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Abstract
For every flat surface, almost every flat surface in its SL(2,R) orbit has the following property:
the sequence of its saddle connection lengths in non-decreasing order is uniformly distributed
in the unit interval.
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1 Introduction

Given a closed Riemann surface X of genus at least two, every non-zero holomorphic one-
form ω on X has at least one zero. If � is the set of zeroes of such an ω then on X\� there
is an induced atlas of charts to R

2 all of whose transition maps are translations. A saddle
connection of a holomorphic one-form ω is any continuous map v : [0, 1] → X such that
v−1(�) = {0, 1} and that v|(0, 1) is a geodesic segment in every chart of the induced atlas
on X \ �. Associated to each saddle connection v is its holonomy vector

h(v) =
⎛
⎝
∫

v

Re(ω),

∫

v

Im(ω)

⎞
⎠

in R
2. The group SL(2,R) is known to act on pairs (X , ω) via composition with the charts

of the atlas. The action takes saddle connections to saddle connections, and is such that
h(gv) = gh(v) for all g ∈ SL(2,R) and all saddle connections of ω.

Enumerating the saddle connections of ω as n �→ vn in such a way that n �→ ||h(vn)||
is non-decreasing one can ask about the distribution of this sequence modulo one. In [1] it
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was proved for every SL(2,R) invariant and SL(2,R) ergodic probability measure μ on any
stratumH, that the sequence n �→ vn is uniformly distributed modulo one forμ almost every
flat surface. Here we prove the following refined result.

Theorem 1.1 For every flat surfaceω0 of genus at least twoand for almost everyg ∈ SL(2,R),
the sequence n �→ vn of lengths of saddle connections of gω0 listed in non-decreasing order
is uniformly distributed modulo one.

This is an improvement over [1, Theorem 1] in twoways. Firstly, the conclusion is stronger
as the result holds for Haar almost-every flat surface in every SL(2,R) orbit, not just for
almost every flat surface with respect to any ergodic SL(2,R) invariant probability measure
on a stratum. Secondly, the use of [6] and the reliance on spectral gap results for the action
of SL(2,R) on a stratum found in the proof of [1, Theorem 1] are replaced with a more
direct argument that only makes use of the following quadratic upper bound on the number
of saddle connections in a sector extending [2]. The notation is explained after the statement
of the theorem.

Theorem 1.2 Fix a stratumH of flat surfaces of genus at least two. There is a constant c4 with
the following property. For every ε > 0 and every flat surface ω ∈ H there is C(ω, ε) > 0
such that

R ≥ C(ω, ε)

|I |2−ε
⇒ |�(ω; R) ∩ Sec(I )| ≤ c4|I |R2 (1.3)

for every arc I ⊂ S1. Moreover, for each ε > 0 the constant C(ω, ε) depends continuously
on ω.

The explicit description in (1.3) of how large R must be in terms of the arc length of I is
of independent interest. Theorem 1.2 will be proved in “Appendix A”.

We now introduce some notation that will be used throughout the article. Given an arc
I ⊂ S1 write Sec(I ) for the subset of R2 that projects radially to I . Given α < β with
β − α < 2π write Sec(α, β) for the sector {u ∈ R

2 : α ≤ arg(u) < β}. Given 0 ≤ A < B
write Ann(A, B) for the annulus {u ∈ R

2 : A ≤ ||u|| ≤ B}. Fix a non-zero holomorphic
one-form ω on a closed Riemann surface X of genus at least two. Write �(ω) for the set of
saddle connections of ω. For R > 0 write�(ω; R) for the set of saddle connections of length
at most R on ω. We enumerate �(ω) by n �→ vn so that n �→ ||h(vn)|| is non-decreasing and
v �→ arg(h(v)) ∈ [0, 2π) is non-decreasing on each level set of n �→ ||h(vn)||. Given N ∈ N

write 	(ω; N ) for {vn : n ≤ N } where n �→ vn is the same enumeration as before. Lastly,
write 
(ω; N ) = ||h(vN )|| for the length of the N th saddle connection on ω in terms of the
above ordering, and 
(ω) = 
(ω; 1) for the length of the shortest saddle connection on ω.
By an abuse of notation, given B ⊂ R

2 we write �(ω) ∩ B for the set of saddle connections
of ω whose holomony vectors belong to B. We will interpret �(ω; R)∩ B and 	(ω; N )∩ B
similarly.

We thank Jon Chaika for suggesting this project and many useful conversations related to
it. We also thank the anonymous referee for a very thorough report. Donald Robertson was
supported by NSF grant DMS 1703597.

2 Beginning the proof of Theorem 1.1

Here we begin the proof of Theorem 1.1 by reducing it to Theorem 2.8 via the Weyl criterion
and a Borel–Cantelli argument. Fix throughout this section a unit-area flat surface ω0 of
genus at least two. Masur’s work [4, 5] yields constants c1, c2 > 0 with
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(c1eR)2 ≤ |�(ω; R)| ≤
(
c2

R

e

)2
(2.1)

for all R > 0. (The unorthodox expression is for later convenience.)
Write μ for Haar measure on SL(2,R) andm for Lebesgue measure onR. For each t ∈ R

write

at =
[
et 0
0 e−t

]
rt =
[
cos(t) − sin(t)
sin(t) cos(t)

]

and define D(T ) = {rθat rψ ∈ SL(2,R) : 0 ≤ θ, ψ < 2π, 0 ≤ t ≤ T } for all T > 0. We
scale μ once and for all such that μ(D(2)) = 1. Write χp(x) = exp(2π i px) for each p ∈ Z

and all x ∈ R.
Our first reduction is to the following uniform distribution criterion. Although we prove

the theorem for all τ > 1, it suffices for the proof of Theorem 1.1 to do so for a sequence of
values τ > 1 converging to 1.

Theorem 2.2 Fix p ∈ Z and τ > 1. One has

lim
J→∞

1

�τ J �
∑

v∈	(gω0;�τ J �)
χp(||h(v)||) = 0 (2.3)

for μ almost-every g ∈ D(1).

Proof of Theorem 1.1 assuming Theorem 2.2 Using Weyl’s criterion for uniform distribution
and [1, Lemma 5] it suffices for the proof of Theorem 1.1 to produce a sequence τ1 > τ2 >

· · · → 1 with the property that

lim
J→∞

1

�τ J
i �

∑

v∈	(gω0;�τ J
i �)

χp(||h(v)||) = 0 (2.4)

holds for every i, p ∈ N and μ almost-every g ∈ SL(2,R). Since the SL(2,R) orbit of ω0 is
countably covered by sets of the form D(1)gω0 it suffices to work over D(1). 
�

Our next reduction will be via a Borel–Cantelli argument similar to the one in [1]. We give
full details as there are several salient changes; most notably we average over 	(gω0; N )

and D(1) in place of �(ω; N 2) and a large compact subset of a stratum. For each N ∈ N

define

fN (g) = 1

N

∑
v∈	(gω0;N )

χp(‖h(v)‖)

for all g ∈ SL(2,R).

Lemma 2.5 For every N ∈ N, every 0 < S ≤ 1 and every σ > 0 the estimate

μ({g ∈ D(1) : | fN (g)|2 ≥ N−σ })2

≤ 4
∫

D(1)

μ(D(S)x ∩ {g ∈ D(1) : | fN (g)|2 ≥ N−σ })
μ(D(S/2))

dμ(x) (2.6)

holds.
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Proof Fix N ∈ N and 0 < S ≤ 1 and σ > 0. Write M = {g ∈ D(1) : | fN (g)|2 ≥ N−σ }.
Consider the function h : SL(2,R) → [0, 1] defined by

h(x) = μ(D(S/2)x ∩ M)

μ(D(S/2))

for all x ∈ SL(2,R).

Claim.μ

({
x ∈ M : μ(D(S)x ∩ M)

μ(D(S/2))
≥ μ(M)

2

})
≥ ∫2h≥μ(M)

h dμ

Proof If we have y ∈ SL(2,R) with h(y) ≥ μ(M)/2 and x ∈ D(S/2)y then

μ(D(S)x ∩ M)

μ(D(S/2))
≥ μ(M)

2

because in this case D(S)x ∩ M ⊃ D(S/2)y ∩ M . Thus

⋃
2h(y)≥μ(M)

D(S/2)y ∩ M ≤
{
x ∈ M : μ(D(S)x ∩ M)

μ(D(S/2))
≥ μ(M)

2

}

and, combined with

μ

⎛
⎝ ⋃

2h(y)≥μ(M)

D(S/2)y ∩ M

⎞
⎠

= 1

μ(D(S/2))

∫

SL(2,R)

μ

⎛
⎝D(S/2)x ∩

⋃
2h(y)≥μ(M)

D(S/2)y ∩ M

⎞
⎠ dμ(x)

≥ 1

μ(D(S/2))

∫

2h≥μ(M)

μ

⎛
⎝D(S/2)x ∩

⋃
2h(y)≥μ(M)

D(S/2)y ∩ M

⎞
⎠ dμ(x)

≥ 1

μ(D(S/2))

∫

2h≥μ(M)

μ (D(S/2)x ∩ M) dμ(x)

we have proved the claim. 
�
Since M ⊂ D(1) we have h = 0 outside D(2). Thus

∫

2h<μ(M)

h dμ ≤ μ(M)

2
μ(D(2))

and we deduce

μ(M)

2
≤
(
1 − μ(D(2))

2

)
μ(M) ≤ μ

({
x ∈ M : μ(D(S)x ∩ M)

μ(D(S/2))
≥ μ(M)

2

})

from the claimandour scaling ofμbecause the integral ofh isμ(M)byFubini.An application
of Markov’s inequality then furnishes (2.6). 
�
Proposition 2.7 There is C1 > 0 such that for every N ∈ N, every 0 < S ≤ 1 and every
σ > 0 we have

μ

({
g ∈ D(1) : | fN (g)|2 >

1

Nσ

})
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≤
⎛
⎝C1N

σ 1

2π

2π∫

0

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(as rθ at rφω0;N )

χp(||h(v)||) χp(||h(w)||) ds dθ dt dφ
⎞
⎠

1/2

Proof Fix N ∈ N and 0 < S ≤ 1 and σ > 0. Write M = {g ∈ D(1) : | fN (g)|2 ≥ N−σ }.
We have

μ(M)2 ≤ 4
∫

D(1)

μ(D(S)x ∩ M)

μ(D(S/2))
dμ(x) = 4

∫

D(1)

1

μ(D(S/2))

∫

D(S)

1M (gx) dμ(g) dμ(x)

from Lemma 2.5. The definition of M along with Markov’s inequality gives

μ(M)2 ≤ 4Nσ

∫

D(1)

1

μ(D(S/2))

∫

D(S)

| fN (gx)|2 dμ(g) dμ(x)

and the right-hand integral becomes

1

2π

2π∫

0

1

2π

2π∫

0

1∫

0

1

μ(D(S/2))

1

2π

2π∫

0

1

2π

2π∫

0

S∫

0

sinh(t) sinh(s)| fN (rϕasrθ1 rθ2at rφ)|2 ds dϕ dθ1 dt dθ2 dφ

upon writing μ in terms of the Cartan decomposition of SL(2,R) as in [3, Proposition 5.28].
The rotation rϕ does not affect the sum and may be removed; the integrals over rθ1 and rθ2

together form a convolution and may be combined into a single term; we may bound sinh(t)
by 2 and sinh(s) by sinh(S). For some constant C ′

1 one has

sinh(S)

μ(D(S/2))
∼ C ′

1

S

and, together with the above, we have an absolute constant C1 > 0 with

μ(M)2 ≤ C1N
σ 1

2π

2π∫

0

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(as rθ at rφω0;N )

χp(||h(v)||) χp(||h(w)||) ds dθ dt dφ

as desired. 
�

From now on we fix the relationship

S = 1

N δ

between N ∈ N and S > 0, where δ > 0 is to be determined by future requirements.
(Ultimately δ = 1

3 will suffice.) We now reduce the proof of Theorem 1.1 to the following
statement.
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Theorem 2.8 There is η > 0 and N0 ∈ N and a constant C > 0 such that

1

2π

2π∫

0

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(as rθ at rφω0;N )

χp(||h(v)||) χp(||h(w)||) ds dθ dt dφ

≤ C

Nη
(2.9)

holds for all N ≥ N0.

Proof of Theorem 1.1 assuming Theorem 2.8 Fix p ∈ Z and τ > 0. By Theorem 2.2 it suffices
to verify (2.3) for μ almost-every g ∈ D(1). Let η > 0 and N0 ∈ N and C > 0 be as in the
hypothesis. Fix 0 < σ < η. Whenever �τ J � ≥ N0 and σ > 0 we have

μ

⎛
⎜⎝

⎧⎪⎨
⎪⎩
g ∈ D(1) :

∣∣∣∣∣∣
1

�τ J �
∑

v∈	(gω0;�τ J �)
χp(||h(v)||)

∣∣∣∣∣∣

2

≥ 1

�τ J �σ

⎫⎪⎬
⎪⎭

⎞
⎟⎠ ≤

(
C1C

�τ J �σ

�τ J �η

)1/2

by applying Proposition 2.7 and then (2.9). The right-hand side is summable over J ∈ N and
the Borel–Cantelli lemma finishes the proof. 
�

There are twomajor steps in the proof of Theorem 2.8.We outline them here and carry out
the details in Sects. 3 and 4 respectively. The steps will be combined to prove Theorem 1.1
in Sect. 5.
Step 1: Annular estimate. We wish to move the action as inside the summation appearing
in (2.9). This is not straightforward because 	(asrθat rφω0; N ) and as	(rθat rφω0; N ) need
not agree. Indeed, if for rθat rφω0 one knows vN is close to the horizontal and vN+1 is close
to the vertical then it may be that asvN+1 is shorter than asvN . To get around this issue it
would suffice to find ζ > 0 such that

∣∣	(as rθat rφω0; N )�as	(rθat rφω0; N )
∣∣� N 1−ζ

holds for all s, θ, t, φ. One can prove such an estimate using the effective count [6] for the
number of saddle connections of length at most R as R → ∞ but our goal is to avoid the use
of spectral gap results. As a replacement we will find constants ζ > 0 and λ > 0 such that

μ

({
0 ≤ t ≤ 1 : |	(asrθat rφω0; N )�as	(rθat rφω0; N )| > N 1−ζ

for some (s, θ) ∈ [0, S] × [0, 2π)

})
� 1

Nλ

holds for all 0 ≤ φ < 2π . We will do so in Sect. 3 using Theorem 1.2.
Although	(rθat rφω0; N ) and rθ	(at rφω0; N )mayalso disagree as sets of saddle connec-

tions (because we have decided to order saddle connections of the same length by increasing
angle) in this case the summations over the two sets agree because the summands only depend
on the lengths of the saddle connections. It is therefore no problem, upon moving as inside
in (2.9), to move the action rθ inside as well.

The purpose of the annular estimate is to reduce the verification of (2.9) to the production
of some η > 0 such that

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(at rφω0;N )

χp(||asrθh(v)||) χp(||asrθh(w)||) ds dθ dt

� 1

Nη
(2.10)
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for every 0 ≤ φ < 2π .
Step 2: Controlling pairs. To produce η > 0 such that (2.10) holds, we apply a linearization
to arrive at the quantity

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(at rφω0;N )

χp(sα(rθh(v))) χp(sα(rθh(w))) ds dθ dt

which we need to control for every 0 ≤ φ < 2π . From the proof of [1, Lemma 12] it suffice
to bound

||h(v)||| sin(2θv,w)|
from below by a power of N . Here θv,w is the angle between the holonomy vectors of the
saddle connections v and w. This issue will be dealt with in Sect. 4.

3 Annular estimate

In this section we will establish the following theorem.

Theorem 3.1 There are λ > 0 and ζ > 0 and N1 > 0 such that

m

({
0 ≤ t ≤ 1 : |	(asrθat rφω0; N )�as	(rθat rφω0; N )| > N 1−ζ

for some (s, θ) ∈ [0, S] × [0, 2π)

})
� 1

Nλ

holds for all N ≥ N1 and all 0 ≤ φ < 2π .

The proof of Theorem 3.1 will take up the remainder of this section. Recall that δ > 0
defines S = N−δ . Below, all requirements that N be large enough depend only on ω0 and
not on ω. Throughout this section fix 0 ≤ φ < 2π and write ω = rφω0.

We begin with two lemmas that will be used to relate

|	(asrθatω; N )�as	(rθatω; N )| > N 1−ζ

with counts for saddle connections in certain annuli.

Lemma 3.2 For every g ∈ SL(2,R) one has

	(asgω; N ) ⊂ as�(gω; e2s
(gω; N ))

for every s > 0 and every N ∈ N.

Proof If a saddle connection v of gω has a length of more than e2s
(gω; N ) then asv has
a length of more than es
(gω; N ). The saddle connection asv therefore cannot be amongst
the first N saddle connections of asgω since as	(gω; N ) has cardinality exactly N and all
of its members are saddle connections of asgω of length at most es
(gω; N ). 
�
Lemma 3.3 For every g ∈ SL(2,R) one has

	(asgω; N ) ⊃ as�(gω; e−2s
(gω; N ))

for every s > 0 and every N ∈ N.

123
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Proof Every saddle connection in as�(gω; e−2s
(gω; N )) is a saddle connection of asgω

with length at most e−s
(gω; N ). Moreover, no saddle connection of gω with length
greater than 
(gω; N ) will, under the image of as , be shorter than any saddle connection of
as�(gω; e−2s
(gω; N )). So all saddle connections in as�(gω; e−2s
(gω; N )) are amongst
the first N saddle connections of asgω. 
�

If the set

{0 ≤ t ≤ 1 : |	(as rθatω; N )�as	(rθatω; N )| > N 1−ζ for some (s, θ) ∈ [0, S] × [0, 2π)}
(3.4)

is empty for some N ∈ N then there is nothing to prove for that N . Suppose that t belongs
to (3.4) for some N ∈ N. We get 0 ≤ s ≤ S and 0 ≤ θ < 2π depending on t such that

∣∣	(as rθat rψω; N )�as	(rθat rψω; N )
∣∣ ≥ N 1−ζ (3.5)

holds. Given (3.5) we estimate
∣∣	(asrθatω; N )�as	(rθatω; N )

∣∣
≤ ∣∣as�(rθatω; e2s
(rθatω; N )) \ as	(rθatω; N )

∣∣
+ ∣∣as	(rθatω; N ) \ as�(rθatω; e−2s
(rθatω; N ))

∣∣
≤
∣∣∣�(rθatω) ∩ Ann(e−2S
(rθatω; N ), e2S
(rθatω; N ))

∣∣∣
from Lemmas 3.2 and 3.3, where we have used s ≤ S in deducing the last inequality. Thus,
whenever t belongs to (3.4) for some N ∈ N, we have

N 1−ζ ≤
∣∣∣�(rθatω) ∩ Ann(e−2S
(rθatω; N ), e2S
(rθatω; N ))

∣∣∣
=
∣∣∣�(atω) ∩ Ann(e−2S
(atω; N ), e2S
(atω; N ))

∣∣∣

because �(rθatω) = rθ�(atω) and rθ does not change the length of the N th saddle connec-
tion. We are led to consider the quantity

EN (v; t) =
{
1 atv ∈ Ann(e−2S
(atω; N ), e2S
(atω; N ))

0 otherwise
(3.6)

defined for all 0 ≤ t ≤ 1 and all v ∈ �(ω) and all N ∈ N. By its definition we therefore
have

N 1−ζ ≤
∣∣∣�(atω) ∩ Ann(e−2S
(atω; N ), e2S
(atω; N ))

∣∣∣ ≤
∑

v∈�(ω)

EN (v; t)

whenever t belongs to (3.4). Thus

(3.4) ⊂
⎧⎨
⎩0 ≤ t ≤ 1 :

∑
v∈�(ω)

EN (v; t) ≥ N 1−ζ

⎫⎬
⎭

which, together with Markov’s inequality, gives

m((3.4)) ≤ 1

N 2(1−ζ )

1∫

0

∣∣∣∣∣∣
∑

v∈�(ω)

EN (v; t)
∣∣∣∣∣∣

2

dm(t) (3.7)

123
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so our focus now is to bound
1∫

0

∑
v∈�(ω)

∑
w∈�(ω)

EN (v; t)EN (w; t) dm(t) (3.8)

for N large. We begin with the following lemmas, which will allow us to restrict the sums in
(3.8) to thin annuli.

Lemma 3.9 There are constants c1, c2 > 0 such that for all 0 ≤ t ≤ 1 we have

1

c2

N 0.5

log N
≤ 
(atω; N ) ≤ 1

c1
N 0.5

for all N ≥ 2.

Proof First, note that

|�(atω) ∩ B(0, R)| = |at�(ω) ∩ B(0, R)| = |�(ω) ∩ a−tB(0, R)|
and B(0, 1

e R) ⊂ a−tB(0, R) ⊂ B(0, eR) give from (2.1) the bounds (c1R)2 ≤ |�(atω; R)| ≤
(c2R)2 for all 0 ≤ t ≤ 1 and all R > 0. Taking R = N 0.5/c1 gives N ≤ |�(atω; N 0.5/c1)|
whence 
(atω; N ) ≤ N 0.5/c1. Taking R = N 0.5/c2 log N gives N 0.5/c2 log N ≤ 
(atω; N ).


�
Lemma 3.10 If N δ ≥ 2 and v ∈ �(ω) is outside the annulus

Ann

(
1

2ec2

N 0.5

log N
,
2e

c1
N 0.5

)
(3.11)

then EN (v; t) = 0 for all 0 ≤ t ≤ 1.

Proof Fix N ∈ Nwith N δ ≥ 2 and suppose EN (v; t) = 1 for some 0 ≤ t ≤ 1. ByLemma3.9
we have

1

e2Sc2

N 0.5

log N
≤ e−2S
(atω; N ) ≤ e2S
(atω; N ) ≤ e2S

c1
N 0.5

whence

atv ∈ Ann

(
1

2c2

N 0.5

log N
,
2

c1
N 0.5

)

because e2S ≤ 2. Therefore

v ∈ Ann

(
1

2ec2

N 0.5

log N
,
2e

c1
N 0.5

)

as at can lengthen vectors by a facor of at most e and shorten them by a facor of at most 1/e.

�

Thus, for N δ ≥ 2, only saddle connections of ω with holonomy inside (3.11) contribute
to the summations in (3.8). We continue by partitioning the annulus (3.11) into sectors as
follows. First define

Z = Sec(−ψ,ψ) ∪ Sec( π
2 − ψ, π

2 + ψ) ∪ Sec(π − ψ,π + ψ) ∪ Sec( 3π2 − ψ, 3π
2 + ψ)
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Fig. 1 The annular sectors W (1) and W (k) for some 1 < k < κ are in white. The set V (k) consists of twelve
annular sectors: the eleven light grey sectors together with W (k). The set Z is shown in dark grey. Note that
V (1) only consists of eight regions as Z is not considered adjacent to any of our regions

and

Z = Z ∩ �

(
ω; 2e

c1
N 0.5
)

where ψ = 2N−γ for some γ > 0 yet to be determined. (In fac γ = 1
300 will suffice.) Put

κ = ⌊( π
2 − 2ψ)
(ω; N )α

⌋
(3.12)

for some α > 0 yet to be determined. (In fac α = 1
100 will suffice.) Decompose

W = �(ω) ∩ Ann

(
1

2ec2

N 0.5

log N
,
2e

c1
N 0.5

)
\ Z

into 4κ subsets W (1), . . . ,W (4κ) each obtained by intersecting W with annular arcs
W (1), . . . ,W (4κ) of size ( π

2 −2ψ)/κ . Given 1 ≤ k ≤ 4κ let V (k) be the union ofW (k), its
reflections in the other quadrants, and any W (i) that are adjacent to any of these reflections.
(See Fig. 1 for a schematic.) Lastly, put V (k) = V (k) ∩ �(ω).

By Lemma 3.10 the right-hand side of (3.8) is bounded by the sum of the following
expressions.

• ∑4κ
k=1
∑

v∈W (k)
∑

w∈V (k)

∫ 1
0 EN (v; t)EN (w; t) dt

• ∑v∈Z
∑

w∈�(ω)

∫ 1
0 EN (v; t)EN (w; t) dt +∑v∈�(ω)

∑
w∈Z
∫ 1
0 EN (v; t)EN (w; t) dt

• ∑4κ
k=1
∑

v∈W (k)
∑

w∈W
w/∈V (k)

∫ 1
0 EN (v; t)EN (w; t) dt
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and our goal now is to obtain power bounds for each of them. This is carried out in the next
two subsections: the first two expressions will be bounded via sectorial counts and the third
via a separation argument. Both make use of Theorem 1.2.

3.1 Sectorial count

Our goal here is to bound the sums

• ∑4κ
k=1
∑

v∈W (k)
∑

w∈V (k)

∫ 1
0 EN (v; t)EN (w; t) dt

• ∑v∈Z
∑

w∈�(ω)

∫ 1
0 EN (v; t)EN (w; t) dt

by powers of N .
Let C(ω, ε) be as in Theorem 1.2. The parameter ε > 0 will be determined later. (In fac

ε = 1
100 suffices.) Fix 1 ≤ k ≤ 4κ . With I the appropriate sector of length 3( π

2 − 2ψ)/κ we
have

|�(ω) ∩ V (k)| ≤ 4|�(ω; 2e
c1
N 0.5) ∩ Sec(I )| ≤ 4 · c4 · 3(

π
2 − 2ψ)

κ
·
(
2e

c1
N 0.5
)2

whenever

2e

c1
N 0.5 ≥ C(ω, ε)

(
κ

3( π
2 − 2ψ)

)2+ε

(3.13)

holds.
A priori, the occurrence of ω in (3.13) means all subsequent statements requiring N to be

large enough will depend on ω. However, since ε > 0 will be fixed and ω �→ C(ω, ε) is then
continuous, the relation ω = rψω0 implies that the apparent dependence on ω is in fac only
a dependence on ω0.

Applying Lemma 3.9 and 1
2 x ≤ �x� ≤ x on [1,∞) to (3.12), we bound κ by

π

8cα
2

N
α
2

(log N )α
≤ 1

2

(π
2

− 2ψ
)( 1

c2

N 0.5

log N

)α

≤ κ ≤
(π
2

− 2ψ
)( 1

c1
N 0.5
)α

≤ π

2cα
1
N

α
2

whenever N γ ≥ 16/π . Thus there is an absolute constant c6 > 0 such that

|�(ω) ∩ V (k)| ≤ 4c4 · 3π
2

8cα
2

π

(log N )α

N
α
2

· 4e
2

c21
N ≤ c6N

1− α
2 (log N )α ≤ c6N

1− α
4

whenever

N 0.5 ≥ c1
2e

·
(

2

3π

)2+ε

·
(

π

8c2

N
α
2

(log N )α

)2+ε

· C(ω, ε)

holds, which will be the case for N large enough provided

α(2 + ε) < 1 (R)

is in place. We can therefore say, using Lemma 3.10 and (2.1) to bound the first two sums,
and bounding the integral by 1, that

4κ∑
k=1

∑
v∈W (k)

∑
w∈V (k)

1∫

0

EN (v; t)EN (w; t) dt � N 1− α
4

4κ∑
k=1

∑
v∈W (k)

1∫

0

EN (v; t) dm(t)

� N 2− α
4 (3.14)
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holds whenever N is large enough.
For the second sum we again apply Theorem 1.2, this time with ε′ > 0 to be determined

(ε′ = 1
100 suffices) and I an appropriate arc of size 2ψ giving a constant C(ω, ε′) such that

|�(ω) ∩ Z | ≤ 4c4 · 4N−γ ·
(
2e

c1
N 0.5
)2

whenever

2e

c1
N 0.5 ≥

(
N γ

4

)2+ε′

C(ω, ε′)

holds. Thus

|�(ω) ∩ Z | � N 1−γ

holds provided

1

2
> γ (2 + ε′) (R)

is the case. Using Lemma 3.10 and (2.1) to bound the second sum, we can say that

∑
v∈Z

∑
w∈�(ω)

1∫

0

EN (v; t)EN (w; t) dt � N 2−γ (3.15)

holds for N large enough.

3.2 Separation

In this subsection we control the sum

4κ∑
k=1

∑
v∈W (k)

∑
w∈W

w/∈V (k)

1∫

0

EN (v; t)EN (w; t) dt

by a power of N .
Fix 1 ≤ k ≤ 4κ and fix saddle connections v,w of ω with v ∈ W (k) and w ∈ W\V (k).

Since EN (u; t) is unchanged when u is reflected in either the horizontal or the vertical axis,
we may assume that v and w are in the first quadrant. Write θu = arg(u). We assume
that θv > θw as the alternative involves identical arguments. The following properties are
immediate consequences of that assumption, v ∈ W (k) and w ∈ W\V (k).

S1
1

2ec2

N 0.5

log N
≤ ||v||, ||w|| ≤ 2e

c1
N 0.5

S2
2

N γ
≤ θw < θv ≤ π

2
− 2

N γ

S3 θv − θw >
1


(ω; N )α

Indeed S1 follows from Lemma 3.10, S2 follows from the definitions of ψ and W , and S3
follows from (3.12) and N being large enough.
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With these properties to hand, our goal in this subsection is bounding theLebesguemeasure
of the set

{0 ≤ t ≤ 1 : EN (v; t)EN (w; t) = 1} (3.16)

by a negative power of N .

Lemma 3.17 For all t > 0 the angle between atv and atw is at least 1
e2t

(θv − θw).

Proof The Cauchy mean value theorem gives

arctan

(
1

e2t
v2

v1

)
− arctan

(
1

e2t
w2

w1

)
≥ 1

e2t

(
arctan

(
v2

v1

)
− arctan

(
w2

w1

))

= 1

e2t
(θv − θw)

as desired. 
�
We frequently use the estimates

1

es
||u|| ≤ ||asu|| ≤ es ||u|| θasu ≤ 1

e2s
θu

which hold for all s ≥ 0 and all u in the first quadrant.
If EN (v; t)EN (w; t) = 0 for all 0 ≤ t ≤ 1 there is no need for a bound as (3.16) will

have zero measure. We therefore assume also that there is a time 0 ≤ r ≤ 1 at which
EN (v; r)EN (w; r) = 1. The definition of EN and Lemma 3.9 give

∣∣∣||arv|| − ||arw||
∣∣∣ ≤ 2
(atω; N ) sinh(2S) ≤ 8

c1
N 0.5−δ (3.18)

as sinh(S) ∼ S as N → ∞. Also S3 and Lemmas 3.9, 3.17 give

θar v − θarw ≥ 1

e2r
(θv − θw) ≥ cα

1

e2
N− α

2 (3.19)

and our first goal is to deduce from these that there is horizontal and vertical separation of
arv from arw. Write χ for the angular separation θar v − θarw and Q = |||arv|| − ||arw||| for
the difference in length.

Lemma 3.20 There are constants K > 0 and ξ > 0 such that (arw)1 − (arv)1 ≥ K N 0.5−ξ

and (arv)2 − (arw)2 ≥ K N 0.5−ξ for all N large enough.

Proof The coordinate (arw)1 cannot (cf. Fig. 2) be smaller than (||arv|| − Q) cos(θar v − χ)

so from

cos(θar v − χ) − cos(θar v) = sin(θar v) sin(χ) − (1 − cos(χ)) cos(θar v) ≥ θar v

2

χ

2
− χ2

2

we have by (3.18), (3.19) and Lemma 3.10 that

(arw)1 − (arv)1 ≥ ||arv||χ
2

(
θar v

2
− χ

)
− Q

≥ 1

2e2c2

N 0.5

log N
· cα

1

2e2
N− α

2

(
1

e2
N−γ − cα

1

e2
N− α

2

)
− 8

c1
N 0.5−δ
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Fig. 2 If arw is separated in
angle from ar v as in (3.19) but
|||ar v|| − ||arw||| is not too large
as in (3.18) (so that arw belongs
to the grey region) then we can
say something about the
horizontal and vertical separation
of ar v and arw

because

θar v

2
− χ ≥ 1

2e2
θv − χ ≥ 1

e2
1

N γ
− cα

1

e2
1

N
α
2

> 0

for N large. The above is contingent on the inequalities

γ + α < δ γ <
α

2
(R)

but provided they are satisfied we conclude there is a constant K1 > 0 such that

(arw)1 − (arv)1 ≥ K1

log N
N 0.5−(γ+α)

for all N large enough.
Similarly, the largest (arw)2 can be is (||arv|| + Q) sin(θar v − χ) so from

sin(θar v) − sin(θar v − χ) = (1 − cos(χ)) sin(θar v) + cos(θar v) sin(χ) ≥ χ2

8

θar v

2

we have

(arv)2 − (arw)2 ≥ ||arv||χ
2

8

θar v

2
− Q

≥ 1

2e2c2

N 0.5

log N
· c

2α
1

8e4
N−α · 1

e2
N−γ − 8

c1
N 0.5−δ

as above. Provided

γ + α < δ (R)

we conclude that there is a constant K2 > 0 such that

(arv)2 − (arw)2 ≥ K2

log N
N 0.5−(γ+α)
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for all N large enough.
To conclude take K = min{K1, K2} and ξ = γ + 2α and N2 ≥ max{M1, M2} large

enough. 
�
Define fv,w(t) = ||atv|| − ||atw|| for t ∈ R. Certainly fv,w is continuous. Controlling

the size of the set of those 0 ≤ t ≤ 1 where | fv,w(t)| is small will be enough to bound
the Lebesgue measure of (3.16). From Lemma 3.20 and Facts B.4, B.5 in “Appendix B”
we conclude that fv,w is decreasing and has a unique zero. Since fv,w is continuous and
decreasing, (3.18) furnishes 0 ≤ r0 ≤ 1 minimal with | fv,w(r0)| ≤ 8

c1
N 0.5−δ .

Lemma 3.21 We have

| fv,w(r0 + N−� )| ≥ 8

c1
N 0.5−δ

for some � > 0 to be determined. (In fac, one can take � = 1
100 .)

Proof Suppose that the contrary holds. Then

∣∣||ar0+tv|| − ||ar0+tw||∣∣ = | fv,w(r0 + t)| ≤ 8

c1
N 0.5−δ

for all 0 ≤ t ≤ N−� . We also have

| cos(2θar0+tv) − cos(2θar0+tw)|
|2θar0+tv − 2θar0+tw| = sin(2ξ) ≥ min{sin(2θar0+tw), sin(2θar0+tv)}

for some θar0+tw < ξ < θar0+tv . For N large enough r0+ t is at most 2. Therefore both angles
are at least 2

e4
N−γ and at most π

2 − 2
e4
N−γ . This implies

∣∣cos(2θar0+tv) − cos(2θar0+tw)
∣∣ ≥ 2

e4
N−γ · 2(θar0+tv − θar0+tw) ≥ 2

e4
N−γ · 2c

α
1

e4
N− α

2

after an application of Lemma 3.17, S3, Lemma 3.9, and the fac that r0 + t ≤ 2 for N large
enough.

In combination, for all 0 ≤ t ≤ N−� we get
∣∣∣||ar0+tv|| cos(2θar0+tv) − ||ar0+tw|| cos(2θar0+tv)

∣∣∣ ≤ 8

c1
N 0.5−δ

and by S1 together with dilation control

||ar0+tw||
∣∣∣ cos(2θar0+tv) − cos(2θar0+tw)

∣∣∣ ≥ 1

2e3c2

N 0.5

log N
· 4c

α
1

e8
N−γ− α

2

so that (B.2) gives

| f ′
v,w(r0 + t)| � N 0.5−γ−α

for all 0 ≤ t ≤ N−� provided

γ + α < δ (R)

holds. But then the mean value theorem implies

| fv,w(r0 + N−� ) − fv,w(r0)| � N 0.5−γ−α−�

which, if one has

0.5 − γ − α − � > 0.5 − δ (R)
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implies | fv,w(r0 + N−� )| > 8
c1
N 0.5−δ for N large enough, giving the desired contradiction.


�
Since fv,w is strictly decreasing the containment

{0 ≤ t ≤ 1 : EN (v; t)EN (w; t) = 1} ⊂
{
0 ≤ t ≤ 1 : | fv,w(t)| ≤ 8

c1
N 0.5−δ

}

⊂ [r0, r0 + N−� ]
allows us to conclude that

4κ∑
k=1

∑
v∈W (k)

∑
w∈W

w/∈V (k)

1∫

0

EN (v; t)EN (w; t) dt � N 2−� (3.22)

by trivially bounding the sums using (2.1).

3.3 Proof of Theorem 3.1

If—as theymay be—the parametersα, γ, δ, ε, ε′, ζ,� are chosen such that all of the require-
ments (R) above are satisfied then there is N1 so large that (3.7), (3.14), (3.15), (3.22) together
give

m((3.4)) ≤ 1

N 2(1−ζ )

1∫

0

∣∣∣∣∣∣
∑

v∈�(ω)

EN (v; t)
∣∣∣∣∣∣

2

dm(t) � 1

N 2(1−ζ )

(
N 2− α

4 + N 2−γ + N 2−�
)

and all 0 ≤ φ < 2π . for all N ≥ N1. If

ζ < min
{ 1
8α, 1

2γ, 1
2�
}

(R)

is satisfied then we can find λ > 0 satisfying the hypothesis.

4 Controlling pairs

In this section we wish to establish (2.10) for all 0 ≤ φ < 2π . Throughout this section, fix
0 ≤ φ < 2π and write ω = rφω0. For the quantity

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑
v,w∈	(atω;N )

χp(||asrθh(v)||) χp(||asrθh(w)||) ds dθ dt (4.1)

we wish to produce η > 0 such that

(4.1) � 1

Nη
(4.2)

for all N large enough.
Writing

α(u) = u21 − u22
||u|| β(u) = 2u1u2

||u||
for any non-zero u ∈ R

2, we begin by applying the following linearization.

123



Geometriae Dedicata (2023) 217 :65 Page 17 of 22 65

Lemma 4.3 Whenever ||u|| ≤ N 0.5 we have
∣∣∣||u|| + α(u)s − ||asu||

∣∣∣� N 0.5−2δ

for all 0 ≤ s ≤ S.

Proof Using (B.1) the bound
∣∣∣∣
f ′′
u (s)

2
s2
∣∣∣∣ < 42s2||u|| � N 0.5−2δ

gives the desired result via the Lagrange form of the remainder in Taylor’s theorem. 
�

The requirement

δ > 0.25 (R)

is needed for Lemma 4.3 to be useful. When δ > 0.25 it suffices for (4.2) to produce η > 0
such that the quantity

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑
v,w∈	(atω;N )

χp(||rθh(v)|| + sα(rθh(v))) χp(||rθh(w)|| + sα(rθh(w))) ds dθ dt (4.4)

satisfies

(4.4) � 1

Nη
(4.5)

for all N large enough.
The reduction to (4.5) follows from Lipshitz continuity of χp . Indeed, that gives

|χp(||rθh(v)|| + sα(rθh(v))) − χp(||asrθh(v)||)| � 1

N 2δ−0.5

for all N large enough, whence

|(4.1) − (4.4)| � 1

N 2δ−0.5
(4.6)

for all N large enough.
We now work towards (4.5). Fixing 0 ≤ t ≤ 1 and fixing a parameter ν > 0 to be chosen

later (ν = 1
100 suffices) we may restrict the summation to those saddle connections v,w for

which ||h(v)||, ||h(w)|| ≥ N 0.5−ν both hold.
We may also discard those w for which the angle between v and w is at most N− α

2 by an
application of Theorem 1.2 similar to the one in Sect. 5; ifC ′′(ω, ε′′) is the attendant constant
(ε′′ = 1

100 suffices) then the requirement

1

2
>

α

2
(ε′′ + 2) (R)

will allow us to discard as desired.
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Fixing v,w satisfying both of these criterion, the quantity

1

2π

2π∫

0

1

S

S∫

0

χp(||rθh(v)|| + sα(rθh(v))) χp(||rθh(w)|| + sα(rθh(w))) ds dθ

in absolute value is equal to
∣∣∣∣∣∣
1

2π

2π∫

0

1

S

S∫

0

χp(sα(rθh(v))) χp(sα(rθh(w))) ds dθ

∣∣∣∣∣∣
because rotations do not change the lengths of holonomy vectors.

Define A(v,w) ≥ 0 by A(v,w)2 = (α(h(v)) − ||h(w)||)2 + β(h(v))2. To proceed we
quote the following estimate from [1].

Lemma 4.7 We have
∣∣∣∣∣∣∣
1

2π

2π∫

0

1

S

S∫

0

χp(sα(rθh(v))) χp(sα(rθh(w))) ds dθ

∣∣∣∣∣∣∣
≤ 4

πN0.5
+ N δ

π A(v,w)

(
log N + log

π

4

)

for all N large enough.

Proof The estimate follows by duplicating (with R = N 0.5 and ε = 1) the proof of [1,
Lemma 12] up to [1, Equation (24)] and the estimates immediately after [1, Equation (24)].
That much of the proof does not use the hypothesis. 
�

Our assumptions on ‖h(v)‖, ‖h(w)‖ and the angle between v and w give

A(v,w) ≥ ||h(v)||| sin(2(θv − θw))| ≥ N 0.5−ν · cα
1 N

− α
2

so that overall
∣∣∣∣∣∣
1

2π

2π∫

0

1

S

S∫

0

χp(sα(rθh(v))) χp(sα(rθh(w))) ds dθ

∣∣∣∣∣∣
� N−0.5 + N δ+ν+ α

2 −0.5 log N

for our vectors v,w. This is satisfacory provided

δ + ν + α

2
< 0.5 (R)

holds, as we may then take η = δ + ν + α
2 − 0.5 to establish (4.5).

5 Proof of main theorem

In Sect. 2 we reduced (via Theorem 2.8) the proof of Theorem 1.1 to the statement that

1

2π

2π∫

0

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑

v,w∈	(as rθ at rφω0;N )

χp(||h(v)||) χp(||h(w)||) ds dθ dt � 1

Nη
(5.1)

for some η > 0. We finish here the proof of Theorem 1.1 by establishing (5.1).
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Lemma 5.2 In order to prove (5.1) it suffices to prove

1∫

0

1

2π

2π∫

0

1

S

S∫

0

1

N 2

∑
v,w∈	(atω;N )

χp(||h(asrθ v)||) χp(||h(asrθw)||) ds dθ dt � 1

Nη
(5.3)

for some η > 0.

Proof Let � be the set (3.4). The conclusion of Theorem 3.1 is that m(�) � N−λ. When t
does not belong to � we have

∣∣	(as rθatω; N )�as	(rθatω; N )
∣∣ ≤ N 1−ζ

for all 0 ≤ s ≤ S and all 0 ≤ θ < 2π . It follows that N−ζ + N−λ controls the difference
between (5.1) and (5.3). 
�

To apply the material of Sect. 3—which establishes Theorem 3.1—and the material of
Sect. 4—which establishes (5.3)—we need to ensure that the requirements (R) above can be
satisfied simultaneously. The choices

δ = 1

3
α = ε = ε′ = ε′′ = ν = � = 1

100
γ = 1

300
ζ = 1

1000

show that this is possible, concluding the proof of Theorem 1.1.
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Appendix A: Proof of Theorem 1.2 on counting in sectors by Benjamin
Dozier

Theorem 1.2 is a more explicit version of [2, Theorem 1.8]. Getting the explicit version is a
matter of keeping careful track of the constants in various proofs in that paper. The first step
is to give explicit constants in [2, Proposition 2.1, p. 94].

Proposition A.1 Fix H and 0 < δ < 1/2. Define α : H → R by α(ω) = 1/
(ω)1+δ . There

is a constant b such that for any interval I ⊂ S1 there is a constant cI = O
(

1
|I |1−2δ

)
such

that for any ω ∈ H
∫

I

1


(at rθω)1+δ
dθ < cI · e−(1−2δ)Tα(ω) + b · |I |

for all T ≥ 0.

The proof of Proposition A.1 is at the end of the appendix. We first prove Theorem 1.2
assuming Proposition A.1.
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Proof of Theorem 1.2 assuming Proposition A.1 From Proposition A.1, we get that cI ′ = cI =
O
(

1
|I |1−2δ

)
, where the implied constant depends on only on genus of the surface. We will

also use α(X) = 1/
(X)1+δ . For our lower bound on R, we can then take

R0 = O

(
1

|I |(2−2δ)/(1−2δ)
· 1


(X)(1+δ)/(1−2δ)

)
.

Since we can choose δ as small as we wish (in particular, we can take δ = ε/(2 + 2ε)), we
get for every ε > 0,

R0 = C(X , ε)

|I |2+ε
,

where

C(X , ε) = O

(
1


(X)(1+(ε/(2+2ε))/(1−2ε/(2+2ε))

)
.

We claim that we can take C(X , ε) to depend continuously on X . It suffices to show that

(X), the length of the shortest saddle connection, depends continuously on X . We claim
that 
 equals the “flat systole function” f , which is defined as the length of the shortest curve
or arc (starting/ending at zeros) that is not homotopic to a point (relative to zeros, in the case
of an arc). Clearly f ≤ 
, since any saddle connection is such an arc. To see that 
 ≤ f , note
that any such curve/arc can be tightened to either (i) a union of saddle connections, or (ii) a
closed geodesic, parallel copies of which form a cylinder. In case (i), picking any one of the
saddle connections in the union gives a saddle connection that has length at most that of the
original curve/arc. In case (ii), there is a saddle connection on the boundary of the cylinder
that has length at most that of the original curve/arc. Finally, the flat systole function clearly
varies continuously, hence so does 
. 
�
Proof of Proposition A.1 The result follows from the following modifications to [2].

• Explicit constants in [2, Proposition 5.5, p.111]: We can take cI = c(k)
I = Ok

(
1

|I |1−2δ

)
.

• Addendum to [2, Proof of Proposition 2.1 assuming Proposition 5.5, p. 111]: Note that
by the definition of αi , we have α1(X) ≥ αi (X), for each i and every X (this is because
αi (X) is defined in terms of the saddle connections on the boundary of a complex of
complexity i ; any such saddle connection forms a complex of complexity 1, and thus is
included in the definition of α1.) Thus we can replace the sum

∑
j≥k α j (X) that we get

from [2, Proposition 5.5] with M · α1(X) = M/
(X)1+δ , where M is the complexity of
X (and then we can absorb the constant M into the constant cI ).

• Explicit constants in [2, Lemma 5.8, p. 114]: We can take t0 ≈ τ + log 1
|I | .• Addendum to [2, Proof of Proposition 5.5, pp. 116–118]:

– We can take m ≈ t0(τ, |I |)/τ ≈ 1
τ
log 1

|I | .
– We can take w

(k)
τ,I = c(k+1)

I c2wτ .

– We can take cτ,m = (e−τ(1−2δ)
)−m+1+wτ,I ·eτ(1−2δ). From above, we havew

(k)
τ,I =

c(k+1)
I c2wτ . For the maximal possible k, there are no terms from higher complexity,
i.e. all the higher αi are 0, so, for this k, we get

c(k)
τ,I = Ok

((
e−τ(1−2δ)

)−m+1
)

= Ok

(
eτ(1−2δ) 1

τ
log 1

|I |
)

= Ok

(
1

|I |1−2δ

)
.
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Then inducting down by complexity, we get the same result for all k (with different
implied constant in the Ok).


�

Appendix B: Length function

In this appendix we collect various simple results about the function fv(t) = ||atv|| defined
on R for any vector v ∈ R

2 with positive entries, and its relative fv,w = fv − fw. We have

fv(t) =
√
e2tv21 + e−2tv22 = fatv(0)

and define

hv(t) = e2tv21 − e−2tv22 = hatv(0)

for convenience. First note that

f ′
v(t) = hv(t)

fv(t)
h′

v(t) = 2 fv(t)
2

from which

f ′′
v (t) = 2 fv(t)4 − hv(t)2

fv(t)3
= fv(t) + 4v21v

2
2

fv(t)3
(B.1)

follows.
Writing V = atv and θV for its argument we can write

f ′
v(t) = V 2

1 − V 2
2

||V || = ||V ||
(
(cos θV )2 − (sin θV )2

)
= ||V || cos 2θV (B.2)

and

f ′′
v (t) = 2(V 2

1 + V 2
2 )2 − (V 2

1 − V 2
2 )2

||V ||3 = ||V ||4 + 4V 2
1 V

2
2

||V ||3 = ||V || + 4V 2
1 V

2
2

||V ||3
= ||V ||

(
1 + (sin 2θV )2

)

for all t ∈ R from 2V1V2 = ||V ||2 sin 2θV . These calculations show fv is concave everywhere
with a global minimum at

m(v) = 1

2
log

v2

v1

where θV = π
4 .

We now turn to fv,w assuming v �= w. We assume without loss of generality that v and
w are in the first quadrant. If fv,w has a zero it must be at

r(v,w) = 1

4
log

v22 − w2
2

w2
1 − v21

(B.3)

giving the following fac.

Fact B.4 • If w1 > v1 and v2 > w2 the function fv,w has a unique zero.
• If v1 > w1 and w2 > v2 the function fv,w has a unique zero.
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• In no other case does fv,w have a zero.

Fact B.5 If fv,w has a zero it is either strictly increasing or strictly decreasing. In other
words, if fv,w has a zero then f ′

v,w does not.

Proof Switching the roles of v and w if necessary, we many assume w1 > v1 and v2 > w2.
We then have

m(w) = 1

2
log

w2

w1
<

1

2
log

v2

v1
= m(v)

and on the interval (m(w),m(v)] the function fw is strictly increasingwhile on [m(w),m(v))

the function fv is strictly decreasing. Thus fv,w is strictly decreasing on [m(w),m(v)].
Next, note that since v2 > w2 we have fv,w(t) > 0 for t < r(v,w) and fv,w(t) < 0 for

t > r(v,w).
Consider the case that m(w) ≤ r(v,w). Thus we have ||W || ≤ ||V || and θV > θW ≥ π

4
for all t ≤ m(w). Accordingly

f ′
v(t) = ||V || cos(2θV ) < ||W || cos(2θW ) = f ′

w(t)

and f ′
v,w is negative on (−∞,m(w)] whence fv,w is strictly decreasing on (−∞,m(v)].

In the case that r(v,w) < m(w) then the above argument shows only that f ′
v,w is negative

on (−∞, r(v,w)]. On the interval (r(v,w),m(w)) we have ||W || > ||V || and θV > θW > π
4

giving f ′′
v < f ′′

w thereon. Thus we may extend negativity of f ′
v,w to (−∞,m(w)] and fv,w

is again strictly decreasing on all of (−∞,m(v)].
The cases r(v,w) ≤ m(v) and m(v) < r(v,w) are similar to the above, and altogether

fv,w is strictly decreasing on all of R. 
�
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