ N is again homotopic to a homeomorphism. On the other

hand, homeomorphic 3-manifolds are also diffeomorphic (see [7, Theorem 8], [27, Section
8.3], [60, Corollary]). This completes the proof. ��
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The following example shows that in general, we can not expect that the manifold M in
the statement of the theorem in the introduction is diffeomorphic to an irreducible locally
symmetric manifold, even if M admits a negatively curved Riemannian metric.

Example 2.5 An exotic n-sphere is a smooth manifold which is homeomorphic but not dif-
feomorphic to the sphere Sn of dimension n. Such exotic spheres form a finite group �n

under connected sum (see [48, Theorems 1.1 and 1.2],[56, Theorem 12.1 and Section 12.2]).
The orders of these groups can be computed in certain cases, see for example the table (12.2)
of Ref. [56].

Farrel and Jones [24, Theorem 1.1] proved the following: Let M0 be a closed hyperbolic
manifold whose dimension n ≥ 7 is such that there exists an exotic n-sphere �. Then for
every ε > 0 there exists a finite cover M → M0 such that the connected sum M#� is not
diffeomorphic to M (and hence M#� is not diffeomorphic to any locally symmetric space
of rank one due to Mostow-rigidity), but M#� admits a Riemannian metric whose sectional
curvature is contained in (−1 − ε,−1 + ε).

Let us now assume that the first Betti number dim(H1(M0, Z)) of M0 is at least 1. Then
the same holds true for M , and there exists a surjective homomorphism π1(M) → Z. Such
a homomorphism induces for any p ≥ 1 a surjective homomorphism π1(M) → Z/pZ.
The kernel of this homomorphism is an index p normal subgroup of π1(M) which defines a
p-sheeted cover M̂ → M .

Choose p in such a way that p is a multiple of |�n |, the order of the group of exotic
spheres in dimension n. Let � be any nontrivial exotic sphere of dimension n. Since taking
the connected sum with a simply connected space commutes with coverings, the p-fold
connected sum M̂#�#...#� is a p-sheeted smooth cover of M#�. As p is a multiple of |�n |,
the p-fold connected sum of � is the standard sphere, and thus the manifold M̂#�#...#�
is diffeomorphic to the hyperbolic manifold M̂ . Hence, M#� admits a smooth cover by the
hyperbolic manifold M̂ , but M#� is not diffeomorphic to any locally symmetric space.

Since the Borel conjecture is not known in dimension n = 4, we are unable to promote
the homotopy equivalence obtained in Corollary 2.4 to a homeomorphism, even though we
have control on some finite coverings. Note to this end that the case of the lens spaces shows
that there are non-homeomorphic manifolds N1, N2 obtained from the same manifold N by
taking the quotient by two finite groups of homotopic diffeomorphisms (see [56, Corollary
3.70 and Example 3.71]). These manifolds are however not aspherical.

3 Cross ratios and length functions

In this sectionwe beginwith considering an arbitrary n-dimensional RiemannianmanifoldM
of negative sectional curvature. The geodesic flow �t is a smooth dynamical system acting
on the unit tangent bundle T 1M of M . The image �tv of a unit tangent vector v is the
tangent at t of the geodesic with initial velocity v at t = 0. Periodic orbits of �t correspond
to conjugacy classes of the fundamental group � of M .

The universal covering M̃ of M is a simply connected manifold of negative sectional
curvature which can be compactified by adding the boundary at infinity ∂ M̃ . This boundary
is homeomorphic to the (n − 1)-sphere. The fundamental group � of M acts as a group of
transformations on ∂ M̃ .

A Hölder continuous additive cocycle for the geodesic flow �t is a Hölder continuous
function ζ : T 1 M × R → R which satisfies ζ(v, s + t) = ζ(v, s) + ζ(�sv, t) for all
v ∈ T 1 M, s, t ∈ R. Two such cocycles ζ, η are cohomologous if there exists a Hölder
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function f : T 1M → R such that

η(v, t) + f (�tv) = ζ(v, t) + f (v)

for all v ∈ T 1M, t ∈ R. If the manifold M is closed then by the Livshitz theorem for Hölder
cocycles (see [39, Theorem 19.2.4] and [37, pp. 94 and 95]), this is equivalent to stating that
for every periodic point v ∈ T 1M of period τ > 0 we have ζ(v, τ ) = η(v, τ ). In other words,
the periods of ζ coincide with the periods of η. The cocycle ζ is called quasi-invariant under
the flip F : v → −v if the cocycle Fζ : (v, t) → ζ(F�tv, t) is cohomologous to ζ .

Definition 3.1 A multiplicative cross ratio is a (0,∞)-valued Hölder function Cr on the
space

(∂ M̃)4,∗ = {(ξ, ξ ′, η, η′) | ξ, ξ ′, η, η′ ∈ ∂ M̃, {ξ, ξ ′} ∩ {η, η′} = ∅}
with the following properties.

1. Cr(ξ, ξ ′, η, η′) = Cr(ξ, ξ ′, η′, η)−1.
2. Cr(ξ, ξ ′, η, η′) = Cr(η, η′, ξ, ξ ′).
3. Cr(ξ, ξ ′, η, η′)Cr(ξ ′, ξ ′′, η, η′) = Cr(ξ, ξ ′′, η, η′).
4. Cr(ξ, ξ, η, η′) = 1 = Cr(ξ, ξ ′, η, η).
5. Cocycle identity: Cr(ξ, ξ ′, η, η′)Cr(ξ ′, η, ξ, η′)Cr(η, ξ, ξ ′, η′) = 1.

Note that Property (4) is a consequence of Properties (1)–(3). For a group � of isometries
of M̃ we call Cr a �-cross ratio if it is invariant under the action of �.

An additive cross ratio [·, ·, ·, ·] is obtained from a multiplicative cross ratio by taking the
logarithm.

Example 3.2 Consider the unit circle S1, viewed as the ideal boundary of the hyperbolic plane
H

2. For a fixed point x ∈ H
2 we can define theGromov product (ξ, η)x of ξ = η ∈ S1 based

at x as

(ξ, η)x = lim
t→∞

1

2
(2t − d(γξ (t), γη(t)))

where γξ , γη are the geodesic rays from x to ξ, η, respectively. Then

[ξ, ξ ′, η, η′] = (ξ, η)x + (ξ ′, η′)x − (ξ, η′)x − (ξ ′, η)x

defines an additive cross ratio [·, ·, ·, ·] on S1 which does not depend on the choice of x (see
for example [10, p. 96] for this independence). This cross ratio is invariant under the action
of the full group PSL(2, R) of orientation preserving isometries of H

2.
The corresponding multiplicative cross ratio Cr = e[·,·,·,·] satisfies the additional identity

Cr(a, b, c, d) + Cr(b, c, d, a) = 1 (3.1)

for every ordered quadruple (a, b, c, d). It is due to Bonahon [9, Theorem 13] that this
identity characterizes completely the multiplicative cross ratio defined by the length function
of a hyperbolic metric on a closed orientable surface S among all π1(S)-cross ratios on S1.

Alternatively, this cross ratio can naturally be expressed in terms of projective geometry
by passing from the disk model of the hyperbolic plane to the upper half space model {z ∈
C | �(z) > 0}. The corresponding transformation maps the unit circle S1 onto R ∪ {∞}.
Now for any quadruple (x, y, z, w) of pairwise distinct points in R, the classical cross ratio
is defined by

b(x, y, z, w) = |x − z| · |y − w|
|x − w| · |y − z| . (3.2)

123



16 Page 8 of 19 Geometriae Dedicata (2024) 218 :16

This function extends continuously to 1 as x → y or as z → w and has all the above
properties. Furthermore, it clearly is invariant under the action of the group PSL(2, R) by
linear fractional transformations z → az+b

cz+d on the upper half-plane and hence it equals the
cross ratio given above.

The following is [36, Theorem A].

Theorem 3.3 For any closed negatively curved manifold M with fundamental group �, flip
invariant cohomology classes of Hölder cocycles are in one-to-one correspondence with
additive �-cross-ratios on ∂ M̃.

Assume for the remainder of this section that M is compact. Then the correspondence
between cohomology classes of Hölder cocycles and cross ratios has the following property.
Let φ ∈ π1(M) be an arbitrary element. Then φ acts on ∂ M̃ as a homeomorphism, and there
are precisely two fixed points p+, p− for this action. The fixed point p+ is attracting. More
precisely, for any two neighborhoodsU+ of p+,U− of p− there exists a number k > 0 such
that φk(∂ M̃\U−) ⊂ U+.

Let ζ be a Hölder cocycle. Choose any point z ∈ ∂ M̃ − {p±} and put

[p+, p−, z, φ(z)]ζ = ζ(v, T )

where v is a point on the periodic orbit of�t on T 1M defined by φ and T is the period of this
orbit. This extends to a cross ratio on ∂ M̃ which only depends on the periods of the cocycle
ζ and hence it only depends on its cohomology class (see [36, Lemma 1.5]).

The length function defined by the Riemannian metric determines a flip invariant Hölder
length cocycle ζ by defining ζ(v, t) = t for all v, t . The periods of ζ over the periodic orbits
of �t are precisely the periods of �t .

Theorem 3.3 shows that this Hölder cocycle determines an additive cross ratio [·, ·, ·, ·]
on ∂ M̃ which only depends on the lengths of the marked closed geodesics on M , that is, on
the function which associates to a free homotopy class in π1(M) = � the length of a shortest
representative.

The geodesic flow �t on T 1M lifts to the geodesic flow on the unit tangent bundle T 1M̃
of M̃ . The space of oriented geodesics in the universal covering M̃ of M is the space of
oriented orbits of this flow. Since a flow line for this flow as a set is just the set of unit tangent
vectors of an oriented geodesic and since any oriented pair of distinct points in ∂ M̃ is the
oriented pair of endpoints of precisely one oriented geodesic, and every oriented geodesic
arises in this way, the space of oriented geodesics on M̃ can naturally be identified with
∂ M̃ × ∂ M̃ − � where � is the diagonal. Every flow invariant Borel measure on T 1M then
induces a flow invariant Borel measure on T 1M̃ which is moreover invariant under the action
of the fundamental group � of M . This measure determines a geodesic current, that is, a
�-invariant Radon measure on ∂ M̃ × ∂ M̃ − �.

The Riemannian metric on M determines a particular geodesic current as follows. There
is a natural induced Riemannian metric on T 1M called the Sasaki metric (see [63, Definition
1.17] or [50, p. 457]). The fibers of the fibration T 1M → M are isometric to the round
sphere of radius 1. The volume element of this metric defines a measure on T 1M which is
invariant under the geodesic flow �t , of total mass ωn−1vol(M) where ωn−1 is the volume
of the standard (n − 1)-sphere (see [63, Corollary 1.31 and Exercises 1.32 and 1.33] or [50,
Lemma 1.3 on p. 457]). This measure is called the Lebesgue Liouville measure. The geodesic
current defined by this measure is called the Liouville current.

The measure class of the Liouville current can easily be described. Namely, for any
point x ∈ M̃ , there is a natural homeomorphism T 1

x M̃ → ∂ M̃ which associates to a unit
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tangent vector v the equivalence class of the geodesic ray with initial velocity v. Via this
homeomorphism, the standard volume element on the unit sphere T 1

x M̃ pushes forward to
a finite measure λx on ∂ M̃ . It turns out that the measure class of this measure, called the
Lebesgue measure class, does not depend on x , in particular it is invariant under the action
of π1(M). The Liouville current defines the measure class of the product measure λx × λx .

The Liouville current and the length cocycle carry substantial geometric information. To
explain what this means let N denote another negatively curved Riemannian manifold whose
fundamental group is isomorphic to the fundamental group of M . Since M, N are K (π, 1)-
spaces, there then exists a homotopy equivalence F : M → N (in fact, a homeomorphism
if dim(M) = 4), determined by the choice of an isomorphism ρ : π1(M) → π1(N ). This
homotopy equivalence then lifts to a ρ-equivariant quasi-isometry M̃ → Ñ between the
universal covers of M, N [59]. This quasi-isometry in turn defines a ρ-equivariant homeo-
morphism u : ∂ M̃ → ∂ Ñ . If F is homotopic to an isometry, then the map u preserves the
measure class of the Liouville measures, that is, the push-forward of the Lebesgue measure
class on ∂ M̃ equals the Lebesgue measure class on ∂ Ñ .

Part of the following conjecture can for example be found in [17]. For its formulation, note
that any conjugacy class in π1(M) or π1(N ) can be represented by a unique closed geodesic.
We define the length of the geodesic to be the length of the conjugacy class.

Conjecture 3.4 The following are equivalent.

1. The isomorphism ρ preserves the length of all conjugacy classes up to a universal
multiplicative constant.

2. The push-forward of the Lebesgue measure class on ∂ M̃ by the equivariant map u :
∂ M̃ → ∂ Ñ is the Lebesgue measure class on ∂ Ñ .

3. The map F is homotopic to an homothety (an isometry up to rescaling).

In the case that one of the manifolds is rank one locally symmetric, the equivalence of (1)
and (3) was established in [37]building on [3]. It is also known locally, that is, for negatively
curved metrics which are sufficiently close to each other [32]. The equivalence of (1) and
(2) is known if the ideal boundaries M̃, Ñ admit a C1-structure, that is, if there exists a
C1-structure on ∂M, ∂N which is invariant under the action of the group � (we refer to [37]
for more information).

As a consequence, rank one locally symmetric structures on closed manifolds are
geometrically rigid among all negatively curved metrics.

4 Cross ratios and rigidity of geometries on surfaces

In this section we specialize to cross ratios for the fundamental group of a closed orientable
surface of genus at least two, acting on the ideal boundary S1 of its universal covering. An
orientation of the surface determines an orientation of S1.

Any (ordered) quadruple (a, b, c, d)of pairwise distinct points in S1 defines a closed subset
[a, b]× [c, d] ⊂ S1 × S1 −� where [a, b] is the oriented subsegment of S1 connecting a to
b. A Radon measure η on S1 × S1 − � without atoms associates to each such set a measure
η([a, b] × [c, d]) ∈ [0,∞) with the property that

η([a, b′] × [c, d]) = η([a, b] × [c, d]) + η([b, b′] × [c, d])
provided that the ordered 5-tuple (a, b, b′, c, d) is compatiblewith the orientation of S1. Ifη is
invariant under the flip exchanging the two factors, then η([a, b]×[c, d]) = η([c, d]×[a, b]).
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Thus such a measure which is in addition invariant under the action of � has the equivalent
of properties (2)–(5) of an additive cross ratio, but viewed as a function on (S1)4,∗, it need
not be Hölder continuous.

Vice versa, an additive cross ratio with the additional property that its value on any ordered
quadruple (a, b, c, d) of points defining the orientation of S1 is non-negative defines a finitely
additive non-negative function on quadrangles in S1 × S1 − �, that is, products of disjoint
closed invervals. Since such quadrangles generate the Borel σ -algebra of S1 × S1 − �, the
cross ratio determines in fact a �-invariant Radon measure on S1 × S1 − �.

In this vein, the following is the second part of Lemma 2.6 of [37]. It is essentially due
to Otal [62, Proposition 3], and to Bonahon [9, Proposition 14] in the case of hyperbolic
surfaces.

Proposition 4.1 If (S, g) is a closed negatively curved surface, then the cross ratio of the
length cocycle of S equals the Liouville current of the metric g.

Note that there is a small inconsistency here as we define a current to be a Radon measure
on oriented geodesics. Other articles work with unoriented geodesics.

As a consequence, we obtain

Corollary 4.2 Themarked length spectrumof a closed negatively curved surface S determines
the Liouville current of T 1S and hence the volume of S.

Proof By Proposition 4.1, the marked length spectrum of S determines the Liouville current
and hence the Lebesgue Liouville measure on T 1S. The volume of S equals the total mass
of T 1S for this measure divided by 2π . ��

In fact much more is true. The following result summarizes work of Otal [62, Théorème
1], Croke [20, Theorem B] (also using that the geodesic flow as a dynamical system can
be reconstructed from the marked length spectrum—see [17, (3.5) and (10.3)], [35]) and
Guillarmou, Lefeuvre, Paternain [33, Theorem 1.1].

Theorem 4.3 (Otal, Croke, Guillarmou-Lefeuvre-Paternain) Let � be a closed oriented sur-
face of genus g ≥ 2. Then two metrics on � with the same marked length spectrum which
are either non-positively curved or whose geodesic flow is Anosov are isometric.

An additive cross ratio [·, ·, ·, ·] for a closed oriented surface S is called positive if for every
ordered quadruple (a, b, c, d) of pairwise distinct points in ∂ S̃ we have [a, b, c, d] > 0. The
following is now immediate from Theorem 4.3 since the marked length spectrum can be read
off from the cross ratio associated to the length cocycle.

Corollary 4.4 The length cocycle of a negatively curved metric on a closed oriented surface
S defines a positive cross ratio which determines the metric up to isometry.

The space of all smooth negatively curved metrics on S up to diffeomorphisms which are
isotopic to the identity can be equipped with the structure of an infinite dimensional Frechet
manifold. Namely, such a metric is a smooth positive definite section of the tensor bundle
�2T ∗S of symmetric bilinear forms on T S. Since being positive definite is an open condition,
the space of such metrics is an open subset of the infinite dimensional vector space of smooth
sections of �2T ∗S, which can naturally be equipped with a topology (a Frechet topology).
The group of diffeomorphisms of S acts by pull-back on such metrics. The quotient of the
space of metrics by this action can locally be identified with a slice transverse to the orbit
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of this action. That locally near a given metric g, divergence free sections of �2T ∗M with
respect to g determine such a slice is a fairly standard fact. We refer to Ref. [21] for more
information.

Corollary 4.4 shows that there is a continuous embedding of this space into the space of
cross ratios, equipped with the topology as a direct limit of the space of functions of Hölder
class Cα for some α ∈ (0, 1). Namely, each negatively curved metric on S determines a
Hölder structure on S1 = ∂ S̃. That is, start with a given identification T 1

x S̃ → S1 defined
by associating to a unit tangent vector v at x the equivalence class of the geodesic ray with
initial velocity v. The same construction at a different point y ∈ S̃ defines a homeomorphism
T 1
x S̃ → T 1

y S̃. Since the dimension of S1 equals 1 and this map is absolutely continuous with
respect to the Lebesgue measure, this homeomorphism is in fact of class C1. Hence S1 has a
natural invariant C1-structure, so Hölder continuity with exponent α ∈ (0, 1) can be defined
without ambiguity. A cross ratio defined by a different metric is then Hölder continuous with
exponent α for some α ∈ (0, 1) depending on the metric.

Definition 4.5 An order preserving orbit equivalence between two flows (M,�t ), (N , � t )

is given by a continuous map F : M → N and a continuous function σ : M×R → Rwhose
restriction to each set {v} × R is an increasing homeomorphism and such that F(�tv) =
�σ(v,t)F(v) for all v ∈ M, t ∈ R. A reparameterization of the flow �t is a flow � t on M
such that the identity is an order preserving orbit equivalence between �t and � t .

Note that a reparameterization of an Anosov flow maps periodic orbits to periodic orbits,
so we can talk about the periods of the reparameterized flow. That a negatively curved metric
g1 on a closed manifold which is connected by a smooth path of such metrics to another
metric g0 gives rise to a reparameterization of the geodesic flow for g0 with controlled
reparameterization function was worked out in [47, Proposition 2.2], [22, Theorem A.1].

Reparameterizations of the geodesic flow can also more abstractly be obtained from pos-
itive cross ratios, as was observed in [37, Beginning of Section 2], where it was formulated
in terms of positive flip invariant Hölder cocycles.

Proposition 4.6 Let S be a closed hyperbolic surface with unit tangent bundle T 1S and
geodesic flow�t . A positive additive cross ratio [, , , ] determines aHölder reparametrization
� t of �t .

Proof An ordered triple (a, b, c) ∈ (S1)3 of pairwise distinct points determines a point
v ∈ T 1 S̃ by the requirement that v is tangent to the oriented geodesic γ connecting a to b
and that the footpoint of v = γ ′(0) is the shortest distance projection of c into γ . For t > 0
define σ(v, t) = [a, b, c, u(t)] where u(t) is contained in the component of S1 − {a, b}
containing c and is such that the projection of u(t) into γ equals γ (t). This clearly does not
depend on choices and determines the required reparameterization by equivariance. ��

5 Cross ratios and Kleinian surface groups

For any closed oriented surface S of genus g ≥ 2, the set of marked hyperbolic metrics on
S has naturally the structure of a manifold of dimension 6g − 6, the so-called Teichmüller
space of S. Thus the set of all π1(S)-invariant cross ratios arising from negatively curved
metrics on the surface S contains as a finite dimensional subspace the space of all cross ratios
of hyperbolic metrics.
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Teichmüller space can be thought of as a connected component of the character variety
of homomorphisms π1(S) → PSL(2, R) up to conjugation. This identification arises from
the fact that a hyperbolic metric on S defines an isometric action of π1(S) on the universal
covering of S which is isometric to the hyperbolic plane, and the thus defined embedding
of π1(S) into the group PSL(2, R) of orientation preserving isometries of H

2 is uniquely
determined up to conjugation by the hyperbolic metric and a choice of a marking of S. Such a
marking is the data of an isomorphism of π1(S)with its image in PSL(2, R). The component
of the character variety defining Teichmüller space consists entirely of discrete and faithful
representations.

The topology of the character variety for surface group homomorphisms π1(S) → G
(where G is any simple Lie group) is the algebraic topology which is defined as follows.

Let α1, . . . , α2g be a generating set of π1(S). The image in G2g of the tuple (α1, . . . , α2g)

under a homomorphism ρ determines ρ completely. Thus the topology of G2g induces a
topology on the space of all homomorphismsπ1(S) → G. Sinceπ1(S) is a one-relator group,
the images of the elements αi are solutions of a single algebraic equation which defines a
subvariety ofG2g , the so-called representation variety. The Lie groupG acts continuously on
the representation variety by conjugation, and the character variety is the geometric invariant
theoretic quotient.

As we discussed in Sect. 4 (see Corollary 4.4), a point in Teichmüller space, which is a
component of character variety for PSL(2, R), is uniquely determined by a cross ratio, and
the cross ratios arising in this way form a finite dimensional family, characterized by special
symmetries. Replacing the group PSL(2, R) by another simple Lie group of non-compact
type gives rise to other finite dimensional spaces of length functions and cross ratios for
π1(S) which are geometrically significant but less well understood. The first difficulty is
of topological nature. Namely, let G be a simple Lie group of non-compact type not locally
isomorphic to PSL(2, R) and let K < G be amaximal compact subgroup. Then X = G/K is
a symmetric space of non-compact type, which is a simply connectedmanifold of non-positive
curvature. The image ofπ1(S) under a discrete and faithful homomorphismρ : π1(S) → G is
torsion-free and hence acts freely on X . Then ρ(π1(S))\X is a manifold whose fundamental
group is isomorphic to π1(S). However, this quotient manifold has infinite volume, and it is
a priori unclear how to describe the diffeomorphism type of this manifold.

We next discuss the case G = PSL(2, C), the isometry group of hyperbolic 3-space.
Then the space of discrete and faithful representations ρ : π1(S) → G up to conjugation is
precisely the space of complete hyperbolic 3-manifolds whose fundamental group is marked
isomorphic to π1(S). Via the natural inclusion PSL(2, R) → PSL(2, C), the space of
such manifolds, equipped with the algebraic topology, contains Teichmüller space as the
subspace of hyperbolic 3-manifolds which deformation retract onto a closed totally geodesic
hyperbolic surface diffeomorphic to S.

That the diffeomorphism type of the manifold M defined by the image does not depend on
the representation provided that the representation is discrete and faithful is a consequence
of a result of Bonahon [8, Theoreme A], see also [1] and [18, Theorem 0.4] for a more
general result, and earlier work in 3-dimensional topology [41]. Namely, Bonahon’s work
implies that M is homeomorphic to the interior of a compact 3-manifold M̄ with boundary,
and classical tools in 3–manifold topology can be used to show that M̄ is homeomorphic to
an I -bundle over S (recall that we require S to be orientable).

Proposition 5.1 Any hyperbolic 3-manifold whose fundamental group is isomorphic to the
fundamental group π1(S) of a closed surface S is diffeomorphic to S × R.
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AKleinian group is a discrete subgroup of PSL(2, C). The limit set � of a Kleinian group
� is the set of accumulation points of a �-orbit in H

3 ∪ ∂H
3. It is the smallest non-empty

closed �-invariant subset of the ideal boundaryCP1 = S2 ofH
3. If � is isomorphic to π1(S)

then � is called quasi-Fuchsian if its limit set � is homeomorphic to a circle and if there
exists an equivariant Hölder homeomorphism ∂ S̃ → �

Aquasi-Fuchsian group� acts on the two components ofCP1−� as a group of conformal
transformations. Since each of these components is biholomorphic to a disk by the Riemann
mapping theorem, this action determines two (in general distinct) points in T (S) which in
turn determine � completely. Quasi-Fuchsian groups form an open connected subset of the
smooth locus of character variety, but they are strictly contained in their proper component
of character variety. We refer to [57, Chapter 4] for more information.

Now on ∂H
3 = S2 = CP1 = C ∪ {∞} there exists a natural PSL(2, C)-invariant

multiplicative cross ratio Cr, defined by the formula (3.2) for points in ∂H
3 − {∞} = C.

This cross ratio then extends to a PSL(2, C)-invariant cross ratio on ∂H
3. The following

was pointed out in [38, Section 3]. For its formulation, note that the space of cross ratios on
S1 is naturally equipped with the compact open topology.

Proposition 5.2 The map which associates to a quasi-Fuchsian representation ρ the cross
ratio on S1 = ∂H

2 which is the pull-back of the restriction of the cross ratio of CP1 to the
limit set of ρ is an embedding.

As discussed in Sect. 3, Proposition 5.2 is equivalent to stating that quasi-Fuchsian man-
ifolds enjoy marked length spectrum rigidity: a quasi-Fuchsian manifold is determined by
its marked length spectrum among all quasi-Fuchsian manifolds. This does not imply that a
quasi-Fuchsian manifold is determined by its marked length spectrum among other classes
of geometric structures.

The quasi-Fuchsian group � acts properly, freely and cocompactly on the set G of unit
tangent vectors of oriented geodesic lines in H

3 with both endpoints in the limit set � of �.
The quotient manifold N is homeomorphic to T 1S, and the geodesic flow on N , which is
the projection of the geodesic flow on G, is order preserving orbit equivalent to the geodesic
flow on T 1S (see [38, Lemma 3.1]). However, we have

Proposition 5.3 There are quasi-Fuchsian manifolds whose associated additive cross ratio
is not positive. For such a quasi-Fuchsian manifold there is no negatively curved metric on
S which gives rise to the same length function.

Proof The group PSL(2, C) acts triply transitively on CP1, and it preserves the cross ratio
Cr. By invariance, an ordered triple of distinct points in the limit set � of the quasi-Fuchsian
group � may be moved with an element of PSL(2, C) to the triple (0, 1,∞). The set
U = {z ∈ CP1 | Cr(0, z, 1,∞) < 1} is open and not empty. We claim that there are quasi-
Fuchsian groups � so that the oriented arc in the limit set � connecting 0 to 1 intersects
U .

To this end note that there exists a sequence of quasi-Fuchsian groups �i which converge
algebraically to a doubly degenerate Kleinian group isomorphic to π1(S). An example of
such a group arises from the natural infinite cyclic covering of a hyperbolic 3-manifold which
fibers over the circle. We refer to the survey [53] for details and references. By a result of
Thurston (see [57, Theorems 7.35 and 7.41]), the limit sets �i of the groups �i converge
in the Hausdorff topology to CP1, which is the limit set of a doubly degenerate Kleinian
group. Furthermore, the corresponding equivariant maps S1 = ∂H

2 → �i converge in the
C0-topology to a space filling curve. We refer to [58] for details and a historical account. By
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equivariance, that is, north–south dynamics of the action of all nontrivial elements of �, the
image of any open subset of S1 under the limiting map is space filling.

But this means that for sufficiently large i , the image of the arc in �i connecting 0 to
1 meets the region U and hence there exists an ordered quadruple of distinct points in S1

which is mapped to a quadruple on which logCr takes on a negative value. Since on the other
hand the cross ratio of the length function of a negatively curved metric on S is positive, this
shows that the length function of this quasi-Fuchsian manifold is not the length funtion of
any negatively curved metric on S. ��

Since the quasi-Fuchsian space for S is a complex manifold of complex dimension 6g−6
it makes sense to ask the following question, which seeks an answer similar to Bonahon’s
characterization [9, Theorem 13] in the Fuchsian case (see (3.1)).

Question 5.4 Can cross ratios defined by quasi-Fuchsian groups be characterized by
additional symmetries?

Bridgeman and Canary [11, Theorem 1.1] established a strengthening of Proposition 5.2
which is valid for all hyperbolic 3-manifolds whose fundamental group is isomorphic to a
surface group. Due to the fact that the limit set of a Kleinian surface group may be the entire
sphere CP1, this result does not seem to have an interpretation via cross ratios.

Theorem 5.5 (Bridgeman-Canary) A hyperbolic 3-manifold whose fundamental group is
isomorphic to π1(S) is determined up to isometry by the lengths of all closed geodesics
corresponding to simple closed curves on S.

A result of Jörgensen [45, Theorem 1] shows that for G = PSL(2, C), discreteness of
a homomorphism is a closed condition with respect to the algebraic topology. On the other
hand, we saw above that quasi-Fuchsian space is a proper subset of a component of the
character variety.

The structure of the space of all conjugacy classes of discrete and faithful representations
of surface groups into PSL(2, C), equipped with the algebraic topology, was uncovered by
the solution to the so-called ending lamination conjecture [14]. As a consequence, the set of
quasi-Fuchsian representations of a surface group forms a dense subset of this space.

6 Cross ratios, Hilbert metrics and real projective structures

In this final section we consider subgroups of the simple Lie group PSL(n + 1, R) acting as
a group of projective automorphisms on real projective space RPn .

An open subset� ofRPn which is contained in the complement of a projective hyperplane
has two disjoint preimages �+,�− in the sphere Sn which are exchanged by the isometric
involution x → −x . The set � is called properly convex if one of its preimages in Sn is
convex, and it is called strictly convex if any projective line intersects the boundary ∂� of �

in at most two points. An example of such a set is an ellipsoid which is defined as follows.
Let q be a quadratic form on R

n+1 of signature (1, n) and put

�q = {[v] | q(v) > 0}.
Clearly an ellipsoid is invariant under the stabilizer PSO(1, n) ⊂ PSL(n + 1, R) of the
quadratic form q . Furthermore, all ellipsoids are projectively equivalent.
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To each properly convex set � is associated its dual �∗ which is the convex subset of the
projectivization of the dual defined by

�∗ = {R f | f (v) > 0 for all v ∈ �+ ⊂ Sn}
which also is properly convex. If � is an ellipsoid then so is �∗.

If � ⊂ RPn is a strictly convex set, then one can use the invariant additive cross ratio
[, , , ], defined as before using projection into R

n , to define a so-called Hilbert metric on �

as follows. For x = y ∈ � there exists a unique projective line L passing through x, y. This
line intersects the boundary ∂� of � in two points p±. The Hilbert distance between x, y is
then defined as 1

2 [p−, x, y, p+] where we assume that the points (p−, x, y, p+) are ordered
on L .

If� is an ellipsoid then its Hilbert metric is just the standard hyperbolic metric. In general
theHilbert metric is only a Finsler metric. Nevertheless it makes sense to ask about conditions
which guarantee that the Hilbert metric is hyperbolic in the sense of Gromov, and one can
ask for discrete subgroups of PSL(n + 1, R) acting properly and cocompactly on �. The
first question was completely settled by Benoist [4, Théorème 1.4] and can be expressed once
again in terms of cross ratios. We next explain his result.

A properly convex subset � of RPn is called divisible if it admits a proper cocompact
action by a subgroup� of PSL(n+1, R).We then say that� divides�. Among the ellipsoids
(which can be identified with hyperbolic space), there are other symmetric divisible properly
convex sets. These are precisely the convex sets� on which the automorphism group Aut(�)

acts transitively and such that Aut(�) is reductive. Here the automorphism group Aut(�)

is the subgroup of PSL(n + 1, R) which stabilizes �. They arise from symmetric convex
cones and are completely classified. We refer to [23] for more information.

The following result of Benoist [5, Théorème 1.1] characterizes divisible strictly convex
sets.

Theorem 6.1 (Benoist)

1. If � divides some divisible properly convex set � then � is hyperbolic in the sense of
Gromov if and only if � is strictly convex.

2. A divisible properly convex open set has a boundary of class C1 if and only if it is strictly
convex.

As in the case of Fuchsian groups or quasi-Fuchsian groups, it makes sense to study the
deformation space of convex projective structures for a given finitely generated group �.
More precisely, we are interested in

F� = {ρ ∈ Hom(�, PSL(n + 1, R)) | ρ is faithful with discrete image

dividing a properly convex open set �ρ ⊂ Sn}
as well as its quotient X� = F�/PSL(n + 1, R) under the action of PSL(n + 1, R) by
conjugation.

A convex set � ⊂ Sn is irreducible if the cone C over � can not be written as the
sum C = C1 + C2 of two convex cones contained in proper subspaces Vi of R

n+1. Call a
homomorphism ρ : � → PSL(n + 1, R) strongly irreducible if no finite index subgroup
stabilizes a reducible properly convex subset of RPn . The following combines results of
Koszul [51, Corollaire] and Benoist [6, Théorème 1.1, Corollaires 1.2 and 2.13(i’),(iii)] and
contrasts the case of surface group representations into PSL(2, C). Recall that a quasi-
Fuchsian group acts properly and cocompactly on a component� of its domain of continuity
in CP1.
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Theorem 6.2 (Koszul, Benoist) IfF� contains a strongly irreducible representation, then the
set F� is open and closed in Hom(�, PSL(m + 1, R)) and hence it is a union of connected
components.

In the case n = 2, a group � dividing a properly convex subset of RP2 is necessarily a
surface group. It is due to Goldman [31, Corollary after Theorem 1] that the moduli space
of such real projective structures on a surface of genus g ≥ 2 is diffeomorphic to R

16g−16.
Perhaps unexpectedly, the moduli space of such structures can also be interesting in higher
dimensions. The following is due to Johnson and Millson [44, Theorem 1].

Theorem 6.3 (Johnson-Millson) For any n ≥ 2 there exist discrete cocompact subgroups �

of PO(1, n) so that the component F� containing the inclusion � → PSL(n + 1, R) has
positive dimension.

Since the Borel conjecture is known for hyperbolic groups by the work of Barthels-Lück
[2, Theorem A], these deformations give rise to mutually homeomorphic quotient manifolds
if n = 4.

For any subgroup � < PSL(n + 1, R) dividing a properly convex subset of RPn , the
marked length spectrum is defined as before in terms of the Hilbert metric. The translation
length of an element γ ∈ � for this metric equals

�(γ ) = log
λ1(γ )

λn+1(γ )

where λ1(γ ) is the spectral radius of γ as a matrix in SL(n + 1, R) and λn+1(γ )−1 is the
spectral radius of γ −1.

The following rigidity result is due to Cooper and Delp [19, Theorem 1.1], extending (and
correcting) earlier work of Kim [49, Theorem I]. For its formulation, let � ⊂ RPn be a
strictly convex set. Choose a component �+ of its preimage in Sn , with dual �∗.

Theorem 6.4 (Cooper-Delp) Two distinct strictly convex projective structures on � have the
same marked Hilbert length spectrum if and only if each structure is the projective dual of
the other.

Assume that � acts properly and cocompactly on the stricly convex subset � of RPn .
Then � is a finitely generated subgroup of PSL(n + 1, R). By Selberg’s lemma (see [64,
Corollary 4 on page 331]) � has a finite index normal subgroup which is torsion-free. Thus
let us assume that � is torsion-free for simplicity. Then �/� is a closed manifold M . As
� is hyperbolic in the sense of Gromov by Theorem 6.1, the homeomorphism type of M
does not depend on � if n = 4. As a consequence, by considering a non-self-dual strictly
convex projective structure (see [19, Theorem 1.2]), Theorem 6.4 yields non-isometric real
projective structures on a fixedmanifoldM with the samemarked length spectrum. However,
this ambiguity is completely understood.

More precisely, there is an asymmetry for an element A ∈ SL(n + 1, R) with pairwise
distinct real eigenvalues λ1 > · · · > λn+1 and its inverse A−1. Namely, the largest eigenvalue
of A−1 equals λ−1

n+1, which is in general different from λ1. The Hilbert length gives the same
translation length to A and A−1, and it turns out that this identifies the translations lengths
on a convex set and its dual.

This ambiguity can be resolved by replacing the Hilbert translation length by other natural
length functions. For example, the spectral length �(A) of an element A ∈ SL(n + 1, R)

which is diagonalizable over R is the logarithm of the maximal eigenvalue of A. Associating
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to a representation ρ : � → PSL(n+ 1, R) and γ ∈ � the spectral length of its image ρ(γ )

defines a length function for the representation which turns out to be rigid.
Namely, given a surface S of genus at least two, there is a distinguished component

of the character variety for surface group homomorphisms π1(S) → PSL(n, R), the
so-called Hitchin component (see [42, Theorem A]). This is the component containing
the Fuchsian locus, the set of all homomorphisms which factor through an embedding
PSL(2, R) → PSL(n, R) defined by an irreducible representation of PSL(2, R) on R

n .
Such a representation is unique up to conjugation. TheHitchin component consists entirely of
discrete and faithful representations (see [52, Theorem 1.5], [26]). For such a representation
ρ and any element γ ∈ �, the element ρ(γ ) is diagonalizable over R and hence its spectral
length is defined. The resulting function on � is called the spectral marked length spectrum.
The following rigidity result is due to Bridgeman, Canary, Labourie and Sambarino ([13,
Theorem 1.2 and Corollary 11.6]).

Theorem 6.5 (Spectral length rigidity) Two surface group representations in the Hitchin
component with the same spectral marked length spectrum are conjugate.

In fact, as for quasi-Fuchsian groups, a Hitchin representation is already determined by the
spectral lengths of the images of all non-separating simple closed curves on S [12, Theorem
1.1].
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