
Geometriae Dedicata (2022) 216:65
https://doi.org/10.1007/s10711-022-00720-8

ORIG INAL PAPER

Extra-special quotients of surface braid groups and double
Kodaira fibrations with small signature

Francesco Polizzi1 · Pietro Sabatino2

Received: 8 January 2022 / Accepted: 28 July 2022 / Published online: 5 September 2022
© The Author(s) 2022

Abstract
We study some special systems of generators on finite groups, introduced in previous work
by the first author and called diagonal double Kodaira structures, in order to investigate finite
non-abelian quotients of the pure braid group on two strands P2(�b), where �b is a closed
Riemann surface of genus b. In particular, we prove that, if a finite groupG admits a diagonal
double Kodaira structure, then |G| ≥ 32, and equality holds if and only if G is extra-special.
In the last section, as a geometrical application of our algebraic results, we construct two
3-dimensional families of double Kodaira fibrations having signature 16. Such surfaces are
different from the ones recently constructed by Lee, Lönne and Rollenske and, as far as we
know, they provide the first examples of positive-dimensional families of double Kodaira
fibrations with small signature.
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1 Introduction

A Kodaira fibration is a smooth, connected holomorphic fibration f1 : S −→ B1, where S
is a compact complex surface and B1 is a compact closed curve, which is not isotrivial (this
means that not all fibres are biholomorphic each other). The genus b1 := g(B1) is called
the base genus of the fibration, and the genus g := g(F), where F is any fibre, is called
the fibre genus. A surface S that is the total space of a Kodaira fibration is called a Kodaira
fibred surface. For every Kodaira fibration, we have b1 ≥ 2 and g ≥ 3, see [19, Theorem
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1.1]. Since the fibration is smooth, the condition on the base genus implies that S contains
no rational or elliptic curves; hence S is minimal and, by the sub-additivity of the Kodaira
dimension, it is of general type, hence algebraic.

An important topological invariant of a Kodaira fibred surface S is its signature σ(S),
namely the signature of the intersection form on the middle cohomology group H2(S, R).
Actually, the first examples of Kodaira fibrations (see [21]) were constructed in order to show
that σ is not multiplicative for fibre bundles. In fact, σ(S) > 0 for every Kodaira fibration
(see the introduction to [24]), whereas σ(B1) = σ(F) = 0, hence σ(S) �= σ(B1)σ (F); by
[10], this in turn means that the monodromy action of π1(B) on the rational cohomology
ring H∗(S, Q) is non-trivial.

Every Kodaira fibred surface S has the structure of a real surface bundle over a smooth
real surface, and so σ(S) is divisible by 4, see [27]. If, in addition, S has a spin structure, i.e.
its canonical class is 2-divisible in Pic(S), then σ(S) is a positive multiple of 16 by Rokhlin’s
theorem, and examples with σ(S) = 16 are constructed in [24]. It is not known whether there
exists a Kodaira fibred surface with σ(S) ≤ 12.

Kodaira fibred surfaces are a source of fascinating and deep questions at the cross-road
between the algebro-geometric properties of a compact, complex surface and the topological
properties of the underlying closed, oriented 4-manifold. In fact, they can be studied by using,
besides the usual algebro-geometric methods, techniques borrowed from geometric topology
such as theMeyer signature formula, the Birman-Hilden relations in the mapping class group
and the subtraction of Lefchetz fibrations, see [12, 13, 23, 36]. We refer the reader to the
survey paper [8] and the references contained therein for further details.

The original examples by Kodaira (see for instance [4, Chapter V, Section 14]) and its
variants described in [2, 17] are obtained by taking cyclic covers of a product of curvesC×D,
branched over a smooth divisor which is the disjoint union of a finite number of graphs of
regular maps C −→ D. Thus, they come with two distinct Kodaira fibrations, namely the
pull-backs of the two natural fibrations in C × D (followed by a Stein factorization, if
necessary). This leads to the following definition of “double" Kodaira fibration, see [5–7, 22,
24, 32, 40]:

Definition 1.1 A double Kodaira surface is a compact, complex surface S, endowed with a
double Kodaira fibration, namely a surjective, holomorphicmap f : S −→ B1×B2 yielding,
by composition with the natural projections, two Kodaira fibrations fi : S −→ Bi , i = 1, 2.

In the sequel,wewill describe our approach to the constructionof doubleKodairafibrations
based on the techniques introduced in [9, 28], and present our results. The main step is to
“detopologize" the problem, by transforming it into a purely algebraic one. This will be done
in the particular case of diagonal double Kodaira fibrations, namely, Stein factorizations of
finite Galois covers

f : S −→ �b × �b, (1)

branched with order n ≥ 2 over the diagonal � ⊂ �b × �b, where �b is a closed Riemann
surface of genus b. By Grauert-Remmert’s extension theorem and Serre’s GAGA, the exis-
tence of a G-cover f as in (1), up to cover isomorphisms, is equivalent to the existence of a
group epimorphism

ϕ : π1(�b × �b − �) −→ G, (2)

up to automorphisms of G. Furthermore, the condition that f is branched of order n over
� is rephrased by asking that ϕ(γ�) has order n in G, where γ� is the homotopy class in
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�b × �b − � of a loop in �b × �b that “winds once" around �. The requirement n ≥ 2
means that ϕ does not factor through π1(�b × �b); it also implies that G is non-abelian,
because γ� is a non-trivial commutator in π1(�b × �b − �). An epimorphism (or quotient)
of type (2) such that ϕ(γ�) is non-trivial will be called admissible.

Recall now that the group π1(�b × �b − �) is isomorphic to P2(�b), the pure braid
group of genus b on two strands, which admits a finite geometric presentation with 4b + 1
generators, see [14, Theorem 7]. Taking the images of these generators via an admissible
group epimorphism, we get an ordered set

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z)

of 4b + 1 generators of G, such that o(z) = n and subject to a suitable finite set of relations.
This will be called a diagonal double Kodaira structure of type (b, n) on G, see Definition
3.1. Thus, the geometric problem of constructing an admissible G-cover is translated into
the combinatorial-algebraic problem of finding a diagonal double Kodaira structure of type
(b, n) in G.

It turns out that the G-cover f is a diagonal double Kodaira fibration (namely, the two
surjective maps fi : S −→ �b, obtained as composition with the natural projections, have
connected fibres) if and only if the related structureS is strong, an additional condition intro-
duced in Definition 3.8; furthermore, the algebraic signature σ(S), introduced in Definition
3.7, equals the geometric signature σ(S).

Note that not every double Kodaira fibration is of diagonal type. In fact, one proves
that if S is of diagonal type then its slope satisfies ν(S) = 2 + s, where s is rational and
0 < s < 6 − 4

√
2, and that there exist examples whose high slope violates this inequality

(for instance, Catanese-Rollenske’s example with ν(S) = 2 + 2/3); see [28, Section 4]. For
more details on the construction of diagonal double Kodaira fibrations, we refer the reader
to Sect. 5.

In the light of the previous considerations, classifying diagonal double Kodaira fibrations
is equivalent to describing finite groups which admit a diagonal double Kodaira structure.
Our key result in this direction is the following:

Main Theorem (see Propositions 4.9, 4.11 and Theorem 4.15) Let G be a finite group admit-
ting a diagonal double Kodaira structure. Then |G| ≥ 32, with equality if and only if G is
extra-special (see Sect. 2 for the definition). Moreover, the following holds.

(1) Both extra-special groups G of order 32 admit 2211840 = 1152 · 1920 diagonal double
Kodaira structures of type (b, n) = (2, 2). Every such a structure S is strong and
satisfies σ(S) = 16.

(2) If G = G(32, 49) = H5(Z2), these structures form 1920 orbits under the action of
Aut(G).

(3) If G = G(32, 50) = G5(Z2), these structures form 1152 orbits under the action of
Aut(G).

Our Main Theorem should be compared with previous results, obtained by the first author
in collaboration with A. Causin, regarding the construction of diagonal double Kodaira struc-
tures on some extra-special groups of order at least 27 = 128, see [9, 28]. However, even if
the definition of diagonal double Kodaira structure and the construction of the corresponding
diagonal double Kodaira fibration presented in Sects. 3 and 5 closely follow the ones in [28],
the examples constructed here are really new, in the sense that they cannot be obtained as
images of structures on extra-special groups of larger order (Remark 4.17). It is precisely the
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original part of this paper, namely the subtle group theoretical analysis developed in Sects. 2
and 4 and used in the proof of the Main Theorem, which allows us to pass from |G| = 128
to |G| = 32.

The interpretation of theMain Theorem in terms of admissible epimorphisms from surface
braid groups to finite groups is given in Corollary 4.18. As a consequence, we can describe
all diagonal double Kodaira fibrations associated with structures of type (2, 2) on extra-
special groups of order 32 (Theorem 5.5), showing that they provide the sharp lower bound
σ(S) ≥ 16 for the signature of a diagonal double Kodaira fibration (Corollary 5.6).

These results yield, as a by-product, new “double solutions” to a problem (stated by G.
Mess) from Kirby’s problem list in low-dimensional topology [20, Problem 2.18 A], asking
what is the smallest number b for which there exists a real surface bundle over a real surface
with base genus b and non-zero signature. We actually have b = 2, also for double Kodaira
fibrations, as shown in [9, Proposition 3.19] and [28, Theorem 4.6] by using double Kodaira
structures of type (2, 3) on extra-special groups of order 35. Those fibrations had signature
144 and fibre genera 325; the new examples presented here substantially lower both these
values, in fact they have signature 16 and fibre genera 41 (Theorem 5.7).

We believe that the results described above are significant for at least two reasons.

(i) Although we know that P2(�b) is residually p-finite for all prime number p ≥ 2, see [3,
pp. 1481-1490], so far there has been no systematic work aimed to describe its admissible
finite quotients. The first results in this direction were those of A. Causin and the first
author, who showed that both extra-special groups of order p4b+1 appear as admissible
quotients of P2(�b) for all b ≥ 2 and all prime numbers p ≥ 5; moreover, if p divides
b+ 1, then both extra-special groups of order p2b+1 appear as admissible quotients, too.
Our work sheds some new light on this problem, by providing a sharp lower bound for
the order of an admissible quotient. Moreover, for both extra-special groups of order 32
(namely, the ones for which the bound is attained) we are able to compute the number
of admissible epimorphisms ϕ : P2(�2) −→ G, and the number of their equivalence
classes up to the natural action of Aut(G).

(ii) Constructing (double)Kodaira fibrationswith small signature is a rather difficult problem,
and there are few examples in the literature ([5, 24]). As far as we know, the present
paper provides the first positive-dimensional families of such examples, see Remark 5.9
for more details.

Let us now describe how this paper is organized. In Sect. 2 we introduce some algebraic
preliminaries, in particular we discuss the so-called CCT-groups (Definition 2.1), namely,
finite non-abelian groups in which commutativity is a transitive relation on the set of non-
central elements. These groups are of historical importance in the context of classification of
finite simple groups, see Remark 2.3, and they play a relevant role in this paper. It turns out
that there are precisely eight groups G with |G| ≤ 32 that are not CCT-groups, namely S4
and seven groups of order 32, see Corollary 2.6, Proposition 2.7 and Proposition 2.14.

In Sect. 3 we define diagonal double Kodaira structures and we explain the relation with
their counterpart in geometric topology, namely admissible group epimorphisms from pure
surface braid groups to finite groups.

Section 4 is devoted to the study of diagonal double Kodaira structures in groups of
order at most 32. One crucial technical result is Proposition 4.4, stating that there are no
such structures on CCT-groups. Thus, in order to prove the first part of the Main Theorem,
we only need to exclude the existence of diagonal double Kodaira structures on S4 and
on the five non-abelian, non-CCT groups of order 32; this is done in Proposition 4.9 and
Proposition 4.11, respectively. The second part of the Main Theorem, i.e. the computation
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of number of structures in each case, is obtained by using some techniques borrowed from
[38]; more precisely, we exploit the fact that V = G/Z(G) is a symplectic vector space
of dimension 4 over Z2, and that Out(G) embeds in Sp(4, Z2) as the orthogonal group
associated with the quadratic form q : V −→ Z2 related to the symplectic form (· , ·) by
q(x y) = q(x) + q(y) + (x, y).

Finally, in Sect. 5 we establish the relation between our algebraic results and the existence
of diagonal double Kodaira fibrations, and we prove the consequences of the Main Theorem
in this geometrical framework.

The paper ends with an Appendix, where we collect the presentations for the non-abelian
groups of order 24 and 32 that we used in our calculations.

Notation and conventions. If S is a complex, non-singular projective surface, then c1(S),
c2(S) denote the first and second Chern class of its tangent bundle TS , respectively.

Throughout the paper we use the following notation for groups:

• Zn : cyclic group of order n.
• G = N � Q: semi-direct product of N and Q, namely, split extension of Q by N , where

N is normal in G.
• G = N .Q: non-split extension of Q by N .
• Aut(G): the automorphism group of G.
• Dp, q, r = Zq � Zp = 〈x, y | x p = yq = 1, xyx−1 = yr 〉: split metacyclic group of

order pq . The group D2, n,−1 is the dihedral group of order 2n and will be denoted by
D2n .

• If n is an integer greater or equal to 4, we denote by QD2n the quasi-dihedral group of
order 2n , having presentation

QD2n := 〈x, y | x2 = y2
n−1 = 1, xyx−1 = y2

n−2−1〉.
• The generalized quaternion group of order 4n is denoted by Q4n and is presented as

Q4n = 〈x, y, z | xn = y2 = z2 = xyz〉.
For n = 2 we obtain the usual quaternion group Q8, for which we adopt the classical
presentation

Q8 = 〈i, j, k | i2 = j2 = k2 = i jk〉,
denoting by −1 the unique element of order 2.

• Sn, An : symmetric, alternating group on n symbols. We write the composition of per-
mutations from the right to the left; for instance, (13)(12) = (123).

• GL(n, Fq), SL(n, Fq), Sp(n, Fq): general linear group, special linear group and sym-
plectic group of n × n matrices over a field with q elements.

• The order of a finite group G is denoted by |G|. If x ∈ G, the order of x is denoted by
o(x) and its centralizer in G by CG(x).

• If x, y ∈ G, their commutator is defined as [x, y] = xyx−1y−1.
• The commutator subgroup of G is denoted by [G, G], the center of G by Z(G).
• If S = {s1, . . . , sn} ⊂ G, the subgroup generated by S is denoted by 〈S〉 = 〈s1, . . . , sn〉.
• IdSmallGroup(G) indicates the label of the group G in the GAP4 database of small

groups. For instance IdSmallGroup(D4) = G(8, 3) means that D4 is the third in the list
of groups of order 8.

• If N is a normal subgroup of G and g ∈ G, we denote by ḡ the image of g in the quotient
group G/N .
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2 Group-theoretical preliminaries: CCT-groups and extra-special
groups

Definition 2.1 A finite non-abelian group G is said to be a center commutative-transitive
group (or a CCT-group, for short) if commutativity is a transitive relation on the set on non-
central elements of G. In other words, if x, y, z ∈ G − Z(G) and [x, y] = [y, z] = 1, then
[x, z] = 1.

Other characterizations of CCT-groups are provided in the statement below, whose proof is
straightforward.

Proposition 2.2 For a finite group G, the following properties are equivalent.

(1) G is a CCT-group.
(2) For every pair x, y of non-central elements inG, the relation [x, y] = 1 impliesCG(x) =

CG(y).
(3) For every non-central element x ∈ G, the centralizer CG(x) is abelian.

Remark 2.3 CCT-groups are of historical importance in the context of classification of finite
simple groups, see for instance [37], where they are called CA-groups. Further references
are [29, 31, 35, 39].

Lemma 2.4 If G is a finite group such that G/Z(G) is cyclic, then G is abelian.

Proof This is a standard exercise, cf. [16, Problem 12 p. 77]. �
Proposition 2.5 Let G be a finite non-abelian group.

(1) If |G| is the product of at most three prime factors (non necessarily distinct), then G is
a CCT-group.

(2) If |G| = p4, with p prime, then G is a CCT-group.
(3) If G contains an abelian normal subgroup of prime index, then G is a CCT-group.

Proof (1)Assume that |G| is the product of at most three prime factors, and take a non-central
element y. Then the centralizer CG(y) has non-trivial center, because 1 �= y ∈ CG(y), and
its order is the product of at most two primes. Therefore the quotient of CG(y) by its center
is cyclic, hence CG(y) is abelian by Lemma 2.4.

(2) Assume |G| = p4 and suppose by contradiction that there exist three elements
x, y, z ∈ G − Z(G) such that [x, y] = [y, z] = 1 but [x, z] �= 1. They generate a
non-abelian subgroup N = 〈x, y, z〉, which is not the whole of G since y ∈ Z(N ) but
y /∈ Z(G). It follows that N has order p3 and so, by Lemma 2.4, its center is cyclic of order
p, generated by y. The group G is a finite p-group, hence a nilpotent group; being a proper
subgroup of maximal order in a nilpotent group, N is normal in G (see [26, Corollary 5.2]),
so we have a conjugacy homomorphism G −→ Aut(N ), that in turn induces a conjugacy
homomorphism G −→ Aut(Z(N )) � Zp−1. The image of such a homomorphism must
have order dividing both p4 and p − 1, hence it is trivial. In other words, the conjugacy
action of G on Z(N ) = 〈y〉 is trivial, hence y is central in G, contradiction.

(3) Let N be an abelian normal subgroup ofG such thatG/N has prime order p. As G/N
has no non-trivial proper subgroups, it follows that N is a maximal subgroup of G. Let x be
any non-central element of G, so that CG(x) is a proper subgroup of G; then there are two
possibilities.

123



Geometriae Dedicata (2022) 216 :65 Page 7 of 30 65

Case 1: x ∈ N . Then N ⊆ CG(x) and so, by the maximality of N , we get CG(x) = N ,
which is abelian.

Case 2: x /∈ N . Then the image of x generates G/N , and so every element y ∈ G can be
written in the form y = uxr , where u ∈ N and 0 ≤ r ≤ p − 1. In particular, if y ∈ CG(x),
the condition [x, y] = 1 yields [x, u] = 1, namely u ∈ N ∩ CG(x). Since N is abelian, it
follows that CG(x) is abelian, too.

�
We now want to classify non-abelian, non-CCT groups of order at most 32. First of all,

as an immediate consequence of parts (1) and (2) of Proposition 2.5, we have the following

Corollary 2.6 Let G be a finite non-abelian group such that |G| ≤ 32. If G is not a CCT-
group, then either |G| = 24 or |G| = 32.

Let us start by considering the case G = 24.

Proposition 2.7 Let G be a finite non-abelian group such that |G| = 24 and G is not a
CCT-group. Then G = S4.

Proof We start by observing that S4 is not a CCT-group. In fact, (1234) commutes to its
square (13)(24), which commutes to (12)(34), but (1234) and (12)(34) do not commute.

We are left to show that the remaining non-abelian groups of order 24 are all CCT-groups;
we will do a case-by-case analysis, referring the reader to the presentations given in Table 1
of Appendix A. Apart from G = G(24, 3) = SL(2, F3), for which we give an ad-hoc proof,
we will show that all these groups contain an abelian subgroup N of prime index, so that we
can conclude by using part (3) of Proposition 2.5.

• G = G(24, 1). Take N = 〈x2y〉 � Z12.
• G = G(24, 3). The action of Aut(G) has five orbits, whose representative elements are

{1, x, x2, z, z2}, see [34]. We have 〈z2〉 = Z(G) and so, since CG(x) ⊆ CG(x2), it
suffices to show that the centralizers of x2 and z are both abelian. In fact, we have

CG(x2) = 〈x〉 � Z6, CG(z) = 〈z〉 � Z4.

• G = G(24, 4). Take N = 〈x〉 � Z12.
• G = G(24, 5). Take N = 〈y〉 � Z12.
• G = G(24, 6). Take N = 〈y〉 � Z12.
• G = G(24, 7). Take N = 〈z, x2y〉 � Z6 × Z2.
• G = G(24, 8). Take N = 〈y, z, w〉 � Z6 × Z2.
• G = G(24, 10). Take N = 〈z, y〉 � Z12.
• G = G(24, 11). Take N = 〈z, i〉 � Z12.
• G = G(24, 13). Take N = 〈z〉 × V4 � (Z2)

3, where V4 = 〈(1 2)(3 4), (1 3)(2 4)〉 is
the Klein subgroup.

• G = G(24, 14). Take N = 〈z, w〉 × 〈(123)〉 � Z6 × Z2.

This completes the proof. �
The next step is to classify non-abelian, non-CCT groups G with |G| = 32; it will turn

out that there are precisely seven of them, see Proposition 2.14. Before doing this, let us
introduce the following classical definition, see for instance [15, p. 183] and [18, p. 123].

Definition 2.8 Let p be a prime number. A finite p-group G is called extra-special if its
center Z(G) is cyclic of order p and the quotient V = G/Z(G) is a non-trivial, elementary
abelian p-group.
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An elementary abelian p-group is a finite-dimensional vector space over the field Zp ,
hence it is of the form V = (Zp)

dim V and G fits into a short exact sequence

1 −→ Zp −→ G −→ V −→ 1. (3)

Note that, V being abelian, we must have [G, G] = Zp , namely the commutator subgroup
of G coincides with its center. Furthermore, since the extension (3) is central, it cannot be
split, otherwise G would be isomorphic to the direct product of the two abelian groups Zp

and V , which is impossible because G is non-abelian.
If G is extra-special, then we can define a map ω : V × V −→ Zp as follows: for every

v1, v2 ∈ V , we set ω(v1, v2) = [g1, g2], where gi is any lift of vi in G. This turns out to be
a symplectic form on V , hence dim V is even and |G| = pdim V+1 is an odd power of p.

For every prime number p, there are precisely two isomorphism classes M(p), N (p) of
non-abelian groups of order p3, namely

M(p) = 〈r, t, z | rp = tp = 1, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉
N (p) = 〈r, t, z | rp = tp = z, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉

and both of them are in fact extra-special, see [15, Theorem 5.1 of Chapter 5].
If p is odd, then the groups M(p) and N (p) are distinguished by their exponent, which

equals p and p2, respectively. If p = 2, the group M(p) is isomorphic to the dihedral group
D8, whereas N (p) is isomorphic to the quaternion group Q8.

The classification of extra-special p-groups is now provided by the result below, see [15,
Section 5 of Chapter 5] and [9, Section 2].

Proposition 2.9 If b ≥ 2 is a positive integer and p is a prime number, there are exactly
two isomorphism classes of extra-special p-groups of order p2b+1, that can be described as
follows.

• The central product H2b+1(Zp) of b copies of M(p), having presentation

H2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpj = tpj = zp = 1,

[r j , z] = [t j , z] = 1,

[r j , rk] = [t j , tk] = 1,

[r j , tk] = z−δ jk 〉.

(4)

If p is odd, this group has exponent p and is isomorphic to the matrix Heisenberg group
H2b+1(Zp) ⊂ GL(b + 2, Zp) of dimension 2b + 1 over the field Zp.

• The central product G2b+1(Zp) of b − 1 copies of M(p) and one copy of N (p), having
presentation

G2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpb = tpb = z,

rp1 = tp1 = . . . = rpb−1 = tpb−1 = zp = 1,

[r j , z] = [t j , z] = 1,

[r j , rk] = [t j , tk] = 1,

[r j , tk] = z−δ jk 〉.

(5)

If p is odd, this group has exponent p2.

Remark 2.10 In both cases, from the relations above we deduce

[r−1
j , tk] = zδ jk , [r−1

j , t−1
k ] = z−δ jk
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Remark 2.11 For both groups H2b+1(Zp) and G2b+1(Zp), the center coincides with the
derived subgroup and is equal to 〈z〉 � Zp . Note that, being these groups non-abelian,
this condition implies that their nilpotency class is 2, see [18, p. 22].

Remark 2.12 If p = 2, we can distinguish the two groups H2b+1(Zp) and G2b+1(Zp) by
counting the number of elements of order 4.

Remark 2.13 The groups H2b+1(Zp) and G2b+1(Zp) are not CCT-groups. In fact, let us take
two distinct indices j, k ∈ {1, . . . , b} and consider the non-central elements r j , t j , tk . Then
we have [r j , tk] = [tk, t j ] = 1, but [r j , t j ] = z−1.

We can now analyze the case |G| = 32.

Proposition 2.14 Let G be a finite non-abelian group such that |G| = 32 and G is not aCCT-
group. Then G = G(32, t), where t ∈ {6, 7, 8, 43, 44, 49, 50}. Here G(32, 49) = H5(Z2)

and G(32, 50) = G5(Z2) are the two extra-special groups of order 32.

Proof We first do a case-by case analysis showing that, if t /∈ {6, 7, 8, 43, 44, 49, 50}, then
G = G(32, t) contains an abelian subgroup N of index 2, so that G is a CCT-group by part
(3) of Proposition 2.5. In every case, we refer the reader to the presentation given in Table 2
of Appendix A.

• G = G(32, 2). Take N = 〈x, y2, z〉 � Z4 × (Z2)
2.

• G = G(32, 4). Take N = 〈x, y2〉 � (Z4)
2.

• G = G(32, 5). Take N = 〈x, y〉 � Z8 × Z2.
• G = G(32, 9). Take N = 〈x, y〉 � Z8 × Z2.
• G = G(32, 10). Take N = 〈i x, k〉 � Z8 × Z2.
• G = G(32, 11). Take N = 〈x, y〉 � (Z4)

2.
• G = G(32, 12). Take N = 〈x2, y〉 � (Z4)

2.
• G = G(32, 13). Take N = 〈x2, y〉 � Z8 × Z2.
• G = G(32, 14). Take N = 〈x2, y〉 � Z8 × Z2.
• G = G(32, 15). Take N = 〈x2, y〉 � Z8 × Z2.
• G = G(32, 17). Take N = 〈y〉 � Z16.
• G = G(32, 18). Take N = 〈y〉 � Z16.
• G = G(32, 19). Take N = 〈y〉 � Z16.
• G = G(32, 20). Take N = 〈x〉 � Z16.
• G = G(32, 22). Take N = 〈w〉 × 〈x, y〉 � Z8 × (Z2)

2.
• G = G(32, 23). Take N = 〈z〉 × 〈x, y2〉 � Z4 × (Z2)

2.
• G = G(32, 24). Take N = 〈x, y〉 � (Z4)

2.
• G = G(32, 25). Take N = 〈z〉 × 〈y2〉 � (Z4)

2.
• G = G(32, 26). Take N = 〈z〉 × 〈i〉 � (Z4)

2.
• G = G(32, 27). Take N = 〈x, y, a, b〉 � (Z2)

4.
• G = G(32, 28). Take N = 〈x, y, z〉 � Z4 × (Z2)

2.
• G = G(32, 29). Take N = 〈x, i, z〉 � Z4 × (Z2)

2.
• G = G(32, 30). Take N = 〈x, y, z〉 � Z4 × (Z2)

2.
• G = G(32, 31). Take N = 〈x, y〉 � (Z4)

2.
• G = G(32, 32). Take N = 〈y, z〉 � (Z4)

2.
• G = G(32, 33). Take N = 〈x, y〉 � (Z4)

2.
• G = G(32, 34). Take N = 〈x, y〉 � (Z4)

2.
• G = G(32, 35). Take N = 〈x, k〉 � (Z4)

2.
• G = G(32, 37). Take N = 〈x, y〉 � Z8 × Z2.
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• G = G(32, 38). Take N = 〈x, y〉 � Z8 × Z2.
• G = G(32, 39). Take N = 〈z〉 × 〈y〉 � Z8 × Z2.
• G = G(32, 40). Take N = 〈z〉 × 〈y〉 � Z8 × Z2.
• G = G(32, 41). Take N = 〈w〉 × 〈x〉 � Z8 × Z2.
• G = G(32, 42). Take N = 〈x, y〉 � Z8 × Z2.
• G = G(32, 46). Take N = 〈z, w〉 × 〈y〉 � Z4 × (Z2)

2.
• G = G(32, 47). Take N = 〈z, w〉 × 〈i〉 � Z4 × (Z2)

2.
• G = G(32, 48). Take N = 〈x, y, z〉 � Z4 × (Z2)

2.

It remains to show that G = G(32, t) is not a CCT-group for t ∈ {6, 7, 8, 43, 44, 49, 50}.
For t = 49 and t = 50 we have the two extra-special cases, that are not CCT-groups

by Remark 2.13. Let us now deal with the remaining values of t : for each of them, we will
exhibit three non-central elements for which commutativity is not a transitive relation, and
this will complete the proof.

• G = G(32, 6). The center of G is Z(G) = 〈x〉 � Z2. We have [y, w2] = [w2, w] = 1,
but [y, w] = x .

• G = G(32, 7). The center of G is Z(G) = 〈w〉 � Z2. We have [y, z] = [z, u] = 1, but
[y, u] = w.

• G = G(32, 8). The center of G is Z(G) = 〈x4〉 � Z2. We have [x, x2] = [x2, y] = 1,
but [x, y] = z2.

• G = G(32, 43). The center ofG is Z(G) = 〈x4〉 � Z2. We have [x, x2] = [x2, z] = 1,
but [x, z] = x4.

• G = G(32, 44). The center ofG is Z(G) = 〈i2〉 � Z2. We have [x, xk] = [xk, z] = 1,
but [x, z] = i2.

�

3 Diagonal double Kodaira structures

For more details on the material contained in this section, we refer the reader to [9] and [28].
Let G be a finite group and let b, n ≥ 2 be two positive integers.

Definition 3.1 A diagonal double Kodaira structure of type (b, n) on G is an ordered set of
4b + 1 generators

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z),

with o(z) = n, such that the following relations are satisfied. We systematically use the
commutator notation in order to indicate relations of conjugacy type, writing for instance
[x, y] = zy−1 instead of xyx−1 = z.

• Surface relations

[r−1
1b , t−1

1b ] t−1
1b [r−1

1 b−1, t
−1
1 b−1] t−1

1 b−1 · · · [r−1
11 , t−1

11 ] t−1
11 (t11 t12 · · · t1b) = z

[r−1
21 , t21] t21 [r−1

22 , t22] t22 · · · [r−1
2b , t2b] t2b (t−1

2b t−1
2 b−1 · · · t−1

21 ) = z−1

• Conjugacy action of r1 j

[r1 j , r2k] = 1 if j < k

[r1 j , r2 j ] = 1

[r1 j , r2k] = z−1 r2k r
−1
2 j z r2 j r

−1
2k if j > k
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[r1 j , t2k] = 1 if j < k

[r1 j , t2 j ] = z−1

[r1 j , t2k] = [z−1, t2k] if j > k

[r1 j , z] = [r−1
2 j , z] (6)

• Conjugacy action of t1 j

[t1 j , r2k] = 1 if j < k

[t1 j , r2 j ] = t−1
2 j z t2 j

[t1 j , r2k] = [t−1
2 j , z] if j > k

[t1 j , t2k] = 1 if j < k

[t1 j , t2 j ] = [t−1
2 j , z]

[t1 j , t2k] = t−1
2 j z t2 j z

−1 t2k z t
−1
2 j z

−1 t2 j t
−1
2k if j > k

[t1 j , z] = [t−1
2 j , z] (7)

Remark 3.2 From (6) and (7) we can infer the corresponding conjugacy actions of r−1
1 j and

t−1
1 j . We leave the cumbersome but standard computations to the reader.

Remark 3.3 Abelian groups admit no diagonal double Kodaira structures. Indeed, the relation
[r1 j , t2 j ] = z−1 in (6) provides a non-trivial commutator in G, because o(z) = n.

Remark 3.4 Assume that the nilpotency class of G equals 2; since G is non-abelian, this
is equivalent to [G, G] ⊆ Z(G). Then the relations defining a diagonal double Kodaira
structure of type (b, n) assume the following simplified form.

• Relations expressing the centrality of z

[r1 j , z] = [t1 j , z] = [r2 j , z] = [t2 j , z] = 1

• Surface relations

[r−1
1b , t−1

1b ] [r−1
1 b−1, t

−1
1 b−1] · · · [r−1

11 , t−1
11 ] = z

[r−1
21 , t21] [r−1

22 , t22] · · · [r−1
2b , t2b] = z−1

• Conjugacy action of r1 j

[r1 j , r2k] = 1 for all j, k

[r1 j , t2k] = z−δ jk

• Conjugacy action of t1 j

[t1 j , r2k] = zδ jk

[t1 j , t2k] = 1 for all j, k
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where δ jk stands for the Kronecker symbol.

The definition of diagonal double Kodaira structure can be motivated by means of some
well-known concepts in geometric topology. Let �b be a closed Riemann surface of genus
b and let P = (p1, p2) be an ordered set of two distinct points on it. Let � ⊂ �b × �b be
the diagonal. We denote by P2(�b) the pure braid group of genus b on two strands, which
is isomorphic to the fundamental group π1(�b × �b − �, P). By Gonçalves-Guaschi’s
presentation of surface pure braid groups, see [14, Theorem 7], [9, Theorem 1.7], we see that
P2(�b) can be generated by 4b + 1 elements

ρ11, τ11, . . . , ρ1b, τ1b, ρ21, τ21, · · · , ρ2b, τ2b, A12

subject to the following set of relations.

• Surface relations

[ρ−1
1b , τ−1

1b ] τ−1
1b [ρ−1

1 b−1, τ−1
1 b−1] τ−1

1 b−1 · · · [ρ−1
11 , τ−1

11 ] τ−1
11 (τ11 τ12 · · · τ1b) = A12

[ρ−1
21 , τ21] τ21 [ρ−1

22 , τ22] τ22 · · · [ρ−1
2b , τ2b] τ2b (τ−1

2b τ−1
2 b−1 · · · τ−1

21 ) = A−1
12

• Conjugacy action of ρ1 j

[ρ1 j , ρ2k] = 1 if j < k

[ρ1 j , ρ2 j ] = 1

[ρ1 j , ρ2k] = A−1
12 ρ2k ρ−1

2 j A12 ρ2 j ρ
−1
2k if j > k

[ρ1 j , τ2k] = 1 if j < k

[ρ1 j , τ2 j ] = A−1
12

[ρ1 j , τ2k] = [A−1
12 , τ2k] if j > k

[ρ1 j , A12] = [ρ−1
2 j , A12]

• Conjugacy action of τ1 j

[τ1 j , ρ2k] = 1 if j < k

[τ1 j , ρ2 j ] = τ−1
2 j A12 τ2 j

[τ1 j , ρ2k] = [τ−1
2 j , A12] if j > k

[τ1 j , τ2k] = 1 if j < k

[τ1 j , τ2 j ] = [τ−1
2 j , A12]

[τ1 j , τ2k] = τ−1
2 j A12 τ2 j A

−1
12 τ2k A12 τ−1

2 j A−1
12 τ2 j τ

−1
2k if j > k

[τ1 j , A12] = [τ−1
2 j , A12]

Here the elements ρi j and τi j are the braids depicted in Fig. 1, whereas A12 is the braid
depicted in Fig. 2.
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Fig. 1 The pure braids ρ1 j and ρ2 j on �b . If  �= i , the path corresponding to ρi j and τi j based at p is the
constant path

Fig. 2 The pure braid A12 on �b

Remark 3.5 Under the identification of P2(�b) with π1(�b × �b − �, P), the generator
A12 ∈ P(�b) represents the homotopy class γ� ∈ π1(�b×�b−�, P) of a loop in�b×�b

that “winds once" around the diagonal �.

We can now state the following

Proposition 3.6 A finite group G admits a diagonal double Kodaira structure of type (b, n)

if and only if there is a surjective group homomorphism

ϕ : P2(�b) −→ G (8)

such that ϕ(A12) has order n.

Proof If such a ϕ : P2(�b) −→ G exists, we can obtain a diagonal double Kodaira structure
on G by setting

ri j = ϕ(ρi j ), ti j = ϕ(τi j ), z = ϕ(A12). (9)

Conversely, if G admits a diagonal double Kodaira structure, then (9) defines a group homo-
morphism ϕ : P2(�b) −→ G with the desired properties. �
The braid group P2(�b) is the middle term of two split short exact sequences

1 −→ π1(�b − {pi }, p j ) −→ P2(�b) −→ π1(�b, pi ) −→ 1, (10)

where {i, j} = {1, 2}, induced by the two natural projections of pointed topological spaces
(�b × �b − �, P) −→ (�b, pi ),

see [14, Theorem 1]. Since we have

π1(�b − {p2}, p1) = 〈ρ11, τ11, . . . , ρ1b, τ1b, A12〉
π1(�b − {p1}, p2) = 〈ρ21, τ21, . . . , ρ2b, τ2b, A12〉,

it follows that the two subgroups

K1 := 〈r11, t11, . . . , r1b, t1b, z〉
K2 := 〈r21, t21, . . . , r2b, t2b, z〉

are both normal in G, and that there are two short exact sequences

1 −→ K1 −→ G −→ Q2 −→ 1

1 −→ K2 −→ G −→ Q1 −→ 1,
(11)
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such the elements r21, t21, . . . , r2b, t2b yield a complete system of coset representatives for
Q2, whereas the elements r11, t11, . . . , r1b, t1b yield a complete system of coset representa-
tives for Q1.

Let us now give a couple of definitions, whose geometrical meaning will become clear in
Sect. 5, see in particular Proposition 5.2 and Remark 5.3.

Definition 3.7 LetS be a diagonal double Kodaira structure of type (b, n) on a finite group
G. Its signature is defined as

σ(S) = 1

3
|G| (2b − 2)

(
1 − 1

n2

)
.

Definition 3.8 A diagonal double Kodaira structure on G is called strong if K1 = K2 = G.

For later use, let us write down the special case consisting of a diagonal double Kodaira
structure of type (2, n). It is an ordered set of nine generators of G

(r11, t11, r12, t12, r21, t21, r22, t22, z),

with o(z) = n, subject to the following relations.

(S1) [r−1
12 , t−1

12 ] t−1
12 [r−1

11 , t−1
11 ] t−1

11 (t11 t12) = z

(S2) [r−1
21 , t21] t21 [r−1

22 , t22] t22 (t−1
22 t−1

21 ) = z−1

(R1) [r11, r22] = 1 (R6) [r12, r22] = 1

(R2) [r11, r21] = 1 (R7) [r12, r21] = z−1 r21 r
−1
22 z r22 r

−1
21

(R3) [r11, t22] = 1 (R8) [r12, t22] = z−1

(R4) [r11, t21] = z−1 (R9) [r12, t21] = [z−1, t21]
(R5) [r11, z] = [r−1

21 , z] (R10) [r12, z] = [r−1
22 , z]

(T1) [t11, r22] = 1 (T6) [t12, r22] = t−1
22 z t22

(T2) [t11, r21] = t−1
21 z t21 (T7) [t12, r21] = [t−1

22 , z]
(T3) [t11, t22] = 1 (T8) [t12, t22] = [t−1

22 , z]
(T4) [t11, t21] = [t−1

21 , z] (T9) [t12, t21] = t−1
22 z t22 z

−1 t21 z t
−1
22 z−1 t22 t

−1
21

(T5) [t11, z] = [t−1
21 , z] (T10) [t12, z] = [t−1

22 , z]
(12)

Remark 3.9 When [G, G] ⊆ Z(G), we have

[r11, z] = [t11, z] = [r12, z] = [t12, z] = 1

[r21, z] = [t21, z] = [r22, z] = [t22, z] = 1
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and the previous relations become

(S1′) [r−1
12 , t−1

12 ] [r−1
11 , t−1

11 ] = z

(S2′) [r−1
21 , t21] [r−1

22 , t22] = z−1

(R1′) [r11, r22] = 1 (R6′) [r12, r22] = 1

(R2′) [r11, r21] = 1 (R7′) [r12, r21] = 1

(R3′) [r11, t22] = 1 (R8′) [r12, t22] = z−1

(R4′) [r11, t21] = z−1 (R9′) [r12, t21] = 1

(T1′) [t11, r22] = 1 (T6′) [t12, r22] = z

(T2′) [t11, r21] = z (T7′) [t12, r21] = 1

(T3′) [t11, t22] = 1 (T8′) [t12, t22] = 1

(T4′) [t11, t21] = 1 (T9′) [t12, t21] = 1

(13)

4 Structures on groups of order at most 32

4.1 Prestructures

Definition 4.1 LetG be a finite group. A prestructure onG is an ordered set of nine elements

(r11, t11, r12, t12, r21, t21, r22, t22, z),

with o(z) = n ≥ 2, subject to the relations (R1), . . . , (R10), (T1), . . . , (T10) in (12).

In other words, the nine elements must satisfy all the relations defining a diagonal double
Kodaira structure of type (2, n), except the surface relations. In particular, no abelian group
admits prestructures. Note that we are not requiring that the elements of the prestructure
generate G.

Proposition 4.2 If a finite group G admits a diagonal double Kodaira structure of type (b, n),
then it admits a prestructure with o(z) = n.

Proof Consider the ordered set of nine elements (r11, t11, r12, t12, r21, t21, r22, t22, z) in
Definition 3.1 and the relations satisfied by them, with the exception of the surface relations.

�
Remark 4.3 Let G be a finite group that admits a prestructure. Then z and all its conjugates
are non-trivial elements of G and so, from relations (R4), (R8), (T2), (T6), it follows that
r11, r12, r21, r22 and t12, t12, t21, t22 are non-central elements of G.

Proposition 4.4 If G is a CCT-group, then G admits no prestructures and, subsequently, no
diagonal double Kodaira structures.

Proof The second statement is a direct consequence of the first one (see Proposition 4.2),
hence it suffices then to check that G admits no prestructures. Otherwise, keeping in mind
Remark 4.3, we see that (R6) and (T1) imply [r12, t11] = 1. From this and (T3) we get
[r12, t22] = 1, that contradicts (R8). �
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Given a finite group G, we define the socle of G, denoted by soc(G), as the intersection of
all non-trivial, normal subgroups of G. For instance, G is simple if and only if soc(G) = G.

Definition 4.5 A finite group G is called monolithic if soc(G) �= {1}. Equivalently, G is
monolithic if it contains precisely one minimal non-trivial, normal subgroup.

Example 4.6 If G is an extra-special p-group, then G is monolithic and soc(G) = Z(G).
Indeed, since Z(G) � Zp is normal in G, by definition of socle we always have soc(G) ⊆
Z(G). On the other hand, every non-trivial, normal subgroup of an extra-special group
contains the center (see [30, Exercise 9 p. 146]), hence Z(G) ⊆ soc(G).

Proposition 4.7 The following holds.

(1) Assume that G admits a prestructure, whereas no proper quotient of G does. Then G is
monolithic and z ∈ soc(G).

(2) Assume that G admits a prestructure, whereas no proper subgroup of G does. Then the
elements of the prestructure generate G.

Proof (1) Let S = (r11, t11, r12, t12, r21, t21, r22, t22, z) be a prestructure in G. Assume
that there is a non-trivial normal subgroup N of G such that z /∈ N . Then z̄ ∈ G/N is non-
trivial, and so S̄ = (r̄11, t̄11, r̄12, t̄12, r̄21, t̄21, r̄22, t̄22, z̄) is a prestructure in the quotient
groupG/N , contradiction. Thereforewemust have z ∈ soc(G), in particular,G ismonolithic.

(2) Clear, because every prestructureS in G is also a prestructure in the subgroup 〈S〉. �
Corollary 4.8 Given a prestructure on an extra-special p-group G, the element z is a gener-
ator of Z(G) � Zp.

Proof If G is extra-special, every proper quotient of G is abelian, hence it admits no pre-
structures. The result now follows from Example 4.6 and Proposition 4.7 (1). �

Note that, by Corollary 4.8, in the case of extra-special p-groups the choice of calling z the
element in the prestructure is coherent with presentations (4) and (5). The case of diagonal
double Kodaira structures on extra-special groups of order 32 will be studied in Subsection
4.4.

4.2 The case |G| < 32

Proposition 4.9 If |G| < 32, then G admits no diagonal double Kodaira structures.

Proof By Corollary 2.6, Proposition 2.7 and Proposition 4.4, it remains only to check that
the symmetric group S4 admits no prestructures. We start by observing that

soc(S4) = V4 = 〈(1 2)(3 4), (1 3)(2 4)〉
and so, by part (1) of Proposition 4.7, ifS is a prestructure on S4 then z ∈ V4. Let x, y ∈ S4 be
such that [x, y] = z. Examining the tables of subgroups of S4 given in [33], by straightforward
computations we deduce that either x, y ∈ CS4(z) � D8 or x, y ∈ A4. Every pair in A4

includes at least a 3-cycle and so, if [x, y] = z and both x and y have even order, then x and
y centralize z.

If x ∈ S4 is a 3-cycle, thenCS4(x) = 〈x〉 � Z3. So, from relations (R1), (R2), (R3), (R6), it
follows that, if one of the elements r11, r12, r21, r22, t22 is a 3-cycle, then all these elements
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generate the same cyclic subgroup. This contradicts (R8), hence r11, r12, r21, r22, t22 all
have even order.

Let us look now at relation (R8). Since r12, t22 have even order, from the previous remark
we infer r12, t22 ∈ CS4(z). Let us consider r11. If r11 belongs to A4, being an element of even
order it must be conjugate to z, and so it commutes with z; otherwise, by (R4), both r11 and
t21 commute with z. Summing up, in any case we have r11 ∈ CS4(z).

Relation (R5) can be rewritten as r11r21 ∈ CS4(z), hence r21 ∈ CS4(z). Analogously,
relation (R10) can be rewritten as r12r22 ∈ CS4(z), hence r22 ∈ CS4(z).

Using relation (R9), we get r12z ∈ CS4(t21). Since r12 and z commute and their orders
are powers of 2, it follows that o(r12z) is also a power of 2. Therefore t21 cannot be a 3-
cycle, otherwise CS4(t21) � Z3 and so r12z = 1 that, in turn, would imply [r12, t22] = 1,
contradicting (R8). It follows that t21 has even order and so, since r11 has even order as well,
by (R4) we infer t21 ∈ CS4(z).

Now we can rewrite (T2) as [t11, r21] = z. If t11 were a 3-cycle, from (T1) we would get
r22 ∈ CS4(t11) � Z3, a contradiction since r22 has even order. Thus t11 has even order and so
it belongs to CS4(z), because r21 has even order, too. Analogously, by using (T6) and (T7),
we infer t12 ∈ CS4(z).

Summarizing, if S were a prestructure on S4 we should have

〈S〉 = CS4(z) � D8,

contradicting part (2) of Proposition 4.7. �

4.3 The case |G| = 32 and G non-extra-special

We start by proving the following partial strengthening of Proposition 4.4.

Proposition 4.10 Let G be a finite non-abelian group, and let H be the subgroup of G
generated by those elements whose centralizer is non-abelian. If H is abelian and [H :
Z(G)] ≤ 4, then G admits no prestructures with z ∈ Z(G).

Proof First of all, remark that Z(G) is a (normal) subgroup of H because G is non-abelian.
Assume now, by contradiction, that the elements (r11, t11, r12, t12, r21, t21, r22, t22, z)
form a prestructure on G, with z ∈ Z(G). Then these elements satisfy relations
(R1′), . . . , (R9′), (T1′), . . . , (T9′) in (13). As H is abelian, (R4′) implies that at least one
between r11, t21 does not belong to H .

Let us assume r11 /∈ H . Thus CG(r11) is abelian, and so (R2′) and (R3′) yield
[r21, t22] = 1. From this, using (T2′) and (T3′), we infer that CG(t22) is non-abelian.
Similar considerations show that CG(r21) and CG(r22) are non-abelian, and so we have
r21, r22, t22 ∈ H . Using (T2′), (T6′), (R8′), together with the fact that H is abelian,
we deduce t11, t12, r12 /∈ H . In particular, CG(r12) is abelian, so (R7′) and (R9′) yield
[r21, t21] = 1; therefore (T2′) and (T4′) imply that CG(t21) is non-abelian, and so t21 ∈ H .
Summing up, we have proved that the four elements r21, t21, r22, t22 belong to H ; since they
are all non-central, we infer that they yield four non-trivial elements in the quotient group
H/Z(G). On the other hand, we have [H : Z(G)] ≤ 4, and so H/Z(G) contains at most
three non-trivial elements; it follows that (at least) two among the elements r21, t21, r22, t22
have the same image in H/Z(G). This means that these two elements are of the form g, gz,
with z ∈ Z(G), and so they have the same centralizer. But this is impossible: in fact, rela-
tions (13) show that each element in the set {r21, t21, r22, t22} fails to commute with exactly
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one element in the set {r11, t11, r12, t12}, and no two elements in {r21, t21, r22, t22} fail to
commute with the same element in {r11, t11, r12, t12}.

The remaining case, namely t21 /∈ H , can be dealt with in an analogous way. Indeed, in
this situation we obtain {r11, t11, r12, t12} ⊆ H , that leads to a contradiction as before. �

We can now rule out the non-extra-special groups of order 32.

Proposition 4.11 Let G be a finite group of order 32 which is not extra-special. Then G
admits no diagonal double Kodaira structures.

Proof IfG is a CCT-group, then the result follows from Proposition 4.4. Thus, by Proposition
2.14, we must only consider the cases G = G(32, t), where t ∈ {6, 7, 8, 43, 44}. Standard
computations using the presentations in Table 2 of Appendix A show that all these groups
are monolithic, and that for all of them soc(G) = Z(G) � Z2. Since no proper quotients of
G admit diagonal double Kodaira structures (Proposition 4.9), it follows from Proposition
4.7 that every diagonal double Kodaira structure on G is such that z is the generator of
Z(G). Let H be the subgroup of G generated by those elements whose centralizer is non-
abelian; by Proposition 4.10 we are now done, provided that in every case H is abelian and
[H : Z(G)] ≤ 4. Let us now show that this is indeed true, leaving the straightforward
computations to the reader.

• G = G(32, 6). In this case soc(G) = Z(G) = 〈x〉 and H = 〈x, y, w2〉. Then H �
(Z2)

3 and [H : Z(G)] = 4.
• G = G(32, 7). In this case soc(G) = Z(G) = 〈w〉 and H = 〈z, u, w〉. Then H �

Z4 × Z2 and [H : Z(G)] = 4.
• G = G(32, 8). In this case soc(G) = Z(G) = 〈x4〉 and H = 〈x2, y, z2〉. Then

H � Z4 × Z2 and [H : Z(G)] = 4.
• G = G(32, 43). In this case soc(G) = Z(G) = 〈x4〉 and H = 〈x2, z〉. Then H �

Z4 × Z2 and [H : Z(G)] = 4.
• G = G(32, 44). In this case soc(G) = Z(G) = 〈i2〉 and H = 〈x, k〉. Then H � Z4×Z2

and [H : Z(G)] = 4.

This completes the proof. �

4.4 The case |G| = 32 and G extra-special

We are now ready to address the case where |G| = 32 and G is extra-special. Let us first
recall some additional results on extra-special p-groups, referring the reader to [38] for more
details.

Let G be an extra-special p-group of order p2b+1 and x, y ∈ G. Setting (x̄, ȳ) = ā
where [x, y] = za , the quotient group V = G/Z(G) � (Zp)

2b becomes a non-degenerate
symplectic vector space over Zp . Looking at (4) and (5), we see that in both cases G =
H2b+1(Zp) and G = G2b+1(Zp) we have

(r̄ j , r̄k) = 0, (t̄ j , t̄k) = 0, (r̄ j , t̄k) = −δ jk

for all j, k ∈ {1, . . . , b}, so that

r̄1, t̄1, . . . , r̄b, t̄b (14)

is an ordered symplectic basis for V � (Zp)
2b. If p = 2, we can also set q(x̄) = c̄, where

x2 = zc and c ∈ {0, 1}; this is a quadratic form on V . If x̄ ∈ G/Z(G) is expressed in
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coordinates, with respect to the symplectic basis (14), by the vector (ξ1, ψ1, . . . , ξb, ψb) ∈
(Z2)

2b, then a straightforward computation yields

q(x̄) =
{

ξ1ψ1 + · · · + ξbψb, if G = H2b+1(Z2)

ξ1ψ1 + · · · + ξbψb + ξ2b + ψ2
b if G = G2b+1(Z2).

(15)

These are the two possible normal forms for a non-degenerate quadratic form of dimension
2b over Z2; they have Arf invariant equal to 0 and 1, respectively, see for instance [11] or
[25, Chapter 10]. In both cases, the symplectic and the quadratic form are related by

q(x̄ȳ) = q(x̄) + q(ȳ) + (x̄, ȳ) for all x̄, ȳ ∈ V .

If φ ∈ Aut(G), then φ induces a linear map φ̄ ∈ End(V ); moreover, if p = 2, then φ acts
trivially on Z(G) = [G, G] � Z2, and this in turn implies that φ preserves the symplectic
form on V . In other words, if we identify V with (Z2)

2b via the symplectic basis (14), we
have φ̄ ∈ Sp(2b, Z2).

We are now in a position to describe the structure of Aut(G), see [38, Theorem 1].

Proposition 4.12 Let G be an extra-special group of order 22b+1. Then the kernel of the
group homomorphism Aut(G) −→ Sp(2b, Z2) given by φ �→ φ̄ is the subgroup Inn(G)

of inner automorphisms of G. Therefore Out(G) = Aut(G)/Inn(G) embeds in Sp(2b, Z2).
More precisely, Out(G) coincides with the orthogonal group Oε(2b, Z2), of order

|Oε(2b, Z2)| = 2b(b−1)+1(2b − ε)

b−1∏
i=1

(22i − 1), (16)

associated with the quadratic form (15). Here ε = 1 if G = H2b+1(Z2) and ε = −1 if
G = G2b+1(Z2).

Corollary 4.13 Let G be an extra-special group of order 22b+1. We have

|Aut(G)| = 2b(b+1)+1(2b − ε)

b−1∏
i=1

(22i − 1). (17)

Proof By Proposition 4.12 we get |Aut(G)| = |Inn(G)| · |Oε(2b, Z2)|. Since Inn(G) �
G/Z(G) has order 22b, the claim follows from (16). �

In particular, plugging b = 2 in (17), we can compute the orders of automorphism groups
of extra-special groups of order 32, namely

|Aut(H5(Z2))| = 1152, |Aut(G5(Z2))| = 1920. (18)

Assume now that S = (r11, t11, r12, t12, r21, t21, r22, t22, z) is a diagonal double
Kodaira structure of type (2, n) on an extra-special group G of order 32; by Corollary
4.8, the element z is the generator of Z(G) � Z2, hence n = 2. Then

S̄ = (r̄11, t̄11, r̄12, t̄12, r̄21, t̄21, r̄22, t̄22) (19)

is an ordered set of generators for the symplectic Z2-vector space V = G/Z(G) � (Z2)
4,

and (13) yields the relations

(r̄12, t̄12) + (r̄11, t̄11) = 1,

(r̄21, t̄21) + (r̄22, t̄22) = 1,

(r̄1 j , t̄2k) = δ jk, (r̄1 j , r̄2k) = 0

(t̄1 j , r̄2k) = δ jk, (t̄1 j , t̄2k) = 0.

(20)
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Conversely, given any set of generators S̄ of V as in (19), whose elements satisfy (20), a
diagonal double Kodaira structure of type (b, n) = (2, 2) on G inducing S̄ is necessarily
of the form

S = (r11za11 , t11zb11 , r12za12 , t12zb12 , r21za21 , t21zb21 , r22za22 , t22zb22 , z),

where ai j , bi j ∈ {0, 1}. This proves the following
Lemma 4.14 The total number of diagonal double Kodaira structures of type (b, n) = (2, 2)
on an extra-special group G of order 32 is obtained multiplying by 28 the number of ordered
sets of generators S̄ of V as in (19), whose elements satisfy (20). In particular, such a number
does not depend on G.

We are now ready to state the main result of this section.

Theorem 4.15 A finite group G of order 32 admits a diagonal double Kodaira structure if
and only if G is extra-special. In this case, the following holds.

(1) Both extra-special groups of order 32 admit 2211840 = 1152 · 1920 distinct diagonal
double Kodaira structures of type (b, n) = (2, 2). Every such a structure S is strong
and satisfies σ(S) = 16.

(2) If G = G(32, 49) = H5(Z2), these structures form 1920 orbits under the action of
Aut(G).

(3) If G = G(32, 50) = G5(Z2), these structures form 1152 orbits under the action of
Aut(G).

Proof We already know that non-extra-special groups of order 32 admit no diagonal double
Kodaira structures (Proposition 4.11) and so, in the sequel, we can assume that G is extra-
special.

Looking at the first two relations in (20), we see that we must consider four cases:

(a) (r̄12, t̄12) = 0, (r̄11, t̄11) = 1, (r̄21, t̄21) = 0, (r̄22, t̄22) = 1,
(b) (r̄12, t̄12) = 1, (r̄11, t̄11) = 0, (r̄21, t̄21) = 1, (r̄22, t̄22) = 0,
(c) (r̄12, t̄12) = 0, (r̄11, t̄11) = 1, (r̄21, t̄21) = 1, (r̄22, t̄22) = 0,
(d) (r̄12, t̄12) = 1, (r̄11, t̄11) = 0, (r̄21, t̄21) = 0, (r̄22, t̄22) = 1.

Case (a). In this case the vectors r̄11, t̄11, r̄22, t̄22 are a symplectic basis of V , whereas
the subspace W = 〈r̄12, t̄12, r̄21, t̄21〉 is isotropic, namely the symplectic form is identically
zero on it. Since V is a symplectic vector space of dimension 4, the Witt index of V , i.e.
the dimension of a maximal isotropic subspace of V , is 1

2 dim(V ) = 2, see [1, Théorèmes
3.10, 3.11]. On the other hand, we have (r̄12, t̄22) = 1 and (t̄12, t̄22) = 0, hence r̄12, t̄12 are
linearly independent and so they must generate a maximal isotropic subspace; it follows that
W = 〈r̄12, t̄12〉. Let us set now

(r̄11, r̄12) = a, (r̄11, t̄12) = b, (r̄12, t̄11) = c, (t̄11, t̄12) = d,

(r̄21, r̄22) = e, (r̄21, t̄22) = f , (r̄22, t̄21) = g, (t̄21, t̄22) = h,

where a, b, c, d, e, f , g, h ∈ Z2, and let us express the remaining vectors of S̄ in terms
of the symplectic basis. Standard computations yield

r̄12 = cr̄11 + at̄11 + r̄22, t̄12 = d r̄11 + bt̄11 + t̄22,

r̄21 = r̄11 + f r̄22 + et̄22, t̄21 = t̄11 + h r̄22 + gt̄22. (21)
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Now recall thatW is isotropic; then, using the expressions in (21) and imposing the relations

(r̄12, t̄12) = 0, (r̄12, r̄21) = 0, (r̄12, t̄21) = 0,
(r̄21, t̄12) = 0, (t̄12, t̄21) = 0, (r̄21, t̄21) = 0,

we get

ad + bc = 1, a + e = 0, c + g = 0,
b + f = 0, d + h = 0, eh + f g = 1.

Summing up, the elements r̄12, t̄12, r̄21, t̄21 can be determined from the symplectic basis via
the relations

r̄12 = cr̄11 + at̄11 + r̄22, t̄12 = d r̄11 + bt̄11 + t̄22,

r̄21 = r̄11 + br̄22 + at̄22, t̄21 = t̄11 + d r̄22 + ct̄22, (22)

where a, b, c, d ∈ Z2 and ad + bc = 1. Conversely, given any symplectic basis
r̄11, t̄11, r̄22, t̄22 of V and elements r̄12, t̄12, r̄21, t̄21 as in (22), with ad + bc = 1, we
get a set of generators S̄ of V having the form (19), and whose elements satisfy (20). Thus,
the total number of such S̄ in this case is given by

|Sp(4, Z2)| · |GL(2, Z2)| = 720 · 6 = 4320

and so, by Lemma 4.14, the corresponding number of diagonal double Kodaira structures is
28 · 4320 = 1105920. All these structures are strong: in fact, we have

K1 = 〈r11, t11, r12, t12〉 = 〈r11, t11, rc11ta11r22, rd11tb11t22〉
= 〈r11, t11, r22, t22〉 = G

K2 = 〈r21, t21, r22, t22〉 = 〈r11rb22ta22, t11rd22tc22, r22, t22〉
= 〈r11, t11, r22, t22〉 = G,

the last equality following in both cases because 〈r̄11, t̄11, r̄22, t̄22〉 = V and [r11, t11] = z.
Case (b). In this situation, the elements {r̄12, t̄12, r̄21, t̄21} form a symplectic basis for V ,

whereas W = 〈r̄11, t̄11, r̄22, t̄22〉 is an isotropic subspace. The same calculations as in case
(a) show that there are again 1105920 diagonal double Kodaira structures.

Case (c). This case do not occur. In fact, in this situation the subspaceW = 〈r̄12, t̄12, r̄21〉
is isotropic. Take a linear combination of its generators giving the zero vector, namely

ar̄12 + bt̄12 + cr̄21 = 0.

Pairing with t̄21, t̄22, r̄22, we get c = a = b = 0. Thus, r̄12, t̄12, r̄21 are linearly independent,
andW is an isotropic subspace of dimension 3 inside the 4-dimensional symplectic space V ,
contradiction.

Case (d). This case is obtained from (c) by exchanging the indices 1 and 2, so it does not
occur, either.

Summarizing, we have found 1105920 diagonal double Kodaira structures in cases (a)

and (b), and no structure at all in cases (c) and (d). So the total number of diagonal double
Kodaira structures on G is 2211840, and this concludes the proof of part (1).

Now observe that, since every diagonal double Kodaira structure S generates G, the
only automorphism φ of G fixing S elementwise is the identity. This means that Aut(G)

acts freely on the set of diagonal double Kodaira structures, hence the number of orbits is
obtained dividing 2211840 by |Aut(G)|. Parts (2) and (3) now follow from (18), and we are
done. �
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Example 4.16 Let us give an explicit example of diagonal double Kodaira structure on an
extra-special groupG of order 32, by using the construction described in the proof of part (1)
of Theorem 4.15. Referring to the presentations for H5(Z2) and G5(Z2) given in Proposition
2.9,we start by choosing in both cases the following elements,whose images give a symplectic
basis for V :

r11 = r1, t11 = t1, r22 = r2, t22 = t2.

Choosing a = d = 1 and b = c = 0 in (22), we find the remaining elements, obtaining the
diagonal double Kodaira structure

r11 = r1, t11 = t1, r12 = r2 t1, t12 = r1 t2
r21 = r1 t2, t21 = r2 t1, r22 = r2, t22 = t2.

Remark 4.17 Theorem 4.15 should be compared with previous results of [9] and [28], regard-
ing the construction of diagonal double Kodaira structures on some extra-special groups of
order at least 27 = 128. We emphasize that the examples on extra-special groups of order 32
presented here are really new, in the sense that they cannot be obtained by taking the image
of structures on extra-special groups of bigger order: in fact, an extra-special group admits
no non-abelian proper quotients, cf. Example 4.6.

Let us end this section with the restatement of Theorem 4.15 in terms of admissible
epimorphisms from surface braid groups to finite groups.

Corollary 4.18 Let G be a finite group admitting an admissible epimorphism ϕ : P2(�b) −→
G. Then |G| ≥ 32, with equality if and only if G is extra-special. Moreover, the following
holds.

(1) For both extra-special groups G of order 32, there are 2211840 = 1152·1920 admissible
epimorphisms ϕ : P2(�2) −→ G. For all of them, ϕ(A12) is the generator of Z(G), so
n = 2.

(2) If G = G(32, 49) = H5(Z2), these epimorhisms form 1920 orbits under the natural
action of Aut(G).

(3) If G = G(32, 50) = G5(Z2), these epimorhisms form 1152 orbits under the natural
action of Aut(G).

5 Geometrical application: diagonal double Kodaira fibrations

The aim of this section is to show how the existence of diagonal double Kodaira structures
is equivalent to the existence of some special double Kodaira fibrations (see the Introduction
for the definition), that we call diagonal double Kodaira fibrations. We closely follow the
treatment given in [28, Section 4].

In the sequel we use the symbol�b to indicate both a smooth complex curve of genus b and
its underlying real surface, and we assume that the finite group G admits a diagonal double
Kodaira structure S of type (b, n). By Grauert-Remmert’s extension theorem and Serre’s
GAGA, the group epimorphism ϕ : P2(�b) −→ G described in Proposition 3.6 yields the
existence of a smooth, complex, projective surface S endowed with a Galois cover

f : S −→ �b × �b
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with Galois group G and branched precisely over the diagonal�with branching order n, see
[9, Proposition 3.4]. Composing the left homomorphisms in (10) with ϕ : P2(�b) −→ G,
we get two homomorphisms

ϕ1 : π1(�b − {p2}, p1) −→ G, ϕ2 : π1(�b − {p1}, p2) −→ G,

whose respective images coincidewith the subgroups K1 and K2 defined in (11). By construc-
tion, these are the homomorphisms induced by the restrictions fi : �i −→ �b of the Galois
cover f : S −→ �b × �b to the fibres of the two natural projections πi : �b × �b −→ �b.
Since � intersects transversally at a single point all the fibres of the natural projections, it
follows that both such restrictions are branched at precisely one point, and the number of
connected components of the smooth curve �i ⊂ S equals the index mi := [G : Ki ] of Ki

in G.
So, taking the Stein factorizations of the compositions πi ◦ f : S −→ �b as in the diagram

below

S �b

�bi

πi◦f
fi θi (23)

we obtain two distinct Kodaira fibrations fi : S −→ �bi , hence a double Kodaira fibration
by considering the product morphism

f = f1 × f2 : S −→ �b1 × �b2 .

Definition 5.1 Wecall f : S −→ �b1×�b2 the diagonal doubleKodaira fibration associated
with the diagonal double Kodaira structureS on the finite group G. Conversely, we will say
that a double Kodaira fibration f : S −→ �b1 ×�b2 is of diagonal type (b, n) if there exists
a finite group G and a diagonal double Kodaira structure S of type (b, n) on it such that f
is associated with S.

Since the morphism θi : �bi −→ �b is étale of degree mi , by using the Hurwitz formula
we obtain

b1 − 1 = m1(b − 1), b2 − 1 = m2(b − 1).

Moreover, the fibre genera g1, g2 of the Kodaira fibrations f1 : S −→ �b1 , f2 : S −→ �b2
are computed by the formulae

2g1 − 2 = |G|
m1

(2b − 2 + n), 2g2 − 2 = |G|
m2

(2b − 2 + n) , (24)

where n := 1 − 1/n. Finally, the surface S fits into a diagram

S �b × �b

�b1 × �b2

f

f
θ1×θ2

so that the diagonal double Kodaira fibration f : S −→ �b1 ×�b2 is a finite cover of degree|G|
m1m2

, branched precisely over the curve

(θ1 × θ2)
−1(�) = �b1 ×�b �b2 .
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Such a curve is always smooth, being the preimage of a smooth divisor via an étalemorphism.
However, it is reducible in general, see [9, Proposition 3.11]. The invariants of S can be now
computed as follows, see [9, Proposition 3.8].

Proposition 5.2 Let f : S −→ �b1 ×�b2 be a diagonal double Kodaira fibration, associated
with a diagonal double Kodaira structureS of type (b, n) on a finite group G. Then we have

c21(S) = |G| (2b − 2)(4b − 4 + 4n − n2)

c2(S) = |G| (2b − 2)(2b − 2 + n)

where n = 1− 1/n. As a consequence, the slope and the signature of S can be expressed as

ν(S) = c21(S)

c2(S)
= 2 + 2n − n2

2b − 2 + n

σ(S) = 1

3

(
c21(S) − 2c2(S)

) = 1

3
|G| (2b − 2)

(
1 − 1

n2

)
= σ(S)

(25)

Remark 5.3 By definition, the diagonal double Kodaira structure S is strong if and only if
m1 = m2 = 1, that in turn implies b1 = b2 = b, i.e., f = f . In other words, S is strong if
and only if no Stein factorization as in (23) is needed or, equivalently, if and only if the Galois
cover f : S −→ �b × �b induced by (8) is already a double Kodaira fibration, branched on
the diagonal � ⊂ �b × �b.

Remark 5.4 Every Kodaira fibred surface S satisfies σ(S) > 0, see the introduction to [24];
moreover, since S is a differentiable 4-manifold that is a real surface bundle, its signature
is divisible by 4, see [27]. In addition, if S is associated with a diagonal double Kodaira
structure of type (b, n), with n odd, then KS is 2-divisible in Pic(S) and so σ(S) is a positive
multiple of 16 by Rokhlin’s theorem, see [9, Remark 3.9].

We are now ready to give a geometric restatement of the algebraic results of Sect. 4 in
terms of double Kodaira fibrations.

Theorem 5.5 Let G be a finite group and

f : S −→ �b × �b (26)

be a Galois cover with Galois group G, branched over the diagonal � with branching order
n ≥ 2. Then the following hold.

(1) We have |G| ≥ 32, with equality precisely when G is extra-special.
(2) If G = G(32, 49) = H5(Z2) and b = 2, there are 1920 G-covers of type (26), up to

cover isomorphisms.
(3) If G = G(32, 50) = G5(Z2) and b = 2, there are 1152 G-covers of type (26), up to

cover isomorphisms.

Finally, in both cases (2) and (3), we have n = 2 and each cover f is a double Kodaira
fibration with

b1 = b2 = 2, g1 = g2 = 41, σ (S) = 16.

Proof A cover as in (26), branched over � with order n, exists if and only if G admits a
double Kodaira structure of type (b, n); additionally, the number of such covers, up to cover
isomorphisms, equals the number of structures up the natural action of Aut(G). Then, (1),
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(2) and (3) can be deduced from the corresponding statements in Theorem 4.15. The same
theorem tells us that all double Kodaira structures on an extra-special group of order 32 are
strong, hence the cover f is already a double Kodaira fibration and no Stein factorization is
needed (Remark 5.3). The fibre genera, the slope and the signature of S can be now computed
by using (24) and (25). �
As a consequence, we obtain a sharp lower bound for the signature of a diagonal double
Kodaira fibration or, equivalently, of a diagonal double Kodaira structure.

Corollary 5.6 Let f : S −→ �b1 × �b2 be a diagonal double Kodaira fibration, associated
with a diagonal double Kodaira structure of type (b, n) on a finite group G. Then σ(S) ≥ 16,
and equality holds precisely when (b, n) = (2, 2) and G is an extra-special group of order
32.

Proof Theorem 4.15 implies |G| ≥ 32. Since b ≥ 2 and n ≥ 2, from (25) we get

σ(S) = 1

3
|G| (2b − 2)

(
1 − 1

n2

)
≥ 1

3
· 32 · (2 · 2 − 2)

(
1 − 1

22

)
= 16,

and equality holds if and only if we are in the situation described in Theorem 5.5, namely,
b = n = 2 and G an extra-special group of order 32. �

These results provide, in particular, new “double solutions” to a problem, posed by G.
Mess, from Kirby’s problem list in low-dimensional topology [20, Problem 2.18 A], asking
what is the smallest number b for which there exists a real surface bundle over a real surface
with base genus b and non-zero signature. We actually have b = 2, also for double Kodaira
fibrations, as shown in [9, Proposition 3.19] and [28] by using double Kodaira structures of
type (2, 3) on extra-special groups of order 35. Those fibrations had signature 144 and fibre
genera 325; by using our new examples, we can now substantially lower both these values.

Theorem 5.7 Let S be the diagonal double Kodaira surface associatedwith a strong diagonal
double Kodaira structure of type (b, n) = (2, 2) on an extra-special group G of order 32.
Then the real manifold M underlying S is a closed, orientable 4-manifold of signature 16
that can be realized as a real surface bundle over a real surface of genus 2, with fibre genus
41, in two different ways.

Theorem 5.5 also implies the following partial answer to [9, Question 3.20].

Corollary 5.8 Let gmin and σmin be the minimal possible fibre genus and signature for a
double Kodaira fibration f : S −→ �2 × �2. Then we have

gmin ≤ 41, σmin ≤ 16.

In fact, it is an interesting question whether 16 and 41 are the minimum possible values
for the signature and the fibre genus of a (non necessarily diagonal) double Kodaira fibration
f : S −→ �2 × �2, but we will not address this problem here.

Remark 5.9 Constructing (double) Kodaira fibrations with small signature is a rather difficult
problem. As far as we know, before our work the only examples with signature 16 were the
one described in [5, Theorem 1.1] and the ones listed in [24, Table 3, Cases 6.2, 6.6, 6.7 (Type
1), 6.9]. The examples provided by Theorem 5.5 are new, since both the base genera and the
fibre genera are different. Note that our results also show that every curve of genus 2 (and not
only some special curve with extra automorphisms) is the base of a double Kodaira fibration
with signature 16. Thus, we obtain two families of dimension 3 of such fibrations that, to
the best of our knowledge, provide the first examples of a positive-dimensional families of
double Kodaira fibrations with small signature.
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Appendix: Non abelian groups of order 24 and 32

See Tables 1 and 2.

Table 1 Nonabelian groups of order 24 . Source: https://groupprops.subwiki.org/wiki/Groups_of_order_24

IdSmallGroup(G) G Presentation

G(24, 1) D8, 3, −1 〈x, y | x8 = y3 = 1, xyx−1 = y−1〉
G(24, 3) SL(2, F3) 〈x, y, z | x3 = y3 = z2 = xyz〉
G(24, 4) Q24 〈x, y, z | x6 = y2 = z2 = xyz〉
G(24, 5) D2, 12, 5 〈x, y | x2 = y12 = 1, xyx−1 = y5〉
G(24, 6) D24 〈x, y | x2 = y12 = 1, xyx−1 = y−1〉
G(24, 7) Z2 × D4, 3, −1 〈z | z2 = 1〉 × 〈x, y | x4 = y3 = 1, xyx−1 = y−1〉
G(24, 8) ((Z2)

2 × Z3) � Z2 〈x, y, z, w | x2 = y2 = z2 = w3 = 1,

[y, z] = [y, w] = [z, w] = 1,

xyx−1 = y, xzx−1 = zy, xwx−1 = w−1〉
G(24, 10) Z3 × D8 〈z | z3 = 1〉 × 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
G(24, 11) Z3 × Q8 〈z | z3 = 1〉 × 〈i, j, k | i2 = j2 = k2 = i jk〉
G(24, 12) S4 〈x, y | x = (12), y = (1234)〉
G(24, 13) Z2 × A4 〈z | z2 = 1〉 × 〈x, y | x = (12)(34), y = (123)〉
G(24, 14) (Z2)

2 × S3 〈z, w | z2 = w2 = [z, w] = 1〉
×〈x, y | x = (12), y = (123)〉
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Table 2 Nonabelian groups of order 32. Source: https://groupprops.subwiki.org/wiki/Groups_of_order_32

IdSmallGroup(G) G Presentation

G(32, 2) (Z4 × Z2) � Z4 〈x, y, z | x4 = y4 = z2 = 1,

[x, y] = z, [x, z] = [y, z] = 1〉
G(32, 4) D4, 8, 5 〈x, y | x4 = y8 = 1, xyx−1 = y5〉
G(32, 5) (Z8 × Z2) � Z2 〈x, y, z | x8 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = x5y, zyz−1 = y〉
G(32, 6) (Z2)

3
� Z4 〈x, y, z, w | x2 = y2 = z2 = w4 = 1,

[x, y] = 1, [x, z] = 1, [y, z] = 1,

wxw−1 = x, wyw−1 = xy, wzw−1 = yz〉
G(32, 7) (Z8 � Z2) � Z2 〈x, y, z, u, w | y2 = z2 = w2 = 1,

u2 = w−1, x2 = u, (yz)2 = 1, (yu−1)2 = 1,

uzu−1 = z−1, xyzx−1 = y−1〉
G(32, 8) (Z2)

2 . (Z4 × Z2) 〈x, y, z | x8 = y2 = 1, z2 = x4,

xy = yx5, [y, z] = 1, xz = zxy−1〉
G(32, 9) (Z8 × Z2) � Z2 〈x, y, z | x8 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = x3y, zyz−1 = y〉
G(32, 10) Q8 � Z4 〈i, j, k, x | i2 = j2 = k2 = i jk, x4 = 1,

xi x−1 = j, x j x−1 = i, xkx−1 = k−1〉
G(32, 11) (Z4)

2
� Z2 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = 1,

zxz−1 = y, zyz−1 = x〉
G(32, 12) D8, 4, 3 〈x, y | x8 = y4 = 1, xyx−1 = y3〉
G(32, 13) D4, 8, 3 〈x, y | x4 = y8 = 1, xyx−1 = y3〉
G(32, 14) D4, 8, −1 〈x, y | x4 = y8 = 1, xyx−1 = y−1〉
G(32, 15) Z4 .D8 〈x, y, z, u, w | w2 = 1, z2 = u2 = w−1,

x2 = u, y2 = z, xzx−1 = z−1,

[y, u] = 1, xyxu = y−1〉
G(32, 17) D2, 16, 9 〈x, y | x2 = y16 = 1, xyx−1 = y9〉
G(32, 18) D32 〈x, y | x2 = y16 = 1, xyx−1 = y−1〉
G(32, 19) QD32 〈x, y | x2 = y16 = 1, xyx−1 = y7〉
G(32, 20) Q32 〈x, y, z | x8 = y2 = z2 = xyz〉
G(32, 22) Z2 × ((Z4 × Z2) � Z2) 〈w | w2 = 1〉×

〈x, y, z | x4 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = xy, zyz−1 = y〉
G(32, 23) Z2 × D4, 4, 3 〈z | z2 = 1〉 × 〈x, y | x4 = y4 = 1, xyx−1 = y3〉
G(32, 24) (Z4)

2
� Z2 〈x, y, z | x4 = y4 = z2 = 1,

[x, y] = 1, zxz−1 = x, zyz−1 = x2y〉
G(32, 25) Z4 × D8 〈z | z4 = 1〉 × 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
G(32, 26) Z4 × Q8 〈z | z4 = 1〉 × 〈i, j, k | i2 = j2 = k2 = i jk〉
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Table 2 continued

IdSmallGroup(G) G Presentation

G(32, 27) (Z2)
3

� (Z2)
2 〈x, y, z, a, b |

x2 = y2 = z2 = a2 = b2 = 1,

[x, y] = [y, z] = [x, z] = [a, b] = 1,

axa−1 = x, aya−1 = y, aza−1 = xz,

bxb−1 = x, byb−1 = y, bzb−1 = yz〉
G(32, 28) (Z4 × (Z2)

2) � Z2 〈x, y, z, w | x4 = y2 = z2 = w2 = 1,

[x, y] = [x, z] = [y, z] = 1,

wxw−1 = x−1, wyw−1 = z, wzw−1 = y〉
G(32, 29) (Z2 × Q8) � Z2 〈x, i, j, k, z | x2 = z2 = 1, i2 = j2 = k2 = i jk,

[x, i] = [x, j] = [x, k] = 1,

zxz−1 = x, zi z−1 = i, z j z−1 = x j−1〉
G(32, 30) (Z4 × (Z2)

2) � Z2 〈x, y, z, w | x4 = y2 = z2 = w2 = 1,

[x, y] = [x, z] = [y, z] = 1,

wxw−1 = xy, wyw−1 = y, wzw−1 = x2z〉
G(32, 31) (Z4)

2
� Z2 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = 1,

zxz−1 = xy2, zyz−1 = x2y〉
G(32, 32) (Z2)

2 . (Z2)
3 〈x, y, z, u, w | u2 = w2 = 1,

u = z2, u = x−2, w = y−2,

yxy−1 = x−1, [y, z] = 1, xzxwz = 1〉
G(32, 33) (Z4)

2
� Z2 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = 1,

zxz−1 = xy2, zyz−1 = x2y−1〉
G(32, 34) (Z4)

2
� Z2 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = 1,

zxz−1 = x−1, zyz−1 = y−1〉
G(32, 35) Z4 � Q8 〈x, i, j, k | x4 = 1, i2 = j2 = k2 = i jk,

i xi−1 = x−1, j x j−1 = x−1, kxk−1 = x〉
G(32, 37) (Z8 × Z2) � Z2 〈x, y, z | x8 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = x5, zyz−1 = y〉
G(32, 38) (Z8 × Z2) � Z2 〈x, y, z | x8 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = x, zyz−1 = x4y〉
G(32, 39) Z2 × D16 〈z | z2 = 1〉 × 〈x, y | x2 = y8 = 1, xyx−1 = y−1〉
G(32, 40) Z2 × QD16 〈z | z2 = 1〉 × 〈x, y | x2 = y8 = 1, xyx−1 = y3〉
G(32, 41) Z2 × Q16 〈w | w2 = 1〉 × 〈x, y, z | x4 = y2 = z2 = xyz〉
G(32, 42) (Z8 × Z2) � Z2 〈x, y, z | x8 = y2 = z2 = 1, [x, y] = 1,

zxz−1 = x3, zyz−1 = x4y〉
G(32, 43) Z8 � (Z2)

2 〈x, y, z | x8 = 1, y2 = z2 = [y, z] = 1,

yxy−1 = x−1, zxz−1 = x5〉
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Table 2 continued

IdSmallGroup(G) G Presentation

G(32, 44) (Z2 × Q8) � Z2 〈x, i, j, k, z | x2 = z2 = 1, i2 = j2 = k2 = i jk,

[x, i] = [x, j] = [x, k] = 1,

zxz−1 = xi2, zi z−1 = j, z j z−1 = i〉
G(32, 46) (Z2)

2 × D8 〈z, w | z2 = w2 = [z, w] = 1〉
×〈x, y | x2 = y4 = 1, xyx−1 = y−1〉

G(32, 47) (Z2)
2 × Q8 〈z, w | z2 = w2 = [z, w] = 1〉

×〈i, j, k | i2 = j2 = k2 = i jk〉
G(32, 48) (Z4 × (Z2)

2) � Z2 〈x, y, z, w | x4 = y2 = z2 = w2 = 1,

[x, y] = [x, z] = [y, z] = 1,

wxw−1 = x, wyw−1 = y, wzw−1 = x2z〉
G(32, 49) H5(Z2) 〈r1, t1, r2, t2, z | r2j = t2j = z2 = 1,

[r j , z] = [t j , z] = 1,

[r j , rk ] = [t j , tk ] = 1,

[r j , tk ] = z−δ jk 〉, see (4)

G(32, 50) G5(Z2) 〈 r1, t1, r2, t2, z |, r21 = t21 = z2 = 1,

r22 = t22 = z,

[r j , z] = [t j , z] = 1,

[r j , rk ] = [t j , tk ] = 1,

[r j , tk ] = z−δ jk 〉, see (5)
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