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Abstract
We prove the infinitesimal rigidity of some geometrically infinite hyperbolic 4- and 5-
manifolds. These examples arise as infinite cyclic coverings of finite-volume hyperbolic
manifolds obtained by colouring right-angled polytopes, already described in the papers
(Battista in Trans Am Math Soc 375(04):2597–2625, 2022; Italiano et al. in Invent Math,
2022. https://doi.org/10.1007/s00222-022-01141-w). The 5-dimensional example is diffeo-
morphic to N × R for some aspherical 4-manifold N which does not admit any hyperbolic
structure. To this purpose, we develop a general strategy to study the infinitesimal rigidity of
cyclic coverings of manifolds obtained by colouring right-angled polytopes.

Keywords Hyperbolic geometry · Infinitesimal rigidity · Rigidity · Geometrically infinite
hyperbolic manifolds

Mathematics Subject Classification 57-XX (Primary) · 57M05 (Secondary)

1 Introduction

Deformations of hyperbolic structures form an intensively studied phenomenon. This study
led to a wide variety of interesting results, amongwhich the Hyperbolic Dehn Filling theorem
in dimension 3 stands out.

The finite-volume case is the most classical one and there are several results on it. In
particular, it is known that hyperbolic surfaces can always be deformed, hyperbolic three-
manifolds admit only non-complete deformations when non-compact and none if they are
compact, and starting from dimension 4 there are no infinitesimal deformations (hence there
are no deformations).

In this article, we focus on geometrically infinite (hence not finite-volume) hyperbolic
manifolds. We say that a hyperbolic manifold with finitely generated fundamental group is
geometrically finite if a ε-neighborhood of its convex core has finite volume (see [11, 14]),
otherwise we say that it is geometrically infinite. We prove for the first time -to the best of
our knowledge- the existence of rigid geometrically infinite 4- and 5-manifolds. This result
is in contrast with lower dimensions: from the (now proved [5, 6, 16]) density conjecture it

B Ludovico Battista
ludovico.battista2@unibo.it

1 Universitá di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, BO, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-022-00765-9&domain=pdf
http://orcid.org/0000-0001-8197-2001
https://doi.org/10.1007/s00222-022-01141-w


33 Page 2 of 30 Geometriae Dedicata (2023) 217 :33

follows that every geometrically infinite 3-manifold can be deformed into a geometrically
finite one.

We recall some basic facts about deformations. A nice presentation of this subject can be
found in [7].

Given amanifoldwith a hyperbolicmetric (M, g) it is possible to associate to it a holonomy
ρ:

ρ : π1(M) → Isom(Hn).

The holonomy is defined only up to inner automorphisms of Isom(Hn), but we often denote
by ρ a choice of one representative in its equivalence class.

A deformation of ρ is a smooth path of representations ρt , with t varying in an interval
[0, 1), such that ρ0 = ρ. Deformations of the holonomy are strictly connected with defor-
mations of the metric g: when M is the interior of a compact manifold, Ehresmann-Thurston
Principle (see [3], Theorem 2.1) states that, if ε is small enough, for every ρt with t ∈ [0, ε)
there is a hyperbolic metric gt on M such that the associated holonomy is ρt .

Infinitesimal deformations (we will be more precise in Sect. 4) are the first order solutions
to the equations for the existence of deformations for a holonomy ρ, quotiented by the
directions given by conjugations in Isom(Hn). We say that a manifold is infinitesimally rigid
if its infinitesimal deformations vanish. Weil’s Lemma [18] states that the holonomy ρ of
an infinitesimally rigid manifold can be deformed only through a path of conjugations in
Isom(Hn). The main result of this paper is the following:

Theorem 1 There exist one geometrically infinite hyperbolic 4-manifold and one geometri-
cally infinite hyperbolic 5-manifold that are infinitesimally rigid.

The examples we study are the infinite cyclic coverings of finite-volume hyperbolic man-
ifolds described in [2, 9], see Sects. 5.2.2–5.2.3 for more details. We briefly recall some of
their nice topological properties.

Let M be a compact n-manifold possibly with boundary with a complete finite-volume
hyperbolic metric on its interior. A circle-valued Morse function on M is a smooth map
f : M → S1 such that f |∂M has no critical points and f has finitely many critical points, all
of non-degenerate type. We have

χ(M) =
∑

(−1)i ci (1)

where ci is the number of critical points of index i . We say that f is perfect if it has exactly
|χ(M)| critical points, that is the least possible amount allowed by (1).

When the dimension n is odd, the Euler characteristic of M vanishes, hence a perfect
circle-valued Morse function is simply a fibration over S1. This is never the case when n is
even since the Euler characteristic of M never vanishes due to Chern-Gauss-Bonnet theorem.
When n = 4, the map f is perfect if and only if it has only critical points of index 2 (see [2]).

Given a homotopically non-trivial circle-valued function f : M → S1, the infinite cyclic
covering associated with f is the smallest covering M̃ of M such that the following diagram
commutes:

M̃ R

M S1

f̃

f

.
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In other words M̃ is the covering associated with ker( f∗) where f∗ is the map induced by f
on fundamental groups. When ker( f∗) is finitely generated, M̃ is naturally a geometrically
infinite hyperbolic manifold.

The infinitesimally rigid manifolds of Theorem 1 are infinite cyclic coverings associated
with perfect circle-valued Morse functions. Using the connection between Morse functions
and handle decompositions we deduce the following:

• The 4-manifold in Theorem 1 is diffeomorphic to N × [0, 1] with infinitely many 2-
handles attached on both sides, where N is a finite-volume cusped hyperbolic 3-manifold;
such a manifold was constructed in [2];

• The 5-manifold in Theorem 1 is diffeomorphic to N × R, where N is a non-hyperbolic
aspherical 4-manifold diffeomorphic to the interior of a compact 4-manifold with bound-
ary; such a manifold was constructed in [9], and the question of studying rigidity was
raised in [9], Problem 29.

The perfect circle-valued Morse functions are defined on finite-volume manifolds built
by colouring right-angled polytopes, with a technique already used by several authors (see
[13] for an introduction). These manifolds are naturally homotopically-equivalent to a cube
complex. In the past 2 years, perfect circle-valued Morse functions on such manifolds were
discovered and studied in [9] and [2], following the work of Jankiewicz –Norin–Wise [10]
based on Bestvina–Brady theory [4]. The cube complex structure lifts to the cyclic covering,
giving a nice combinatorial description of such an infinite-volume manifold in terms of
a periodic cube complex. Our main contribution consists in finding a convenient way to
implement computations on infinitesimal deformations and applying it.

All the results in this article are computer-assisted, using Sage and MATLAB. In the two
cases of Theorem 1 we were able to do all computations using symbolic calculus, ending up
with rigorous results. We applied our algorithm using double-precision numbers to several
other geometrically infinite hyperbolic 4-manifolds, and in all these cases we found strong
numerical evidence of infinitesimal rigidity. Theoretically, it is possible to promote every
numerical result to a rigorous one with the necessary amount of time and computer resources.
Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Structure of the paper

In Sect. 2 we recall the notions of colourings and states, that were used in [2, 9] to build
manifolds with convenient circle-valued functions.

In Sect. 3 we describe the combinatorial structure of the infinite cyclic coverings of such
manifolds. We used these objects to prove Theorem 1.

In Sect. 4 we recall some notions about infinitesimal deformations and we build some
machinery to compute their dimension in our cases.

In Sect. 5 we describe the results obtained by applying our algorithm.

2 Colourings and states

Here we recall how to use colourings and states on a hyperbolic right-angled polytope to
build a hyperbolic manifold with a circle-valued function on it. Since we are going to use it
intensively, we will focus on the combinatorial description, and in particular on the aspects
we will use more. A detailed and comprehensive presentation can be found in [2].
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Table 1 Combinatorial data of
the right-angled polytopes that
we use

Lives in Ideal Vertices Real vertices Facets

Octahedron H
3 6 0 8

24-cell H
4 24 0 24

P4 H
4 5 5 10

120-cell H
4 0 600 120

P5 H
5 10 16 16

2.1 Right-angled polytopes

A right-angled polytope is a polytope in X
n = E

n (the euclidean flat space) or Hn (the
hyperbolic space) with all dihedral angles of value π/2.

Such an object is naturally stratified in vertices (0-faces), edges (1-faces), 2-faces, …,
(n − 2)-faces, facets ((n − 1)-faces), and one n-face.

Let � < Isom(Xn) be the group generated by reflections along the facets of P . The
polytope P is a fundamental domain for the action of �. A presentation for � is

〈 r1, . . . , rs | r2i , [ri , r j ] 〉,
where ri is the reflection along the i-th facet of P and we have the relation [ri , r j ] = 0
whenever the i-th and j-th facet are adjacent. Sometimes we will consider P as an orbifold
P = X

n/� .
We recall some interesting examples of right-angled polytopes:

• In dimension 2 there are regular right-angled k-gons for every k ≥ 5 in the hyperbolic
plane.

• In dimension 3 there are two right-angled regular polyhedra in the hyperbolic space, one
with ideal vertices (the octahedron) and one compact (the dodecahedron).

• In dimension 4 there are two right-angled regular polytopes in the hyperbolic space, one
with ideal vertices (the 24-cell) and one compact (the 120-cell).

• There is a family of non-regular hyperbolic right-angled polytopes P3, . . . , P8, where Pi
is a polytope in H

i , very nicely described in [17].

The combinatorics of the ones we will use can be found in Table 1.
There are many hyperbolic right-angled polytopes in low dimensions. The main reason

for preferring those listed in Table 1 is that these ones are reasonably small and have a huge
number of symmetries that help a lot during computations.

2.2 Colourings

Colouring a right-angled polytope gives a way to build a manifold. The interested reader can
find a general introduction in [8].

Pick a polytope P and choose a palette of colours {1, . . . , c}. We assign to each facet of
P a colour in such a way that adjacent facets have different colours. See Fig. 1.

Remark 2 This is equivalent to requiring that when k facets meet, they all have different
colours: it follows from the fact that if some facets share a common sub-face (that is not an
ideal vertex), they meet pairwise (see [8]).

Using the colouring we build a manifold M that is naturally tessellated into copies of
P: we pick 2c copies of P , denoted as Pv with v varying in (Z/2Z)c. We then glue these
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Fig. 1 A polytope with a colouring

Fig. 2 How to build a manifold
using a polytope and a colouring

polytopes along all their facets: the facet F of Pv is glued along the same facet of Pv+ei with
the identity, where i is the colour of F . See Figs. 2 and 3.

A k-stratum of M is a k-face of any polytope Pv inside M . Given the combinatorics of
P , it is easy to compute the number of k-strata in M :

Proposition 3 The number of k-strata with k ≥ 1 in M is

#(k-faces in P) · 2c−n+k .

Proof Before gluing the facets, the number of k-faces in the collection {Pv} is the number of
k-faces of P times 2c. When we identify the facets, the k-faces are glued together in groups
of 2n−k . This is because every k-face is in the intersection of n − k facets, and they all have
different colours (see Remark 2). We deduce that the number of k-strata in M is:

#(k-strata in M) = #(k-faces in P) · 2c
2n−k

= #(k-faces in P) · 2c−n+k .

�	

2.3 The dual cube complex

The dual to the tessellation of M is a cube complex C . Again, a formal definition of it can
be found in [2].

The cube complex C is the core of all the constructions of circle-valued functions. In this
paper we focus on the 2-skeleton of C , since we are mostly interested in its fundamental
group.

The cube complex C can be obtained in the following way:
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Fig. 3 A more visual way to
identify the manifold M

Fig. 4 The cube complex dual to
the tessellation. Only one of the
four squares is highlighted

• We pick one vertex for each copy of the polytope P . We obtain 2c vertices, and we denote
by xv the vertex that corresponds to Pv , where v is an element of (Z/2Z)c. We call an
element v ∈ (Z/2Z)c even (odd) if

∑c
i=1 vi is even (odd). A vertex xv is even (odd) if v

is even (odd);
• We add one edge between the vertices xv and xw for each facet separating Pv and Pw.

Notice that v and w differ only in one coordinate, so exactly one of them is even: one
useful way to list all the edges is by considering all the facets of the polytopes Pv where
v is even;

• We add one square with vertices xv1 , xv2 , xv3 , and xv4 whenever Pv1 , Pv2 , Pv3 , and Pv4

share a common codimension 2 face. Notice that v1, v2, v3, and v4 must be of the form
v, v + ei , v + e j , and v + ei + e j . The edges of such a square can be deduced from the
parity of the vertices xvi : there is an edge between vertices with different parity;

• We go on with all other faces.

The number of k-cubes in C is exactly the number of (n − k)-strata of the tessellation of
M . See Fig. 4.

When P has no ideal vertices, the underlying space of C is homeomorphic to M . When
there are ideal vertices, themanifoldM deformation retracts ontoC . In any case, the homotopy
type of M and C is the same.

We are interested in the holonomy of a covering of M :

ρ̃ : M̃ → Isom(Hn).

The cube complex structure C of M will lift to a cube complex structure C̃ on M̃ .
In the works [9] and [2] the cube complex C has been enlarged to a bigger cube complex

when there are ideal vertices. This is because the authors wanted to define a circle-valued
function on M . Here, we do not need to put any attention to this aspect, since only the
homotopy type of the maps will matter.
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Fig. 5 Given an orientation on an
edge, it is possible to identify it
with the standard interval [0, 1],
that is sent to S1 by the quotient
[0, 1]/{0; 1}

Fig. 6 The four possible maps that can be defined on the boundary of a square, up to equivalence. The first two
can be extended on the interior of the square, the last two do not. We call the first square coherently oriented,
and the second one bad

Fig. 7 A polytope with a state

2.4 States

A state gives a way to define a map from M to S1. This notion was introduced in [10]. We
work onC instead of M , disregarding the fact thatC is only a deformation retract of M when
P has ideal vertices.

We want to build a map from C to S1. We send all the vertices to 1 ∈ S1. We then orient
each edge. We use the orientation to identify each edge with the standard interval I = [0, 1],
on which we have a natural function to S1 (see Fig. 5). While doing this, we want to make
sure we will be able to extend the map on the 2-skeleton: every square of the 2-skeleton
describes one obstruction to the extension, see Fig. 6. In particular, we need the image of the
boundary of the square to be trivial in the fundamental group of S1. If we manage to extend
the function on the 2-skeleton, then the map can be defined on the whole C (the k-skeleta
with k ≥ 3 do not provide any obstruction because S1 is aspherical).

To do this we use the notion of state (see Fig. 7):

Definition 4 A state of a polytope P is the assignment of the letter “I” or the letter “O” to
each of its facets.

We choose a state s0 on P0. Consider the edges of C with one endpoint in x0. Each of
these edges is dual to a facet of P0. We orient an edge outward (inward) with respect to x0
if the corresponding dual facet has the letter “O” (“I”). We now want to orient all the other
edges of C making sure that we find a function that can be extended on the 2-skeleton. There
are two ways of doing this, one used in [2] and one used in [9].

The first one is the following: we define the state sei1+···+eir to be s0 where we swapped
the letters of the facets that have colours in {i1, . . . , ir }. Each sv defines an orientation on
each edge with one endpoint in xv . It is easy to check that this definition is well-posed.
Furthermore, we can extend this map on the 2-skeleton. Suppose we have a square: it is the
dual of the intersection of two facets of Pv that have colours i and j . The vertices of the
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cube are v, v + ei , v + e j , and v + ei + e j . Following the recipe, it is easy to see that the
orientation of the edge (v, v + ei ) is the same as the orientation (v + e j , v + e j + ei ). The
same holds for (v, v + e j ) and (v + ei , v + ei + e j ). Hence, opposite sides of the square have
the same orientation (in this case, we say that the edges are oriented coherently, see Fig. 6).
This ensures that the map is homotopically trivial on the boundary of the square, hence it can
be extended.

The second way comes from the following consideration: for a map defined on the bound-
ary of the square to be trivial in homotopy, we do not really need opposite edges to be oriented
coherently. There is also another possibility, as shown in Fig. 6. We call squares of this type
bad. In [9] the authors partition the colours in disjoint pairs. The state sv+ei is defined as the
state sv where the letters of the facets with colour i and the colour paired with i are switched
from “O” to “I” and viceversa. In this case, we talk about paired colours. To ensure that this
process will produce a map on the 1-skeleton that can be extended on the 2-skeleton one has
to check that every square will be either oriented coherently or a bad square.

Remark 5 In the papers [2, 9], the authors exploit some methods to control the critical points
of the maps obtained. In particular, they exhibit perfect circle-valued Morse functions in
dimension 4 (in [2]) and 5 (in [9]).

There is a convenient way to extend the map to the whole C . It is called diagonal map.
This is used to describe precisely the fiber of the map. We describe it rapidly.

2.5 The diagonal map

We start with a definition:

Definition 6 A cube with oriented edges is coherently oriented if every square inside it is
coherently oriented. A cube complex with an orientation on the edges is coherently oriented
if every cube inside it is coherently oriented.

When C is coherently oriented, one can identify every cube with the standard cube in R
n

with the edges oriented as going outside from the origin (up to permutation of coordinates).
On the standard cube [0, 1]d we can define the map with values is R/Z = S1:

(x1, . . . , xd) 
→
[

d∑

i=1

xi

]
.

These maps extend the maps defined on the edges and glue together to a well-defined map
on C that we call the diagonal map.

We need some attention in case we have some squares that are not oriented coherently.

Definition 7 Let Q1 and Q2 be two cubes with oriented edges. The orientation induced on
the edges of Q1 × Q2 is the only one such that both projections preserve the orientation of
the edges (see Fig. 8).

A useful property of an orientation on the edges of a cube is the following:

Definition 8 Ad-cubewith oriented edges isquasi-coherently oriented if one of the following
holds:

• It is coherently oriented;
• It has the orientation induced by a bad square times a coherently oriented (d − 2)-cube.
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Fig. 8 The orientation induced on
a 3-dimensional cube by a bad
square times an interval

Fig. 9 We divide a bad square into four triangles (left). We can identify each of them with the standard one
respecting the arrows (right)

A cube complex with an orientation on the edges is quasi-coherently oriented if every cube
inside it is quasi-coherently oriented.

Suppose that we have a quasi-coherent orientation on C (this is the case in [9]). On the
coherently oriented cubes, we use the same map as before. On the other type of cubes, we
divide the bad square Q′ into four triangles Ti as in Fig. 9. We identify each triangle with a
standard one with vertices (0,0), (1,0) and ( 12 ,

1
2 ), and we consider on it the projection p:

(y1, y2) 
→ y1.

We then divide the cube in prisms Ti × Q, whose factors are identified with the standard
triangle and the standard (d − 2)-cube. On every prism we can define a map in a way very
similar to the previous case:

((y1, y2), (x1, . . . , xd−2)) 
→
[
y1 +

d∑

i=1

xi

]
.

Also in this case these maps extend the maps defined on the edges and glue together to a
well-defined map on C that we still call the diagonal map.

3 The infinite cyclic covering

In this article, we focus on the infinite cyclic covering associated with the maps built in [2,
9]. Here we describe in detail the combinatorial structure of these infinite cyclic coverings.
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Fig. 10 The manifold M̃ when P is a square with the colouring and state indicated on the left. The central
figure shows the torus M tessellated into four squares (the opposite external vertical and horizontal edges
should be identified), and the fibration f : M → S1 is suggested by the red arrows, with some fibers drawn in
grey. The manifold M̃ is the infinite annulus shown on the right (the zigzagged top and bottom edges should
be identified), and the fibration f̃ : M̃ → R is also suggested by the red arrows, with some fibers drawn in
grey (so f̃ is the projection on the horizontal axis)

3.1 The cube complex structure

Let f : C → S1 be a homotopically non-trivial map. The map f induces a map f∗ on the
fundamental groups. Since M retracts on C , we can identify their fundamental groups. The
infinite cyclic covering of M (resp. C) associated with f is the covering of M (resp C)
associated with ker( f∗), and we denote it by M̃ (resp. C̃).

The tessellation of M into polytopes Pv lifts to a tessellation for M̃ into polytopes Pt
v ,

parametrized by v ∈ (Z/2Z)c and t ∈ Z, with the requirement that v1 + · · · + vc + t is even.
The facet F of Pt

v is identified with the identity map to the corresponding facet of Pt±1
v+ei ,

where i is the colour of F and the sign +1 or −1 depends on whether the status of F in Pv

is O or I.
The covering M̃ → M is the forgetful map Pt

v → Pv . The monodromy of the covering
M̃ → M is the map τ : M̃ → M̃ that sends Pt

v to Pt+2
v identically.

The dual of this tessellation of M̃ is C̃ , onto which M̃ retracts. Vertices of C̃ are
parametrized by pairs (v, t) with v ∈ (Z/2Z)c , t ∈ Z and v1 + · · · + vc + t even. The
vertex (v, t) is dual to Pt

v .
The lifted map f̃ : C̃ → R sends the vertex (v, t) of C̃ to t and is extended diagonally on

C̃ . See an instructing example with the square in Fig. 10.
The level of a vertex (v, t) of C̃ is the number t , that is its image along f̃ . More generally,

the level of a k-cube in C̃ is the average of the levels of its vertices, that is the image of its
center along f̃ . When the states are obtained as in [2], this number lies in Z or in Z + 1

2
according to the parity of k. When we admit paired colours (as in [9]), this is no longer true:
for example, bad squares have level in Z+ 1

2 . The level of every k-stratum of the tessellation
into polytopes {Pt

v } is by definition the level of its dual (n − k)-cube.
We are interested in particular in the 2-skeleton of C̃ . Every facet F of the tessellation of

M̃ is adjacent to Pt
v and Pt+1

v+ei and has level t + 1
2 . Facets correspond to the edges of the cube

complex. Given a codimension-2 face, the corresponding dual square can be of two types: if
the edges are oriented coherently, then its lifts are adjacent to four polytopes

Pt−1
v , Pt

v+ei , P
t
v+e j , P

t+1
v+ei+e j
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Fig. 11 The singular fiber f̃ −1(0) inside the cubes of the cube complex C̃ . Top left in a coherently oriented
square, top right in a bad square (where the intersection is only 2 vertices), bottom left in a coherently oriented
3-cube, bottom right in a bad square times an interval. The numbers denote the levels of the vertices in C̃

and have level t . If it is a bad square (remember Fig. 6), then its lifts are adjacent to four
polytopes

Pt
v , Pt+1

v+ei , P
t+1
v+e j , P

t
v+ei+e j

and have level t + 1
2 .

3.2 The fiber

The map f : C → S1 lifts to a map f̃ : C̃ → R. We are especially interested in the fiber
Csing
t = f̃ −1(t) for some t ∈ Z. We call it singular fiber following the notation of [2]; see

Fig. 11.
We describe a condition introduced in [4] that assures that the inclusion of Csing

t in C̃ is
π1-surjective. See also [2, 9] for more details.

Let C be a cube complex equipped with an orientation on its edges, and f : C → S1 be
the diagonal map. Let v be a vertex of C . Let link(v) be the link of v in C . By construction
link(v) is an abstract simplicial complex. Every vertex of link(v) indicates an edge incident
to v, and we assign to it the status I (In) or O (Out) according to whether the edge points
towards v or away from v.

Following [4], we define the ascending link link↑(v) (respectively, descending link
link↓(v)) to be the subcomplex of link(v) generated by all verticeswith statusO (respectively,
I).

The following result is proved in [4], Corollary 2.6:

Fact 9 If the descending and ascending links of every vertex are connected, the inclusion of
Csing
t in C̃ is π1-surjective.
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Fig. 12 A circle-valued Morse
function (left) and its lift (right).
The critical points are indicated
with an X. The regular fiber is the
blue line, the singular fiber is the
red line. Every critical point of
index i corresponds to the
attachment of an i-handle

All the orientations of the edges of C that we consider in this paper satisfy the hypothesis
of Fact 9.

3.3 The finite subcomplex F[m,n]

The cube complex structure is a nice combinatorial structure that can help in finding the space
of infinitesimal deformations of M̃ . The main problem with C̃ is the fact that it is infinite,
hence we cannot apply any finite algorithm to it. Here we define a nice finite subcomplex
F[m,n] of C̃ that contains all the information we need, i.e. its inclusion is π1- surjective.

Recall that the map f̃ sends every vertex in C̃ to some integer m ∈ Z, every edge to an
interval [m,m + 1], and every square either to an interval [m,m + 1] (if it is the lift of a
bad square) or to an interval [m,m + 2] (if it is the lift of a coherently oriented square). For
every pair m < n of integers we define F[m,n] as the union of all the (finitely many) squares
whose image lies in [m, n]. We want to prove that under certain conditions its inclusion in C̃
is π1-surjective. We start with a lemma:

Lemma 10 Let G be a quasi-coherently oriented cube (see Definition 8) inside C with
dim(G) ≤ 9. Let f̃ : G → R be a lift of the diagonal map on G that takes the value 0.
Let γ : [0, 1] → G be a path such that γ (0) and γ (1) are vertices of G that are sent to 0 via
f̃ . Let E be the union of the edges of G whose endpoints have image through f̃ in the set
{−1; 0; 1}. Then γ is fixed-endpoint homotopic to a path γ ′ contained in E.

Proof We do not know whether the hypothesis on the dimension of G is necessary. In any
case, we will need this result only in dimensions less than or equal to 5.

We start by noticing that G is contractible, hence two paths are fixed-endpoint homotopic
if and only if they have the same extremal points. We also notice that every vertex v such
that f̃ (v) = 0 is contained in E , because the values of f̃ on the two endpoints of any edge
differ by 1. Therefore to complete the proof we just need to check that the subcomplex E is
connected. To do this we use the script “Check_zigzag” written in Sage available at [1]. �	

We are now ready to prove the following:

Proposition 11 Suppose that C is quasi-coherently oriented and dim(M) ≤ 9. Let n−m ≥ 2
and let x be a vertex of C̃ of level m + 1. Inside π1(C̃, x), the subgroup i∗(π1(F[m,n], x))
contains the subgroup i∗(π1( f̃ −1(m + 1), x)).

Proof Weprove that i∗(π1(F[−1,1], x)) contains the subgroup i∗(π1( f̃ −1(0), x)). The general
case is a straightforward generalization.

Consider a loop α : [0, 1] → f̃ −1(0) with α(0) = α(1) = x . Up to homotopy inside
f̃ −1(0), we can suppose that α is the concatenation of a finite number of paths:

α = α1 · . . . · αn
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Fig. 13 The concatenation
β−1
i−1 · αi · βi is a path inside Gi

that connects two vertices that are
sent to 0 via f̃

where the image of each αi is contained in a cube Gi inside C̃ . For each i = 1, . . . , n−1, the
point vi = αi (1) = αi+1(0) is contained in a cube Ji contained in the intersectionGi ∩Gi+1.
Now we notice that, by the definition of the diagonal map, the fact that f̃ takes value 0 on
the cube Ji implies that there is a vertex wi of Ji such that f̃ (wi ) = 0. Let βi be any path
inside Ji that connects the points vi and wi . For convenience, let β0 = βn be the constant
path that takes value x = α(0) = α(1). Consider now

γ =
n−1∏

i=0

β−1
i · αi+1 · βi+1.

The loop γ is homotopic to α, because the compositions βi ·β−1
i cancel out. Moreover, each

term of the form β−1
i ·αi+1 ·βi+1 is a path insideGi+1 whose endpoints are sent to 0 by f̃ , see

Fig. 13. We can then apply the Lemma 10 and conclude that γ is homotopic to a composition
of paths contained in F[−1,1]. This concludes the proof. �	

Using this proposition together with Fact 9 we deduce the following:

Corollary 12 Suppose that C is quasi-coherently oriented, that dim(M) < 10, and that all
the ascending and descending links in C are connected. If n − m ≥ 2, the map induced by
the inclusion i : F[m,n] → M̃ on the fundamental groups

i∗ : π1(F[m,n]) � π1(M̃)

is surjective.

4 The space of infinitesimal deformations of a representation

We recall some standard facts on deformations of hyperbolic structures. These can be found
for instance in [12].

Let X be a hyperbolic n-manifold and ρ a representation of π1(X) in the Lie group
G = O+(n, 1) = Isom(Hn). The main example we keep in mind is when ρ is the holonomy
of X . Recall that a deformation of ρ is a smooth path of representations ρt , with t varying
in an interval [0, 1), such that ρ0 = ρ. For each element g in π1(X) we consider the initial
deformation direction:

d

dt
ρt (g)|t=0.
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In this way, we assign to any element g of π1(X) a vector ζ(g) in the tangent space of ρ(g)
in G. From the Leibniz rule, we deduce the following equality

ζ(gh) = ζ(g)ρ(h) + ρ(g)ζ(h).

In the literature, the element ζ(g) is often moved to g using the differential of the right
multiplication by ρ(g)−1, that is itself the right multiplication by ρ(g)−1 since G is a matrix
group. So we define z(g) = ζ(g)ρ(g)−1 and obtain a map

z : π1(X) −→ g.

To switch between ζ and z it is sufficient to right-multiply by ρ(g) or by ρ(g)−1. The Leibnitz
rule for ζ transforms into the cocycle condition

z(gh) = z(g) + ρ(g)z(h)ρ(g)−1. (2)

A cocycle is a map z : π1(X) → g that satisfies the cocycle condition. The cocycles form a
vector space denoted by

Z1(π1(X), gAd ρ).

This space contains the directions along which there could be a chance to deform the repre-
sentation ρ. Some of these directions are quite obvious and we would like to ignore them:
consider a smooth path gt of elements in G such that g0 = Id, and let kt be the conjugation
by the element gt . It is possible to deform the representation ρ as ρt = kt (ρ). The resulting
deformation direction z only depends on the tangent vector V = d

dt gt |t=0 ∈ g. Explicitly,
we get

ζ(g) = Vρ(g) − ρ(g)V , z(g) = V − ρ(g)Vρ(g)−1.

A cocycle obtained in this way is called a coboundary, and the subspace of all coboundaries
is denoted by B1(π1(X), gAd ρ). The quotient of these two spaces

H1(π1(X), gAd ρ) = Z1(π1(X), gAd ρ)

B1(π1(X), gAd ρ)

is called the space of infinitesimal deformations of ρ. We say that ρ is infinitesimally rigid if
such space is trivial.

This definition gains importance under the light of Weil’s lemma [18], that asserts that
any infinitesimally rigid representation is also locally rigid, that is any deformation of ρ is
induced by a path of conjugations.

Remark 13 The cocycle condition implies the following:

z(g−1) = −ρ(g)−1z(g)ρ(g), z(e) = 0.

By construction we have a surjective homomorphism

ψ : g −→ B1(π1(X), gAd ρ), ψ(V )(g) = Vρ(g) − ρ(g)V .

Proposition 14 If the image of ρ has limit set Sn−1 = ∂Hn, the map ψ is an isomorphism.

Proof If ψ were not injective, we would get a non-trivial matrix V ∈ g that commutes
with the image of ρ. Therefore eV ∈ G = Isom(Hn) would be a non-trivial isometry that
commutes with the image of ρ. This is easily seen to be impossible when the limit set is the
whole Sn−1. �	
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Corollary 15 With the same hypothesis, we get

dim B1(π1(X), gAd ρ) = dim g = dimG = n(n + 1)

2
.

4.1 Finitely presented groups

If π1(X) is finitely presented, we can determine H1(π1(X), gAd ρ) as follows. Given a finite
presentation

π1(X) = 〈 g1, . . . , gh | r1, . . . , rk 〉,
and a representation ρ : π1(X) → G, a deformation of ρ is of course determined by its
behavior on the generators. The same holds for a cocycle z in Z1(π1(X), gAd ρ) since the
following equalities hold

z(gh) = z(g) + ρ(g)z(h)ρ(g)−1, z(g−1) = −ρ(g)−1z(g)ρ(g).

In particular H1(π1(X), gAd ρ) has finite dimension. An arbitrary assignment of elements in
g to the generators of π1(X) will not give rise to a cocycle in general: this assignment must
fulfill some requirements that we now describe.

We represent the cocycles using ζ instead of z. We get

ζ(gh) = ζ(g)ρ(h) + ρ(g)ζ(h), ζ(g−1) = −ρ(g)−1ζ(g)ρ(g)−1. (3)

Given a word w in g1, . . . , gh and their inverses and some invertible matrices A1, . . . , Ah ,
we denote by w(A1, . . . , Ah) the matrix obtained by substituting in w each g j with A j .
Consider a h-uple of matrices

D = (D1, . . . , Dh) ∈ (M(n + 1,R))h .

Proposition 16 There is a cocycle ζ with ζ(gi ) = Di for all i if and only if:

• Every element Di is in the tangent space in G at Mi = ρ(gi ), and
• The relations vanish at first order along the direction D, i.e.

d

dt
ri (M1 + t D1, . . . , Mh + t Dh)

∣∣∣
t=0

= 0 ∀i = 1, . . . , k. (4)

In this case we have

ζ(g) = d

dt
w(M1 + t D1, . . . , Mh + t Dh)

∣∣∣
t=0

(5)

for every word w that represents g.

Proof Let D1, . . . , Dh satisfy both conditions. We define ζ(g) using (5). The definition is
well-posed: indeed, if for every word w we define

ζ(w) = d

dt
w(M1 + t D1, . . . , Mh + t Dh)

∣∣∣
t=0

then we easily deduce from the Leibnitz rule that

ζ(w1w2) = ζ(w1)ρ(w2) + ρ(w1)ζ(w2), ζ(w−1) = −ρ(w)−1ζ(w)ρ(w)−1.

By hypothesis ζ(ri ) = 0 and of course ρ(ri ) = I . This implies easily that ζ vanishes on
every word obtained from the relators by conjugations, products, and inverses. This in turn
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easily implies that ζ(w1) = ζ(w2)whenever twowordsw1 andw2 indicate the same element
g of the group.

Conversely, let ζ be a cocycle. We first prove (5). Equality holds when w = gi , and we
deduce easily that it holds for any word w using (3). We then deduce (4) using w = ri . �	

We can view a cocycle ζ as an assignment of matrices D1, . . . , Dh to the generators
g1, . . . , gh that fulfill some requirements. A coboundary is determined by a vector V ∈ g

as ζ(g) = Vρ(g) − ρ(g)V . We may pick a basis for g and get a finite set of generators for
B1(π1(X), gAd ρ).

4.2 Fundamental groupoids

The theory introduced in the previous pages extends from fundamental groups to fundamental
groupoids with roughly no variation. This extension will be useful for us to prove Theorem 1.

Let X be a path-connected topological space and V ⊂ X a finite set of points. The funda-
mental groupoid π1(X , V ) relative to V is the set of continuous maps α : [0, 1] → X with
extremal points in V , up to homotopy which fixes extremal points. It is possible to concate-
nate two such paths if the ending point of the first is the initial point of the second. When we
write α2α1 we mean that the first path is α1 and the second one is α2, and concatenation is
possible.

The fundamental groupoid has a trivial element ev for every v ∈ V . For every v ∈ V ,
inclusion defines an injection i∗ : π1(X , v) ↪→ π1(X , V ).

A finite presentation of a groupoid is defined in the same way as for groups, as a set of
generators and relators

〈 g1, . . . , gh | r1, . . . , rk 〉
where each gi is an element of the groupoid, each r j is a word in the g±1

i that represents
some trivial element, every element of the groupoid is represented as a word in g±1

i , and two
words w1, w2 represent the same element if and only if w1w

−1
2 makes sense and is obtained

from the relations by formal conjugations, inversions, and multiplications.
Let V = {v0, . . . , vs}. For every i = 1, . . . , s pick an arc αi connecting v0 and vi . Given

a finite presentation 〈 gi | r j 〉 for π1(X , v0), we can construct one for π1(X , V ) by adding
the arcs α1, . . . , αs as generators.

We will always suppose that π1(X , V ) has a finite presentation.

4.3 Representations and cocycles

A groupoid representation is a map

σ : π1(X , V ) → G

such that σ(βα) = σ(β)σ (α) whenever it is possible to concatenate α and β. (Usually,
a groupoid representation assigns a vector space to each v ∈ V and sends elements to
morphisms between these vectors spaces: here we simply assign the same vector spaceRn+1

to every v and require the morphisms to lie in G = O+(n, 1).)
Given a grupoid representation σ , it is possible to define its deformations and cocycles

as we did in the previous section, the only difference being that multiplications should be
considered only when they make sense.
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A cocycle z is a map z : π1(X , V ) → g that fulfills the cocycle condition (2) for every pair
g, h ∈ π1(X , V ) of elements that can bemultiplied.Wedenote the vector space of all cocycles
as Z1(π1(X , V ), gAd σ ). We still have two versions z and ζ of the same cocycle that differ
only by right multiplication by σ(g)−1. As in the previous case, a coboundary is determined
by a vector V ∈ g as ζ(g) = Vσ(g)−σ(g)V and the subspace of all coboundaries is denoted
by B1(π1(X , V ), gAd σ ). The quotient of these two spaces is H1(π1(X , V ), gAd σ ).

Proposition 16 is still valid in this context, with the same proof. If we have a finite
presentation of π1(X , V ), we can determine all the cocycles in H1(π1(X , V ), gAd σ ) in
their ζ version by assigning some matrices Di to the generators that fulfill the indicated
requirements at the relators.

The representation σ induces a representation ρ = σ ◦ i∗ for π1(X , v0). The spaces
Z1(π1(X , V ), gAd σ ) and Z1(π1(X , v0), gAd ρ) are related in a simple way:

Proposition 17 The inclusion i induces a surjective map

i∗ : Z1(π1(X , V ), gAd σ ) � Z1(π1(X , v0), gAd ρ).

The dimension of its kernel is dim(G) · (|V | − 1).

Proof Pick a finite presentation 〈 gi | r j 〉 for π1(X , v0) and some arcs αk connecting v0 to
vk . Then 〈 gi , αk | r j 〉 is a presentation for π1(X , V ). A cocycle ζ for ρ extends to a cocycle
ζ ′ for σ by assigning to each αk and arbitrary matrix tangent to G in σ(αk). The resulting
ζ ′ is a cocycle by Proposition 16, since both presentations have the same relators. There are
|V | − 1 arcs αk and a space of dimension dim(G) to choose from for each arc. �	

The previous proposition can be upgraded for the representation ρ we are interested in.

Corollary 18 If the image of ρ has limit set Sn−1, the inclusion i induces a surjective homo-
morphism

i∗ : H1(π1(X , V ), gAd σ ) −→ H1(π1(X , v0), gAd ρ).

The dimension of its kernel is dim(G) · (|V | − 1).

Proof The spaces B1(π1(X , V ), gAd σ ) and B1(π1(X , v0), gAd ρ) have both dimension equal
to dimG by Proposition 14. Hence the map i∗ sends the former to the latter isomorphically.

�	

4.4 Cube complexes

Let C be a finite connected cube complex. It is natural here to consider its set of vertices V
and the fundamental groupoid π1(C, V ). This has a natural presentation

〈 g1, . . . , gh | r1, . . . , rk 〉 (6)

where g1, . . . , gh are the edges of C , oriented arbitrarily, and r1, . . . , rk are 4-letters words
in g±1

i arising from the square faces of C , oriented arbitrarily.
Let v be a fixed vertex of C . To pass from the presentation (6) of π1(C, V ) to one for the

fundamental group π1(C, v) it suffices to choose a maximal tree T in the 1-skeleton of C
and to add a relator gi representing every edge contained in T .
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4.5 Proving rigidity of ˜M

Here we explain the main method to prove infinitesimal rigidity. The holonomy of M̃ is a
homomorphism

ρ : π1(M̃) −→ Isom(Hn).

The manifold M̃ deformation retracts onto the infinite cube complex C̃ . The fundamental
group π1(M̃) could be not finitely presented (this is the case in dimension 4, see [2]), and C̃
is infinite, so the techniques introduced in the previous section do not apply here. However,
it will be sufficient to consider a finite portion C ′ of C̃ and use the following.

Proposition 19 Let C ′ be a finite subcomplex of C̃ such that

i∗ : π1(C
′, v0) � π1(C̃, v0)

is surjective. If ρ′ = ρ ◦ i∗ is infinitesimally rigid then ρ is infinitesimally rigid.

Proof The surjective homomorphism i∗ induces an injective homomorphism

i∗ : H1(π1(C̃, v0), gAd ρ) −→ H1(π1(C
′, v0), gAd ρ◦i∗).

If the target space is trivial, the domain also is. �	
Recall that every k-cube of C̃ has some level. The finite subcomplex F[m,n] defined in

Sect. 3.3 is connected, and by Corollary 12 the inclusion F[m,n] → C̃ is π1-surjective (we
suppose that n − m ≥ 2). In the cases described in Sects. 5.2.2–5.2.3 we will prove that the
representation ρ′ = ρ ◦ i∗ is infinitesimally rigid.

Let V (respectively, V ′) be the set of vertices of C̃ (respecively, F[m,n]). The representation
ρ (respectively, ρ′) extends to a representation σ (respectively, σ ′) of the groupoid π1(C̃, V )

(respectively, π1(F[m,n], V ′)) that is easy to describe. Consider the orbifold-covering

p : M̃ −→ P

where P is the polytope used in the construction of the manifold, interpreted as an orbifold
P = H

n/� . Here � is the Coxeter group generated by reflections along the facets of P . The
map p sends every vertex of V to the center v of P . It induces a map

p∗ : π1(C̃, V ) −→ πorb
1 (P, v) = �.

Consider the natural presentation 〈 gi | r j 〉 of π1(C̃, V ), with generators and relators corre-
sponding to oriented edges and squares of C̃ . Every gi corresponds to an oriented edge of C̃ ,
which in turn determines a facet F of P . The map p∗ sends gi to the reflection rF along F .
The orientation of gi is not important since r2F = id.

The map p∗ is very convenient because it sends every generator gi to a reflection rF . We
write σ = p∗ and denote by σ ′ its restriction to π1(F[m,n], V ′).

We now need to calculate the dimension of H1(π1(F[m,n], V ′), gAd σ ′). To do this we
create a linear system and study its solutions using MATLAB.

5 The numerical analysis

Here we describe in detail the methods used and the results obtained.
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5.1 The algorithm

In this subsection, we explain the algorithm that we used to build up and solve our linear
system. The code can be found at [1]. To understand the numbers involved in the computation,
we give names to certain quantities:

• We call n the dimension of the ambient space Hn of the polytope P;
• We call nfacets the number of facets of the polytope P;
• We call n2-cofaces the number of faces of codimension 2 of P;
• We call c the number of colours used.

5.1.1 Getting the combinatorics of F[m,n]

We choose to work with the subcomplex F[−1,2s−1], where s is a positive integer. As s grows,
we are considering a bigger part of C̃ . Keep in mind that the deck transformation acts on C̃
translating levels by ±2.

The vertices of F[−1,2s−1] are 2c−1 · (2s + 1) points.
We havewritten a Python code that enumerates the edges of the cube complexC associated

with M . As we already pointed out, these edges are in correspondence with facets of the
polytopes Pv where v is even. The edges of F[−1,2s−1] will be s copies of the edges of C :
each edge of C has a unique lift with one vertex of level 2i for i = 0, . . . , s − 1. The number
of edges of F[−1,2s−1] will be

nfacets · 2c−1 · s.
The edges of F[−1,2s−1] can be used to provide a set of generators of the fundamental

groupoid π1(F[−1,2s−1], V ′). To promote a list of edges to a set of generators we need to
orient each one of them. This orientation is used to interpret edges as paths, and should not
be confused with the one given by the state of the polytope. We orient each edge from the
vertex of even level towards the vertex of odd level. Each generator gi is sent by σ ′ to a
reflection rF along a facet F of the polytope P , that we denote by Mi to be consistent with
Proposition 16.

Then we need to encode the squares of F[−1,2s−1]. We start by getting a list of the squares
of C . Then for each square we consider the lifts that have vertices with level in [−1, 2s − 1].
See Figs. 14, 15, 16, 17, 18, 19 and 20 for an example.

5.1.2 Creating the linear system

We can nowwrite the linear systemwithMATLAB following Proposition 16. The dimension
of the kernel of this linear system will be the dimension of Z1(π1(F[m,n], V ′), gAd σ ′). We
have a deformation Di for every generator gi , and this gives

nfacets · 2c−1 · s · (n + 1)2

variables, since each Di is an unknown matrix (n + 1, n + 1).
Following Proposition 16, the deformations have to fulfill two types of linear equations:

• They must lie in the tangent space at Mi . This is achieved by imposing the equation

Dt
i · J · Mi + (J · Mi )

t · Di = 0,

where J is the diagonal matrix (1, . . . , 1,−1);
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Fig. 14 The right-angled
hyperbolic regular octahedron.
Figure downloaded from
Wikimedia and licensed under
the Creative Commons
Attribution-Share Alike

Fig. 15 The colouring and the statewe consider on the octahedron, already described in [10]. The cube depicted
is the dual of the boundary of the octahedron, hence vertices correspond to facets and edges correspond to
edges. There are no faces of dimension 2 because the vertices of the octahedron are ideal

Fig. 16 One way to encode at the
same time the colouring and the
state. The contour of a vertex is
enhanced (resp. not enhanced) if
the corresponding facet has letter
I (resp. O) in the state. We also
enumerate the facets. We need
this in order to list all the edges of
the cube complexes C and C̃

• They have to solve the equations given by the relations. We have one equation for each
square in F[−1,2s−1]. There are a couple of tricks that can be used to simplify this type of
equations; wemake an example to show them explicitly. Let Q be a square with boundary
g1g

−1
2 g3g

−1
4 . The corresponding equation will be:

D1M
−1
2 M3M

−1
4 + M1(−M−1

2 D2M
−1
2 )M3M

−1
4

+M1M
−1
2 D3M

−1
4 + M1M

−1
2 M3(−M−1

4 D4M
−1
4 ) = 0.

Every generator is sent by σ ′ to a reflection, hence Mi = M−1
i . In this way, we avoid

matrix inversions that are computationally heavy and could add numerical noise to the
problem. Furthermore, we know that opposite sides of one square always go to the same
matrix Mi (because they correspond to the same facet of P). We can then simplify the
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Fig. 17 The 1-skeleton of the cube complex C . The orientation on the edges is the one given by the state. In
order to get the full C we should add 12 squares. The enumeration of the edges is obtained in the following
way: we enumerate the facets of P (see Fig. 16). The edges coming from the vertex x0 are in correspondence
with these facets. We then enumerate the vertices xv with v even (in this case only x1,1) and extend the
enumeration on the edges coming from them

Fig. 18 The 1-skeleton of F[−1,3]. The enumeration of edges follows the one of Fig. 17: the edges with one
vertex of level zero are in correspondence with the ones of C , and there is a copy of each of them with one
vertex at level 2

Fig. 19 One portion of the infinite 1-skeleton of the cube complex C̃
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Fig. 20 Two squares and their lifts in F[−1,1] and F[−1,3]

equation using M1 = M3 and M2 = M4. It is also true that M1M2 = M2M1 because
they correspond to adjacent facets of a right-angled polytope. In the end, we obtain:

D1M1 − M1M2D2M1 + M1M2D3M2 − D4M2 = 0.

These simplifications helped a lot in numerical computations, and they were possible
only because we used the groupoid structure. They also allow us to make the symbolical
computations run faster.

Notice that these are matrix equations, so each of them represents actually (n+1)2 equations
(one for every entry of the matrix). By virtue of Proposition 3, the number of squares in C is

n2-cofaces · 2c−2.

Weapproximate the number of squares ofC that have a lift in F[−1,1] with one half of this value
(this value is often correct for symmetric reasons. In any case, it is a good approximation),
see Fig. 20. Hence, the number of squares of F[−1,2s−1] is approximately

n2-cofaces · 2c−2 ·
(
s − 1

2

)
.

The linear system that we obtain has size that is approximately

(n + 1)2
(
nfacets2

c−1s + n2-cofaces2
c−2

(
s − 1

2

))
× (n + 1)2nfacets2

c−1s.
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5.1.3 The MATLAB rank function

Once we have built the linear system, we need to compute its rank. This can be done in two
different ways in MATLAB.

• If the matrix is a symbolic matrix, the rank is calculated in a rigorous way. This is more
time consuming and requires more RAM in order to be carried out.

• If the matrix is a double matrix (i.e. its entries are numerical values in double precision)
the rank function does the following: it calculates the singular values of the matrix (see
[15]) and counts the ones that are greater than a tolerance value (the standard tolerance
used by MATLAB depends on size and norm of the matrix). The result is not rigorous.
Its reliability can be estimated using the gap between the singular values greater than
the tolerance and the smaller ones. In particular, a measure of the reliability of the
computation is given by �min/σmax, where �min is the smallest singular value greater
than the tolerance and σmax is the greatest singular value smaller than the tolerance.When
the gap is big, the result is reliable. In our cases, this gap is always big enough to let us
trust the result, as we will show in detail. The Singular Value Decomposition algorithm
is more time consuming than some alternatives, but it is also the most reliable.

We had not time and resources to carry out all computations in symbolic form for all examples
we had. However, if we focus on one specific case, we are probably able to compute it in a
rigorous way. For the 5-dimensional example (that is probably the most interesting one) we
needed to use ad-hoc simplifications of the linear system in order to carry out the computations
symbolically.

5.2 Applying the algorithm

Here we describe the results obtained, that prove Theorem 1.

5.2.1 An example in dimension 3: checking known results

We start by using the algorithm on a colouring and a state on the right-angled ideal octahedron
in dimension 3, where all results can be checked using the theory of hyperbolic 3-manifolds.

The colouring and the state s0 are shown in Fig. 15. The manifold obtained from this
colouring is the minimally twisted chain link with six components. Using the methods in
[2], it is easy to show that this state induces a fibration on S1. The fiber N of this map is a
six-punctured sphere.

The infinite cyclic covering is diffeomorphic to the product N ×R, hence its fundamental
group is simply

π1(M̃) = 〈g1, . . . , g5〉.
Since there are no relations, the dimension of the space of cocycles is simply dim(O(3, 1)) ·
5 = 30. Using Corollary 15, we deduce that dim(B1) = dim(O(3, 1)) = 6. Hence, the
dimension of the space of infinitesimal deformation of M̃ is:

dim H1(π1(M̃), gAd ρ′) = 30 − 6 = 24.

We now use our algorithm to compute the same quantity.
We start by finding the holonomy of the octahedron. Then using Sage we obtain the

combinatorics of F[−1,1]. With this data, we can run the algorithm and find the singular

123



33 Page 24 of 30 Geometriae Dedicata (2023) 217 :33

Fig. 21 In blue, the singular values of the linear system of the octahedron. In red, the tolerance suggested
by MATLAB. The y-axis is in a logarithmic scale. The first 196 singular values are much greater than the
tolerance, and the last 60 are much smaller than the tolerance. In every computation, the graph we get is very
similar

values of the linear system of size 352 × 256 defined as in Sect. 5.1.2. The singular values
that we obtain are plotted in Fig. 21. Of the 256 singular values, 196 are greater than 10−1, and
60 are smaller than 10−14. The tolerance suggested by MATLAB is 10−12. The values that
are greater than the tolerance are 11 orders of magnitude greater and the ones smaller than
the tolerance are 2 orders of magnitude smaller. Notice also that the singular values smaller
than the tolerance are close to the machine epsilon: they are only two orders of magnitude
greater. For these reasons, we consider this computation reliable.

Once we get the value 60, we need to subtract the amount that comes from the fact
that we are using the fundamental groupoid and the dimension of the coboundaries. Using
Proposition 17 and Corollary 15 we estimate the dimension of the space of infinitesimal
deformations with

dim(H1(π1(C̃, v0)) ≤ 60 − #
{
vertices of F[−1,1]

} · dim(G) = 60 − 6 · 6 = 24.

Remark 20 In this case, the bound we find is sharp. However, with our algorithm we only get
an upper bound for the dimension of the space of infinitesimal deformations. This is because
the map induced by the inclusion of F[−1,1] in M̃ on the fundamental groups is surjective,
but we do not know whether it is injective in general. However, when the upper bound is 0,
we can conclude that M̃ is infinitesimally rigid, as stated in Proposition 19.

5.2.2 Dimension 4

In dimension 4wefindnew results using thismachinery.Recall thatwe cannot havefibrations:
this follows from the positiveness of the Euler characteristic.

We start with a right-angled polytope with a colouring and a state. We use the state to
define an orientation on all edges of C (in this section we follow the convention of [2]). In
order to apply the algorithm we need all ascending and descending links to be connected
(recall Fact 9).

In [2] there are several examples that satisfy this condition. In particular, we applied our
algorithm in the following cases:

• The polytope P4 with the colouring and the state shown in [2], Figs. 4 and 5. In this case
the manifold M is the manifold W described in [2], Section 2.1;

• The 24-cell with the colouring shown in [2], Fig. 6 and the 63 states described in [2],
Section 2.2. In this case the manifold M is the manifold X described in [2], Section 2.2;
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Fig. 22 The colouring and the state on the 24-cell for which we made out symbolic computations

• The 120-cell with the colouring and the state described in [2], Section 2.4. In this case,
the manifold M is the manifold Z described in [2], Section 2.4.

In every case, we obtained the infinitesimal rigidity of the infinite cyclic covering. Every
computation but one is numerical. With the 24-cell and one state (the most symmetric one,
as described in [2], Section 2.2.1 and shown in Fig. 22), we carried out the computation
symbolically. The results are shown in Tables 2 and 3. In particular, we proved:

Theorem 21 The infinite cyclic covering of the manifold X (described in [2], Section 2.2)
associated with the map induced by the status described in [2], Section 2.2.1 is infinitesimally
rigid.

Notice that in all the cases considered in this section the function f : C → S1 can be
extended on M and is homotopic to a perfect circle-valued Morse function (see [2]).

5.2.3 Dimension 5

In [9], Italiano,Martelli, andMigliorini found an interesting example of fibration f : M → S1

in dimension 5. We can apply our algorithm to their construction to prove the infinitesimal
rigidity of the associated infinite cyclic covering.

Following their construction, we use the polytope P5, the paired colouring shown in [9],
Fig. 3 and the state shown in [9], Fig. 9. To define the orientation on the edges of C we use
the convention in [9], Section 1.6.

The linear system associated with F[−1,1] has size 175104 × 73728. Trying to compute
the rank of the symbolic linear system built as in Sect. 5.1.2 made MATLAB freeze. In order
to compute its exact rank, we had to simplify the system using its structure, see Fig. 23. The
manipulations derive from linear algebra considerations and the details can be found in [1].
In particular, we proved the following:

Theorem 22 The infinite cyclic covering of the manifold M5 associated with the map f (both
described in [9], Section 1) is infinitesimally rigid.
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Table 2 The numerical results on the 63 states on the 24-cell

N Volume dim(H1(F[−1,1]) �min/σmax dim(H1(F[−1,3]) �min/σmax

1 194.869 0 Symbolic 0 7.235622e+12

2 189.473 0 2.397118e+12 0 6.148398e+12

3 186.874 0 2.335225e+12 0 6.532320e+12

4 186.34 1 3.543064e+12 0 7.089249e+12

5 185.307 0 3.202601e+12 0 6.263295e+12

6 185.035 0 3.660549e+12 0 4.937802e+12

7 184.813 0 2.220017e+12 0 4.920229e+12

8 184.301 7 5.933310e+12 0 7.657107e+12

9 184.067 3 4.489610e+12 0 5.853079e+12

10 183.873 0 2.429848e+12 0 5.587981e+12

11 183.867 0 3.748772e+12 0 5.742814e+12

12 183.544 2 2.986599e+12 0 6.617660e+12

13 183.437 1 3.461792e+12 0 6.452055e+12

14 183.393 0 2.532459e+12 0 5.506283e+12

15 183.122 0 3.923543e+12 0 7.137961e+12

16 182.36 1 3.219696e+12 0 5.422404e+12

17 182.281 1 3.659665e+12 0 4.927091e+12

18 182.171 0 2.146996e+12 0 4.765655e+12

19 181.283 0 3.882594e+12 0 4.002973e+12

20 181.127 0 3.311863e+12 0 4.097215e+12

21 181.025 0 2.291793e+12 0 4.734293e+12

22 180.934 1 2.509777e+12 0 5.412036e+12

23 180.825 2 1.236372e+12 0 6.850040e+12

24 180.661 1 3.918858e+12 0 6.296845e+12

25 180.451 1 4.446158e+12 0 6.131600e+12

26 180.387 0 1.875859e+12 0 3.726183e+12

27 180.331 1 3.638321e+12 0 6.280977e+12

28 180.248 0 3.738838e+12 0 6.589169e+12

29 180.128 0 2.809597e+12 0 4.884660e+12

30 179.869 0 2.775650e+12 0 5.124980e+12

31 179.754 0 2.232866e+12 0 5.923731e+12

32 179.657 1 2.477102e+12 0 4.884932e+12

33 179.181 0 3.483970e+12 0 4.317760e+12

34 178.903 1 1.508899e+12 0 4.108744e+12

35 178.796 2 2.522961e+12 0 5.228315e+12

36 178.71 0 3.393137e+12 0 4.622471e+12

37 178.55 1 2.436939e+12 0 5.807914e+12

38 178.498 2 2.529432e+12 0 3.768823e+12

39 178.355 0 3.521648e+12 0 3.000208e+12
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Table 2 continued

N Volume dim(H1(F[−1,1]) �min/σmax dim(H1(F[−1,3]) �min/σmax

40 178.322 0 1.907534e+12 0 3.418561e+12

41 177.899 0 3.774676e+12 0 4.809060e+12

42 177.794 0 2.519382e+12 0 5.130856e+12

43 177.552 3 2.755276e+12 0 6.341695e+12

44 177.363 0 3.157805e+12 0 5.056077e+12

45 177.25 0 3.070059e+12 0 5.920372e+12

46 177.111 1 3.973227e+12 0 6.168683e+12

47 176.982 1 2.323239e+12 0 4.127369e+12

48 176.899 0 3.272597e+12 0 4.647325e+12

49 175.422 0 2.507132e+12 0 4.161510e+12

50 175.17 1 3.826100e+12 0 5.070140e+12

51 175.085 0 2.458223e+12 0 3.874525e+12

52 174.082 0 2.269447e+12 0 4.997747e+12

53 173.808 0 2.382119e+12 0 3.321352e+12

54 173.331 1 3.010625e+12 0 5.122391e+12

55 173.211 0 2.826802e+12 0 4.510913e+12

56 172.693 0 2.840796e+12 0 3.793823e+12

57 172.582 0 2.119408e+12 0 3.818880e+12

58 172.161 0 2.778001e+12 0 3.560645e+12

59 171.484 1 2.398577e+12 0 4.459881e+12

60 170.918 1 2.293547e+12 0 2.133791e+12

61 166.466 1 1.581402e+12 0 1.718246e+12

62 163.95 1 2.274303e+12 0 2.227807e+12

63 154.991 3 2.094852e+12 0 2.104681e+12

Each state gives rise to a function f : C → S1. To distinguish these states we use the volume of the singular
fiber Msing described in [2]. The second column represents the volume of Msing. The third and the fourth are
the dimension of the infinitesimal deformations calculated using MATLAB and the gap of the singular values
of the system obtained using F[−1,1]. The last two are the corresponding values obtained using F[−1,3]. In
Tables 2–3 of [2] more information about Msing can be found

Table 3 The results on the other
right-angled polytopes Polytope Size system dim(H1(F[−1,1]) �min/σmax

P4 7000 × 4000 0 1.2631e+12

120-cell 120000 × 48000 0 2.2308e+10

P5 175104 × 73728 0 Symbolic

The first column describes the polytope. The second column represents
the size of the linear system given toMATLAB, associated with F[−1,1].
The third and the fourth ones contain the dimension of the infinitesimal
deformations calculated using MATLAB and the gap of the singular
values of the system
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Fig. 23 The pictures obtained by using the MATLAB function spy on the 175104 × 73728 linear system
coming from P5 (left) and on its principal minor 180 × 180 (right). In the left picture, we notice clearly the
distinction between equations given by tangency conditions and ones given by squares. Given a m × n matrix
M , the function spy(M) creates a m × n white grid and colours the element (a, b) of the grid if and only if
Ma,b is not 0

6 Related results and open questions

The results we found suggest several patterns that we discuss in this section.

6.1 Ignoring relations

It appears that it is often enough to use F[−1,1] to prove the rigidity of the manifold M̃ .
The algorithm applied to this specific subcomplex can be interpreted in a nice way. Here we
elaborate on this aspect.

We want to compare the algorithm applied to F[−1,1] with the algorithm applied to C , the
cube complex on which the finite-volume manifold M retracts. The number of vertices of
F[−1,1] is 3

2 times the number of vertices of C : this is because odd vertices have two lifts in
F[−1,1] while even vertices have only one lift. Let V be the set of vertices of C and V ′ be the
set of vertices of F[−1,1]. The groupoids π1(C, V ) and π1(F[−1,1], V ′) have the same number
of generators: this holds because every edge in C has exactly one lift in F[−1,1]. If we look
at the squares (that correspond to relations in the groupoid), some squares of C have one lift
in F[−1,1] and some of them have zero lifts in F[−1,1], see Fig. 20. The ones that have no lift
in F[−1,1] are the ones whose lifts connect two even vertices that have different level. This
means that the presentations of the groupoids π1(C, V ) and π1(F[−1,1], V ′) differ only by a
certain number of relations, that appear in π1(C, V ) and do not appear in π1(F[−1,1], V ′).
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When we build the linear system associated with π1(C, V ), by Mostow rigidity we know
that the dimension of the kernel must be dim(G) · #V : this is because the manifold M has
finite volume. With some states (the ones that made us able to prove rigidity by looking at
F[−1,1]), ignoring the relations given by the squares that have no lift in F[−1,1] raised the
dimension of the kernel to dim(G) · 3

2 · #V . In other cases, the kernel became greater (in
these cases we needed to consider F[−1,3] to find rigidity, see Table 2).

Question 23 Is there any nice way to distinguish between the states such that the complex
F[−1,1] is enough to prove rigidity and the other ones?

6.2 Always rigid?

In the papers [2, 9] there are several examples where ker( f∗) is finitely generated. In some
of these cases (the ones shown in Sects. 5.2.2 and 5.2.3) it was possible to apply our method,
and we were always able to prove (or to obtain strong numerical evidence in favor of the fact)
that the hyperbolic structure was infinitesimally rigid. Hence, it is quite natural to conjecture
the following:

Conjecture 24 Let M be a finite volume hyperbolic manifold in dimension greater than or
equal to 4. Let f : M → S1 be a homotopically non-trivial smooth map such that ker( f∗) is
finitely generated, where f∗ is the map induced on the fundamental groups. Then the cyclic
covering associated with the subgroup ker( f∗) is infinitesimally rigid.1
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