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Abstract
We investigate fixed-point properties of automorphisms of groups similar to Richard Thomp-
son’s group F . Revisiting work of Gonçalves and Kochloukova, we deduce a cohomological
criterion to detect infinite fixed-point sets in the abelianization, implying the so-called
property R∞. Using the Bieri–Neumann–Strebel Σ-invariant and drawing from works of
Gonçalves–Sankaran–Strebel and Zaremsky, we show that our tool applies to many F-like
groups, including Stein’s group F2,3, cleary’s irrational-slope group Fτ , the Lodha–Moore
groups, and the braided version of F .
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1 Introduction

Many groups admit automorphism groups with a rich structure. Though in general, fully
describing automorphismgroups can be challenging.Given a groupΓ with unknownAut(Γ ),
one might draw inspiration from dynamics and ask for qualitative information on arbitrary
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elements ϕ ∈ Aut(Γ ). For instance, one may ask whether ϕ is periodic (i.e., of finite order),
how the subgroup of fixed points Fix(ϕ) looks like, whether ϕ stabilizes interesting subsets
of Γ besides characteristic subgroups, or if the whole group Aut(Γ ) acts on an interesting
object.

In this work we address questions concerning fixed-point properties and stabilized subsets
of automorphisms of groups in a family F of Thompson-like groups. That is, we look at
relatives of R. Thompson’s group F , which is a group of dyadic rearrangements of the unit
interval [18]. The groups we look at are not residually finite, are typically finitely presented,
and include nonamenable examples. Throughout we let F denote the family consisting of
the following:

1. the F-like groups G(I ; A, P) of Bieri–Strebel [7, 32];
2. the braided variant Fbr of Thompson’s group F of Brady–Burillo–Cleary–Stein [10]; and
3. the Lodha–Moore groups G, yG,Gy, yGy introduced in [39];

cf. Section3 for precise definitions of the groups above. We remark that Thompson’s F ,
Stein’s F2,3 and Cleary’s irrational-slope group Fτ all belong to F ; see Sect. 3.3. Our main
result is the following.

Theorem 1.1 Let Γ be a group in the family F as above and let ϕ ∈ Aut(Γ ) be arbi-
trary. Then ϕ stabilizes (set-wise) infinitely many cosets of the commutator subgroup [Γ , Γ ].
Equivalently, the fixed-point set of the induced map ϕab on the abelianization Γ ab is infinite.

This phenomenon—that is, all automorphisms having infinitely many fixed points in
the abelianization—has been observed for other interesting families. For instance, many
soluble arithmetic groups exhibit this property; see, e.g., [38, 41]. In contrast, other groups
occurring naturally—such as free or free nilpotent groups—do not satisfy this; cf. Sect. 2 for
a discussion.

A consequence of Theorem 1.1 is the following implication about Reidemeister numbers,
which give the number of orbits of the twisted conjugation action of group automorphisms;
we refer to Sect. 2 for definitions.

Corollary 1.2 All groups in the family F have property R∞, that is, the Reidemeister number
of any of their automorphisms is infinite.

The result above is proved as Corollary 5.8 in Sect. 5.2. For Thompson’s group F , prop-
erty R∞ was known bywork of Bleak–Fel’shtyn–Gonçalves [9]. For the F-like Bieri–Strebel
groups it was established by Gonçalves–Kochloukova and Gonçalves–Sankaran–Strebel [29,
32], though it was not explicitly stated for Stein’s F2,3 nor Cleary’s Fτ . To the best of our
knowledge we record here the first proof that Fbr and the Lodha–Moore groups have prop-
erty R∞. Despite this, we remark that this fact is found implicitly in the literature as it can
also be deduced by combining the works of Zaremsky [50, 51] and Gonçalves–Kochloukova
[29]; see the alternative proof of Corollary 5.8 for such groups in Sect. 5.1. Paraphrasing
Zaremsky [50], our results provide a further point of similarity between the Lodha–Moore
groups and Thompson’s F—though by the time of writing it is still unknown whether F is
nonamenable.

Our main technical result, however, is Theorem 5.1 in Sect. 5. Roughly speaking, it is a
cohomological fixed-point criterion to check for property R∞. This theorem is a generaliza-
tion of the (implicit) core idea behind the main results of [29]. Instead of stating it here in
full generality, we record a special case below which might be of independent interest; cf.
Theorem 5.4 for the general version.
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Theorem 1.3 If a finitely generated group Γ does not have property R∞, then the canonical
action of Aut(Γ ) on the first integral cohomology H1(Γ ) does not admit nonzero global
fixed points.

The previous result is motivated by, and further highlights, connections between Reide-
meister numbers and fixed-point results in algebra, geometry and topology; see Sect. 2 for
examples and references. Other representation-theoretic properties concerning the existence
of fixed points (or lack thereof) include Kazhdan’s property (T), the Haagerup property, and
Serre’s property FA; cf. [2, 48]. It is unknown to us whether there is a connection between
property R∞ for a group Γ and its automorphism group Aut(Γ ) having (or not) property (T).

Regarding the proofs, Theorem 1.1 is shown by combining Theorem 5.1 with well-known
results about characters and the Bieri–Neumann–Strebel Σ-invariant [6]. For groups in F ,
the Σ-invariants were studied by Gonçalves–Sankaran–Strebel [32] and Zaremsky [50, 51].
The general version of Theorem 1.3 is stated in Sect. 5 and follows easily from Theorem 5.1
and standard facts about cohomology.

The organization of this article is as follows. Section2 is an exposition where we recall
known discoveries about Reidemeister numbers and fixed-point results, posing motivating
questions, considering examples, and discussing the state of knowledge. (Sect. 2 is thus
independent of the material on Thompson-like groups, and our questions might be of general
interest). In Sect. 3 we give a brief introduction to the Thompson-like groups we consider.We
then recall statements about their BNS Σ-invariant in Sect. 4. Our main results are proved
in Sect. 5. Motivated by fixed-point phenomena studied here and in the literature, we raise
multiple related questions throughout the text.

2 Background: Reidemeister numbers and fixed points

Properties relating group actions to the topological study of fixed points have been of
paramount importance inmultiple areas [2, 31, 48]. Among those is property R∞, which com-
bines automorphisms and conjugation. Given ϕ ∈ Aut(Γ ), its Reidemeister number R(ϕ) is
the number of orbits of the ϕ-twisted conjugation action Γ × Γ → Γ , (g, a) �→ gaϕ(g)−1.
One then says that Γ has property R∞ in case R(ϕ) = ∞ for every ϕ ∈ Aut(Γ ).

Interest in Reidemeister numbers goes back to the 1930s, and checking whether a group
has R∞ sheds some light on its automorphismgroup and on related fixed-point theorems. This
is illustrated by results, e.g., for algebraic and Lie groups [46, Theorem 10.1], in algebraic
topology [31, Theorem 6.1], and on dynamics of Gromov hyperbolic groups [37, Theo-
rem 0.1]. For instance, suppose f : X → X is a self-map of a compact connected simplicial
complex such that the induced map f∗ on π1(X) is an automorphism. Then the Reidemeister
trace of f takes values in a Z-module whose rank is precisely R( f∗); see [5, 27] for more
on the Reidemeister trace and its connection to Bass’ conjecture. In case X is, additionally, a
nilmanifold and f is a self-homeomorphism, results of Lefschetz, Thurston and others imply
that f has no fixed points (up to homotopy) if and only if R( f∗) = ∞; cf. [27, 31].

From the group-theoretic perspective, the literature shows connections between the Rei-
demeister number R(ϕ) and fixed point sets (or stabilized subsets) of the given automorphism
ϕ, as we now elucidate.

Example 2.1 (Folklore) Given ϕ ∈ Aut(Γ ), consider the map

Fϕ : Γ −→ [1]ϕ := {g · 1 · ϕ(g)−1 | g ∈ Γ }
g �−→ gϕ(g)−1
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from Γ onto the ϕ-twisted conjugacy class of the identity 1 ∈ Γ . Now look at the subgroup
of fixed points Fix(ϕ) = {g ∈ Γ | ϕ(g) = g}, sometimes also denoted by CΓ (ϕ) and called
the centralizer of ϕ in Γ . One has that Fϕ is injective if and only if Fix(ϕ) = {1}. Hence, if
Γ is a finite group, it holds R(ϕ) = 1 ⇐⇒ |Fix(ϕ)| = 1.

Example 2.1 also occurs for some linear algebraic groups as long as ϕ is an algebraic
automorphism; see, for instance, [38, 46].

The case of abelian groups also has the following useful observation, which has been
frequently used in the literature.

Lemma 2.2 [24, Corollary 4.3] Assume Γ is finitely generated abelian and let ϕ ∈ Aut(Γ ).
Then |Fix(ϕ)| = ∞ ⇐⇒ R(ϕ) = ∞.

We stress that Jabara [34] generalized one of the above implications: replacing ‘abelian’
by ‘residually finite’ it holds |Fix(ϕ)| = ∞ 	⇒ R(ϕ) = ∞; see [43, Proposition 3.7]
for a proof of Jabara’s lemma. (Recall that Γ is residually finite if the intersection of all its
normal subgroups of finite index is trivial.)

In case one is set to check whether R(ϕ) = ∞, the following well-known observation is
particularly useful.

Lemma 2.3 [24, Corollary 2.5] Let ϕ ∈ Aut(Γ ) and suppose N � Γ is ϕ-invariant. Then
ϕ induces an automorphism ϕ ∈ Aut(Γ /N ) given by gN �→ ϕ(g)N and moreover R(ϕ) ≥
R(ϕ).

Since the commutator subgroup is characteristic, one always obtains from ϕ ∈ Aut(Γ ) an
induced automorphism on the abelianization Γ ab = Γ /[Γ , Γ ], which we henceforth denote
by ϕab.

Now, given an automorphism ϕ which is known to have infinite Reidemeister number,
one might ask whether its fixed-point set Fix(ϕ) is also infinite. This is not the case, not even
assuming residual finiteness as in Jabara’s lemma. In a remarkable paper, Cohen and Lustig,
building upon work of Goldstein–Turner, analysed the dynamics of automorphisms of free
groups by looking at their action on a graph which precisely describes the twisted conjugacy
classes in free groups.

Example 2.4 (Cohen–Lustig [21]) Let Γ = Fn be a finitely generated free group. Then one
can construct automorphisms ϕ ∈ Aut(Fn) with the following properties:

1. [ϕ] ∈ Out(Fn) is nontrivial,
2. the automorphism ϕab induced on the abelianization Fnab ∼= Z

n is the identity (thus
R(ϕ) = ∞ by Lemmas 2.2 and 2.3), but

3. |Fix(ϕ)| = 1.

For an explicit example, take Γ = F3 = 〈x, y, z〉 and
ϕ : F3 −→ F3

x �−→ z3xz−3,

y �−→ z−1xz2x−1yz−1,

z �−→ zϕ([y, x]).
It is straightforward to check that properties (1) and (2) hold, while property (3) follows from
[21, Theorem 1].
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We stress the importance of considering outer automorphisms. Firstly, composing with
inner automorphisms does not alter the Reidemeister number: for any ι ∈ Inn(Γ ) and all
ϕ ∈ Aut(Γ ) it holds R(ι◦ϕ) = R(ϕ); see [24, Corollary 2.3]. Secondly, inner automorphisms
might well have few fixed points.

Example 2.5 Take Γ = SL2(Z). Straightforward computations show that the inner automor-
phism

ι
((

a b
c d

)) = (
3 1
2 1

) (
a b
c d

) (
3 1
2 1

)−1 = ( 3a−6b+c−2d −3a+9b−c+d
2a−4b+c−2d −2a+6b−c+3d

)

satisfies

Fix(ι) = {(
1 0
0 1

)
,
( −1 0

0 −1

)}
.

But the class number R(id)—i.e., the total number of conjugacy classes—of SL2(Z) is
infinite; see, e.g., [19] for a number-theoretic proof. Thus R(ι) = R(ι ◦ id) = R(id) = ∞.

Remark 2.6 The groups Fn and SL2(Z) actually have property R∞. This follows, e.g., from
the fact that nonelementary Gromov hyperbolic groups do so; c.f. [37]. (Recall that SL2(Z)

is virtually free (on two generators), thus quasi-isometric to a finitely generated nonabelian
free group, which in turn is Gromov hyperbolic.)

In particular, Examples 2.4 and 2.5 show that a converse to Jabara’s lemma, mentioned
above, cannot hold. Since fixed-point sets and Reidemeister numbers have a deeper connec-
tion in the abelian case, onemight wonder whether a partial converse to Jabara’s lemma holds
for amenable groups. Once again it all fails, as the next result will show.

Proposition 2.7 There exists a finitely generated, residually finite, amenable group GW with
property R∞ and an automorphism ϕ ∈ Aut(GW) with the following properties.

1. [ϕ] ∈ Out(GW) is nontrivial, and
2. both Fix(ϕ) and Fix(ϕab) are finite.

Proof Given a natural number b, let B denote the matrix

B = ( −1 b
0 1

) ∈ GL2(Z).

The group GW is defined as the extension

GW := Z
2

�B Z,

where Z acts on Z
2 via B ∈ GL2(Z) ∼= Aut(Z2). That is, writing the elements of Z

2 as
(integral) column vectors in R

2, the product in GW is given by
(( x1

y1

)
, z1

) · (( x2
y2

)
, z2

) = (( x1
y1

) + Bz1 · ( x2
y2

)
, z1 + z2

)
.

Now define ϕ : GW → GW by setting

ϕ
((( x

y
)
, z

)) = (( −x−y
)
,−z

)
.

As B2 = id and hence B−z = Bz for any z ∈ Z, it follows that ϕ is a homomorphism since

ϕ
((( x1

y1

)
, z1

) · (( x2
y2

)
, z2

)) = ϕ
((( x1

y1

) + Bz1 · ( x2
y2

)
, z1 + z2

))

= (− ( x1
y1

) − Bz1 · ( x2
y2

)
,−z1 − z2

)

= (− ( x1
y1

) + B−z1 · ( −x2−y2

)
, (−z1) + (−z2)

)
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= (− ( x1
y1

)
,−z1

) · (− ( x2
y2

)
,−z2

)

= ϕ
((( x1

y1

)
, z1

)) · ϕ
((( x2

y2

)
, z2

))
.

By construction, the kernel of ϕ is trivial and any
(( x

y
)
, z

) ∈ Z
2

�B Z lies in the image of
ϕ, whence ϕ ∈ Aut(GW).

The fact that ϕ is not an inner automorphism is immediate since conjugating
(( x

y
)
, z

)
by

any element of GW fixes the coordinate z. Also, Fix(ϕ) is trivial by the very definition of GW
and ϕ.

Let us now check that Fix(ϕab) is finite. To see this, we observe that GW admits the
following presentation.

GW ∼= 〈e1, e2, t | [e1, e2] = 1, te1t
−1 = e−1

1 , te2t
−1 = eb1e2〉.

In the above,we identify the normal subgroupZ
2 with 〈e1, e2〉, and the quotientZ is generated

by t . Forcing the generators to commute, (the image of) e1 becomes an involution with a
vanishing power. More precisely,

GWab ∼= 〈e1, e2, t | [e1, e2] = [e1, t] = [e2, t] = e1
2 = e1

b = 1〉
∼=

{
C2 × Z

2 if b ∈ 2N,

Z
2 otherwise.

Moreover, the map induced by ϕ on the abelian group GWab simply inverts the powers of its
generators. Thus ϕab fixes 1 and e1, in case b is even, and only the identity element otherwise.

Since GW is an extension of Z
2 by Z, it is (elementary) amenable, finitely generated, and

residually finite. In fact, one can recognize GW geometrically as a 3-dimensional crystallo-
graphic group by a result of Zassenhaus’ (see [22, Theorem 2.1.4]) since t2 acts trivially
on e1 and e2 by conjugation, which implies that 〈e1, e2, z2〉 is a maximal abelian subgroup
isomorphic toZ

3 and of index 2. That GW has property R∞ follows from the fact that it admits
the infinite dihedral group as a characteristic quotient; cf. [25, Proposition 4.9] for a proof.
The proposition follows. ��
Remark 2.8 Our construction draws from the ideas of Gonçalves–Wong in [30], where they
give examples of polycyclic groups of exponential growth that do not have property R∞. Our
examples differ from theirs in that they consider extensionsZ

2
�AZwith A ∈ SL2(Z) (instead

of GL2(Z)) and having eigenvalues of absolute value different from 1. This allows them to
obtain groups without R∞ and of exponential growth, whereas our extension GW = Z

2
�B Z

is actually virtually abelian and thus of polynomial growth; see [49].

Remark 2.9 In an earlier version of the present paper, the authorsmistakenly claimed to obtain
an infinite family of groups with the properties prescribed in Proposition 2.7. (And with the
stronger requirement that |Fix(ϕ)| = |Fix(ϕab)| = 1.) Although the group GW depends on a
parameter b ∈ N, the classification of crystallographic groups (see [22, Chapter 2]) implies
that there are only finitely many such groups up to isomorphism. (Notice that choosing b
even or odd yields nonisomorphic groups.)

Constructing groups that have non-inner automorphisms with few fixed points—both in
the given group and in its abelianization—seems a nontrivial matter. Indeed, many soluble
groupswere shown to have R∞ by finding infinitelymany fixed points in their abelianizations
or in characteristic subgroups (cf. [25, 31, 38]). Other candidates of amenable groups with
the properties listed in Proposition 2.7 would be certain branch groups [3], such as the groups
of Gupta–Sidki [26, 33]. In fortunate cases, a result of Lavreniuk–Nekrashevych shows that
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the automorphisms of such groups are induced by conjugation by an automorphism of the
corresponding regular rooted tree [36]. However, it seems often the case that the centralizers
of automorphisms of the given trees are infinite.

It is thus unclear to us whether there exist, up to isomorphism, infinitely many finitely
generated, residually finite, amenable groups with property R∞ and admitting non-inner
automorphisms with a single fixed point in the given group and in its abelianization.

All of the previous examples happened in the residually finite (in fact, linear) world. These
considerations motivated our present work, namely with the following problems in mind.

Question 2.10 Do there exist (finitely generated) non-residually finite groups with prop-
erty R∞ such that every outer automorphism Φ is represented by an element ϕ ∈ Φ with
infinitely many fixed points?

In view of formulae and bounds relating Reidemeister numbers of a given automorphism
to Reidemeister numbers and fixed points of the induced map on a characteristic quotient,
one lands on the following version of the previous question.

Problem 2.11 Give examples of (finitely generated) non-residually finite groups Γ with a
characteristic quotient Γ /N all of whose automorphisms ϕ induced by ϕ ∈ Aut(Γ ) fix
infinitely many points.

Problem 2.11 has a sibling in the literature. Dekimpe and Gonçalves initiated the study
of groups admitting characteristic quotients all of whose induced automorphisms ϕ have
R(ϕ) = ∞; see [23].

Though we are unable to settle Question 2.10, it turns out that a group of R. Thompson
partially solves it while also solving Problem 2.11.

Recall that Thompson’s F is the group of piecewise-linear (orientation-preserving) self-
homeomorphisms of the unit interval [0, 1] whose elements f ∈ F have: finitely many
singularities; slopes in the multiplicative subgroup 〈2〉 ≤ (R×, ·); and the singularities lie in
Z[ 12 ], the ring of dyadic rationals. (We remind the reader that F is finitely presented and ‘not
far’ from being simple as [F, F] is simple and Fab ∼= Z

2 [18].) In the following we record
a slight refinement of the fact that Thompson’s group F has property R∞, which was first
proved by Bleak–Fel’shtyn–Gonçalves [9].

Proposition 2.12 Thompson’s group F satisfies |Fix(ψab)| = ∞ for any ψ ∈ Aut(F) and
thus has property R∞. Moreover, there exist infinitely many outer automorphisms of F of
finite order, and every ϕ ∈ Aut(F) of finite order satisfies |Fix(ϕ)| = ∞.

Proof In a seminal paper, Brin [11] completely determined Aut(F). Building upon this,
Bleak–Fel’shtyn–Gonçalves observed that any element of Aut(F) induces a matrix A ∈
GL2(Z) ∼= Aut(Fab) having 1 as an eigenvalue; cf. the proof of [9, Theorem 3.3]. Thus
|Fix(ψab)| = ∞ for any ψ ∈ Aut(F) and, by Lemmas 2.2 and 2.3, F has property R∞.

Again fromBrin’swork (see [11,Theorem1]), there is a subgroupof index twoAut+(F) �
Aut(F) that fits into a short exact sequence F ↪→ Aut+(F) � T×T , where T is Thompson’s
simple group T [18]. This sequence, in turn, implies that Out(F) contains a subgroup (of
finite index) that contains copies of T , which is known to contain infinitely many torsion
elements [28].

Finally, any element ϕ ∈ Aut(F) of finite order satisfies |Fix(ϕ)| = ∞. This is because
Fix(ϕ) contains a copy of F or is not even finitely generated—for a short proof of this fact
we refer the reader to (the proof of) [35, Corollary 5.2]. ��

We will see that many groups similar to F also solve Problem 2.11, and discuss how
Proposition 2.12 extends to some of them; see Sect. 5.
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3 Thompson-like groups

Thompson groups are those generalizing or resembling Richard Thompson’s original trio
F ⊂ T ⊂ V ; see [18]. Groups in this family are typically finitely presented and not far from
being simple, and are prominent for exhibiting peculiar properties [14, 18].

Motivated by the case of F seen in Sect. 2, here we are interested in the Lodha–Moore
groups (cf. Sect. 3.1), the braided Thompson group Fbr (cf. Sect. 3.2) and the Bieri–Strebel
groups G(I ; A, P) (cf. Sect. 3.3), which are in a sense ‘F-like groups’. The Lodha–Moore
groups were the first finitely presented torsion-free counterexamples to the von Neumann
conjecture [39], while Fbr serves as an ‘Artinian version’ of F [10], and the F-like Bieri–
Strebel groups are natural generalizations of F as piecewise-linear homeomorphisms of
intervals [7].

In this note we use the usual ‘left-hand notation’ for maps.

3.1 The Lodha–Moore groups

We consider self-transformations of the Cantor set 2N, whose points are infinite binary
sequences ξ = a0a1a2 · · · with each digit ai ∈ {0, 1}. Define the following two functions of
2N.

x(ξ) :=

⎧
⎪⎨

⎪⎩

0η, if ξ = 00η,

10η, if ξ = 01η,

11η, if ξ = 1η,

and y(ξ) :=

⎧
⎪⎨

⎪⎩

0(y(η)), if ξ = 00η,

10(y−1(η)), if ξ = 01η,

11(y(η)), if ξ = 1η.

One similarly defines x−1 and y−1. Now, given s ∈ 2<N, the set of all finite binary sequences,
define the following families of maps on 2N.

xs(ξ) :=
{
s(x(η)), if ξ = sη,

ξ otherwise,
and ys(ξ) :=

{
s(y(η)), if ξ = sη,

ξ, otherwise.

If s is the empty sequence ø, we set xs = x and ys = y. Considering N0 := {0} ∪ N, the
Lodha–Moore groups are the following subgroups of bijections 2N → 2N:

yGy := 〈xs, yt | s, t ∈ 2<N〉,
yG := 〈xs, yt | s, t ∈ 2<N, t /∈ {

1n
}
n∈N0

〉,
Gy := 〈xs, yt | s, t ∈ 2<N, t /∈ {

0n
}
n∈N0

〉 and
G := 〈xs, yt | s, t ∈ 2<N, t /∈ {

0n, 1n
}
n∈N0

〉.

Here, 0n and 1n denote constant binary sequences, where n ∈ N0. In particular, 00 and 10

also represent the empty sequence ø.
For our purposes, we shall need the following defining relators [39] for the larger group

yGy ≥ yG,Gy,G, indexed by sequences s, t ∈ 2<N.

(LM1) x2s = xs1xs xs0;
(LM2) If xs(t) is well-defined, then xs xt = xxs (t)xs ;
(LM3) If xs(t) is well-defined, then xs yt = yxs (t)xs ;
(LM4) If s ∈ 2<N is not a prefix of t ∈ 2<N, nor is t a prefix of s, then ys yt = yt ys ;
(LM5) ys = ys11y

−1
s10ys0xs .
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Fig. 1 A diagram (left) and an expansion of it (right)

In the sentence “xs(t) is well-defined” we mean that the finite sequence t has s as its prefix
and that xs can act on t as it does on an infinite binary sequence ξ = sη. In order to restrict
such relations to the other Lodha–Moore groups, one simply restricts which subscripts are
used for the yt -generators. It is as instructive as helpful to check that the four Lodha–Moore
groups are in fact finitely generated [39, 50].

3.2 The braided version of F

Throughout, by a tree we mean a finite rooted binary tree. That is, a tree whose vertices have
valency 3 except for the root and the leaves, which have valency 2 and 1, respectively. The
trivial tree is made of a single node. We fix a numbering on the n leaves of a tree by labeling
them from 1 to n from left to right. If v is not a leaf vertex, it is connected to two vertices u
and w that are farther away from the root than v. Such a vertex v together with the two edges
and their vertices u, w form a caret.

A braided paired tree diagram is a triple (T−, b, T+) consisting of trees T− and T+ both
with n ∈ N leaves and an element b of the braid group on n strings Bn . Following [10], we
represent such triples as split-braid-merge diagrams: we draw T− with its root on the top and
the n leaves at the bottom and T+ with its root at the bottom and its n leaves at the top, aligned
with the leaves of T+ so that the braid element b ∈ Bn can be represented between them; see
Fig. 1. In accordance with braid diagrams, we regard isotopic diagrams to be equal.

Given a leaf − of T−, let + denote the unique leaf of T+ connected to − by a strand
s of b. An expansion of (T−, b, T+) is given as follows: one adds a caret to the leaf −
and another one to +, then one bifurcates the strand s into two parallel strands; see Fig. 1.
A reduction is the reverse of an expansion. We refer the reader to [10] for a more detailed
explanation. Two braided paired tree diagrams are equivalent if one can be obtained from
the other by performing finitely many reductions and expansions. We remark that every such
diagram admits a unique reduced representative.

The set of equivalence classes of braided paired tree diagrams forms a group, denoted Vbr
[10]. Similarly to the strand diagrams of Belk–Matucci [4], multiplication in Vbr works as
follows: given T = (T−, b, T+) and R = (R−, b′, R+) ∈ Vbr, we obtain T · R by gluing
the root of T+ to the root of R− and then performing the reduction moves from Fig. 2until
reaching a braided paired tree diagram; cf. [17, Section 1.1]. For an example of multiplication
see Fig. 3.We stress that, due to Newman’s Diamond Lemma (cf. [1]), the order of reductions
does not matter since the corresponding abstract rewriting system is confluent. Recall that a
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Fig. 2 Reduction moves

Fig. 3 Multiplication on Vbr

Fig. 4 Some generators of Fbr

braid b lies in the pure braid group PBn ≤ Bn if its induced permutation on n elements is the
identity. The braided Thompson group Fbr is the subgroup of Vbr whose elements (T−, b, T+)

only have pure braids b ∈ PBn in their diagrams (Fig. 4).
We now recall a finite generating set for Fbr. First notice that F can be regarded as the

subgroup of Fbr of triples (T−, 1, T+), where T−, T+ are trees with n leaves and 1 is the
identity element in PBn . Denote by x0, x1 the usual generators of F ≤ Fbr. Now for each
n ∈ N denote by Rn the right vine with n leaves, i.e., the tree where no caret has a left child.
Consider also the elements An

i j ∈ PBn , for i < j , which wrap the i th strand around the j th
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one. For 1 ≤ i < j , let

αi j = (R j+1, A
j+1
i j , R j+1) and βi j = (R j , A

j
i j , R j ).

By [10, Theorem 6.1], the group Fbr is generated by

x0, x1, α1,2, α1,3, α2,3, α2,4, β1,2, β1,3, β2,3, β2,4.

3.3 The F-like Bieri–Strebel groups

Let PL◦(R) be the group of all orientation-preserving piecewise-linear homeomorphisms of
the real line with only finitely many singularities.

Given a nontrivial additive subgroup A ≤ (R,+), a nontrivial (positive) multiplicative
subgroup P ≤ (R×

>0, ·) such that P · A ⊆ A, and a closed interval [0, ] ⊂ R with  ∈ A,
the corresponding F-like Bieri–Strebel group is the subgroup

G([0, ]; A, P) ≤ PL◦(R)

whose elements g ∈ G([0, ]; A, P) map A to A and have

– supp(g) ⊆ [0, ], where supp(g) = {r ∈ R | g(r) �= r} is the support of g;
– all its singularities belonging to A;
– all its slopes lying in P .

These groups were first studied by Bieri and Strebel [7] in the 1980s as natural gener-
alizations of F . (We remark that, in the paper [32], the authors view PL◦(R) as a group
of increasing homeomorphisms. Our definitions of the F-like Bieri–Strebel groups are
nevertheless equivalent, for ‘increasing’ and ‘orientation-preserving’ can be interchanged
here.)

Since any homeomorphism of a closed interval that fixes its endpoints can be extended to
a homeomorphism of the whole real line, one readily detects that the groups G([0, ]; A, P)

include familiar examples.

Example 3.1 1. Thompson’s F is just G([0, ]; A, P) with  = 1, A = Z[ 12 ] and P =
〈2〉 = {2k | k ∈ Z} ≤ R

×
>0.

2. The group nowadays known as Stein’s group F2,3 is simply F2,3 =
G([0, 1]; Z[ 16 ], 〈2, 3〉); cf. [44, 45].

3. Using the (small) golden ratio τ =
√
5−1
2 , Cleary constructed the irrational-slope group

Fτ = G([0, 1]; Z[τ ], 〈τ 〉); see [16, 20].
We remark that it is still an open problem to classify all finitely generated F-like Bieri–

Strebel groups; see [7].

4 Characters and 6-invariants

Investigating properties of automorphisms of a group Γ usually requires deep knowledge
on the full automorphism group Aut(Γ ). This was illustrated in Sect. 2, and particularly
for Thompson’s group F in Proposition 2.12. However, it is sometimes possible to obtain
qualitative information on Aut(Γ ) bypassing an explicit computation of Aut(Γ ). We shall
take this route with help of (the complement of) the geometric invariant Σ1(Γ ) of Bieri–
Neumann–Strebel [6].
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A character of a group Γ is a homomorphism χ : Γ → R, where R is the additive group
of real numbers, and χ is discrete if Im(χ) ⊆ Z.

When Γ is finitely generated, its character sphere is defined as

S(Γ ) := (Hom(Γ , R) \ {0}) / ∼,

where the equivalence relation ∼ is given by

μ1 ∼ μ2 ⇐⇒ ∃ r ∈ R>0 such that rμ1 = μ2.

The equivalence class of a character μ is denoted by [μ], and the invariant Σ1(Γ ) ⊆ S(Γ )

of the group Γ is then defined as

Σ1(Γ ) := {
[μ] | Cay(Γ )μ≥0 is connected

}
,

where Cay(Γ ) is the Cayley graph of Γ using some finite generating set of Γ . Here,
Cay(Γ )μ≥0 is the full subgraph of Cay(Γ ) whose vertices are mapped to nonnegative real
numbers by μ. In practice, it is often more convenient to work with the complement of Σ1,
defined by

Σ1(Γ )c = S(Γ ) \ Σ1(Γ );
we refer the reader to Strebel’s notes [47] for more on Σ1 and its complement. An important
feature is that Σ1(Γ ) and Σ1(Γ )c do not depend on the generating set for Γ (cf. [6]), which
is why we omit this in the notation for the Cayley graph Cay(Γ ).

4.1 Characters of Thompson-like groups

Though computingΣ1 can be challenging in general, Zaremsky observed in [50] and [51] that
certain characters of G, yG, Gy , yGy and Fbr, closely related to two well-known characters
of Thompson’s F , are particularly important.

From now on, we adopt the following notation.

Γ0 = Fbr, Γ1 = G, Γ2 = yG, Γ3 = Gy, and Γ4 = yGy .

In [50], the following discrete characters of the Γi are considered.

χ0 : Γi → Z, for i = 1, 3, χ1 : Γi → Z, for i = 1, 2,

w �→
{

−1, if w = x0n , n ∈ N0,

0, otherwise,
w �→

{
1, if w = x1n , n ∈ N0,

0, otherwise,

ψ0 : Γi → Z, for i = 2, 4, ψ1 : Γi → Z, for i = 3, 4,

w �→
{
1, if w = y0n , n ∈ N0,

0, otherwise,
w �→

{
1, if w = y1n , n ∈ N0,

0, otherwise.

Turning to Γ0 = Fbr, we recall the following two discrete characters from [51]. Given a
tree T , considered as a metric graph with edge lengths all equal to 1, denote by L(T ) the
length of the shortest path from the root of T to its leftmost leaf. Similarly, denote by R(T )

the length of the shortest path from the root of T to its rightmost leaf. Define ϕ0, ϕ1 : Γ0 → Z

by

ϕ0(T−, p, T+) = L(T+) − L(T−) and ϕ1(T−, p, T+) = R(T+) − R(T−).
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Theorem 4.1 ([50, Theorem 4.5] and [51, Theorem 3.4]) The complement Σ1(Γi )
c of the

Σ-invariant of Γi equals Pi ⊂ S(Γi ), with Pi as follows.

i = 0 i = 1 i = 2 i = 3 i = 4
Γi Fbr G yG Gy yGy

Pi {[ϕ0], [ϕ1]} {[χ0], [χ1]} {[ψ0], [χ1]} {[χ0], [−ψ1]} {[ψ0], [−ψ1]}
The Σ-invariant of the F-like Bieri–Strebel groups G([0, ]; A, P) has been partially

studied in the monograph [7], though we will not make use of them here. Instead, we shall
need the following result due to Gonçalves–Sankaran–Strebel, which was also obtained by
making heavy use of the Σ-invariant.

Theorem 4.2 [32, Theorem 1.4] For any F-like Bieri–Strebel group G([0, ]; A, P) there
exists a nontrivial homomorphism f : G([0, ]; A, P) → R such that f ◦ ϕ = f for any
ϕ ∈ Aut(G([0, ]; A, P)).

5 Main results and proofs

The main technical result of the present note is the following theorem. Since it has not
appeared before in the literature (neither explicitly nor in the version stated below), we
provide a detailed proof. It generalizes the core idea from [29] (see also [32])—the main
difference is that they do not lift back to the abelianization to construct stabilized cosets as
we do here.

Theorem 5.1 Let G be a finitely generated group and let ϕ ∈ Aut(G). Suppose there is a
nontrivial f ∈ Hom(G, A) with A abelian and f (G) containing an element of infinite order.
Assume further that there exists a ϕ-invariant N � G contained in ker( f ), and let

ϕ ∈ Aut(G/N ), gN �→ ϕ(g)N ,

f ∈ Hom(G/N , A), gN �→ f (g)

be the maps from G/N induced by ϕ and f , respectively. In the above notation, if f ◦ϕ = f ,
then |Fix(ϕab)| = ∞.

Proof It suffices to show that R(ϕab) = ∞ and Lemma 2.2 will assure that |Fix(ϕab)| = ∞.
Our proof idea is to construct a ϕab-invariant subgroup M of Gab such that the induced
automorphism ϕab on Gab/M satisfies R(ϕab) = ∞. Then, Lemma 2.3 will assure that

R(ϕab) ≥ R(ϕab) = ∞.

The hypothesis f ◦ ϕ = f guarantees that ker( f ) is ϕ-invariant, which in turn assures
that ϕ induces an automorphism

ϕ : G/N

ker( f )
−→ G/N

ker( f )
.

For simplicity, write G = G/N
ker( f )

and g = (gN ) ker( f ) ∈ G.

Since f has abelian image, one has that G itself is a quotient of Gab via the natural
projection

p : G/[G,G] −→ G
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x[G,G] �−→ x .

We shall take ker(p) as the subgroup M ≤ Gab mentioned above.
First, we need to check that ker(p) is ϕab-invariant. This is equivalent to showing that any

element x[G,G] ∈ ker(p) satisfies

p(ϕab(x[G,G])) = 1.

Since p(ϕab(x[G,G])) = ϕ(x), we need to prove that ϕ(xN ) ∈ ker( f ), which is a direct
consequence of the assumption f ◦ ϕ = f .

It is left to verify that R(ϕab) = ∞, where ϕab is the automorphism induced by ϕab on

the quotient Gab/ ker(p). Notice that Gab/ ker(p) is isomorphic to G and that ϕab and ϕ are
the same automorphism. Thus, we need only prove that R(ϕ) = ∞, which is equivalent to
showing that ϕ has infinitely many fixed points by Lemma 2.2.

Let g ∈ G be an element such that f (g) is of infinite order in A. Let us check that g has

infinite order in G and ϕ(g) = g. We shall write A additively.

In fact, g
n = 1 is equivalent to gnN ∈ ker( f ). This means that

0 = f (gnN ) = f (gn) = n f (g).

The fact that f (g) has infinite order implies that n = 0.
Finally, ϕ(g) = ϕ(gN ) ker( f ) can only coincidewith g = (gN ) ker( f ) if ϕ(gN )g−1N ∈

ker( f ). This is the case because

f (ϕ(g)g−1N ) = f ◦ ϕ(gN ) − f (gN ),

and since f ◦ ϕ = f , this means that f (ϕ(g)g−1N ) = 1. ��
Remark 5.2 The conclusion of Theorem 5.1 is equivalent to the following statement: there
exists g ∈ G such that gn /∈ [G,G] for any n ∈ Z\{0} and the set g[G,G] is ϕ-
invariant. Indeed, if the statement above holds, then the induced automorphism ϕab fixes
Z ∼= 〈g[G,G]〉 ≤ Gab pointwise. Conversely, if |Fix(ϕab)| = ∞, then because Gab is
finitely generated abelian, there must exist an element g[G,G] ∈ Gab of infinite order fixed
by ϕab. Thus

g[G,G] = ϕab(g[G,G]) Def.= ϕ(g)[G,G] = ϕ(g[G,G])
since the commutator subgroup [G,G] is characteristic.

As we have seen in Proposition 2.12, automorphisms of Thompson’s group F fix infinitely
many points in the abelianization. Putting (the conclusion of) Theorem 5.1 further into
perspective, consider the following.

Example 5.3 There exist infinitely many Dedekind domains of S-arithmetic type OS for
which the metabelian groups

( ∗ ∗
0 ∗

) ≤ PGL2(OS)

are finitely presented and such that all their automorphisms ϕ have Fix(ϕab) infinite; cf. [38].

In fact, besides the above example and the family F to be discussed in Sect. 5.2, there are
uncountably many finitely generated groups to which Theorem 5.1 applies; cf. Remark 5.7.
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5.1 Applications

Asmentioned in Sect. 2, the study of Reidemeister numbers has its roots in fixed-point theory
in different areas. Our technical Theorem 5.1 has the following interpretation as a fixed-point
result in group cohomology.

By a trivial G-module M we mean a Z[G]-module such that the elements of G act as the
identity on M . A global fixed point in a group action H � X is an element x ∈ X such that
h(x) = x for all h ∈ H .

Theorem 5.4 Let G be finitely generated. Suppose there exists a torsion-free trivial G-module
M and a nonzero global fixed point [c] ∈ H1(G, M) under the canonical action Aut(G) �

H1(G, M). Then G has property R∞.

Proof First, a clarification. When computing cohomology with coefficients H∗(G, M) using
the standard cochain complex C∗(G, M), then precomposing a cochain with an element ϕ ∈
Aut(G) again yields a cochain; see, for instance, [13, Chapter III]. While this a priori yields
no action of Aut(G) on cohomology (due to contravariance), inverting the automorphisms
and then precomposing suffices—this is the canonical action alluded to in the statement. (The
action will be made clearer in the sequel.)

Now let M be a trivial G-module with no torsion. Since G acts trivially on M , the
derivations d : G → M amount to (group) homomorphisms and the principal derivations are
trivial. Thus, one obtains the (well-known) canonical isomorphism

H1(G, M) ∼= Hom(G, M),

cf. [13, Chapter III]. Under the above identification, the canonical action Aut(G) �

H1(G, M) ∼= Hom(G, M) is given by

Aut(G) × Hom(G, M) −→ Hom(G, M)

(ϕ, f ) �−→ ϕ∗( f ) := f ◦ ϕ−1.

The existence of a nonzero global fixed point [c] ∈ H1(G, M) � Aut(G) means that there
exists a corresponding nontrivial homomorphism fc : G → M fixed by every automorphism
of G, that is,

ϕ∗( fc) = fc ◦ ϕ−1 = fc,

whence fc = fc ◦ ϕ for any ϕ ∈ Aut(G). Since M is torsion-free and fc is nontrivial, the
image of fc obviously contains an element of infinite order. We can thus apply Theorem 5.1
taking N = 1 � G and A = M and f = fc, yielding |Fix(ϕab)| = ∞ for any ϕ ∈ Aut(G).
By Lemmas 2.2 and 2.3, it follows that R(ϕ) = ∞ for all ϕ ∈ Aut(G), which finishes the
proof. ��

Theorem 1.3 is just a special case of the previous result.

Proof of Theorem 1.3 Take the contrapositive of Theorem 5.4 with M = Z as a trivial Γ -
module. ��

5.2 The case of Thompson-like groups

We now apply our machinery to the Thompson-like groups considered here, following the
same line of arguments as Gonçalves–Kochloukova in [29, Section 3]. Recall that F is
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the family consisting of the F-like Bieri–Strebel groups G([0, ]; A, P), the Lodha–Moore
groups G, yG, Gy , yGy , and the braided Thompson group Fbr defined in Sect. 3.

To give a (mostly) self-contained, non-overly technical proof of Theorem 1.1, we need
some further facts about characters for the Lodha–Moore groups and Fbr.

We keep the notation established in Sect. 4. Moreover, for n ∈ N, we define �n� =
{1, . . . , n} and �n�0 = {0} ∪ �n�. Recall from Theorem 4.1 that Σ1(Γi )

c = Pi . Now fix

Ni =
⋂

[χ ]∈Pi

ker(χ) and Vi = Hom(Γi/Ni )

where i ∈ �4�0. We shall describe Γi/Ni more precisely. In what follows, given g ∈ Γi ,
denote by g its canonical image in Γi/Ni .

Proposition 5.5 The group Γi/Ni is isomorphic to Z
2 for all i ∈ �4�0.

Proof Throughout we let {e1, . . . , ek} denote the canonical basis for Z
k . It is clear that the

Γi/Ni are abelian and, since R is itself torsion-free, the same holds for Γi/Ni .
Looking back at the generating set of Γ0 = Fbr (cf. Sect. 3.2), one sees that elements of

the form (T , b, T ) ∈ Γ0 must lie in N0 = ker(ϕ0) ∩ ker(ϕ1). In particular, the generators of
Γ0 of the form αi j and βi j all belong to N0. Thus Γ0/N0 is generated by the images of x0
and x1 under the projection Γ0 � Γ0/N0. Since xn0x

m
1 ∈ N0 if and only if 0 = n = m, the

map f : Γ0/N0 → Z
2 given by f (x0) = e1 and f (x1) = e2 is an isomorphism.

Now we check the isomorphism only in the case i = 1, as the remaining cases are
established along similar lines. Since xs, yt ∈ N1 for all s ∈ 2N\{0n, 1n}∞n=1 and t ∈ 2N, the
group Γ1/N1 is generated by x0n , x1n with n ∈ N0. We claim that this quotient is generated
by x0 and x1. Indeed, since x0(0n) = 0n−1, relation (LM2) implies that

x03 = x−1
0 x02 x0.

Inductively, we have

x0n = x−1
0 x0n−1x0 = x2−n

0 x02 x
n−2
0 .

The relation (LM1)with s = 0 gives x20 = x02 x0x01. Since x01 ∈ N1, it follows that x0 = x02 .
Similar arguments show that

x1n = xn−2
1 x12 x

2−n
1 ,

and x1 = x12 . Last but not least, relation (LM1) with s =ø implies

x2 = x1xx0

in Γ1/N1. Since this group is abelian, we get

x = x0x1.

We then conclude that Γ1/N1 is generated by x0, x1. Because xa0x
b
1 ∈ N1 ⇐⇒ 0 = −a =

b, the map g : x0 �→ e1, x1 �→ e2 extends to an isomorphism Γ1/N1 ∼= Z
2. ��

It follows from Proposition 5.5 that Vi ∼= Hom(Z2, R) ∼= R
2.

Corollary 5.6 For each i ∈ �4�0 the image of {χ | [χ] ∈ Pi } in Vi ∼= R
2 is a basis for Vi .
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Proof We first argue that the canonical image
{
ϕ0, ϕ1

}
of {ϕ0, ϕ1} in V0 = Hom(Γ0/N0, R)

is a basis of V0 ∼= R
2. Let α, β ∈ R satisfy

αϕ0 + βϕ1 ≡ 0 (5.1)

in Γ0/N0. Equality (5.1) means that αϕ0(w) + βϕ1(w) = 0 for all w ∈ Γ0/N0, and linear
independence means both α and β must be 0. Since

αϕ0(x0) + βϕ1(x0) = −α + β and αϕ0(x1) + βϕ1(x1) = β,

we see that the only solution for (5.1) is (α, β) = (0, 0), as desired.
Lastly we again restrict ourselves to the case i = 1, the remaining ones being entirely

analogous. To check linear independence let α, β ∈ R satisfy

αχ0 + βχ1 ≡ 0 (5.2)

in Γ1/N1. Recall that Γ1/N1 is generated by {x0, x1}, so that

αχ0(x0) + βχ1(x0) = −α and αχ0(x1) + βχ1(x1) = β.

Thus the only solution for Eq. (5.2) is (α, β) = (0, 0). ��
With elementary facts established, we can prove the main result from the Introduction.

Proof of Theorem 1.1 Let Γ ∈ F . If Γ is one of the F-like groups of Bieri–Strebel (cf.
Sect. 3.3), we know from Theorem 4.2 that there exists a nontrivial homomorphism f : Γ →
R such that f ◦ ϕ = f for any ϕ ∈ Aut(Γ ). We then just apply Theorem 5.1 with N = 1
and A = R.

Now suppose Γ is one of the Lodha–Moore groups or Fbr and let ϕ ∈ Aut(Γ ). By
Theorem 4.1, one has thatΣ1(Γ )c consists of two (classes of) discrete characters. By Corol-
lary 5.6, there are representatives χ1 and χ2 of such classes so that their respective images
χ1, χ2 ∈ Hom(Γ /N , R) are linearly independent.

Now set N = ker(χ1) ∩ ker(χ2). Since the natural action of ϕ on the character sphere
S(Γ ) stabilizes the whole invariant Σ1(Γ )c (see [47, p. 47]), one has that N is ϕ-invariant.
We can thus consider the induced map ϕ ∈ Aut(Γ /N ). Following [29, Lemma 3.1] (up to
replacing the representatives χ1 and χ2 to obtain appropriate integer coordinates for their
respective images χ1 and χ2), we obtain

ϕ({χ1, χ2}) = {χ1, χ2}. (5.3)

(We remark that ker(χ1) = ker(rχ1) and ker(χ2) = ker(rχ2) for any r ∈ R\{0}.) Defining
f : Γ −→ R

g �−→ χ1(g) + χ2(g),

one has N ⊆ ker( f ). It is clear that f ∈ Hom(Γ , R) is nontrivial (e.g., by linear inde-
pendence of the χ1 and χ2) and that f (Γ ) has elements of infinite order. Again using
equality (5.3), it follows that the induced map f : Γ /N → R satisfies f ◦ ϕ = f . Applying
Theorem 5.1 to N , A = R and f chosen above thus finishes off the proof. ��

Although we have restricted ourselves to F-like Bieri–Strebel groups as defined in
Sect. 3.3, it should be noted that there are many more Bieri–Strebel groups for which
Theorem 5.1 applies, as the following shows.
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Example 5.7 (Gonçalves–Sankaran–Strebel) Start with p ∈ R>1 and q = ea/b with a
b ∈

Q>1. Then, choose r ∈ T>1 ⊂ R, where T is a set of irrational representatives for the orbits
of the action of the group

( a/b 0
0 1

) · GL2(Z) · ( b/a 0
0 1

)
by fractional linear transformations on

S
1 ∼= R ∪ {∞}. Now consider the following PL homeomorphisms f p , gq , hr of the unit

interval [0, 1].

f p(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x
p for x ∈

[
0, 3p

4p+4

]
,

3
4p+4 + p

(
x − 3p

4p+4

)
for x ∈

[
3p

4p+4 ,
3
4

]
,

x for x ∈ [ 3
4 , 1

]
.

gq(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x for x ∈ [
0, 1

4

]

1
q (x − 1

4 ) + 1
4 for x ∈

[
1
4 ,

4q+1
4q+4

]
,

q+4
4q+4 + q

(
x − 4q+1

4q+4

)
for x ∈

[
4q+1
4q+4 , 1

]
.

hr (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x for x ∈ [
0, 1

4

]

1
r

(
x − 1

4

) + 1
4 for x ∈

[
1
4 ,

4r+1
4r+4

]
,

r+4
4r+4 + r

(
x − 4r+1

4r+4

)
for x ∈

[
4r+1
4r+4 , 1

]
.

The Bieri–Strebel group G(p, q, r) := 〈 f p, qg, hr 〉 ≤ PL◦([0, 1]) is finitely generated
by construction, and varying the defining triple (p, q, r) yields uncountably many such
groups. Finally, by [32, Theorem 1.7], there always exist a nontrivial homomorphism χ from
G(p, q, r) to a torsion-free abelian group such that χ ◦ ϕ = χ for any ϕ ∈ Aut(G(p, q, r)).

Now Corollary 1.2 from the Introduction is easily deduced. For convenience, we restate
it below.

Corollary 5.8 Any Γ ∈ F has property R∞. In particular, Stein’s group F2,3, Cleary’s
irrational-slope group Fτ , the Lodha–Moore groups G, yG,Gy, yGy, and the braided
Thompson group Fbr have R∞.

Proof Immediate from Theorem 1.1 and Lemmas 2.2 and 2.3. ��

As mentioned, Corollary 5.8 had already been established for ‘most’ groups in the family
F , including F2,3 and Fτ ; see [29, 32]. While Corollary 5.8 for the Lodha–Moore groups
and Fbr has not appeared elsewhere before, we point out that it also follows directly from the
work of Zaremsky in [50, 51] combined with [29, Theorem 3.2]. Below we briefly outline
the arguments.

Proof (Alternative proof of Corollary 5.8 for G, yG,Gy, yGy, Fbr.) Gonçalves–
Kochloukova deduced a direct criterion to check for property R∞ using the Σ-invariant;
see [29, Theorem 3.2]. To apply this result, the first step is to check that the complement
of the BNS Σ-invariant for the group in question is finite, nonempty, and represented by
discrete characters. This is the content of Zaremsky’s Theorem 4.1. For the last step, keeping
the notation from the beginning of this section, one needs to check that the image of the
discrete representatives {χ | [χ] ∈ Σ1(Γi )

c} in Vi = Hom(Γi/Ni , R) is a basis for Vi , as
we did in Corollary 5.6. But this result is also implicitly found in the work of Zaremsky; cf.
[50, Section 1.2] for the Lodha–Moore case and [51, Section 1.4] for the braided case. ��
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It is interesting to note that the alternative arguments above to deduce R∞ might fail
for F-like Bieri–Strebel groups. Indeed, Spahn–Zaremsky [44] showed that Σ1(F2,3)c con-
tains nondiscrete characters, so that [29, Theorem 3.2] is not applicable. In contrast, Lewis
Molyneux, Brita Nucinkis and the third author recently computed the BNSR Σ-invariants of
Fτ—particularly, Σ1(Fτ )

c is finite (nonempty), contains only discrete characters, and [29,
Theorem 3.2] does apply.

As discussed at the end of Sect. 2, it would be interesting to find non-residually finite
groups with R∞ and infinite fixed point sets of automorphisms; cf. Question 2.10. Drawing
from the work of Kochloukova, Martínez-Pérez and Nucinkis, we point out that many F-like
Bieri–Strebel groups behave similarly to F in this regard, as in Proposition 2.12.

Proposition 5.9 Let n ∈ N≥2 be arbitrary and write BSn := G([0, n − 1]; Z[1/n], 〈n〉).
Then every ϕ ∈ Aut(BSn) satisfies |Fix(ϕab)| = ∞ and, if ϕ is of finite order, it also holds
|Fix(ϕ)| = ∞. Moreover, there are infinitely many elements in Out(BSn) of finite order.

Proof That |Fix(ϕab)| = ∞ for any ϕ ∈ Aut(BSn) has just been proved in Theorem 1.1
(and BSn has R∞).

We now recall that, for every n ∈ N and i ∈ Z[1/n], the generalized Thompson groups
Fn,∞ and Fn,i from [12] are isomorphic by [12, Lemma 2.1.6] and [35, Lemma 2.1], and in
turn the Fn,0 are isomorphic to the F-like groups BSn of Bieri–Strebel; cf. [12, Lemma 2.3.1
and Definition 1.1.1]. We may thus work with Fn,∞ instead of BSn .

Now suppose ϕ ∈ Aut(Fn,∞) has finite order. If the fixed subgroup Fix(ϕ) is infinitely
generated, we are done. Otherwise, it follows from [35, Lemmas 4.2 and 5.1] that there is an
element f ∈ Fix(ϕ) fixing a point i /∈ Z[1/n] ⊂ R with slope not equal to 1 at i . By [35,
Theorem 4.14], this condition implies that Fix(ϕ) is isomorphic to the group Fn,[i,∞], which
in turn contains (multiple copies of) Fn,∞ itself by [35, Proposition 4.4]. Thus, again one has
|Fix(ϕ)| = ∞.

For the last claim, the case n = 2 has been dealt with in Proposition 2.12 since F =
G([0, 1]; Z[1/2], 〈2〉) = BS2. For n ≥ 3, Kochloukova–Martínez-Pérez–Nucinkis construct
in [35, Section 10] infinitely many ‘exotic’ automorphisms of finite order, which implies the
claim. ��

We close with related open questions. The automorphism groups of F ⊂ T ⊂ V and
BSn are by now well studied [8, 12]. Moreover, the generalizations Tn,r of T also have
property R∞ [15, 42]. We ask:

Question 5.10 What are the automorphism groups of Fbr and of the Lodha–Moore groups?
Do analogues of exotic automorphisms [12] exist for such groups? Does Thompson’s group
V have property R∞?

We also remark that the proof byBurillo–Matucci–Ventura that F and T have property R∞
employs combinatorial techniques and relates to decision problems [15]. In particular, they
solve the twisted conjugacy problem for F . Since there has been recent progress [14, 40] on
the study of conjugacy classes of Thompson groups closely related to Fbr, G, yG,Gy and
yGy , we are also led to the following.

Question 5.11 Is the conjugacy (or twisted conjugacy) problem decidable for all the groups
in F?

Acknowledgements The authors would like to thank Dawid Kielak, Ian Leary, Lewis Molyneux, Brita
Nucinkis, and Rachel Skipper for helpful remarks and discussions. We are also indebted to the anonymous
referees for key comments and suggestions which improved the paper, particularly regarding Proposition 2.7.

123



54 Page 20 of 22 Geometriae Dedicata (2023) 217 :54

Author Contributions All authors have contributed equally.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
2. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T), New Mathematical Monographs 11.

Cambridge University Press, Cambridge (2008)
3. Bartholdi, L., Kaimanovich, V.A., Nekrashevych, V.V.: On amenability of automata groups. Duke Math.

J. 154(3), 575–598 (2010)
4. Belk, J., Matucci, F.: Conjugacy and dynamics in Thompson’s groups. Geom. Dedicata 169, 239–261

(2014)
5. Berrick, A.J., Chatterji, I., Mislin, G.: Homotopy idempotents on manifolds and Bass’ conjectures. In:

Proceedings of the Nishida Fest (Kinosaki 2003), Geometry & TopologyMonographs, vol. 10, pp. 41–62.
Geometry & Topology Publisher, Coventry (2007)

6. Bieri, R., Neumann, W.D., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90(3),
451–477 (1987)

7. Bieri, R., Strebel, R.: On Groups of PL-Homeomorphisms of the Real Line, Mathematical Surveys and
Monographs 215. American Mathematical Society, Providence, RI (2016)

8. Bleak, C., Cameron, P., Maissel, Y., Navas, A., Olukoya, F.: The further chameleon groups of Richard
Thompson and Graham Higman: automorphisms via dynamics for the Higman groups Gn,r . Mem. Am.
Math. Soc. arXiv:1605.09302 (2023) (to appear)

9. Bleak, C., Fel’shtyn, A., Gonçalves, D.L.: Twisted conjugacy classes in R. Thompson’s group F . Pac. J.
Math. 238.1, 1–6 (2008)

10. Brady, T., Burillo, J., Cleary, S., Stein, M.: Pure braid subgroups of braided Thompson’s groups. Publ.
Mat. 52(1), 57–89 (2008)

11. Brin, M.G.: The chameleon groups of Richard J. Thompson: automorphisms and dynamics. Inst. Hautes
Études Sci. Publ. Math. 84, 5–33 (1996)

12. Brin, M.G., Guzmán, F.: Automorphisms of generalized Thompson groups. J. Algebra 203(1), 285–348
(1998)

13. Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics 87. Springer, New York (1994)
14. Burillo, J., Bux, K.-U., Nucinkis, B.: Cohomological and metric properties of groups of homeomorphism

of R. Oberwolfach Rep. 15(2), 1579–1633 (2018)
15. Burillo, J., Matucci, F., Ventura, E.: The conjugacy problem in extensions of Thompson’s group F . Isr. J.

Math. 216(1), 15–59 (2016)
16. Burillo, J., Nucinkis, B., Reeves, L.: An irrational-slope Thompson’s group. Publ. Mat. 65(2), 809–839

(2021)
17. Bux, K.-U., Fluch, M.G., Marschler, M., Witzel, S., Zaremsky, M.C.B.: The braided Thompson’s groups

are of type F∞. J. Reine Angew. Math. 718, 59–101 (2016). (With an appendix by Zaremsky)
18. Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign.

Math. (2) 42(3–4), 215–256 (1996)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1605.09302


Geometriae Dedicata (2023) 217 :54 Page 21 of 22 54

19. Chowla, S., Cowles, J., Cowles, M.: On the number of conjugacy classes in SL(2, Z). J. Number Theory
12(3), 372–377 (1980)

20. Cleary, S.: Regular subdivision in Z[ 1+
√
5

2 ]. Ill. J. Math. 44(3), 453–464 (2000)
21. Cohen, M.M., Lustig, M.: On the dynamics and the fixed subgroup of a free group automorphism. Invent.

Math. 96(3), 613–638 (1989)
22. Dekimpe, K.: Almost-Bieberbach Groups: Affine and Polynomial Structures. Lecture Notes in Mathe-

matics, vol. 1639. Springer, Berlin (1996)
23. Dekimpe, K., Gonçalves, D.L.: The R∞ property for nilpotent quotients of surface groups. Trans. Lond.

Math. Soc. 3(1), 28–46 (2016)
24. Dekimpe, K., Tertooy, S.: Algorithms for twisted conjugacy classes of polycyclic-by-finite groups. Topol.

Appl. 293, 107565, 12 (2021)
25. Dekimpe,K., Tertooy, S., Van denBussche, I.: Reidemeister spectra for solvamanifolds in lowdimensions.

Topol. Methods Nonlinear Anal. 53(2), 575–601 (2019)
26. Fel’shtyn, A., Leonov, Y., Troitsky, E.: Twisted conjugacy classes in saturated weakly branch groups.

Geom. Dedicata 134, 61–73 (2008)
27. Geoghegan, R.: Fixed points in finitely dominated compacta: the geometric meaning of a conjecture of

H. Bass. In: Shape Theory and Geometric Topology (Dubrovnik, 1981), Lecture Notes in Mathematics,
vol. 870, pp. 6–22. Springer, Berlin (1981)

28. Ghys, E., Sergiescu, V.: Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math.
Helv. 62(2), 185–239 (1987)

29. Gonçalves, D., Kochloukova, D.H.: Sigma theory and twisted conjugacy classes. Pac. J. Math. 247(2),
335–352 (2010)

30. Gonçalves, D., Wong, P.: Twisted conjugacy classes in exponential growth groups. Bull. Lond. Math.
Soc. 35(2), 261–268 (2003)

31. Gonçalves, D., Wong, P.: Twisted conjugacy classes in nilpotent groups. J. Reine Angew. Math. 633,
11–27 (2009)

32. Gonçalves, D.L., Sankaran, P., Strebel, R.: Groups of PL-homeomorphisms admitting nontrivial invariant
characters. Pac. J. Math. 287(1), 101–158 (2017)

33. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182(3), 385–388 (1983)
34. Jabara, E.:Automorphismswith finiteReidemeister number in residually finite groups. J.Algebra 320(10),

3671–3679 (2008)
35. Kochloukova, D.H., Martínez-Pérez, C., Nucinkis, B.E.A.: Fixed points of finite groups acting on

generalised Thompson groups. Isr. J. Math. 187, 167–192 (2012)
36. Lavreniuk, Y., Nekrashevych, V.: Rigidity of branch groups acting on rooted trees. Geom. Dedicata 89,

159–179 (2002)
37. Levitt, G., Lustig, M.: Most automorphisms of a hyperbolic group have very simple dynamics. Ann. Sci.

École Norm. Sup. (4) 33(4), 507–517 (2000)
38. Lins de Araujo, P.M., Santos Rego, Y.: Twisted conjugacy in soluble arithmetic groups. Preprint,

arXiv:2007.02988 (2020)
39. Lodha,Y.,Moore, J.T.:Anonamenable finitely presented group of piecewise projective homeomorphisms.

Groups Geom. Dyn. 10(1), 177–200 (2016)
40. Matucci, F., de Oliveira-Tosti, A.S.: Conjugacy and centralizers in groups of piecewise projective

homeomorphisms. Groups Geom. Dyn. 16(1), 1–28 (2022)
41. Nasybullov, T.: Twisted conjugacy classes in unitriangular groups. J. GroupTheory 22(2), 253–266 (2019)
42. Olukoya, F.: Automorphisms of the generalized Thompson’s group Tn,r . Trans. Lond. Math. Soc. 9(1),

86–135 (2022)
43. Senden, P.: Twisted conjugacy in direct products of groups. Commun. Algebra 49(12), 5402–5422 (2021)
44. Spahn, R., Zaremsky, M.C.B.: The BNSR-invariants of the Stein group F2,3. J. Group Theory 24(6),

1149–1162 (2021)
45. Stein, M.: Groups of piecewise linear homeomorphisms. Trans. Am. Math. Soc. 332(2), 477–514 (1992)
46. Steinberg, R.: Endomorphisms of Linear Algebraic Groups, vol. 80. Memoirs of the American

Mathematical Society, Providence (1968)
47. Strebel, R.: Notes on the sigma invariants. Preprint, arXiv:1204.0214v2 (2013)
48. Varghese, O.: Representations of groups with CAT(0) fixed point property. Arch. Math. (Basel) 111(3),

231–238 (2018)
49. Wolf, J.A.: Growth of finitely generated solvable groups and curvature of Riemannianmanifolds. J. Differ.

Geom. 2, 421–446 (1968)
50. Zaremsky, M.C.B.: HNN decompositions of the Lodha–Moore groups, and topological applications. J.

Topol. Anal. 8(4), 627–653 (2016)

123

http://arxiv.org/abs/2007.02988
http://arxiv.org/abs/1204.0214v2


54 Page 22 of 22 Geometriae Dedicata (2023) 217 :54

51. Zaremsky, M.C.B.: On normal subgroups of the braided Thompson groups. Groups Geom. Dyn. 12(1),
65–92 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Thompson-like groups, Reidemeister numbers, and fixed points
	Abstract
	1 Introduction
	2 Background: Reidemeister numbers and fixed points
	3 Thompson-like groups
	3.1 The Lodha–Moore groups
	3.2 The braided version of F
	3.3 The F-like Bieri–Strebel groups

	4 Characters and Sigma-invariants
	4.1 Characters of Thompson-like groups

	5 Main results and proofs
	5.1 Applications
	5.2 The case of Thompson-like groups

	Acknowledgements
	References




