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Abstract
We show that themoduli space of positive Ricci curvaturemetrics on all the total spaces of S7-
bundles over S8 which are rational homology spheres has infinitely many path components.
Furthermore, we carry out the diffeomorphism classification of quotients of Milnor spheres
by a certain involution and show that the moduli space of metrics of non-negative sectional
curvature on them has infinitely many path components. Finally, a diffeomorphism finiteness
result is obtained on quotients of Shimada spheres by the same type of involution and we
show that for the types that can be expressed by an infinite family of manifolds, the moduli
space of positive Ricci curvature metrics has infinitely many path components.
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1 Introduction andmain results

The existence problem of positively curved metrics is of fundamental importance in today’s
research in Riemannian geometry. For positive scalar curvature, there are by now a lot of
results (see [35, Chapter IV]), and recently there has been substantial progress in positive
Ricci curvature (see for example [13]), but still there are only few known examples with
positive sectional curvature (see [54]). However, a large class of examples with non-negative
sectional curvature has been produced thanks to the work of Grove and Ziller [27], which
Goette, Kerin and Shankar [19] have recently extended.

Once existence has been established, one generally is lead to ask about unicity in mathe-
matics. For Riemannian metrics, one has to choose appropriate equivalence classes, since a
convex combination of any twometrics is still ametric andwe therefore always have infinitely
many distinct metrics in some sense. One way to try and capture different geometries, is by
considering the moduli space of metrics, which is the quotient of the space of all metrics
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by the action of the diffeomorphism group of the manifold (via pullback metrics). In this
picture, one essentially declares two metrics equivalent if they are isometric.

The study of moduli spaces is fairly recent. We only cite a few important milestones
here, the interested reader is referred to [49] for an overview of the subject. One of the
most important contributions to the field has been made by Kreck and Stolz [33], who have
defined an invariant which allows to distinguish connected components in the moduli space
of positive scalar curvature metrics of certain (4k + 3)-dimensional closed spin manifolds.
This invariant has been extensively used to exhibit examples of manifolds whose moduli
space of scal > 0 or Ric > 0 or sec ≥ 0 metrics has infinitely many (path) connected
components (see for example [15, 24, 33, 55] and [23] to only name a few).

Choosing a different approach, some years ago Dessai [14] proved the following result,
which was independently proved by Goodman [24] using the Kreck-Stolz invariant.

Theorem A [14, Theorem 4.1][24, Theorem A] Let M7 be the total space of a linear S3-
bundle over S4 and assume M7 is a rational homology sphere. The moduli space of non-
negative sectional curvature metrics on M has infinitely many path components. The same
is true for the moduli space of positive Ricci curvature metrics.

This result includes the so-called Milnor spheres, which are total spaces of S3-bundles
over S4 that are homotopy 7-spheres.

Dessai uses a relative index invariant of Gromov and Lawson [21], which in some sense
is more elementary than the Kreck-Solz invariant (which makes use of the index theory of
Atiyah-Patodi-Singer). The idea of the proof is to exhibit an infinite family of diffeomorphic
manifolds, by means of the diffeomorphism classification of S3-bundles over S4 which is
due to Crowley and Escher [10]. Using the work of Grove and Ziller [27], one can construct
appropriate metrics of sec ≥ 0 on these bundles and their corresponding disk bundles. One
then assumes by contradiction that the equivalence classes of such metrics with different
indices are connected by a path in the moduli space of non-negative sectional curvature. It
can subsequently be deduced that there is a path in the space of positive scalar curvature
metrics connecting these metrics and index theory applications to positive scalar curvature
finally imply a contradiction with the explicit computation of certain characteristic numbers.
We will include this proof for the sake of completeness.

In an effort to produce new examples for which one can say something about the topology
of the moduli space, we apply Dessai’s method to S7-bundles over S8. It is still an open
question whether these spaces admit metrics of non-negative sectional curvature, but it is
straightforward to obtain positive Ricci curvature metrics on them. The diffeomorphism
classification is due to Grey [25].

Theorem B Let M15 be the total space of a linear S7-bundle over S8 and assume M15 is a
rational homology sphere. The moduli space of positive Ricci curvature metrics on M has
infinitely many path components.

The next idea is to study the following spaces. Consider the involution on a Milnor sphere
which is induced by fiberwise antipodal maps on S3. The quotient of theMilnor sphere under
this involution is homotopy equivalent to RP7 and will be called a Milnor projective space.
The Grove-Ziller metric on the Milnor sphere is invariant under this involution and so we get
a metric of sec ≥ 0 on the quotient. We carry out the diffeomorphism classification of the
Milnor projective spaces to prove the following.

Theorem C There are 16 different oriented diffeomorphism types ofMilnor projective spaces.
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With the use of this classification, we can then get the following result about the moduli
space of sec ≥ 0 metrics on Milnor projective spaces.

Theorem D The moduli space of metrics of non-negative sectional curvature of all 16Milnor
projective spaces has infinitely many path components. The same is true for the moduli space
of positive Ricci curvature metrics.

Finally, we consider the same type of involutions on Shimada spheres (which are total
spaces of S7-bundles over S8 that are homotopy 15-spheres). The quotients will be called
Shimada projective spaces and a diffeomorphism finiteness result is obtained to prove the
following.

Theorem E There exist at least 4096 pairwise non-diffeomorphic Shimada projective spaces
whose moduli space of positive Ricci curvature metrics has infinitely many path components.

This note is organized as follows. In §2, we define sphere bundles over spheres in dimen-
sion 7 and 15 and present some of their topological properties. The Milnor and Shimada
projective spaces are then defined. In §3, we introduce the Eells-Kuiper invariant and present
the diffeomorphism classification of these sphere bundles. The diffeomorphism classifica-
tion of the quotients is carried out in §4. The classification is based on a result by Lopez
de Medrano [37]. We define and determine the Browder-Livesay invariant of the involution
on the Milnor and Shimada spheres, as well as the normal invariants of Milnor projective
spaces. Then, the Eells-Kuiper invariant of the Milnor and Shimada projective spaces are
computed and used to complete the diffeomorphism classification of the former and to give a
finiteness result for the latter. In §5.1 we construct metrics of sec ≥ 0 on S3-bundles over S4

and the Milnor projective spaces, while in §5.2 we construct positive Ricci curvature metrics
on S7-bundles over S8 and the Shimada projective spaces. Finally, in §6 we define the moduli
space of metrics and prove our main results.

2 Sphere bundles over spheres and their quotients by involutions

Let n = 1, 2 and fix a generator α ∈ H4n(S4n;Z). We use the same notation for the images
of α under the isomorphisms H4n(S4n;Z) ∼= H4n(S4n;Z) ∼= π4n(S4n), where in homology
α corresponds to the fundamental class and the second isomorphism is given by the Hurewicz
map (see for example [46, Chapter 7.4]). Consider S4n−1-bundles over S4n with structure
group SO(4n). Equivalence classes of such bundles are in one to one correspondence with
π4n−1(SO(4n)) ∼= Z ⊕ Z (see [47, Theorem 18.5]). Let σ : S4n−1 → SO(4n) be defined
by

σ(x)y := xy,

and ρ : S4n−1 → SO(4n − 1) ⊂ SO(4n) by

ρ(x)y := xyx−1,

where x ∈ S4n−1 and y ∈ R
4n are interpreted as (unit) quaternions if n = 1 and (unit)

octonions ifn = 2,with the correspondingmultiplication. Then it can be shown that {[σ ], [ρ]}
is a free generating set of π4n−1(SO(4n)). Let M8n−1

k,l be the total space of the S4n−1-bundle

over S4n determined by k[ρ] + l[σ ] ∈ πn−1(SO(4n)) and πS its projection map. Hence,
M8n−1

k,l can be identified with the quotient

D4n × S4n−1 � D4n × S4n−1/ ∼ (1)
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where (x, f (x)y) ∼ (x, y) ∈ S4n−1 × S4n−1 for the clutching function

f : S4n−1 → SO(4n) : x → (y 	→ xk+l yx−k).

Let D4n → W 8n
k,l

πD−→ S4n be the associated disk bundle and denote by ξk,l the associated

vector bundle R4n → Ek,l
πE−→ S4n .

Since W 8n
k,l 
 S4n we have H4n(W 8n

k,l ;Z) ∼= Z. We orient W 8n
k,l in such a way that

sign(W 8n
k,l ) = 1 (see p.22 for the defintion) and fix the induced orientation on the boundary

M8n−1
k,l .

Remark 2.1 Note that a change of orientation of the base leads to a diffeomorphismM8n−1
k,l

∼=
−M8n−1

−k,−l , whereas a change of orientation in the fiber leads to M8n−1
k,l

∼= −M8n−1
−k−l,l . Hence

M8n−1
k,−l

∼= M8n−1
k−l,l and we can therefore focus on l ≥ 0 from now on.

We summarize some properties of these bundles and spaces in the following (see [10] and
[25]).

Theorem 2.2 (1) The Euler class of ξk,l is e(ξk,l) = lα ∈ H4n(S4n;Z).
(2) The integer cohomology groups of M8n−1

k,l are

H0(M8n−1
k,l ;Z) ∼= H8n−1(M8n−1

k,l ;Z) ∼= Z,

if l �= 0 : H4n(M8n−1
k,l ;Z) ∼= Zl ,

if l = 0 : H4n−1(M8n−1
k,0 ;Z) ∼= H4n(M8n−1

k,0 ;Z) ∼= Z,

H j (M8n−1
k,l ;Z) = 0 otherwise.

(2) Both W 8n
k,l and M8n−1

k,l are spin and both have a unique Spin structure.

(3) The only non-trivial Pontrjagin classes of ξk,l , W 8n
k,l and M8n−1

k,l are

pn(ξk,l) = (4n − 2)(2k + l)α ∈ H4n(S4n;Z)

pn(W
8n
k,l ) = (4n − 2)(2k + l)π∗

D(α) ∈ H4n(W 8n
k,l ;Z)

pn(M
8n−1
k,l ) = (4n − 2)2kπ∗

S (α) ∈ H4n(M8n−1
k,l ;Z)

respectively.

Since H4n(M8n−1
k,l ;Z) ∼= Zl , it follows that M8n−1

k,l and M8n−1
k′,l ′ cannot be homotopy

equivalent if l �= l ′ (hence they cannot be diffeomorphic).
If l = 0, we see that M8n−1

k,0 is not a rational homology sphere. As we will see, our
argument depends on the fact that the above cohomology group with rational coefficients
vanishes so that we can pull back the Pontryagin classes from the cohomology group of the
disk bundle to the relative cohomology group. Hence, this case will be excluded from now
on.

If l = 1, it was proved by Milnor [39] for n = 1 and by Shimada [45] for n = 2 that
M8n−1

k := M8n−1
k,1 is homeomorphic, but not always diffeomorphic, to the standard (8n−1)-

sphere1. Consequently, M8n−1
k will be called aMilnor sphere if n = 1 and a Shimada sphere

if n = 2.

1 Note that Milnor [39] and Shimada [45] use different generators of π4n−1(SO(4n)).
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Now consider the involution τ on M8n−1
k which is induced by the fiberwise antipodal

map on S4n−1. Indeed, the antipodal map commutes with the action of the structure group
SO(4n) on the fibers and thus induces an action on the total space M8n−1

k (see [7, II.1.1]).
Equivalently, τ is the map induced by (x, y) 	→ (x,−y) on (x, y) ∈ D4n × S4n−1 from
Equation (1), when descending to the quotient. For n = 1, the pair (M7

k , τ ) is called aHirsch-
Milnor involution. For both n = 1, 2, this involution is smooth, orientation preserving and
fixed-point free. The quotient space Q8n−1

k := M8n−1
k /τ is homotopy equivalent to RP8n−1

(see [8, (3.1) Proposition]) and will be called a Milnor projective space if n = 1 and a
Shimada projective space if n = 2. Since being spin is a homotopy invariant, it follows that
Q8n−1

k is spin for both n = 1, 2 and all k (see [35, p.86-87]).
We also denote the involution induced by fiberwise antipodal maps on W 8n

k by τ . The
fixed point set of this involution is the zero-section S0 ∼= S4n .

Remark 2.3 Suppose thatW 8n
k is equipped with a τ -invariant metric which is of product form

near the boundary M8n−1
k . Since there is a unique Spin structure on W 8n

k , the involution τ

preserves this Spin structure (and the one on M8n−1
k ). The codimension of the fixed point set

inW 8n
k is a multiple of 4, and so by [1, Proposition 8.46] it follows in their terminology that τ

is of even type. This means that the group action induced by Z2 = {I d, τ } lifts to a Z2-action
on the Spin structure on W 8n

k , the complex spinor bundle and its space of sections which
commutes with the Spin+ Dirac operator D+

W (see Appendix A for the definition). Hence,
the Spin structure on M8n−1

k descends to a Spin structure on Q8n−1
k and its Spin Dirac

operator DM (which is the restriction of D+
W to the boundary) commutes with the induced

action of τ on sections of the spinor bundle and thus descends to a Spin Dirac operator DQ

on Q8n−1
k .

3 Diffeomorphism classification of sphere bundles over spheres

Let M4k−1 be a closed, oriented (4k−1)-dimensional manifold. LetW 4k be a compact, spin
manifold with boundary ∂W = M . The spin structure on W restricts to a spin structure on
M .

Suppose furthermore that the the following holds.

Condition 3.1 (Condition μ)

(1) The homomorphisms

j∗ : H4i (W , M;Q) → H4i (W ;Q) 0 < i < k

j∗ : H2k(W , M;Q) → H2k(W ;Q)

in the exact sequence of the pair (W , M) are isomorphisms.
(2) The homomorphism i∗ : H1(W ;Z2) → H1(M;Z2) is surjective, where i : M → W

denotes the inclusion.

Under these conditions, we can define

pi (W ) := ( j∗)−1(pi (W )) ∈ H4i (W , M;Q), (2)

0 < i < k, where pi (W ) ∈ H4i (W ;Q) are the rational Pontrjagin classes of W .
If M and W satisfy Condition 3.1, we can define the Eells-Kuiper invariant of M :

μ(M) ≡ 1

ak

(
〈Nk(p), [W , M]〉 + tksign(W )

)
mod 1 (3)
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where

Nk(p) := Âk(p1(W ), ..., pk−1(W ), 0) − tk Lk(p1(W ), ..., pk−1(W ), 0),

ak := 4/(3 + (−1)k) and tk := Âk(0, ..., 0, 1)/Lk(0, ..., 0, 1). Here Â and L denote the
respective genera from §7.1 and §7.2.

Proposition 3.2 [18, §3.] The Eells-Kuiper invariant satisfies the following properties.

(1) If M1 and M2 are orientation preservingly diffeomorphic, then μ(M1) = μ(M2).
(2) If −M denotes M with opposite orientation, then μ(−M) = −μ(M).
(3) μ(M1#M2) = μ(M1) + μ(M2).

LetM = M8n−1
k,l be the total space of a S4n−1-bundles over S4n for n = 1, 2 andW = W 8n

k,l

the total space of the corresponding disk bundle. Let x = π∗
D(α) ∈ H4n(W ;Z) ∼= Z

and let y be a generator of H4n(W , M;Z) ∼= Z such that j∗(y) = lx where j∗ :
H4n(W , M;Z) → H4n(W ;Z) is the homomorphism from the long exact sequence of the
pair. Hence ( j∗)−1(x) = 1

l y and from now on, we are dealing with rational coefficients.
Now we have

〈p2n(W ), [W , M]〉 = 〈( j∗)−1(pn(W )) ∪ pn(W ), [W , M]〉,
where pn(W ) = ( j∗)−1(pn(W )) (note that j∗ is an isomorphism on the cohomology groups
with rational coefficients in degree 4n). Using Theorem 2.2, we compute

〈p2n(W 8n
k,l ), [W 8n

k,l , M
8n−1
k,l ]〉 = (4n − 2)2

(2k + l)2

l
. (4)

Using Equation (3), we obtain the following.

Lemma 3.3 The Eells-Kuiper invariant of M8n−1
k,l is given by

μ(M8n−1
k,l ) ≡ 1

24n−2qn

(2k + l)2 − l

8l
mod 1,

where q1 = 7 and q2 = 127.

We can now present the diffeomorphism classification of the sphere bundles.

Theorem 3.4 [10, Theorem 1.5][25, Theorem 3.8.3] Let M8n−1
k,l and M8n−1

k′,l be the total

spaces of two S4n−1-bundles over S4n for n = 1, 2, l > 0. Then M8n−1
k,l is orientation

preservingly diffeomorphic to M8n−1
k′,l if and only if

μ(M8n−1
k,l ) = μ(M8n−1

k′,l ) and

2k ≡ 2γ k′ mod l

for some γ satisfying γ 2 ≡ 1 mod l.

In both cases, the proof makes use of the classification of highly connected manifolds in
dimensions 7 and 15 from Crowley’s PhD thesis [12]. See [12, Chapter 1] for an overview
of this classification.

From the above classification theorem, we can immediately conclude the following.
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Corollary 3.5 Let n = 1, 2. For each total space M8n−1
k,l of an S4n−1-bundle over S4n, the set

{M8n−1
k′,l }m∈Z, k′ = k + 24n−2lm · qn, q1 = 7 and q2 = 127, is an infinite family of manifolds

all orientation preservingly diffeomorphic to M8n−1
k,l .

With the help of some modular arithmetic, one can deduce the number of different dif-
feomorphism types in case l = 1.

Corollary 3.6 [18, §6. and 9.] There are 16 different oriented diffeomorphism types of Milnor
spheres and 4096 different oriented diffeomorphism types of Shimada spheres.

4 Diffeomorphism classification of quotients

The diffeomorphism classification of the quotients will be based on the following result.

Theorem 4.1 [37, Theorem 4] Let Qn be a smooth manifold and h : Qn → RPn a homotopy
equivalence, n ≥ 5. Then the diffeomorphism class of Qn is determined, up to connected
sum with an element of bPn+1, by its Browder-Livesay invariant and its normal invariant.

Recall that if
n is the group of h-cobordism classes of n-dimensional homotopy spheres,
where group addition is by connected sum, then bPn+1 ⊂ 
n is the subgroup consisting of
those elements which are the boundary of a parallelizable manifold.

We first define normal invariants. Let f : X → M be a map between two smooth
manifolds. Let νX denote the stable normal bundle over X , ξ a stable vector bundle over M
and b : νX → ξ a bundle map covering f . If b′ : νX → ξ ′ is another bundle map with ξ ′ a
stable vector bundle overM , then b and b′ are equivalent if there exists a bundle isomorphism
c : ξ → ξ ′ such that c ◦ b = b′.

With this notation, a normal map is a pair ( f , [b]) where f : Xn → M is a map of degree
one and [b] an equivalence class of bundle maps. Two normal maps ( fi , [bi ]) : Xi → M ,
i = 0, 1, are called normally cobordant if there exists a map F : Y n+1 → M and a bundle
map B : νY → ξ covering F , with Yn+1 a cobordism between X0 and X1, and such that
F |Xi = fi as well as [B|νXi ] = [bi ] for i = 0, 1. Then the pair (F, [B]) is called a normal
cobordism between ( f0, [b0]) and ( f1, [b1]). The normal cobordism class of a manifold M is
called its normal invariant and the set of normal invariants of M will be denoted by N (M).

Let Gn := { f : Sn−1 → Sn−1|deg( f ) = ±1}, which is a topological monoid when
equipped with the compact open topology, define the direct limit G := limn→∞Gn via sus-
pension and consider the corresponding classifying space BG. Denote by BO the classifying
space for stable linear bundles. Then there is a fibre map BO → BG whose fibre is denoted
by G/O . For a smooth manifold M , N (M) is non-empty and it is in one-to-one correspon-
dence with [M,G/O] (see [41, Theorem 2.23]). From now on, we will identify the set of
normal invariants with [M,G/O] without further mention.

In order to study involutions on homotopy spheres, we introduce the Browder-Livesay
invariant.

Let Mn be a closed oriented smooth n-dimensional manifold and T : M → M a smooth
fixed point free involution. A characteristic submanifold of (M, T ) is a compact submanifold
Cn−1 ⊂ Mn such that there exists a manifold with boundary An satisfying C = A ∩ T (A),
M = A∪T (A) and ∂A = C . We will also say that P := C/T is a characteristic submanifold
for the quotient M/T .

Let (�4k+3, T ), k ≥ 1, be a homotopy (4k + 3)-sphere with a smooth fixed point free
involution T . Let C ⊂ �4k+3 be a characteristic submanifold of this involution. For x, y ∈
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ker(H2k+1(C;Z) → H2k+1(A;Z))/torsion, where the map is induced by the inclusion, we
consider the bilinear form

B(x, y) := x · T∗(y)

where the dot stands for the intersection number. The bilinear form B is even, symmetric
and unimodular [38, I.1.3]. It follows that the index of B, defined as the difference between
the number of positive and negative values on the diagonal of a diagonalization of B, is a
multiple of 8 (see for example [30, p.92 Korollar]).

We can now define2 the Browder-Livesay invariant by

σ(�4k+3, T ) := 1

8
index(B),

which by the above observation is an integer. It can be shown that this invariant is well-defined
(i.e. it does not depend on the choice of the characteristic submanifold, see [6, Lemma. 3.2.]).

We say that an involution (�n, T ) desuspends if there is a smoothly embedded Sn−1 ⊂ �n

such that T (Sn−1) = Sn−1. The involution doubly desuspends if there is also a smoothly
embedded Sn−2 ⊂ Sn−1 ⊂ �n such that T (Sn−2) = Sn−2. The Browder-Livesay invariant
gives a condition for an involution on a homotopy sphere to desuspend.

Theorem 4.2 [38, I.1.3 Theorem] For n ≥ 6, a smooth fixed point free involution (�n, T )

desuspends if and only if σ(�n, T ) = 0.

4.1 Browder-Livesay invariant of involution onMilnor and Shimada spheres

Let M8n−1
k be either a Milnor or Shimada sphere and consider the involution τ induced by

fiberwise antipodal maps.
We begin by computing the Browder-Livesay invariant of (M8n−1

k , τ ).

Theorem 4.3 For each k ∈ Z, the involution τ on M8n−1
k doubly desuspends if n = 1 and

desuspends if n = 2. Hence, in particular σ(M8n−1
k , τ ) = 0 for both n = 1, 2.

Proof For n = 1, the proof is due to Hirsch and Milnor (see [29, Lemma 1]). The same
argument applies to n = 2.

We use the following explicit description of M15
k by Shimada [45]. Let S8 = {(s, σ ) ∈

O×R | ‖s‖2 + (σ − 1
2 )

2 = 1
4 , 0 ≤ σ ≤ 1} ⊂ R

9, whereO ∼= R
8 denotes the octonions. Let

V1 = S8 \ {(0, 0)} and V0 = S8 \ {(0, 1)}. Then
M15

k = V1 × S7 ∪ψ V0 × S7

where ψ : (V1 ∩ V0) × S7 → (V1 ∩ V0) × S7 is the diffeomorphism

ψ((s, σ, t)1) =
(
s, σ,

sk+1ts−k

‖s‖
)

= (s, σ, t ′)0.

Define h : M15
k → R by

h([s, σ, t]) =
{√

σ�(t) for [s, σ, t] ∈ M15
k with (s, σ ) �= (0, 0)

�(st)√
1−σ

for [s, σ, t] ∈ M15
k with (s, σ ) �= (0, 1).

2 We only give the definition in dimensions 4k + 3, but the Browder-Livesay invariant can be defined in all
dimensions (see [38, I.1.3]).
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Then h has two non-degenerate critical points (0, 1,±1). Therefore, it follows from Morse
theory that S140 := h−1(0) is diffeomorphic to the standard 14-sphere. It is easy to see that
S140 is invariant under τ and therefore this involution desuspends.

The last statement follows by Theorem 4.2. ��

4.2 Normal invariants of Milnor projective spaces

Next, we determine the normal invarinats of Milnor projective spaces Q7
k := M7

k /τ .
Let M be a smooth manifold. The smooth structure set3 hS(M) of M is the set of equiva-

lence classes of simple4 homotopy equivalences f : Xn → M (sometimes called homotopy
smoothings), where Xn is a smooth n-dimensional manifold. Two such simple homotopy
equivalences f0 : X0 → M and f1 : X1 → M are equivalent if there exists a diffeomor-
phism φ : X0 → X1 such that f1 ◦ φ 
 f0.

An element [ f ] ∈ hS(M) determines a normal map in the following way. Let g : M → X
be ahomotopy inverse of f : X → M . Taking ξ = g∗νX ,weget a stable vector bundle overM
with a bundle map b : νX → ξ , and thus a normal invariant α( f ) corresponding to f (we also
denote it by α(X) if there can be no confusion). This gives a map α : hS(M) → [M,G/O]
(see [38, §III.1.3.]).

Let Nα(Q7) be the restriction of Im(α) to Milnor projective spaces.

Proposition 4.4 The map

β : Nα(Q7) → Z4

α(Q7
k) 	→ 28μ(M7

k ) mod 4

is a bijection, where we take 28μ(M7
k ) ∈ {0, 1, 2, ..., 27}.

Proof Let k1, k2 ∈ Z. If α(Q7
k1

) = α(Q7
k2

), then by [31, Lemma 5.5.1. and (5.5.2)] and [31,
Corollary 5.4.11], it follows that (2k1 − 1) ≡ ±(2k2 − 1) mod 16. A quick computation
then shows that 28μ(M7

k1
) ≡ 28μ(M7

k2
) mod 4 and thus β is well-defined. Surjectivity of β

is immediate (take for example k = 1, 2, 3, 4). By the proof of [38, V.6 Theorem], the set
Nα(Q7) has four elements. Hence the bijectivity of β follows. ��

Note that this result can also be deduced from the work of Mayer [36].

4.3 Eells-Kuiper invariant of theMilnor and Shimada projective spaces

To complete the diffeomorphism classification of Milnor projective spaces, one can compute
their Eells-Kuiper invariant. The computation was carried out by Tang and Zhang [50], using
the formula below, and the same argument can be applied to Shimada projective spaces.

Let M4k−1 be a closed spin manifold, equipped with a Riemannian metric gM and sup-
pose that H4i (M;R) = 0 for all 0 < i < k. This means that there exist forms p̂i (M) ∈
�4i−1(M)/Im(d) such that pi (M) = d p̂i (M) where pi (M) are the Pontrjagin forms of
M with respect to the metric gM . Now let α(M) ∈ H4k−1(M;R) = �4k−1(M)/Im(d) be
defined as

Âk(p1, ..., pk−1, 0) − tk Lk(p1, ..., pk−1, 0),

3 Also denoted by SDi f f (M).
4 A homotopy equivalence is called simple if its Whitehead torsion vanishes (see [44, Definition 8.12]), which
is always the case for simply connected manifolds.
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with one factor pi (M) replaced by p̂i (M) in each monomial5. Remember that tk =
Âk(0, ..., 0, 1)/Lk(0, ..., 0, 1).

Then there is the following formula for the Eells-Kuiper invariant, which is helpful in the
case a spin coboundary cannot be found.

Theorem 4.5 [22, Theorem 4.8] Let M be as above, DM denote its Spin Dirac operator (see
§7.1) and Bev

M its odd signature operator (see §7.2). Then

μ(M) = 1

ak

(η(DM ) + h(DM )

2
− tkη(Bev

M ) −
∫

M
α(M)

)
∈ Q/Z,

where ak = 4/(3+ (−1)k), η(DM ) and η(Bev
M ) are the corresponding eta-invariants defined

via Equation (15) and h(DM ) = dim(ker DM ).

Note in particular that the Eells-Kuiper invariant does not depend on the choice of a
Riemannian metric.

Lemma 4.6 The Eells-Kuiper invariant of Q8n−1
k , n = 1, 2, is given by

μ(Q8n−1
k ) ≡

(k(k + 1)

24n · qn ± (2k + 1)

24n+1

)
mod 1, (5)

where q1 = 7 for Milnor projective spaces and q2 = 127 for Shimada projective spaces.

Proof We can apply Theorem 4.5 to Q8n−1
k for both n = 1, 2. Let D+

W , DM and DQ denote
the corresponding Dirac operators on W := W 8n

k , M := M8n−1
k and Q := Q8n−1

k from
Remark 2.3. Let Bev

Q denote the odd signature operator of Q. Then Theorem 4.5 gives

μ(Q) ≡ η(DQ) + h(DQ)

2
− t2nη(Bev

Q ) −
∫

Q
α(Q)

where t2 = −1/(25 · 7) and t4 = −1/(29 · 127). Applying Theorem 7.6 to the covering
π : M → Q with the trivial representation of π1(Q), we get

η(DQ) = 1

2

(
η(DM ) + ητ (DM )

)
,

η(Bev
Q ) = 1

2

(
η(Bev

M ) + ητ (B
ev
M )

)
,

where Bev
M is the lifted odd signature operator on M . Remember that the fixed point set of

the action of τ on W := W 8n
k is the zero-section S4n . By Theorem 7.2, 7.3 and the above,

we therefore obtain

η(DQ) = −index(D+
W ) +

∫

W
Â(p) − h(DM )

2
− index(D+

W , τ ) + aspin(S
4n) − hτ (DM )

2
.

Similarly, by Theorem 7.4, 7.5 and the above,

η(Bev
Q ) = 1

2

(
− sign(W ) +

∫

W
L(p) − sign(W , τ ) + asign(S

4n)
)
.

Now, as wewill see in §5.1,W can be equippedwith ametric of non-negative scalar curvature
everywhere, positive scalar curvature on the boundary M and which is of product form near

5 For example, if Â2(p1(M), 0) − t2L2(p1(M), 0) = 1
27·7 p1(M) ∧ p1(M) then α(M) = 1

27·7 p1(M) ∧
p̂1(M).
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the boundary (see Theorem 5.1 and 5.2). Therefore, it follows by the vanishing theorem 7.8
that index(D+

W ), index(D+
W , τ ), h(DM ), hτ (DM ), as well as h(DQ), all vanish.

Recall that sign(W ) = 1. Since S4n is the fixed point set of the action of τ on W , τ

preserves the generator of H4n(S4n;Z) and thus we have sign(W , τ ) = 1.
Let νk be the normal bundle of the zero section S4n in W . Then νk ∼= ξk , where ξk is the

vector bundle associated to the S4n−1-bundle over S4n . By Equations (22) and (20), we have

aspin(S
4) = ± 1

25

∫

S4n
p1(ξk), aspin(S

8) = ±
∫

S8

( 5

211 · 3 p
2
1(ξk) − 1

29 · 3 p2(ξk)
)
,

so that, using Theorem 2.2.4, we obtain

aspin(S
4n) = ± (2k + 1)

24n
.

Similarly, by Equation (29) and Theorem 2.2.1,

asign(S
4n) =

∫

S4n
e(ξk) = 1.

Finally, [33, Lemma 2.7] implies that
∫

W

(
Â(p) − tk L(p)

) −
∫

M
α(M) = 〈p2n(W ), [W , M]〉.

Applying Equation (4) and putting all of the above together, the result now follows. ��
Remark 4.7 Observe that the sign in Equation (5) depends on the choice of the Spin structure
on Q8n−1

k (see [40, p.58]). Indeed, we have H1(Q8n−1
k ;Z2) ∼= Z2 and so there are two

different Spin structures on Q8n−1
k . The Eells-Kuiper invariant μ(Q8n−1

k ) therefore has to
be interpreted as a pair of values, not as a singular value.

Proposition 4.8 Let Q7
ki

= M7
ki

/τ for i = 0, 1. Then μ(M7
k0

) = μ(M7
k1

) implies μ(Q7
k0

) =
μ(Q7

k1
).

Proof Observe that μ(M7
k ) = μ(M7

k+56m) and μ(Q7
k) = μ(Q7

k+56m) for m ∈ Z. The
result now follows by computing and comparing the different Eells-Kuiper invariants for
k = 0, 1, ..., 55. ��
Proposition 4.9 There are 4096 different pairs of values for μ(Q15

k ).

Proof This is achieved through use of the C++ code in the Appendix B. ��

4.4 Classification of Milnor projective spaces

Theorem 4.10 Let Q7
ki

= M7
ki

/τ be a Milnor projective space for ki ∈ Z, i = 0, 1. If M7
k0
is

diffeomorphic to M7
k1
, then Q7

k0
is diffeomorphic to Q7

k1
.

Proof If M7
k0

is diffeomorphic to M7
k1
, then 28μ(M7

k0
) = 28μ(M7

k1
) and therefore by

Proposition 4.4 their normal invariants are equal: α7(Q7
k0

) = α7(Q7
k1

). By Theorem 4.3,

the Browder-Livesay invariant is σ(M7
k , τ ) = 0 for all k ∈ Z, hence by Theorem 4.1

it follows that Q7
k0

is diffeomorphic to Q7
k1
#�7 for some sphere �7 ∈ bP8. Suppose
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μ(�7) = l
28 mod 1, where 0 ≤ l < 28 is an integer. By the properties of the Eells-Kuiper

invariant (see Proposition 3.2), we have

μ(Q7
k0) = μ(Q7

k1#�
7) ≡ μ(Q7

k1) + l

28
mod 1.

Proposition 4.8 now implies that l = 0. Therefore �7 ∼= S7 and finally Q7
k1
#�7 ∼= Q7

k1
. ��

Theorem 4.11 There are 16 different (oriented) diffeomorphism classes of Milnor projective
spaces. All of the 16 diffeomorphism types can be realized by an infinite family of such
quotients.

Proof The first statement follows from Corollary 3.6. The second statement follows from
Theorem 3.4, 4.10 and Corollary 3.5. ��

This completes the proof of Theorem C.

4.5 Diffeomorphism finiteness of Shimada projective spaces

Asof the timeofwriting, the normal invariants of Shimadaprojective spaces are still unknown.
Hence, the best we can do is to give a finiteness result and a lower limit for the number of
diffeomorphism types of Shimada projective spaces.

Lemma 4.12 There are only finitelymany different oriented diffeomorphism types of Shimada
projective spaces.

Proof If ai is the order of πi (G/O) and bi is the order of πi (G/O) ⊗ Z2, then it can be
shown that the order of [RP15,G/O] is less than or equal to∏14

i=1 a15bi (see [38, V.1]). Now,
since a15 = 2 and bi is finite for all i (see [48]), it follows that the order of [RP15,G/O]
is finite. In particular, there are only finitely many distinct normal invariants that Shimada
projective spaces can have.

By Theorem 4.3 the Browder-Livesay invariant of a Shimada projective space Q15
k van-

ishes. Therefore, by the above and Theorem 4.1, the result follows since |bP16| = 8128 is
finite. ��
Proposition 4.13 There are finitely many, but at least 4096 different oriented diffeomorphism
types of Shimada projective spheres which can be realized by an infinite family of orientation
preservingly diffeomorphic manifolds.

Proof The first statement follows from Lemma 4.12. The second statement follows from
Proposition 4.9. The last statement now follows by considering {Q15

k+130048m}m∈Z, which all
have the same Eells-Kuiper invariant as Q15

k for any k ∈ Z (see Lemma 4.6). ��

5 Construction of the riemannianmetrics

5.1 Metrics of non-negative sectional curvature

Consider princiapl S3 × S3-bundles over S4. These bundles are classified by elements of
π3(SO(4)) = Z ⊕ Z. Let P10

k,l denote the total space corresponding to [α] ∈ π3(SO(4))

where6 α(q)u = qk+luq−k .

6 Note that Grove and Ziller [27] use different indices.
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The manifold P10
k,l admits a cohomogeneity one action by S3 × S3 × S3/ ± (1, 1, 1) with

codimension 2 singular orbits [27, Proposition 3.11]. By [27, Theorem E], it therefore admits
an S3 × S3 × S3-invariant metric with non-negative sectional curvature.

Let S3 × S3 × 1 be the subaction of S3 × S3 × S3 corresponding to the principal S3 × S3-
bundle action on P10

k,l . Note that S
3 × S3 ×1 acts freely and isometrically on P10

k,l and that the

quotient P∗
k,l := P10

k,l/(−1,−1) is the total space of the associated principal SO(4)-bundle

over S4. Let S3 × S3 act on S3 via (q1, q2) · v = q1vq
−1
2 , where quaternion multiplication

is understood. Then M7
k,l := P10

k,l ×S3×S3 S3 is an S3-bundle over S4 with structure group
SO(4) and Euler class l.

Theorem 5.1 Fix k ∈ Z, l > 0 and let W 8
k,l be the disk bundle associated to M7

k,l . Then

M7
k,l admits a metric that is simultaneously of non-negative sectional curvature and positive

scalar curvature, which will be called itsGrove-Ziller metric and denoted by g̃GZ
k,l . It extends

to a metric hk,l of non-negative sectional curvature on W 8
k,l which is of product form near

the boundary.
When l = 1, the metric g̃GZ

k := g̃GZ
k,1 on the Milnor sphere M7

k descends to a metric of

non-negative sectional curvature on Q7
k , which we likewise call its Grovez-Ziller metric and

denote by gGZ
k . It satisfies g̃GZ

k = π∗
k (gGZ

k ), where πk : M7
k → Q7

k is the projection.

Proof The construction of the metrics on M7
k,l and W 8

k,l with the above properties has been
discussed in [14] (see also [53, Theorem 6.1.2]).

The involution τ which defines the Milnor projective spaces is induced by the action of
I dP ×(−I dS3) on P10

k,1×S3. Therefore, themetric g̃GZ
k is invariant under τ and Q7

k := M7
k /τ

inherits ametric gGZ
k with non-negative sectional curvature, satisfying the required properties.

��

5.2 Positive Ricci curvature metrics

We can now construct positive Ricci curvature metrics on S4n−1-bundles over S4n that extend
to the corresponding disk bundle.

Proposition 5.2 Let M8n−1
k,l be the total space of a linear S4n−1-bundle over S4n and W 8n

k,l

the total space of the associated disk bundle, n = 1, 2. There exists a metric g̃k,l on W 8n
k,l

which has positive scalar curvature, is of product form near the boundary M8n−1
k,l and such

that gk,l = g̃k,l |M8n−1
k,l

has positive Ricci curvature.

Proof Let P := Pk,l , M := M8n−1
k,l and W := W 8n

k,l be the total space of the associated

principal SO(4n)-bundle, the S4n−1-bundle and the D4n-bundle over S4n respectively. Equip
S4n with the round metric gR and D4n with a torpedo metric gtor (see [52] for the definition
and properties).

Fix a connection on P → S4n . Then by Vilms [51] (see also [26, Proposition 2.7.1]), there
exists a unique metric on W = P ×SO(4n) D4n such that the projection πW : W → S4n is
a Riemannian submersion with totally geodesic fibers isometric to (D4n, gtor ). Denote this
metric by g̃. The restriction g := g̃|M on M = P ×SO(4n) S4n−1 corresponds to metric of
Vilms applied to M = P ×SO(4n) S4n−1.

Let V := ker(πW )∗ be the vertical distribution onW and setH as the orthogonal comple-
ment of V with respect to g̃W . Consider the canonical variation

g̃t |V := t · g̃|V , g̃t |H := g̃|H and g̃t (V,H) := 0
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on W , where t ∈ R≥0. This amounts to setting

g̃t (X , Y ) := t · gtor (XV , YV ) + π∗
W gR(X , Y ), for X , Y ∈ TxW . (6)

If we set gt := (g̃t )|M and restrict to VM := ker(πM )∗ ⊂ V with its corresponding horizontal
distributionHM , then this simultaneously corresponds to a canonical variation on M = ∂W :

gt |VM = t · g|VM , gt |HM = g|HM and gt (VM ,HM ) = 0.

Now by [26, Theorem 2.7.3] and its proof applied to E = M , B = S4n and F = S4n−1,
there is an 0 < ε << 1 such that gM := gε is of positive Ricci curvature.

Next we show that the metric on W has positive scalar curvature. By [5, 9.70(d)], the
scalar curvature of the canonical variation metric is given by

scalg̃t = 1

t
scalgF + scalgB ◦ πW − t |A|2

where A is a tensor field on W and in our case, gF = gtor and gB = gR . Obviously,
scalgtor > 0 and scalgR > 0. Therefore, choosing ε to be even smaller if necessary, the
metric gW := gε is of positive scalar curvature everywhere and restricts to the positive Ricci
curvature metric gM = gW |M .

Finally, Equation (6) shows that gW is of product form near the boundary. As we have
mentioned above, the fibers on W are isometric to (D4n, gtor ) and the canonical variation
corresponds to shrinking the fibers, therefore respecting the product form near the boundary
(see [32, p.10]). ��

5.3 Metrics on Shimada projective spaces

Let M15
k be a Shimada sphere equipped with the metric gk from Proposition 5.2 (remember

that M15
k := M15

k,1). Since the fibers of the Riemannian submersion πS : M15
k → S8 are

isometric to the round sphere (S7, gR) (see the proof of Proposition 5.2), it follows that the
involution τ onM15

k , which is induced by fiberwise antipodalmaps, is an isometry. Therefore,
the induced metric g′

k on the quotient Q15
k := M15

k /τ is of positive Ricci curvature and
satisfies gk = π∗

k (g′
k) where πk : M15

k → Q15
k is the canonical projection.

Remark 5.3 The exact same argument applies to construct positive Ricci curvature metrics
on Milnor projective spaces.

6 Moduli spaces of riemannianmetrics and proofs

For more details on moduli spaces of Riemannian metrics, see [49].
Let M be a compact smooth manifold and R(M) the set of Riemannian metrics on M ,

equipped with the C∞-topology of uniform convergence of all the derivatives. If we restrict
to metrics with sec ≥ 0, Ric > 0 and scal > 0, we get the corresponding sets Rsec≥0(M),
RRic>0(M) and Rscal>0(M). The group of diffeomorphisms Diff(M) acts on R(M) by
taking pullbacks of the metrics. The moduli space of Riemannian metrics of M is defined
as the quotient space M(M) := R(M)/Diff(M) whose elements are isometry classes of
Riemannian metrics. If we restrict to isometry classes of metrics of sec ≥ 0, Ric > 0 and
scal > 0 we get corresponding moduli spacesMsec≥0(M),MRic>0(M) andMscal>0(M).

Let C either be sec ≥ 0 or Ric > 0.
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Proposition 6.1 Let M4k−1 be a closed spin (4k − 1)-dimensional manifold. Let φi : M →
Mi be an orientation preserving diffeomorphism and W 4k

i a spin manifold with boundary
∂Wi = Mi for i = 0, 1. Suppose furthermore that sign(W0) = sign(W1) and that all the spin
structures are unique. Let g̃i be a metric on Wi which is of scal ≥ 0 everywhere, scal > 0
on the boundary, of product form near the boundary and such that gi := g̃i |Mi satisfies the
curvature condition C. Let hi := φ∗

i (gi ), i = 0, 1. Then if h0 andψ∗(h1) lie in the same path
component of RC (M) for some orientation preserving ψ ∈ Diff(M), there exist a >> 0
and a path γ : I → Rscal>0(M) with γ (0) = h0 and γ (1) = ψ∗(h1) such that the spin
manifold

(X4k, g) := (W0, g̃0) ∪
φ−1
0

(M × [0, a], γ (t/a) + dt2) ∪φ1ψ (−W1, g̃1)

satisfies index(D+
X ) = 0 and sign(X) = 0, where D+

X is the Spin+ Dirac operator of X.

Proof Let γ : I → RC (M) be the path with endpoints γ (0) = h0 and γ (1) = ψ∗(h1).
If C = {Ric > 0}, the path γ in particular also lies inRscal>0(M). If C = {sec ≥ 0}, by

Böhm and Wilking [9], the path γ instantly evolves to a path inRRic>0(M) under the Ricci
flow. If we concatenate this path with the orbits of the endpoints of γ under the Ricci flow,
we get a path inRscal>0(M) with the same endpoints as γ . We will still denote this resulting
path by γ . In any case, we can now reparametrize this path (and still denote it by γ ) in such
a way that it becomes constant near the endpoints γ (0) = φ∗

0 (g0) and γ (1) = ψ∗(φ∗
1 (g1)).

According to Gromov and Lawson [20, Lemma 3], the product M ×[0, a] equipped with
γ (t/a)+dt2 has positive scalar curvature for some a � 0. Hence, we can define X as above.
The index of the Spin+ Dirac operator of X corresponds to the relative index invariant of
Gromov and Lawson [21, p.116].

Since the metric on X has scal ≥ 0 everywhere and scal > 0 on the cylinder, by
the standard argument of Lichnerowicz [34], the index of D+

X vanishes. Note that X is
diffeomorphic to W0 ∪α (−W1), where α := φ1ψφ−1

0 . Then, by a formula which is due to
Novikov (see [4, Proposition (7.1)]), we have sign(X) = sign(W0) + sign(−W1) = 0. ��

6.1 Proof of Theorems A and B

Fix k ∈ Z, l > 0 and let M8n−1 := M8n−1
k,l be the total space of a linear S7-bundle over S8.

Then, by Corollary 3.5, for k(m) = k + 24n−2lm · qn , m ∈ Z, the set {M8n−1
k(m),l}m∈Z is an

infinite family of manifolds orientation preservingly diffeomorphic to M8n−1.
Fix m0,m1 ∈ Z such that |2k0 + l| �= |2k1 + l|, where ki := k + 24n−2lmi · gn for

i = 0, 1. Denote by φi : M → M8n−1
ki ,l

the diffeomorphism for i = 0, 1 (see Theorem 3.4).

For n = 1, equip M7
i := M7

ki ,l
with the metric gi := g̃GZ

ki ,l
from Theorem 5.1 and if n = 2,

equip M15
i := M15

ki ,l
with the metric gi := gki ,l from Proposition 5.2. In both cases, let

hi := φ∗
i (gi ) for i = 0, 1. Denote W 8n

i := W 8n
ki ,l

.

The proof goes by contradiction. Assume there is a path δ in MC (M8n−1) (where C =
{sec ≥ 0} if n = 1 andC = {Ric > 0} if n = 2)with endpoints δ(0) = [h0] and δ(1) = [h1].
As a consequence of the Ebin slice theorem (see [17] and [11, Proposition 4.6]), this path
lifts to a path ε in RC (M8n−1) such that ε(0) = φ∗

0 (g0) and ε(1) = ψ∗(φ∗
1 (g1)) for some

ψ ∈ Diff(M8n−1). If ψ is orientation reversing, we can replace g1 by its pullback under
an orientation reversing diffeomorphism of M8n−1

1 (the pullback of g1 by this orientation
reversing diffeomorphism still is a representative of [φ∗

1 (g1)] in MC (M8n−1)), in order to
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compensate. Hence, we can from now on assume (without loss of generality) that ψ is
orientation preserving.

Then, by Proposition 6.1, we have index(D+
X ) = 0 and sign(X) = 0, where X8n :=

W0 ∪
φ−1
0

(M × [0, a]) ∪φ1ψ (−W1).

By the Atiyah-Singer index theorem [4, Theorem (5.3)], we have

index(D+
X ) = 〈 Â(X8), [X8]〉 =

〈
−4p2(X8) + 7p21(X

8)

5760
, [X8]

〉

and

index(D+
X ) = 〈 Â(X16), [X16]〉 (7)

=
〈

−192p4 + 512p3 p1 + 208p22 − 904p2 p21 − 904p41
464486400

, [X16]
〉

. (8)

By Hirzebruch’s signature theorem (see [4, Theorem (6.6)]),

sign(X8) = 〈L(X8), [X8]〉 =
〈
7p2(X8) − p21(X

8)

45
, [X8]

〉

and

sign(X16) = 〈L(X16), [X16]〉 =
〈
381p4 − 71p3 p1 − 19p22 + 22p2 p21 − 3p41

14175
, [X16]

〉
.

(9)
If n = 1, the two preceding constraints imply 〈p21(X8), [X8]〉 = 0. If n = 2, by the

Mayer-Vietoris exact sequence, we have H4(X16;Z) = 0. Therefore p1(X16) = 0 and so
by the above, Equations (7) and (9) reduce to

〈−192p4 + 208p22, [X16]〉 = 0,

〈381p4 − 19p22, [X16]〉 = 0.

It follows that both 〈p4, [X16]〉 and 〈p22, [X16]〉 must vanish.
However, using Equation (4), for we compute

〈p21(X8n), [X8n]〉 = 〈(p21(W 8n
0 ), [W 8n

0 , M8n−1
0 ]〉 − 〈(p21(W 8n

1 ), [W 8n
1 , M8n−1

1 ]〉
= (4n − 2)2

l

(
(2k0 + l)2 − (2k1 + l)2

)
.

See §3 for the definition of p1(Wi ) for i = 0, 1.
This is a contradiction, since we assumed |2k0 + l| �= |2k1 + l| at the beginning of the

proof. Hence [h0] and [h1] cannot lie in the same path component of MC (M8n−1).
In case n = 1, one can use use the exact same argument but starting with the positive Ricci

curvature metrics from Proposition 5.2 to arrive at the same conclusion on MRic>0(M7).
Using Theorem 3.4, this completes the proof of Theorems A and B. ��

Remark 6.2 If l = 1, i.e M15
k,1 is a homotopy 15-sphere, this result was already proved by

Wraith [55] using a different method to construct suitable positive Ricci curvature metrics
that extend to a coboundary (see also [56]).Wraith’s method can also be applied to themoduli
space of more general S7-bundles over S8, leading to the same result.
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6.2 Proof of Theorems D and E

Fix k ∈ Z and let Q8n−1 := Q8n−1
k = M8n−1

k /τ be a Milnor projective space for n = 1 or a
Shimada projective space for n = 2 and set M8n−1 := M8n−1

k .
Fixm0,m1 ∈ Z such that |2k0+1| �= |2k1+1| (where ki = k+24n−2mi ·qn for i = 0, 1)

and such that there exist orientation preserving diffeomorphisms �i : Q8n−1 → Q8n−1
ki

and

τ -equivariant diffeomorphisms �̃i : M8n−1 → M8n−1
ki

for i = 0, 1.

Equip Q7
i and the corresponding Milnor sphere M7

i with the above Grove-Ziller metric
gi := gGZ

ki
and g̃i := g̃GZ

ki
respectively (see Theorem 5.1). Equip Q15 and the corresponding

Shimada sphere M15 := M15
k with the metric gi := g′

ki
from section 5.3 and g̃i := gki ,1

from Proposition 5.2 respectively.
We then have the following commutative diagram.

M8n−1
0 M8n−1 M8n−1

1

Q8n−1
0 Q8n−1 Q8n−1

1

π0

�̃0 �̃1

π π1

�0 �1

where πi and π are the corresponding canonical projections for i = 0, 1.
The proof is by contradiction. Let hi := �∗

i (gi ) for i = 0, 1. Consider [h0], [h1] ∈
MC (Q8n−1) (where C = {sec ≥ 0} if n = 1 and C = {Ric > 0} if n = 2) and assume
that there is a path between them in this moduli space. As a consequence of the Ebin slice
theorem, this path lifts to a path ε in RC (Q8n−1) such that ε(0) = h0 and ε(1) = φ∗(h1)
for some φ ∈ Diff(Q8n−1). If φ is orientation reversing, we can replace g1 by its pullback
under another orientation reversing diffeomorphism of Q8n−1

1 , in order for the composition
of the two diffeomorphisms to be orientation preserving. Hence, we can from now on assume
(without loss of generality) that φ is orientation preserving.

Recall that π is a local isometry. Then, the pullback ε̃ := π∗(ε) is a path in RC (M8n−1)

starting at ε̃(0) = π∗(h0) and ending at ε̃(1) = π∗φ∗(h1). Now as a special case of [8,
(3.2) Proposition.], there exists an orientation preserving diffeomorphism φ̃ ∈ Diff(M7)

such that π ◦ φ̃ = φ ◦ π . By commutativity of the above diagrams, we see that we can
rewrite the endpoints as ε̃(0) = �̃∗

0π∗
0 (g0) = h̃0 and ε̃(1) = φ̃∗�̃∗

1π∗
1 (g1) = φ̃∗(h̃1) where

h̃i := �̃∗
i (g̃i ) for i = 0, 1.

We can now apply Proposition 6.1 to conclude that index(D+
X ) = 0 and sign(X) = 0,

where X8n := W0 ∪
φ−1
0

(M × [0, a]) ∪φ1ψ (−W1).
The considerations and computations of the proof of Theorems A and B apply in exactly

the same way (remember that l = 1) in this situation, and hence we arrive at the desired
contradiction. Therefore [h0] and [h1] cannot lie in the same path component ofMC (Q8n−1).

By Theorem 4.11, for the 16 different diffeomorphism types there are infinitely many
indices such that theMilnor projective spaces are all pairwise diffeomorphic, hence it follows
that the moduli space of sec ≥ 0 metrics has infinitely many path components and thus
Theorem D has been proved.

By Proposition 4.13, there are at least 4096 different diffeomorphism types which can be
expressed as an infinite family of diffeomorphic manifolds with different indices. Hence, by
the above, for each of these diffeomorphism types the moduli space of Ric > 0 metrics has
infinitely many path components and thus Theorem E follows. ��
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7 Appendix A. Index theory

Let W be a compact Riemannian manifold which is of product form near its boundary
M = ∂W . Let DW : �(E) → �(F) be a linear first order elliptic differential operator for
some vector bundles E and F over W , endowed with a smooth inner product. Denote by
D∗

W its adjoint operator. Let G be a subgroup of the isometry group of W and assume that
the action of G is a product near the boundary. Suppose furthermore that the action lifts to
E and F and that the induced map on sections commutes with DW . Then, for each g ∈ G,
the equivariant index of DW is defined by

index(DW , g) := tr(g|kerDW ) − tr(g|kerD∗
W

). (10)

We also set
hg(DM ) := tr(g|kerDM ). (11)

The equivariant eta-invariant ηg(DM ) is defined as ηg(0), where

ηg(z) :=
∑
λ�=0

sign(λ)tr(g#λ)

|λ|z , (12)

for g#λ the map induced by g on the eigenspaces E ′
λ of DM .

For g = e = I dW , we get

index(DW ) := index(DW , e) = dim(kerDW ) − dim(kerD∗
W ), (13)

h(DM ) := he(DM ) = dim(kerDM ), (14)

and
η(DM ) := ηe(DM ) = η(0) (15)

is the eta-invariant associated to DM .

Remark 7.1 Let W be a compact, oriented Riemannian manifold (possibly with boundary)
and g : W → W an orientation preserving isometry. Consider a fixed point component
N ⊂ Wg and denote by ν its normal bundle inW . Then the differential of g induces a bundle
isometry dg : ν → ν and from representation theory, it follows immediately that there is a
direct sum decomposition

ν = ν(π) ⊕
⊕

0<θ<π

ν(θ)

where ν(π) is real and ν(θ) is complex for 0 < θ < π , dg acts on ν(π) via multiplication
by −1 and on ν(θ) via multiplication by eiθ (see for example [35, pp.262-265]).

7.1 SpinDirac operator

See [35, Chapter II] and [43, Chapter 11] for more details on the Spin Dirac operator.
Let Mn be an n-dimensional compact spin manifold (possibly with non-empty boundary).

Let S be the associated spinor bundle. Equip S with the Riemannian connection∇ induced by
the canonical Riemannian connection on PSO . The Spin Dirac operator of S at x ∈ M is the
first-order differential operator DM : �(S) → �(S) defined by DM (σ ) := ∑n

j=1 e j · ∇e j σ

where {e1, ..., en} is an orthonormal basis of TxM and “·" denotes Clifford multiplication.
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It is well-known that this operator is elliptic and formally self-adjoint (see [35, II§5]). In
particular, if M is a closed manifold, DM being elliptic implies that dim(ker DM ) is finite.

If n = 4k, the spinor representation splits and there is a corresponding decomposision
S = S+ ⊕ S−. The Spin Dirac operator DM preserves this Z2-grading and exchanges the
factors. We may restrict the Spin Dirac operator to obtain operators D+

M : �(S+) → �(S−)

and D−
M : �(S−) → �(S+) which satisfy (D+

M )∗ = D−
M . We call D+

M the Spin+ Dirac
operator of M .

If W 4k is a compact spin manifold with boundary M = ∂W , then the restriction of D+
W

to M can be identified with the Spin Dirac operator DM on M .
Let Â denote the genus associated to the characteristic power series (

√
z/2)/ sinh(

√
z/2)

with corresponding multiplicative sequence { Âk} (see [42, §19.] and [35, III §11]). It is a
power series in the Pontrjagin classes (or forms) of M4k . In particular, for k = 1, 2 and 4 we
have

Â1(p1) = − 1

24
p1, (16)

Â2(p1, p2) = 1

5760

(
− 4p2 + 7p21

)
, (17)

Â4(p1, p2, p3, p4) = 1

464486400

(
− 192p4 + 512p3 p1 + 208p22 − 904p2 p

2
1 + 381p41

)
.

(18)

If xi denote the formal roots of T M for i = 1, ..., 2k (see [28, p.9] and [35, III §11]), then
the Pontrjagin classes are given by the elementary symmetric functions7 in the square of the
formal roots, i.e. pi (M) = σi (x21 , ..., x

2
2k), and the Â-genus is given by

Â(M) =
2k∏
i=1

xi/2

sinh(xi/2)
. (19)

Theorem 7.2 (Spin Atiyah-Patodi-Singer index theorem) [2, Theorem (4.2)] Let W 4k be a
Riemannian spinmanifoldwhich is of product formnear the boundary M4k−1 = ∂W.Assume
that the Spin+ Dirac operator D+

W and the restriction DM to the boundary M satisfy the
APS boundary condition (see [2]). Then the index of D+

W : �(S+, P) → �(S−) is given by

index(D+
W ) =

∫

W
Â(W ) − h(DM ) + η(DM )

2

where index(D+
W ), h(DM ) and η(DM ) are defined in Remark in Equations (13),(14) and

(15), Â is the Â-genus in the Pontrjagin forms of the Riemannian metric on W.

If E is a real oriented rank 2k-vector bundle with formal splitting E = E1 ⊕ ... ⊕ Ek into
oriented 2-plane bundles and y j = e(E j ), we define

Âπ (E) := 1

(2i)k

k∏
j=1

1

cosh(y j/2)
. (20)

7 Recall for example that σ1(z1, ..., zn) = ∑n
i=1 zi and σ2(z1, ..., zn) = ∑

i< j zi z j .
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For a complex vector bundle F with formal splitting F = l1 ⊕ ... ⊕ lk into complex line
bundles bundles and x j = c1(l j ), let

Âθ (F) := 1

2k

k∏
j=1

1

sinh( 12 (x j + iθ))
(21)

where 0 < θ < π .
Applying Donnelly’s equivariant index theorem [16, Theorem 1.2] to the Spin+ Dirac

operator, we obtain the following.

Theorem 7.3 (Spin equivariant index theorem) Let W 4k be a compact Riemannian spin
manifold which is of product form near the boundary M4k−1 = ∂W. Suppose that the
Spin+ Dirac operator D+

W and the restriction DM to the boundary M satisfy the APS
boundary condition. Let g : W → W be an isometry preserving the Spin structure. Then
the equivariant index of D+

W : �(S+, P) → �(S−) is given by

index(D+
W , g) =

∑
N⊂Wg

aspin(N ) − ηg(DM ) + hg(DM )

2
,

where index(D+
W , g), hg(DM ) and ηg(DM ) are defined in Equations (10), (11) and (12), N

denotes a fixed point component of the action of g on W and aspin(N ) is the corresponding
local contribution.

If N ⊂ Wg denotes a fixed point component without boundary, whose normal bundle
splits as ν = ν(π) ⊕ ⊕

0<θ<π ν(θ) in W (see Remark 7.1), then [35, III. Theorem 14.11]

aspin(N ) = (−1)s
∫

N

∏
0<θ≤π

Âθ (ν(θ)) Â(N ), (22)

where s ∈ {0, 1} depends on the action of g on the Spin structure (see [35, III. Remark
14.12]).

7.2 Signature operator

For a closed, oriented 4k-dimensional manifold M , let sign(M) denote the signature of the
non-degenerate quadratic form

H2k(M;R) × H2k(M;R) → R : (α, β) 	→
∫

M
α ∪ β. (23)

The integer sign(M) is called the signature of the closed manifold M .
Let L be the genus associated to the characteristic power series

√
z/ tanh(

√
z) with corre-

sponding multiplicative sequence {Lk} (see [42, §19.] and [35, III §11]). It is a power series
in the Pontrjagin classes (or forms) of M . In particular, for k = 1, 2 and 4 we have

L1(p1) = 1

3
p1, (24)

L2(p1, p2) = 1

45

(
7p2 − p21

)
, (25)

L4(p1, p2, p3, p4) = 1

14175

(
381p4 − 71p3 p1 − 19p22 + 22p2 p

2
1 − 3p41

)
. (26)
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Let W 2k be an oriented, compact manifold with boundary ∂M = W . If k is even, the sig-
nature ofW is defined as the signature of the quadratic form defined on im(Hk(W , M;R) →
Hk(W ;R)) via the cup product. We will likewise denote it by sign(W ).

For the following definitions and discussion, see also [2, p.63].
Now suppose W 2k is an oriented, compact Riemannian manifold which is of prod-

uct form near the boundary Mk = ∂W . Let �p(W ) be the space of p-forms on W and
�(W ) := ⊕2k

p=0 �p(W ). Let d : �p(W ) → �p+1(W ) be the exterior derivative. The map

τ : �∗(W ) → �∗(W ) defined by τ(ω) = i p(p−1)+k�ω for ω ∈ �p(W ) is an involution,
where � is the Hodge star operator. Let �± be the ±1-eigenspaces of τ applied to �(W ).
Then

AW := d + d∗ = d − �d� : �+ → �−

is an elliptic operator which wewill call the signature operator. Since the metric is of product
form near the boundary, we have

AW = σ
( ∂

∂u
+ BM

)

where

BMω = (−1)k+p+1(ε�d − d�)ω

for ε = 1 if ω ∈ �2p(M) and ε = −1 if ω ∈ �2p−1(M) (see [2, p.63]). The operator BM is
formally self-adjoint and preserves the parity of the forms, so that there is a decomposition
BM = Bev

M ⊕ Bodd
M . The operator Bev

M is sometimes called the odd signature operator of M .

Theorem 7.4 (Signature Atiyah-Patodi-Singer index theorem) [2, Theorem (4·14)] Let W 4l

be a compact oriented Riemannian manifold which is of product form near the boundary
M = ∂W. Then

sign(W ) =
∫

W
L(W ) − η(Bev

M )

where L(W ) is the L-genus in the Pontrjagin forms of W and η(Bev
M ) by Equation (15).

For the following definitions and discussion, see also [3, pp.408-409].
Now letW 2k be a compact, oriented, Riemannian manifold which is of product form near

the boundary M2k−1 = ∂W , AW the signature operator and BM = Bev
M ⊕ Bodd

M the operator
from above.

Assume that G is a compact Lie group acting via orientation preserving isometries on
W 2k . The induced action of G on sections commutes with the operator AW . Furthermore,
G acts on H̃ k(W ;R) and preserves the quadratic form defining the signature of a manifold
with boundary (see above) which is symmetric if k is even and skew-symmetric if k is odd.
Complexify and consider the corresponding hermitian form. Now, any G-invariant inner
product on H̃ k(W ;R) will induce a G-invariant decomposition H̃ k(W ;R) = H̃ k+ ⊕ H̃ k−
such that the hermitian form is positive definite on H̃ k+ and negative definite on H̃ k−. The
virtual representation sign(G,W ) := H̃ k+ − H̃ k− is called the G-signature of W and

sign(g,W ) := tr(g|H̃ k+) − tr(g|H̃ k−) (27)

the equivariant signature of W with respect to g ∈ G.
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Theorem 7.5 (Signature equivariant index theorem) [16, Theorem 2.1] Let W 2k , M2k−1, G,
AW and BM = Bev

M ⊕Bodd
M be as above and suppose they satisfy the APS boundary condition.

Then for each g ∈ G,
sign(g,W ) =

∑
N⊂Wg

asign(N ) − ηg(B
ev
M ) (28)

where ηg(Bev
M ) is defined using Equation (12).

If N ⊂ Wg denotes a fixed point component without boundary, whose normal bundle
splits as ν = ν(π) ⊕ ⊕

0<θ<π ν(θ) in W (see Remark 7.1), then [35, III. Theorem 14.5]

asign(N ) =
∫

N

∏
0<θ≤π

Lθ (ν(θ))L(N ), (29)

where for any oriented real vector bundle E,

Lπ (E) := e(E)(L(E))−1, (30)

and for any complex vector bundle F with formal splitting F = l1 ⊕ ... ⊕ lk into complex
line bundles with x j = c1(l j ),

Lθ (F) :=
k∏
j=1

coth
(
x j + iθ

2

)
, (31)

for 0 < θ < π .

7.3 Eta-invariant of a covering

Let M2n+1 be a closed, oriented, Riemannian manifold and let π : M̃ → M be a regular
covering with finite covering group G. The metric on M lifts to a metric on M̃ and any
elliptic self-adjoint operator DM : �(E) → �(F) (where E and F are vector bundles on
M with a smooth inner product) lifts to an elliptic self-adjoint operator DM̃ : �(π∗E) →
�(π∗F) which is equivariant with respect to the action of G by deck transformation. For
each irreducible unitary representation α : G → U (k), there is a flat vector bundle Eα :=
M̃ ×α C

k → M and a twisted operator DM,Eα : �(E) ⊗ Eα → �(F) ⊗ Eα .

Theorem 7.6 Let M, M̃, G, DM̃ and DM,Eα be as above. Then

η(DM,Eα ) = 1

|G|
∑
g∈G

ηg(DM̃ ) · χα(g) (32)

where χα is the character of α, η(DM,Eα ) is defined via Equation (15) and ηg(DM̃ ) via
Equation (12).

Proof The statement in general follows from [3, (2·14)] and the orthogonality relations of
irreducible characters. For the special case of the signature operator, see also [16, Theorem
3.4.]. ��
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7.4 Applications to positive scalar curvature

7.4.1 Vanishing theorems

For the following result, which is due to Lichnerowicz [34], see also [35, II. Corollary 8.9]
and [35, II. Theorem 8.11].

Theorem 7.7 (Spin vanishing theorem) Let M4k be a closed spin manifold and D+
M its

Spin+ Dirac operator. If the Riemannian metric on M has non-negative scalar curvature
everywhere and positive scalar curvature at some point, then ker DM = 0 and consequently
index(D+

M ) = Â(M) = 0.

There also is a version for manifolds with boundary (see [3, Theorem (3·9)]).
Theorem 7.8 (Spin vanishing theorem with boundary) Let W 2l be a compact spin manifold
with boundary M2l−1. Let D+

W be the Spin+ Dirac operator on W and DM the Spin Dirac
operator on the boundary. If there is a Riemannian metric on W which is of product form
near the boundary and which has non-negative scalar curvature everywhere and positive
scalar curvature at some point on M, then index(D+

W ) = 0 and ker(DM ) = 0.

8 Appendix B. C++ code

Unfortunately, it is unknown to the author whether there exist number theory methods to
solve the arithmetics of Proposition 4.9. As a resort, the following C++ code counts the
number of different values of the Eells-Kuiper invariant of the Shimada projective spaces.

#include <iostream>
#include <iomanip> // for setw
using namespace std;

int main() {

int counter;
counter=0;
int countermu, countermuquo, helpcountermu, helpcountermuquo;
countermu=0;
countermuquo=0;
int n, nn, m;
n=16255;

for (int i=0;i<n;i++){
helpcountermu=0;
helpcountermuquo=0;

for (int k = i; k < n; k++) {

int mui, muk, a, b, c, d;
int muiquoplus, mukquoplus, muiquominus, mukquominus;

mui=i*(i+1)
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muk=k*(k+1)

a=2*i*(i+1)+127*(2*i+1);
muiquoplus=a
b=65024+2*i*(i+1)-127*(2*i+1);
muiquominus=b

c=2*k*(k+1)+127*(2*k+1);
mukquoplus=c
d=65024+2*k*(k+1)-127*(2*k+1);
mukquominus=d

if (mui==muk) {
if (k!=i) {

//If the Eells-Kuiper invariants of the Shimada sphere are
equal,
//we don’t count it as a "new" distinct value
//Thus, we increment helpcountermu and if it is non-zero,
//we don’t increment countermu

helpcountermu++;

//If the Eells-Kuiper invariants of the quotients are equal,
//we don’t count it as a "new" distinct value
//Thus, we increment helpcountermu and if it is non-zero,
//we don’t increment countermuquo

if (muiquoplus==mukquoplus && muiquominus==mukquominus)
{helpcountermuquo++;}

else if (muiquoplus==mukquominus && muiquominus==mukquoplus)
{helpcountermuquo++;}

}
}

}
if (helpcountermu==0) {countermu++; }
if (helpcountermuquo==0) {countermuquo++;}

}

cout << "Number mu values (spheres): " << countermu << endl;
cout << "Number of mu values (quotients): " << countermuquo
<< endl;return 0;
}
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