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Abstract
Majorana theory is an axiomatic tool for studying the Monster group M and its subgroups
through the 196,884-dimensional Conway–Griess–Norton algebra. The theory was intro-
duced by A. A. Ivanov in 2009 and since then it experienced a remarkable development
including the classification of Majorana representations for small (and not so small) groups.
The groupU3(5) is (isomorphic to) the socle of the centralizer inM of a subgroup of order 25.
The involutions of thisU3(5)-subgroup are 2A-involutions in the Monster. Therefore,U3(5)
possesses aMajorana representation (based on the embedding in theMonster). We prove that
this is the unique Majorana representation of U3(5), calculate its dimension, which is 798,
and obtain a description in terms of theHoffman–Singleton graph ofwhich the automorphism
group has U3(5) as an index 2 subgroup.

Keywords Majorana algebra · Monster group · Hoffman–Singleton graph

1 TheMonster andMajorana

TheMonster group, which is the largest and most famous sporadic simple group, has its min-
imal complex representation of dimension 196,883. This number was noticed by J. McKay in
the 1970’s to be one less than the linear coefficient of the modular invariant J (q), making the
start of the Monstrous Moonshine. The underlying vector space, as shown by S. P. Norton in
the early 1970’s, carries invariant inner and algebra products. This algebrawasmore explicitly
described by R. L. Griess [6] when constructing the Monster in 1980. Later the construction
was reviewed and improved in various ways by J. H. Conway [3]. In particular Conway
adjoined to the algebra an identity and defined 2A-axes associated with 2A-involutions in
the Monster. The 2A-axis a(t) associated with an involution t is an idempotent in the 2-
dimensional space

CVM (CM (t)), where CM (t) ∼= 2 · BM,
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BM standing for the Baby Monster sporadic simple group. Among other idempotents in
this 2-space the 2A-axis is characterized by having 1-eigenvector with multiplicity 1. The
196,884-dimensional algebra is called the Conway–Griess–Norton algebra or simply the
Monster algebra and is denoted by VM .
In [7] essential properties of 2A-axes in theMonster algebrawere axiomatised in the following
way.
Let V be a real vector space equipped with a bilinear form ( , ) and an algebra product · .

(M1) ( , ) is a symmetric positive-definite bilinear form on V that associates with · in the
sense that (u, v · w) = (u · v,w) for all u, v, w ∈ V , and · is a bilinear commutative
non-associative algebra product on V ;

(M2) the Norton inequality holds, so that (u · u, v · v) ≥ (u · v, u · v) for all u, v ∈ V .

A vector a ∈ V is said to be aMajorana axis if it satisfies the following five conditions (M3)
to (M7), where ad(a) : v �→ a · v is the adjoint operator of a on V .

(M3) (a, a) = 1 and a · a = a, so that a is an idempotent of length 1;
(M4) ad(a) is semi-simple with spectrum Sp = {1, 0, 1

4 ,
1
32 }:

V = V (a)
1 ⊕ V (a)

0 ⊕ V (a)
1
4

⊕ V (a)
1
32

,

where V (a)
μ = {v | v ∈ V , a · v = μv} is the set of μ-eigenvectors of ad(a) on V ;

(M5) V (a)
1 = {λa | λ ∈ R};

(M6) the linear transformation τ(a) of V defined via

τ(a) : u �→ (−1)32μu

for u ∈ V (a)
μ with μ = 1, 0, 1

4 ,
1
32 , preserves the algebra product (i.e. u

τ(a) · vτ(a) =
(u ·v)τ(a) for all u, v ∈ V ). The automorphism τ(a) is called theMajorana involution
associated with the Majorana axis a;

(M7) if V (a)
+ is the centralizer of τ(a) in V , so that V (a)

+ = V (a)
1 ⊕ V (a)

0 ⊕ V (a)
1
4

, then the

linear transformation σ(a) of V (a)
+ defined via

σ(a) : u �→ (−1)4μu

for u ∈ V (a)
μ with μ = 1, 0, 1

4 preserves the restriction of the algebra product to the

subalgebra V (a)
+ .

The conditions (M1) to (M7) imply that the eigenspaces V (a)
μ of the adjoint action of a satisfy

the fusion rules described in Table 1:
The meaning of the fusion rules is the inclusion

V (a)
λ · V (a)

μ ⊆
⊕

ν∈Sp(λ,μ)

V (a)
ν

where λ,μ ∈ Sp and Sp(μ, λ) is the (λ, μ)-entry in Table 1.

Definition 1 Let (V , ( , ), ·) be a triple satisfying (M1) and (M2), let A be a set of Majorana
axes in V satisfying (M3) to (M7), and let G be the subgroup of the automorphism group
of (V , ( , ), ·) generated by the Majorana involutions associated with the axes in A. Then
the triple (V , ( , ), ·) is called a Majorana algebra, and the quintuple (V , ( , ), ·, A,G) is
called a Majorana representation of G.
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Table 1 Fusion rules
Sp 1 0 1

4
1
32

1 1 0 1
4

1
32

0 0 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32
1
32

1
32

1
32

1
32 1, 0, 1

4

If (VM , ( , ), ∗) is the full name of the Monster algebra and 2A denotes the set of 2A-axes in
this algebra, then (VM , ( , ), ∗, 2A, M) is a Majorana representation of the Monster. There
is a 1-1 correspondence between 2A-involutions t in the monster M and 2A-axes a in 2A
such that if φ : M → GL(VM ) is the given representation of M on VM , then φ(t) = τ(a).
It follows that any subgroup G of M generated by a set of 2A-involutions possesses at least
one Majorana representation.
The above definitions were motivated by a theorem proved by S. Sakuma in [18] making use
of earlier results by M. Miyamoto. In Majorana terms this theorem as stated and proved in
[11] sounds as follows.

Theorem 2 (Sakuma) Let (V , ( , ), ·) be a Majorana algebra, let A = {a0, a1} for a0 
= a1
be Majorana axes, and let G be the dihedral subgroup D2n generated by τ(a0) and τ(a1),
where n is the order of the product of the generators. Then n ≤ 6 and there are at most eight
possibilities for the isomorphism type of the subalgebra generated by A in the Majorana
representation (V , ( , ), ·, A,G) of G.

Each of the eight algebras in Sakuma’s theorem are subalgebras in the Monster algebra, their
explicit forms were computed by S. P. Norton in [16] and given in Table 2 with respect to the
Majorana scaling. The name of the algebra generated by a0 and a1 is the conjugacy class of
the Monster containing the product τ(a0)τ (a1).

Therefore, Sakuma’s theorem provides the classification of Majorana representations of the
dihedral groups. On progress in classifying Majorana representations of further groups we
refer the reader to surveys [9, 10].
Our main result is the following.

Theorem 1 The group U3(5) has a unique Majorana representation satisfying (M8) below.
This representation has dimension 798, it is 2-closed, is spanned by Majorana and 3A-axes
and is based on an embedding into the Monster.

Here the dimension of a Majorana representation (V , ( , ), ·, A,G) is the vector space
dimension of the subalgebra 〈〈A〉〉 of V generated by A. The representation is called i-closed,
when 〈〈A〉〉 is spanned by products of at most i elements of A.
A 3A-axis is a vector with the role of uρ in a type 3A subalgebra (an idempotent of squared
length 8

5 , expressed in the Majorana axes a−1, a0, a1 by the first equation in the 3A part of
Table 2). Similarly, 4A-axes and 5A-axes are vectors with the role of vρ andwρ , respectively,
in type 4A (5A) subalgebras.
Condition (M8) is

(M8) The vectors aρ , aρ2 and aρ3 in type 2A, 4B and 6A algebras, respectively, areMajorana
axes. The vectors uρ , vρ , wρ in algebras of type 3A, 4A and 5A depend solely
on the group element ρ = τ(a0)τ (a1) (rather than on the whole dihedral group
<τ(a0), τ (a1)>).
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Table 2 Norton–Sakuma algebras

Type Basis Products and angles

2A a0, a1, aρ a0 · a1 = 1
23

(a0 + a1 − aρ), a0 · aρ = 1
23

(a0 + aρ − a1)

(a0, a1) = (a0, aρ) = (a1, aρ) = 1
23

2B a0, a1 a0 · a1 = 0, (a0, a1) = 0

a0 · a1 = 1
25

(2a0 + 2a1 + a−1) − 33·5
211

uρ

3A a−1, a0, a1, a0 · uρ = 1
32

(2a0 − a1 − a−1) + 5
25

uρ

uρ uρ · uρ = uρ

(a0, a1) = 13
28

, (a0, uρ) = 1
22

, (uρ, uρ) = 23
5

3C a−1, a0, a1 a0 · a1 = 1
26

(a0 + a1 − a−1), (a0, a1) = 1
26

a0 · a1 = 1
26

(3a0 + 3a1 + a2 + a−1 − 3vρ)

4A a−1, a0, a1, a0 · vρ = 1
24

(5a0 − 2a1 − a2 − 2a−1 + 3vρ)

a2, vρ vρ · vρ = vρ , a0 · a2 = 0

(a0, a1) = 1
25

, (a0, a2) = 0, (a0, vρ) = 3
23

, (vρ, vρ) = 2

4B a−1, a0, a1, a0 · a1 = 1
26

(a0 + a1 − a−1 − a2 + aρ2 )

a2, aρ2 a0 · a2 = 1
23

(a0 + a2 − aρ2 )

(a0, a1) = 1
26

, (a0, a2) = (a0, aρ) = 1
23

a0 · a1 = 1
27

(3a0 + 3a1 − a2 − a−1 − a−2) + wρ

5A a−2, a−1, a0, a0 · a2 = 1
27

(3a0 + 3a2 − a1 − a−1 − a−2) − wρ

a1, a2, wρ a0 · wρ = 7
212

(a1 + a−1 − a2 − a−2) + 7
25

wρ

wρ · wρ = 52·7
219

(a−2 + a−1 + a0 + a1 + a2)

(a0, a1) = 3
27

, (a0, wρ) = 0, (wρ, wρ) = 53·7
219

a0 · a1 = 1
26

(a0 + a1 − a−2 − a−1 − a2 − a3 + aρ3 ) + 32·5
211

uρ2

6A a−2, a−1, a0, a0 · a2 = 1
25

(2a0 + 2a2 + a−2) − 33·5
211

uρ2

a1, a2, a3 a0 · uρ2 = 1
32

(2a0 − a2 − a−2) + 5
25

uρ2

aρ3 , uρ2 a0 · a3 = 1
23

(a0 + a3 − aρ3 ), aρ3 · uρ2 = 0, (aρ3 , uρ2 ) = 0

(a0, a1) = 5
28

, (a0, a2) = 13
28

, (a0, a3) = 1
23

Condition (M8) is satisfied by (VM , ( , ), ∗, 2A, M) by [16]. In our U3(5) setting this con-
dition will allow us to identify 3A-axes with subgroups of order 3. Note that condition (M8)
implies conditions (2A) and (3A) in [11].

123



Geometriae Dedicata (2023) 217 :4 Page 5 of 13 4

2 On the U3(5) group

In this sectionwe summarise the required properties of the groupU3(5). They can be deduced
from the information in the relevant section of the ATLAS [2] and the properties of the
Hoffman–Singleton graph found in [1, §10.19].

(P1) U3(5) is a simple group of order 126,000 = 24 · 32 · 53 · 7 with a unique class of
involutions. Its Schur multiplier is of order 3 and the outer automorphism group is
isomorphic to S3.

(P2) U3(5) contains three classes of subgroups isomorphic to A7, which are maximal and
the classes are transitively permuted by the outer automorphisms.

(P3) The action of U3(5) on the cosets of a subgroup A7 preserves a structure of the
Hoffman–Singleton graph, which is the unique strongly regular graph with parameters
v = 50, k = 7, λ = 0, μ = 1. The action of U3(5) on this graph has rank 3.

(P4) The action of an A7 subgroup on the cosets of an A7 subgroup from a different class
has two orbits with lengths 15 and 35 and stabilizers L3(2) and (S3 × S4)+, the latter
being the normalizer of a subgroup of order 3 in both A7’s.

(P5) If t is an involution in U3(5), then the fixed vertices of t on the Hoffman–Singleton
graph form a Petersen subgraph on which the centralizer C(t) of t inU3(5) induces an
action of S5 with kernel<t>. The wholeC(t) is a non-split extension of<t> by S5 in
which a transposition of S5 lifts to an involution. C(t) is the unique index 2 subgroup
of GL2(5) with the class of 20 non-central involutions. C(t) is maximal in U3(5).

(P6) The action ofU3(5) on its 525 involutions has rank 8, with suborbits of sizes 1, 20, 120,
120, 120, 48, 48, 48, corresponding to product orders 1, 2, 3, 4, 6, 5, 5, 5, respectively.
The action of U3(5).S3 has rank 6, the three suborbits of size 48 fuse into a single
suborbit of size 144.

(P7) The Monster group contains a maximal 5-local subgroup

N (5A2) ∼= (52 : 4 · 22 ×U3(5)) : S3
where

N (5A) ∼= (D10 × HN ) · 2
(see [19]).

(P8) The involutions in the U3(5)-subgroup in N (5A2) are 2A-involutions in the Monster
by Table 5 in [17].

3 An upper bound

Property (P8) implies that U3(5) possesses a Majorana representation based on embedding
into theMonster. It would be very hard to deduce any exact information on this representation,
like the dimension, by pre-Majorana methods. The characterization [5] of the Majorana
representation of the Harada–Norton group is not explicit enough either. What one can do is
to get an upper bound on the dimension of this particular representation. The procedure is
rather standard.

Lemma 3 The following assertions hold:

(i) NM (U3(5))/U3(5) ∼= 52 : (SL2(3) ∗ Z4);
(ii) CM (U3(5)) ∼= 52 : (Q8 ∗ Z4).
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Table 3 Fusion of A12-classes
into the Monster

A12 M A12 M A12 M A12 M

(112) 1A (4, 2) 4B (6, 2) 6C (4, 3, 2) 12C

(22) 2A (4, 23) 4B (7) 7A (4, 32, 2) 12C

(26) 2A (5) 5A (8, 2) 8B (6, 4) 12C

(24) 2B (52) 5A (8, 4) 8B (7, 22) 14A

(3) 3A (3, 22) 6A (9) 9A (5, 3) 15A

(32) 3A (32, 22) 6A (9, 3) 9A (5, 32) 15A

(34) 3A (6, 23) 6A (5, 22) 10A (5, 4, 2) 20B

(33) 3B (62) 6A (10, 2) 10A (7, 3) 21A

(42) 4A (6, 3, 2) 6B (11) 11A (5, 3, 22) 30B

(42, 22) 4A (3, 24) 6C (42, 3) 12A (7, 5) 35A

Proof Part (i) follows from (P7), and (ii) is immediate from (i). ��
It is clear that the Majorana subalgebra of U3(5) in the Monster algebra is contained in

CVM (CM (U3(5))).

If b is the dimension of the above centralizer, then the dimension of the Majorana represen-
tation of U3(5) in VM is at most b. On the other hand, b can be calculated by restricting the
character of M on VM to CM (U3(5)) and counting the number of trivial components.
The character table of CM (U3(5)) was found on the internet by William Giuliano to whom
we are very thankful. The fusion of classes was recovered via the embedding

CM (U3(5)) ≤ CM (A5) ∼= A12.

The fusion of A12-classes into the Monster is well known, appeared for instance in [14] and
we present it here in Table 3 for future reference.
Since 52 is a Sylow5-subgroupof A12 and NA12(5

2) is the intersectionwith A12 of NS12(5
2) ∼=

(F20 � 2) × S2 and CM (U3(5)) as in Lemma 3(ii) is rather visible inside this normalizer, we
obtain the final result of these calculations.

Lemma 4

dimCVM (CM (U3(5))) = 990.

��

4 Subrepresentations and relations

We start this section by presenting the list of eigenvectors of a Majorana axis a0 inside
Norton–Sakuma algebras. This list is well known [11] and can be deduced from the product
rules. In order to save space, we write e1 := a1 − a−1 and e2 := a2 − a−2.
Next we formulate and prove an important special case of the resurrection principle [11]. In
what follows 〈〈X〉〉 denotes the subalgebra generated by a set X . We shall write ab instead of
a · b.
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Table 4 Eigenvectors of Norton–Sakuma algebras

Type 0 1
4

1
32

2A a1 + aρ − 1
22

a0 a1 − aρ

2B a1

3A uρ − 2·5
33

a0 + 25

33
(a1 + a−1) uρ − 23

32·5a0 − 25

32·5 (a1 + a−1) e1

3C a1 + a−1 − 1
25

a0 e1

4A vρ − 1
2 a0 + 2(a1 + a−1) + a2, a2 vρ − 1

3a0 − 2
3 (a1 + a−1) − 1

3a2 e1

4B a1 + a−1 − 1
25

a0 − 1
23

(aρ2 − a2), a2 − aρ2 e1

a2 + aρ2 − 1
22

a0

5A wρ + 3
29

a0 − 3·5
27

(a1 + a−1) − 1
27

(a2 + a−2), wρ + 1
27

(a1 + a−1 − a2 − a−2) e1,

wρ − 3
29

a0 + 1
27

(a1 + a−1) + 3·5
27

(a2 + a−2) e2

6A uρ2 + 2
32·5a0 − 24

32·5 (a1 + a−1)− uρ2 − 23

32·5a0− e1,

23

32·5 (a2 + a−2 + a3 − aρ3 ),
23

32·5 (a2 + a−2 + a3 − aρ3 ),

a3 + aρ3 − 1
22

a0, uρ2 − 2·5
33

a0 + 25

33
(a2 + a−2) a3 − aρ3 e2

Lemma 5 Let (V , ( , ), ·, A,G) be a Majorana representation of a group G. Suppose that
b0, b1, b2 are Majorana axes such that

B1 := 〈〈b0, b1〉〉 and B2 := 〈〈b0, b2〉〉
are 3A-algebras with 3A-axes u1 and u2, respectively. Then the product u1u2 is explicitly
expressible in terms of products of Majorana axes and products of Majorana axes with a
3A-axis, and similarly for the inner product (u1, u2).

Proof Let α1 be the 0-eigenvector of ad(b0) in B1, α2 and β2 the 0- and 1
4 -eigenvectors of

that operator in B2 normalized as in Table 4. Then by the fusion rule α1α2 is a 0-eigenvector,
while α1β2 is a 1

4 -eigenvector of ad(b0). These eigenvectors have u1u2 as the leading terms
and the remaining terms are products of two Majorana axes and of a Majorana axis with u1
or u2. Now u1u2 can be found from

b0(α1α2 − α1β2) = −1

4
α1β2 = −1

4
u1u2 + · · · .

For the inner product we just apply 0 = (α1, β2) = (u1, u2) + · · · . ��
Lemma 6 Let G be the semidirect product of an elementary abelian group of order 9 gener-
ated by elements x and y, and a group of order 2 generated by t which inverts both x and
y. Then G possesses a unique Majorana representation satisfying (M8) such that any two
Majorana axes generate a 3A subalgebra. Furthermore, if b1, . . . , b9 and u1, . . . , u4 are the
Majorana and 3A-axes in this representation, then

45
4∑

i=1

ui − 32
9∑

j=1

b j = 0

123
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The relations in Lemma 6were called in [8]Pasechnik relations and this terminology became
standard, although the referee of [8] pointed out that these relations were known for a long
time in the theory of Vertex Operator Algebras.
The Majorana representation of A7 based on the embedding into the Monster was charac-
terised in [8].

Lemma 7 The group A7 possesses a unique Majorana representation satisfying (M8). This
representation has dimension 196. It is spanned by 105 Majorana axes, which are linearly
independent and 140 3A-axes associated with order 3 elements of cyclic type 32. The latter
are subject to 49 linearly independent relations of which 35 are Pasechnik relations and 14
are Faradzev relations. All the 5A-axes in the representation are linear combinations of the
Majorana and 3A-axes. ��
An explicit form of Faradzev relation was obtained by Clara Franchi and Mario Mainardis
[4] as an alternating sum of some 48 3A-axes. This form played a crucial role in some early
stages of our project.
The information in the following lemma was obtained by J. McInroy by the expansion
algorithm for Majorana algebra described in [15]. We are extremely thankful to Justin for his
sharing this information with us.

Lemma 8 The group C = 2 · S5, which is the centralizer of an involution in U3(5), possesses
a unique Majorana representation. This representation has dimension 31, and is spanned by
twenty-one Majorana and ten 3A-axes. Furthermore, if ρ is an element of order 3 in C, then

(i) for an involution t in C which generates with ρ a GL2(3)-subgroup, we have (uρ, at ) =
1
36 ;

(ii) for an element σ of order order 3 in C which generates with ρ an SL2(3)-subgroup,
we have (uρ, uσ ) = 8

81 ;
(iii) for an element π of order 3 in C, which generates with ρ an SL2(5)-subgroup, we have

(uρ, uπ ) = 16
405 ;

��

5 Shape and 1-closure

We start our construction of a Majorana representation of G = U3(5) by setting a vector
space with a set A of 525 vectors at indexed by the involutions t ∈ T , where T is the class
of involutions in G. In order to proceed we need to find the shape of the representation we
are aiming at, which is a map sh from the set of dihedral subgroups in G into the set of
Norton–Sakuma algebras such that

〈〈at , as〉〉 ∼= sh(<t, s>G).

Lemma 9 The shape sh of a representation of G ∼= U3(5) is uniquely determined and the
set of images of sh is

{2A, 3A, 4B, 5A, 6A}
Proof There is only one algebra for D12 and one for D10. By (P6) every subgroup D6 is
contained in a D12-subgroup. Since a 6A algebra contains 3A- but not 3C-subalgebras, the
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image of a D6-subgroup is 3A. Similarly, since 6A contains 2A- but not 2B-subalgebras, the
image of a D4-subgroup is 2A. Finally 4A contains a 2B-subalgebra, which we do not have,
therefore, the image of D8 is 4B. ��
Lemma 9 enables us to determine the form on the linear span of A.

Corollary 10 The inner product (at , as) is equal to 1, 1
8 ,

13
256 ,

1
64 ,

3
128 and 5

256 when a(st) is
equal to 1, 2, 3, 4, 5 and 6, respectively. ��
Computationally we obtain the following.

Lemma 11 The 525 × 525 Gram matrix �(A) = ||(at , as)|| has full rank. ��
Thus the 1-closure, which is the subspace spanned by the Majorana generators of a repre-
sentation of U3(5), is 525-dimensional with uniquely determined inner product on it.

6 2-closure

Next we consider the 2-closure, which is the space generated by the Majorana generators
together with their pairwise products. By Lemma 9 the 2-closure is spanned by the Majorana
generators together with 3A- and 5A-axes. The following lemma takes care of the 5A-axes.

Lemma 12 Every 5A-axis of a Majorana representation of U3(5) is a linear combination of
the Majorana generators and 3A-axes in the 2-closure.

Proof The result follows from Lemma 7 since there are threeU3(5)-orbits on D10-subgroups
by (P6) and three orbits on the A7-subgroups by (P2) with respective inclusion. ��
Lemma 13 The 2-closure of a Majorana representation of U3(5) is spanned by the 525
Majorana generators and 1750 3A-axes indexed by the subgroups of order 3 in U3(5).

Proof By Lemmas 9 and 12 we should only consider 3A-axes. By (P6) there are

525 · 120/6 = 10500

dihedral groups of order 6 inU3(5), six for every subgroup of order 3. Comparing the orders
of normalizers we conclude that the normalizer of a 3-subgroup is contained in some A7-
subgroup. So the glueing of 3A-subalgebras already takes place in A7-subrepresentations
(cf. Lemma 7). ��
We denote by

U = {uρ | ρ ∈ U3(5), ρ
3 = 1}

the set of 3A-axes in the representation, understanding that uρ = uρ−1 .
Next we are aiming to determine the Grammatrix of the set A∪U and by calculating its rank
decide on the dimension of the 2-closure. The following result was obtained computationally.

Lemma 14 The pairs of Majorana 2A- and 3A-axes in a representation of U3(5) are as
described in Table 5, where TH is the number of involutions generating a group H of a given
isomorphism type together with a fixed order 3-subgroup generated by ρ. ��

123
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Table 5 (2A, 3A)-pairs in U3(5) |TH | (tρ)M H = <t, ρ> (at , uρ)

3 6A C6 0

18 2A S3
1
4

36 3A A4
1
9

108 4B S4
1
36

36 8C GL2(3)
1
36

108 5A A5
1
18

216 7A L2(7)
1
24

525

Table 6 Inner products of
3A-axes in U3(5)

|UH | |H | H = <ρ, σ> (uρ, uσ )

1 3 C3
8
5

12 9 C3 × C3 0

36 12 A4
136
405

144 21 F3
7

4
27

18 24 SL2(3)
8
81

72 36 C3 × A4
64
405

54 60 A5
16
405

9 120 SL2(5)
16
405

108 168 L2(7)
32
405

216 168 L2(7)
4
81

216 360 A6
32
405

216 2520 A7
8
81

216 2520 A7
32
405

432 126,000 U3(5) x

1750

Notice that all (2A, 3A)-pairs inside the Monster were classified by Simon Norton and are
presented in Table 3 of [16] (in a scaling different from ours). We do not have a Majorana
version of this classification and can only compare the results and be happy when they are
consistent, which is the case here. The entries in the second column showing the class of (tρ)

in the Monster are taken from Norton’s table. The inner products can be calculated inside
A7-subrepresentations as in Lemma 7 for all pairs except those generating GL2(3), where
we apply Lemma 8.
The inner products between 3A-axes were also determined computationally.

Lemma 15 Let ρ be a subgroup of order 3 in U3(5). Then all the order 3 subgroups σ in
U3(5) are classified by the isomorphism type of the subgroup H = <ρ, σ> generated by ρ

and σ as indicated in Table 6.

In Table 6 UH is the set of subgroups σ generating with ρ a subgroup isomorphic to H with
further subdivisions in the two cases L2(7) and A7. For L2(7) the inner product is 32

405 when
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ρ and σ are normalized by a common involution in H , and 4
81 otherwise. For A7 the inner

product is 8
81 when the generating order 3 subgroups in A7 are both of cycle type 32, and 32

405
when the generation is by a 3- and a 32-element.
The inner products are calculated in A7 via Lemma 7 with [8] and in C(t) ∼= 2 · S5 as in
Lemma 8. In this way, proceeding inductively, we cannot calculate the inner product in the
case when ρ and σ generate the whole group G so we put x in the relevant position. The
reason of having just one x is justified by the following result obtained computationally.

Lemma 16 Let ρ be a subgroup of order 3 in G = U3(5) and let �−(ρ) denote the set of
order 3 subgroups in U3(5) which generate with ρ the whole group G. Then

(i) �−(ρ) is a union of six regular orbits of N := NG(ρ) ∼= (S3 × S4)+ of order 72;
(ii) the orbits in (i) are transitively permuted by NAut(G)(ρ)/N ∼= S3;
(iii) if σ ∈ �−(ρ), then there is no involution in G which normalizes both ρ and σ .

The following lemma was obtained computationally. We sketch the setting.
Let V (2) := 〈A ∪U 〉, the linear span of A ∪ U , be the 2-closure of the representation, and
for a 3A-axis u ∈ U corresponding to a subgroup ρ of order 3, let V+(u) be the subspace
of V (2) spanned by all Majorana axes in A together with all the 3A-axes except those in the
last row of Table 6 (that is, except for those corresponding to a subgroup σ of order 3 with
<ρ, σ> = U3(5)). Notice that for every v ∈ V+(u) the product uv is contained in an A7-
or 2.S5-subrepresentation, thus can be computed and is contained in V (2). Let �−(u) be the
set of 3A-axes corresponding to the last row in Table 6, so that |�−(u)| = 432. Let

�−(u) = O1 ∪ O2 ∪ · · · ∪ O6

be the decomposition of �−(u) into a disjoint union of NG(ρ)-orbits. For 1 ≤ i ≤ 6, let Fi
be the function on V (2) which is 1 on Oi and 0 outside.

Lemma 17 The following assertions hold:

(i) x = 4
81 ;

(ii) dim V (2) = 798;
(iii) dim V+(u) = 796;
(iv) there is an orthogonal complement V−(u) of V+(u) in V (2) spanned by

F1 + F2 − F3 − F4, − F1 − F2 + F5 + F6, F3 + F4 − F5 − F6

for some arrangement of the orbits Oi into pairs.

Proof The left hand side of the relations from an A7-subrepresentation are vectors of length
zero and they must be zero vectors since the form is positive-definite. In particular they have
to be perpendicular to all other vectors, which enabled us to determine x , proving (i). The
power space of A ∪ U factorized over the linear span of the relations in the three classes
A7-subrepresentations turned out to be 796-dimensional positive-definite which gives (ii).
The assertions (iii) and (iv) were also achieved computationally. ��
For u ∈ U , let G(u) denote NG(ρ) where u corresponds to the subgroup ρ. It is clear from
the above lemma that in order to close the product on V (2) it suffices to show that for a triple
of 3A-axes u1, u2, u3 such that u2 and u3 are in the same regular orbit of G(u1) on �−(u1),
the product

u1(u2 + u3)

belongs to V (2). This was achieved by a version of the resurrection principle.
Computationally the following was established.
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Lemma 18 Let u1 ∈ U correspond to an element ρ and u2 ∈ �−(u1) to an element σ . Then
there exists an involution t in G, such that <ρ, t> ∼= S3 and <σ, t> ∼= S4.

By the above lemma and the shape of the representation of G we have that the subalgebra
A1 generated by u1 and a(t) is the 3A-algebra and the subalgebra A2 generated by u2 and
a(t) is the 13-dimensional S4-algebra of shape (2A, 3A) as described in [11].
We assume that a(t) = a0 and u1 = uρ in A1 while a(t) = a(i j) and u2 = ui in A2. Then
u j , which is the image of ui under t , is contained with ui in the same G(u1)-orbit on �−(u1),
since t ∈ G(u1). The subgroups of the axes uk and ul are normalized by t and therefore, they
are in V+(u1). Then the product rule in A2 on p.2460 in [11] shows that

α1 := ui + u j − 1

8
(uk − 8

45
a(i j) − 32

45
(a(il) + a( jl)))

−1

8
(ul − 8

45
a(i j) − 32

45
(a(ik) + a( jk)))

− 1

18
a(i j) − 8

45
(a(kl) − a(i j)(kl))

is a 0-eigenvector of a(i j). Notice that the expressions in first, second and third brackets are
1
4 -eigenvectors of a(i j) in the algebras 〈〈a(i j), uk〉〉, 〈〈a(i j), ul〉〉 and 〈〈a(i j), a(kl)〉〉, respectively,
where these algebras are of types 3A, 3A and 2A, respectively.

Let α2 and β2 be 0- and 1
4 -eigenvectors of a(t) = a0 in the algebra A1 ∼= 3A as in Table 4.

Then by the fusion rule

α1α2 = u1(ui + u j ) + v1

is a 0-eigenvector of a(t) for some v1 ∈ V+(u1), while

α1β2 = u1(ui + u j ) + v2

is a 1
4 -eigenvector of a(t), where v2 ∈ V+(u1).

Now we apply the resurrection principle, Lemma 1.8 in [11], compare Lemma 5.
Consider

α1α2 − α1β2 = v3

where v3 is in V+(u1) so we can explicitly calculate

a(i j)(α1α2 − α1β2) = a(i j)v3,

although by the eigenvalue properties the above expression is equal to

0(α1α2) − 1

4
(α1β2) = −1

4
(u1(ui + u j )) − 1

4
v2,

which gives the required expression.
Now we know that the product is closed on V (2), so the latter is the whole Majorana algebra
supporting the representation, which completes the proof of Theorem 1.
Since α1 and β2 are eigenvectors of a(t) with different eigenvalues, they are perpendicular.
If we expand the equality (α1, β2) = 0 in terms of the above expressions and substitute the
numerical values from Corollary 10, Lemmas 14 and 15, we deduce that

(u1, u2) = (u1, u3) = 4

81
,

thus obtaining an independent confirmation of Lemma 17 (i).
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