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Abstract
A curve γ in a Riemannian manifold M is three-dimensional if its torsion (signed second
curvature function) is well-defined and all higher-order curvatures vanish identically. In
particular, when γ lies on an oriented hypersurface S of M , we say that γ is well positioned
if the curve’s principal normal, its torsion vector, and the surface normal are everywhere
coplanar. Suppose that γ is three-dimensional and closed. We show that if γ is a well-
positioned line of curvature of S, then its total torsion is an integer multiple of 2π ; and that,
conversely, if the total torsion of γ is an integer multiple of 2π , then there exists an oriented
hypersurface of M in which γ is a well-positioned line of curvature. Moreover, under the
same assumptions, we prove that the total torsion of γ vanishes when S is convex. This
extends the classical total torsion theorem for spherical curves.
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1 Introduction andmain result

In classical differential geometry, the total torsion theorem states that the total torsion of a
closed spherical curve vanishes; see [3, 4, 10, 11] and [7, p. 170].

Theorem 1.1 Let I = [0, �], and let γ : I → R
3 be a smooth regular curve. If γ is closed

and γ (I ) ∈ S
2, then

∫ �

0
τ dt = 0.

Theorem 1.1 manifests the fact that “the torsion of a closed curve lying on a surface inR3

is somehow constrained by the geometry of [the] surface” [8, p. 111]; see, e.g., [1, 5, 6, 12]
for further evidence of the same fact.

Closely related to Theorem 1.1 is the following result of Qin and Li.

Theorem 1.2 [9] Let S be a (smooth) oriented surface inR3. If γ is a closed line of curvature
of S, then the total torsion is an integer multiple of 2π . Conversely, if the total torsion of a
closed curve in R

3 is an integer multiple of 2π , then it can appear as a line of curvature of
an oriented surface.

Theorem 1.1 and the first part of Theorem 1.2 have been generalized to three-dimensional
orientable Riemannian manifolds of constant curvature M3

c [8]; see also [2, 15] for related
results. In the present note we shall see that, under suitable assumptions, both theorems
remain valid when M3

c is replaced by an arbitrary Riemannian manifold Mm ≡ M , provided
one restricts the attention to three-dimensional curves; roughly speaking, a curve in M is
three-dimensional if it has one curvature and one “torsion”, all other curvature functions
being zero. As we explain below, in that case one should interpret “torsion” as a signed
version of Spivak’s “second curvature function” [13, p. 22].

Let γ be a unit-speed curve I → M , let N be a unit normal vector field along γ , and letπH
be the orthogonal projection ontoH = (γ ′ ⊕ N )⊥. We say that N is torsion-defining if there
exists a smooth unit vector fieldW (N ) along γ that is everywhere parallel to Tg = −πHDt N .
If N is torsion-defining, then the function τg = 〈Tg,W (N )〉 is called the (first) geodesic
torsion of γ with respect to N . In particular, if Dtγ

′ is never zero, then the geodesic torsion
of γ with respect to the principal normal P = Dtγ

′/κ is called the (first) torsion of γ , and
γ is said to be a Frenet curve.

The logic behind our terminology is the following. In the same way a generic curve in
R
3 has one (unsigned) curvature plus one (signed) torsion, a generic curve in M may have

one (unsigned) curvature plus m − 2 (signed) torsions; cf. [13]. On the other hand, since we
never deal with higher-order torsions, we typically speak of “torsion” as a shorthand for “first
torsion”.

Now, to state our generalization of Theorems 1.1 and 1.2, let S be an oriented hypersurface
of M , and let NS be its unit normal. A Frenet curve on S is said to be well positioned if NS ,
P , and W (P) are everywhere coplanar.

Theorem 1.3 Suppose that γ is three-dimensional, i.e., that γ is a Frenet curve such that
W (P) is parallel inH(P); seeDefinition 6.1. If γ is a well-positioned closed line of curvature
of S, then the total torsion of γ is an integer multiple of 2π; in particular, the total torsion
vanishes when S is convex, i.e., when the second fundamental form of S is positive definite.
Conversely, if γ is open, then there exists an orientable hypersurface in which γ is a well-
positioned line of curvature; if γ is closed, then the same holds provided the total torsion of
γ is an integer multiple of 2π .
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Clearly, when dim M = 3, every Frenet curve is three-dimensional, and every Frenet curve
on S is well positioned. Specializing the theorem to that case, we may state the following
result.

Corollary 1.4 Suppose that dim M = 3 and that γ is a closed Frenet curve. If γ is a line of
curvature of S, then the total torsion of γ is an integer multiple of 2π; in particular, the total
torsion vanishes when S is convex. Conversely, if the total torsion of γ is an integer multiple
of 2π , then there exists an orientable surface in which γ is a line of curvature.

Remark 1.5 If dim M = 3, then every regular curve with nonvanishing curvature is a Frenet
curve.

We will obtain Theorem 1.3 as a corollary of a more general statement involving the
geodesic torsion of γ with respect to an arbitrary unit normal vector field N along γ , in
which the assumption that γ is three-dimensional is replaced by the condition that N is a
parallel rotation of NS .

Let N and Z be unit normal vector fields along γ . We say that Z is a rotation of N if
there exists a continuous unit vector field H(N , Z) ≡ H such that

(1) 〈H , γ ′〉 = 〈H , N 〉 = 0, i.e., H ∈ �(H);
(2) H , N , and Z are everywhere linearly dependent.

Clearly, if N ∧ Z is nowhere zero, then the vector field H is defined up to a sign.
Now, suppose that Z is a rotation of N . Then we can write

Z ≡ N (θ) = − sin(θ)H + cos(θ)N

for some continuous function θ : I → R.

Definition 1.6 A rotation of N is said to be parallel if H is parallel with respect to the induced
connection on H, and closed if θ(�) − θ(0) = 2nπ for some n ∈ Z.

Remark 1.7

(1) If dim M = 3, then any unit normal vector field along γ is a parallel rotation of N .
(2) If γ is closed, then so is any rotation of N .

Theorem 1.8 If γ is a line of curvature of S, then the total geodesic torsion of γ with respect
to any closed parallel rotation of NS is an integer multiple of 2π . Conversely, suppose that
N is torsion-defining and that W (N ) is parallel in H. If γ is open, then there exists an
orientable hypersurface of M in which γ is a line of curvature; if γ is closed, then the same
holds provided the total geodesic torsion of γ with respect to N is an integer multiple of 2π .

Remark 1.9 It follows from Sect. 4 that, if γ is a line of curvature of S and P is a parallel
rotation of NS , then γ is three-dimensional.

The remainder of the paper is organized a follows. In Sect. 2 we set up some notations. In
Sect. 3 we generalize the well-known concepts of geodesic curvature, normal curvature, and
geodesic torsion of a curve on a surface in R

3 to a curve on a hypersurface of M ; although,
under reasonable assumptions, one may define m − 2 geodesic curvatures and geodesic
torsions, for the sake of simplicity we shall limit ourselves to first-order curvatures. In Sect. 4
we obtain formulas expressing the curvature vectors of γ with respect to a rotation of N
in terms of the rotation angle. Finally, in Sects. 5 and 6 we prove Theorems 1.8 and 1.3,
respectively.
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2 Preliminaries

In this section we discuss some preliminaries.
Let M be an m-dimensional Riemannian manifold, let γ be a smooth unit-speed curve

I → M , and let T M |γ be the ambient tangent bundle over γ . Recall that

T M |γ =
⊔
t∈I

Tγ (t)M .

We define a distribution of rank r along γ to be a rank-r subbundle of T M |γ .
Let D be a distribution of rank r along γ , and let D⊥ be the distribution of rank m − r

along γ whose fiber at t is the orthogonal complement D⊥
t of Dt in Tγ (t)M , so that T M |γ

splits as

T M |γ = D ⊕ D⊥;
accordingly, we write

X = Xv + Xh

for any vector field X along γ .
In this setting, the tangential projection is the map πD : �(T M |γ ) → �(D) given by

X �→ Xv.

Likewise, the normal projection is the map π⊥
D : �(T M |γ ) → �(D⊥) sending each X to the

corresponding Xh .

3 Darboux curvatures and curvature vectors

The purpose of this section is to extend the classical notions of geodesic curvature, normal
curvature, and geodesic torsion of a curve on a surface in R3 to a curve on a hypersurface of
M .

Let γ be a (smooth) unit-speed curve I → M , let N be a unit normal vector field along γ ,
and letH(N ) ≡ H be the distribution of rankm−2 along γ whose fiber at t is the orthogonal
complement of E(t) = γ ′(t) and N (t) in Tγ (t)M . Denoting by Dt the covariant derivative
along γ , we define

• the (first) geodesic curvature vector Kg of γ with respect to N by

Kg = πHDt E;
• the normal curvature vector Kn of γ with respect to N by

Kn = πN Dt E,

where N = span N ;
• the (first) geodesic torsion vector Tg of γ with respect to N by

Tg = −πHDt N .

To express these vector fields in coordinates, let (H1, . . . , Hm−2) be a smooth orthonormal
frame for H. Then there are functions κ1

g , . . . , κ
m−2
g , κn , and τ 1g , . . . , τm−2

g such that

Kg = κ1
g H1 + · · · + κm−2

g Hm−2,
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Kn = κnN ,

Tg = τ 1g H1 + · · · + τm−2
g Hm−2.

Note that, since (E, H1, . . . , Hm−2, N ) is orthonormal, the following equations hold for
all j = 1, . . . ,m − 2:

Dt E = κ1
g H1 + · · · + κm−2

g Hm−2 + κnN ,

Dt Hj = −κ
j
g E + τ

j
g N + πHDt Hj ,

Dt N = −κn E − τ 1g H1 − · · · − τm−2
g Hm−2.

The curvature vectors allow us to define corresponding curvature functions. In one case,
the definition is trivial: the function κn = 〈Dt E, N 〉 is called the normal curvature of γ with
respect to N . For the remaining two cases, we proceed as follows.

We say that N is curvature-defining if there exists a smooth unit vector field V (N ) ≡ V
along γ that is everywhere parallel to Kg . If N is curvature-defining, then the function
κg = 〈Kg, V 〉 is called the (first) geodesic curvature of γ with respect to N .

Similarly, we say that N is torsion-defining if there exists a smooth unit vector field
W (N ) ≡ W along γ that is everywhere parallel to Tg . If N is torsion-defining, then the
function τg = 〈Tg,W 〉 is called the (first) geodesic torsion of γ with respect to N .

It is clear that both κg and τg are defined up to a sign.
Armed with the notion of geodesic torsion, we may now define torsion. Suppose that the

curvature κ = ‖Dt E‖ of γ is nowhere zero, so that the principal normal P = Dt E/κ is
well-defined. The geodesic torsion vector of γ with respect to P is called the (first) torsion
vector of γ . In particular, if P is torsion-defining, then the geodesic torsion of γ with respect
to P is called the (first) torsion of γ .

Remark 3.1 If P is well-defined, then the normal curvature of γ with respect to P coincides
with the curvature of γ , while the geodesic curvature with respect to P vanishes.

To see that our curvature functions naturally extend the classical Darboux curvatures,
consider an oriented hypersurface S of M , and let NS be its unit normal. If γ is a curve on S,
then the geodesic (resp., normal) curvature vector of γ (with respect to NS) is the projection
onto T S (resp., NS) of the ambient acceleration Dt E of γ ; and if γ is not a geodesic of
M , then the geodesic torsion vector of γ at γ (t) is nothing but the torsion vector of the
S-geodesic passing from γ (t) with tangent vector γ ′(t) [14, p. 193].

Yet another indication of the naturality of our definition of geodesic torsion is provided
by the following lemma, which will play a key role in the proof of Theorem 1.8.

Lemma 3.2 A curve on S is a line of curvature if and only if its geodesic torsion vector with
respect to NS vanishes.

Remark 3.3 Under suitable assumptions, one may define m − 2 geodesic curvature and
(geodesic) torsion functions. For instance, the second geodesic torsion is defined as follows.
Let H2 = (T ⊕ N ⊕ Tg)⊥, let πH2 be the orthogonal projection onto H2, and let

Tg,2 = −πH2DtTg.

If Tg is itself torsion-defining, i.e., there exists a smooth unit vector field W2 along γ that is
everywhere parallel to Tg,2, then the function τg,2 = 〈Tg,2,W2〉 is called the second geodesic
torsion of γ with respect to N . Higher-order geodesic torsions are defined similarly.
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4 Rotating the normal

Suppose that the normal vector N along γ rotates about the curve’s tangent. Then how do
the curvature vectors change? The purpose of this section is to answer such question.

Let Z be a rotation of N . Then, by definition, there exists a unit normal vector field
H(N , Z) ≡ H ∈ �(H) along γ such that N , Z , and H are everywhere linearly dependent;
besides, there is a continuous function θ : I → R such that

Z = − sin(θ)H + cos(θ)N .

Denoting Z by N (θ), we call the function θ the rotation angle of N (θ) with respect to H .
Now, let (H1, . . . , Hm−2) be a smooth orthonormal frame for H = (E ⊕ N )⊥, with

H1 = H . It follows that

N (θ) = − sin(θ)H1 + cos(θ)N ,

while the vector fields

H1(θ) = cos(θ)H1 + sin(θ)N ,

H2(θ) = H2,

...

Hm−2(θ) = Hm−2

span H(N (θ)) = (E ⊕ N (θ))⊥.

Lemma 4.1 The curvature vectors of γ with respect to N (θ) are given by

Kg(θ) =
(
κ1
gc + κns

)
H1(θ) + κ2

g H2(θ) + · · · + κm−2
g Hm−2(θ),

Kn(θ) =
(
−κ1

g s + κnc
)
N (θ),

Tg(θ) =
(
θ ′ + τ 1g

)
H1(θ) +

(
τ 2g c − μ2s

)
H2(θ) + · · · +

(
τm−2
g c − μm−2s

)
Hm−2(θ),

where μ j = 〈Dt Hj , H1〉, and where c and s are shorthands for cos(θ) and sin(θ),
respectively.

5 Proof of Theorem 1.8

Here we prove our most general result, Theorem 1.8 in the introduction.
To begin with, suppose that γ is a line of curvature of S and that NS(θ) is a parallel

rotation of NS . Then the geodesic torsion of γ with respect to NS vanishes and the vector
field H(NS, NS(θ)) is parallel in H.

Let (H1, . . . , Hm−2) be a smooth orthonormal frame for (E ⊕ NS)
⊥ such that H1 =

H . Applying Lemma 4.1, we deduce that Tg(θ) = θ ′H1(θ), which implies that NS(θ) is
torsion-defining and that θ ′ = ±τg(θ).

Since
∫ �

0
θ ′ dt = θ(�) − θ(0),
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it follows that, when NS(θ) is a closed rotation of NS ,∫ �

0
τg(θ) = 2nπ for some n ∈ Z,

as desired.
Conversely, given any (torsion-defining) unit normal vector field N along γ , suppose that

W (N ) ≡ W is parallel in H. Choose an orthonormal frame (H1, . . . , Hm−2) for H, with
H1 = W , and let

N (θ) = − sin(θ)H1 + cos(θ)N ,

H1(θ) = cos(θ)H1 + sin(θ)N ,

where

θ(t) = −
∫ t

0
τg(s) ds. (1)

(Note that N (θ) is a parallel rotation of N .)
Define a map σ : [0, �] × R

m−1 → M by

σ(t, u) = expγ (t)

(
u1H1(θ)(t) + u2H2(t) + · · · + um−2Hm−2(t)

)
.

It is clear that σ is a smooth immersion in a neighborhood of [0, �] × {0}; besides, its image
is normal to N (θ) along γ .

It remains to show that γ is a line of curvature of σ , i.e., that the geodesic torsion τg(θ)

of γ with respect to N (θ) vanishes. Differentiating (1), we have

θ ′ = −τ 1g ,

which implies τ 1g (θ) = 0, as desired. Since τ 2g = · · · = τm−1
g = 0 and H1 is parallel in H,

we conclude that τg(θ) = 0 by Lemma 4.1.

6 Three-dimensional curves

Let γ : I → M be a Frenet curve, let H1 = W (P), and let (H2, . . . , Hm−2) be a parallel
frame for the orthogonal complement of H1 in H(P).

Definition 6.1 We say that γ is three-dimensional if the following equations hold:

Dt E = κP,

Dt H1 = τ P,

Dt H2 = · · · = Dt Hm−2 = 0,

Dt P = −κE − τH1.

It is clear that γ is three-dimensional if and only if W (P) is parallel in H(P).
The purpose of this section is to prove Theorem 1.3 in the introduction.

Proof of Theorem 1.3 Suppose that P is a parallel rotation of NS , and let θ be the rotation
angle of P with respect to W (P). We know from the proof of Theorem 1.8 that if γ is a line
of curvature and P is a closed rotation, then

±
∫ �

0
τ dt = θ(�) − θ(0) = 2nπ for some n ∈ Z. (2)
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On the other hand, applying Lemma 4.1, we observe that the normal curvature of γ with
respect to NS is related to the curvature κ by the relation

κn = κ(θ) = κ cos(θ).

Suppose that M is convex, so that κn > 0. Since κ > 0, we have cos(θ) > 0, from which
we conclude that

θ(�) − θ(0) ∈ (−π, π).

Together with (2), this implies n = 0, as desired. 
�
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