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Abstract

We extend the Polydisk Theorem for symmetric bounded domains to Cartan—Hartogs
domains, and apply it to prove that a Cartan—Hartogs domain inherits totally geodesic subman-
ifolds from the bounded symmetric domain which is based on, and to give a characterization
of Cartan—Hartogs’s geodesics with linear support.
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1 Introduction and statement of the results

For a bounded symmetric domain €2 endowed with (a multiple of) its Bergman metric gg, the
celebrated Polydisk Theorem due to J. A. Wolf [27] (see also [15]) shows that given any point
z € Q and any direction X € T,<, there exists a totally geodesic complex submanifold I1
passing through z with X € T.IT, biholomorphically isometric to a polydisk A" of dimension
equals to the rank r of Q2. Moreover, the group of the (isometric) automorphisms Aut(2) of
2, acts transitively on the space of all such polydisks, and denoting by Aut, (£2) the isotropy
subgroup of Aut(£2) at z, one can realize 2 as union over y € Aut,(2) of y - II.

In analogy with the symmetric case we prove a version of the Polydisk Theorem for Cartan-
Hartogs domains in terms of Hartogs-Polydisk (see (4) below). For > 0, Cartan—Hartogs
domains are defined as the 1-parameter family:

Mo(u) = {(z.w) € @ x C | [w* < N5(z.2)}. (0

where Q2 is a bounded symmetric domain not necessarily irreducible and Nq(z, z) is its
generic norm. Observe that originally [28] the domain €2 the Cartan—Hartogs is based on is a
Cartan domain, i.e. an irreducible bounded symmetric domain. Here 2 is allowed to be not
irreducible, namely Q2 = Q1 x --- x €, is a product of the Cartan domains i, ..., Q,,
and accordingly its generic norm Ng is the product of the generic norms of each factor:

No(zt, ..oy Zms 215 -+ o5 Zm) = No, (21, 21) - - - N, Zm,s Zm)- 2)

We consider on Mg () the Kobayashi metric w () = LBE_)CDQ, w» Where:

g u(z, w) = —log (N4(z,2) — [w?) . 3)

We say that a Cartan—Hartogs Mq (1) domain is of classical type if Q2 is a product of Cartan
domains of classical type. When 2 is a polydisk A” := {z € C" | |z1]> < 1, ..., |za|> < 1},
the associated Cartan—Hartogs is the Hartogs-Polydisk:

Man(p) = { (z,w) € A" x C j i < [Ta =1z ¢ e
j=1

whose Kobayashi metric is defined by the Kéhler potential:

n
Dpn (2 w) = —log [ [T = 121" = |w]?
Jj=1

Observe that when o = 1 and €2 is the complex hyperbolic space CH”, also Mg (1) reduces
to be the complex hyperbolic space CH"*!. In all the other cases it is a nonhomogeneous
domain that inherits symmetric peculiarities from the symmetric bounded domain it based
on. For this reason Cartan—Hartogs domains represent an important class of domains in C”,
and since their first apparence in [28] they have been studied from different points of view,
seee.g. [2,6,7, 11, 12, 23, 25, 29, 30].

The main theorem of this paper is the following Hartogs version of the Polydisk Theo-
rem. As his classical counterpart, which led to several applications, e.g. N. Mok and S.-C.
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Ng’s rigidity and extension results for holomorphic isometries [16—19, 24] (see also [9, 20,
21] where the Polydisk Theorem is used to study the diastatic exponential and the volume
and diastatic entropy of symmetric bounded domains), we expect it to be a useful tool to
solve geometric problems related to Cartan—Hartogs domain, improving our knowledge of
nonhomogeneous domains.

Theorem 1 (Hartogs—Polydisk Theorem) Let 2 be a bounded symmetric domain of classi-
cal type of rank r and let Mg () be the associated Cartan—Hartogs domain. For any point
(z, w) € Mqo(w) and any X € T(; w)yMgq () there exists a totally geodesic complex subman-
ifold I through (z, w) with X € Tz wyMp (), such that I is biholomorphically isometric
to the Hartogs-Polydisk M ar (). Moreover, Aut(S2) acts transitively on the space of all such
Hartogs-polydisks, and Mq(n) = U{y - I: y € Aut (2)}.

We apply the Hartogs-Polydisk Theorem to prove the following two results. The first one
states that any totally geodesic Kahler submanifold of the base domain 2 is a totally geodesic
submanifold of its associated Cartan—Hartogs:

Theorem 2 Let Q' C Q be a totally geodesic Kiihler submanifold of a bounded symmetric
domain of classical type. Then

Co ={(z,w) e Mo |z € '}

is a totally geodesic Kdihler submanifold of Mq(i) biholomorphically isometric to the
Cartan-Hartogs Mgy (10).

The second one gives a characterization of geodesics with linear support in Mg (14):

Theorem 3 Let Mg (11) be a Cartan—Hartogs domain not biholomorphic to CH"*!. IfMgq (1)
admits a geodesic with linear support passing through (¢, 0), then up to automorphisms either
the geodesic is contained in Q = Mq () N {w = 0} or in CH! = Mq(n) N {z = 0}.

The paper is organized as follows. In the next section we recall basic facts about classical
Cartan domains and we describe explicit polydisks totally geodesically embedded. In Sect.
3 we show how the totally geodesic Kihler immersions of such polydisks into the Cartan
domains lift to totally geodesic Kihler immersion of Hartogs—polydisks into Cartan—Hartogs
domains and prove Theorem 1. The last three sections are devoted respectively to the proofs
of theorems 2 and 3.

2 Explicit polydisks in Cartan domains

In this section we are going to give an explicit totally geodesic Kéhler (i.e. holomorphic and
isometric) immersion of a polydisk into each one of the four irreducible classical domains.
All the isometries here are intended respect to the hyperbolic metric on €2, i.e. a);?vp =

—90 log Nq(z, z) (one has a)i?2 = ya),slzvp, where a)g is the Bergman metric on 2 and y is its
genus). Throughout this section we use the Jordan triple system theory, referring the reader
to [4, 5,9, 10, 14, 20-23, 26] for details and further applications.

2.1 Cartan domain of the first type

Consider the first Cartan domain of rank » = m and genus y = n + m:

Qi[m,n] ={Z € My n(C) | det (I, — ZZ*) > 0}, n>m.
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Its generic norm is given by:
No(Z,Z) = det (I, — ZZ*). ®)
A totally geodesic polydisk A™ A 1[m, n] is given by
71 0

021,y zm) = diag(zy, ..., 2m)= . (6)
Zm 0

Since det(l,,, — ¢(2)p(2)*) = ]_['}1:1 (I —1z; 12), ¢ is clearly a Kihler immersion. Moreover
it is easy to check that ¢, (ToA™) define a sub-HIPTS of (Tp2[m, n], {, , }), where

{U,V,Wy=UV*W+WV*U @)

(see e.g. [4, (16)]), we conclude, by the one to one correspondence between sub-HJPTS e
sub-HSSNT (see [4, Proposition 2.1]), that ¢ is totally geodesic.

2.2 Cartan domain of the second type
Consider the second Cartan domain of rank r = [n/2] and genus y = 2n + 2,
Qln = {7 e M,(©), Z = -27  det(t, - 22" > 0]

A parametrization is given by:

0 U2 UL .. Ulp—1 Uln
—ur2 0 w3 ... uzp—1 u2n
U= (U12y -, Ulp, U3y s U ooy Up—1n) > Z(U) =
_M.In _M'Zn _l';Sn ' _u);—lil (j
Its generic norm is given by:
Ne, (u, u) = det'’* (I, — Zw) Z*(w)) . (®)
A totally geodesic polydisk Al & Q[n] is given by:
0 0 0 Uy [s]
0 0 . Mz[%]_l 0
oy = S ©)
0 g 0
—ui[z] 0 0 0
where u = (ul[%],uz[%]_l, ,u[%]1> Since
(5]
Ny (p(w), p()) = det'? (I, — oo™ ) = [ [ (1 = luj 5y,

j=1

¢ is a Kdhler immersion, moreover it is easy to check that ¢, (TpA,,) defines a sub-HJPTS of
(To22[n], {, , }), where the triple product is given by {U, V, W} = UV*W+WV*U,namely
the restriction to Tp$22[n] of the triple product of Ty<2[n, n] given in (7), we conclude, by
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the one to one correspondence between sub-HJPTS e sub-HSSNT (see [4, Proposition 2.1]),
that ¢ is totally geodesic.

2.3 Cartan domain of the third type
Consider the Cartan domain of third type of rank r = m and genus y = n + 1:
Qalml ={Z € My(©) | Z =27, det(ly — 22" > 0],
whose generic norm is given by:
Noy(z.2) =det (I, — ZZ*). (10)

As can be proven in a totally similar way as done for the first and second type domains, a

totally geodesic polydisk A™ 5 Q[m] is given by:

¢(z) = diag(z1, ..., zm)= . (1D
m

2.4 Cartan domain of the fourth type

Consider the fourth type domain of rank » = 2 and genus y = n:

2
n
23 [z >0.n=5

n n
Qlnl=12=Gr...oa) € C | Y [z < L 14+ |32
j=1 Jj=1 j=1
whose generic norm is given by:
2
n n 2
NQ4[n](Z,Z):1+ ZZ? —ZZ’ZJ‘ . (12)
j=1 j=1
Let ¢ : A — Qq4[n] be the map:
1 i
@(z1,22) = §(Z1+Zz),§(Z1—Zz),O,--.,O : (13)

Since:

Neyini(9(z1, 22), (21, 22)) = (1 — |21 ) (1 = |22]%) = Np2(z1, 22),

¢ is Kéhler. Moreover ¢ (Az) is the set of points of Q4[n] fixed by the isometry
(z1y .-+, 2n) ¥ (21,22, —23 ..., —Zn), thus ¢ is totally geodesic.

3 The polydisk theorem for Cartan-Hartogs domains

Let us begin with the following lemma.
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Lemma 1 Let Q be a Cartan domain and let ¢ : A" — Q be a Kdhler immersion fixing the
origin, i.e. a holomorphic map satisfying w*wfyp = a)hAyrp. Then:

fiMar(p) = Mo(u),  f(z, w) = (¢(2), w),

is a Kéihler immersion.

Proof Observe that — log(Ng(z, z)) and — log(Nar (z, z)) are the diastasis functions respec-
tively for (€2, a)}?yp) and (A", a),fyrp) (see [11, Prop. 7] for a proof). Since the diastasis is a
Kihler potential invariant by isometries (see [3] or also [13]), one has:

Nq(¢(z), 9(z)) = Nar(z, 2).

Then, it follows easily that f(Mar (1)) C Mg (), since |w|> < Nar(z, z) implies |w|? <
Nq(¢(2), ¢(z)). Further the map is isometric since:

®q.u(f(z, w) = —log (Na((9(2), ¢(2)) — [w|?)
= —log (Nar(z,2) — [wl*) = ®ar ,u(z, w).

m}

By this lemma the totally geodesic Kidhler immersions described in the previous section
induce Kéhler immersions of Hartogs—polydisks into Cartan—Hartogs domains. We prove
now case by case that such maps are also totally geodesics.

3.1 Cartan-Hartogs domain of the first type

By (1), (3) and (5), the Cartan-Hartogs domain associated to a first type Cartan domain is:
Mo i () = {(z, w) € Qi[m,n] x C | |w|* < det* (I,, — ZZ*)} .
and its Kobayashi metric is described by the Kéhler potential:
®q,.u(2) = —log (det* (I, — ZZ*) — |w|?).

Lemma2 Let : A™ — Qi[m, n] be the map in (6). Then f : Mamn (i) — Mg pm.n) (L),
f(z,w) = (p(z), w), is a totally geodesic Kciihler immersion.

Proof From Sect. 2.1 the map ¢ is a Kéhler immersion, thus by Lemma 1 also f is.
It remains to prove that f is totally geodesic. Let Z = (zx). From the expression of f
and (6), we see that

fMan () = {(Z, w) € Mo pmn) (1) | Z = diag(zi1, - ., Zmm) | (14)

and that {9;;;, 9w} j=1
show that:

n 1s a basis for Tf (Mam () C T Mg, [m,n(). Thus, we need to

.....

Vi, Du Vo 0zr Vay O € Tf (Man () jk=1,....n. (15)

ji

Recalling that the covariant derivative in terms of Christoffel symbols reads:

m n m n
0 : 0 A
Vo, 0z = Tjjiiduw + Z Z T ik0z s Vo, 0z = Do Ow + Z Z L0 0z,

s=1r=1 s=1r=1
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and
m n
Vaw aw = F(())Oaw + Z Z F(S)’(-)azsr’
s=1r=1

where we use the index O for the w-entry, we see that (15) is equivalent to prove

sr —_1sr sro__ _
D =Tome =To0 =0, s,r=1...,n,
under the conditions s # r and Z = diag(z11, .- -, Zmm)-

Let us start with some preliminary computations. Let A = I — ZZ*, that is
(A)jo =8j0 = (22%);, = 8ju — Zz,kzzk (16)

Denote by Aj, . j. k;..k, the matrix A after the ji, ..., js-throws and ki, ..., ky-th columns
have been deleted. We have:

ddet A B " .
=— <Z(—1)1+‘Z (A); ¢ det AM)

07 07
Lik Lik \ezi

n o 0(8: s =S 2T
— Z(_l)]-‘r@ ( Jjt Zl—] Z]lzb) detA]7[ (17)

0Zjk

n
=Y (=1 det A g,

=1
Similarly we obtain:
ddetA <
= D (DT g det A,
rq =1
which evaluated at Z = diag(z11, .. ., Zmm), since det A, ;(Z) = 0 whenever p # ¢, reads:
ddet A
9z (2) = =8pgzqq det Aq 4(2). (18)
1z

By (16) it follows that a‘ det A j¢ vanishes when £ = p. Assume that £ # p and expand
the determinant with respect to the p-th column. We obtain:

—1 _
ddet A, ”Z: 1) (Shp — D11 ZhiZpidhp det Ay

= = - hj,pt
9Zpq htj h=1 9Zpq
n—1
= Y (=DPT gy, det Ay . (19)
h#j,h'=1

where j’ is the index of the j-th row in A as a row in A ¢, and similarly the A-th column in
A is the A'-th ones in A j;. An analogous computation gives:

n—1
=1 =84 > (=D Z, det Ajg p. (20)
h#p,h'=1

BdetAj,p

Zab
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Thus using (17) and (19):

92 det A 9

— D/ 7 det A
aquaij 8qu Z( ) t* ot

. . ddet A,
— ()P s det Aj, + Z (—1yittrl g, 20t

=1 P .

n n—1

= (=D s det Ajp + Y Y (=D 22, det Ay pe.
pAl=1 hj h'=1

which evaluated at Z = diag(z11, - .., Zmm) reads:

0% det A TN ()= 5,80 det A; (Z)
0792k Jjp9q J.J
(1= 8p) (1 = 84)Zkkzgq (1) TP T det Agj (), (22)
= —8jpSqk det A, j(Z) + 8qpdij (1 = 84j)Zjj2qq det Agj q;(Z)
+ 8418y (1 — 8j1)zkkzjj det A j xj (Z),
where we used that det A, j «,..x,(Z) = 0 whenever {ji, ..., js} # {ki,..., ky}. Finally
consider that by (20) and (21) it follows:

83 det A 8 jHp+l - = JH+p R
s = | (D sdet Ay, YD Y (D) Zekng et Anj.pt.
2ab0Zpq 02 jk Zab p#EL=1h#j,h'=1

n—1
=P S =80) Y (=D Ty, det Ajgp+
h#p,h'=1

(23)
n
Y (TP (1 = 84)8g det Agj pet
p=I
n n—1
Cp I
+ Z Z ( Vst sztha det Apj, pe.
p#=1h#j.h'=

In order to deal with the third and last term in the above formula, observe that by (16), for
az ” det Apj, pe to not vanish, we need a ¢ {h, j}. When a ¢ {h, j} we can expand the
determinant with respect to the a-th row and we obtain:

—2 _
8 n / / 8 5 — ’-/l_ [ <ri
— det Ahj,p( = Z (=" +a (Bar Zz_l ZaiZri) det Ahja,pﬁr
dZab r D) =1 0zap
o (24)
= Z =D "+ -HZrb det Ahja plr-
r#&{p,L},r'=1

In particular (23) and (24) imply:

93 det A

_7(2) :(Spqajp(l - aaj)Zaa det Aaj,aj(Z) + (Spqaqa(l - (Saj)zjj det Aaj,aj(Z)+
3Zcmaquaij

- aqp(l - (qu)(l - (Saj)ijquZaa det qua,qja(z)+
— 8pgBap(1 = 8407512491 det Agja,ajq (2),
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and thus:

93 det A

_TCA 7y =0 forp#£q. 25
020002002y ) P#4 2

We will now use (18), (22) and (25) to compute the Christoffel symbols at Z =
e
diag(z11, - - ., Zmm)- Let us start with F”kk =>,8 rs.t % We are going to show that
O8kk,pq
azjj
have

is equal to zero when p # ¢, and that when p = ¢, r # s implies g"5?4 = 0. We

00g, . dlog((det A)* — jw?)  p(det )P~ ddetA

3Zpg 3Zpg T (det A — [w|2 87y,
P?®g,  pldet A)H? ( 92 det A <(detA)”+(u— 1)|w|2) ddet A 8detA)

5

82,0759 (det A)* — w2 92jj0Zpq (det A)* — w2 dZpg  9zjj
= Bi(B> — By), (26)
where we set:
p(det A)H—2 92 det A
By = —_—, By :=detA———;
(det A)* — |w| 0zjj0Zpq
B (det A)* + (u — D|w|*> ddet A 9 det A
P T et AE — wlE 0z, 07y

Then:

P g, d 3 3

— = By | (B2 — B3) + By By — By ).
BZaa 32}]8qu 8Zaa 8Zaa azaa
By (18) and since by (22) at Z = diag(z11, - - -, Zmm):

92 det A _
—— = —0Opgdgjdet Aj j +8pq (1 = 84j)Zjj24q det Agj g4 @n
BZU aqu
B> — B3 vanishes when p # g. By (18), (25) and (27), the same holds also for a 31 and

320q,
az B,. At this point it is easy to see that, by (27), g5, 55 = F I a%p,, vanishes for r 75 s, thus

also its inverse has the same property, and we are done.
The same conclusions can readily be reached also for I'g}, and I'(j. In particular, with
the same notation as above we have:

BEE) 9 9
S <—Bl) (B, — B3) + By (—£33> :

0wz ;07 pg Jw

By the discussion above the term B, — B3 vanishes when p # ¢. Further the derivative % B3

contains the factor 3de‘A which vanishes when p # ¢ by (18). Thus
rs rs Z agowz H
TS, = Zg , Fr =0, forr#s, Z=diag(zi1,..., Znm)-
¢
Finally:
9? 0dq,,  , pw’(det AT ddet A
w2 3z, ((det A — [w|?)3 8z,
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thus again by (18),

, 79807 .
F(rfO:Zg”’[%:O, forr #s, Z =diag(z11, - - -» Zmm),
¢

completing the proof. O

3.2 Cartan-Hartogs domain of the second type

By (1), (3) and (8), the Cartan—Hartogs associated to the second type Cartan domain is:
M, (1) = {(u, w) € Qa[n] x C | |w]* < det"*(L, — Zu)Z(w)*)},
and a Kihler potential for its Kobayashi metric is:
Do, (1, w) = —log (det/? (I, — ZW)Zw)*) — |w|?).

Lemma3 Let ¢ : AT — Q[n] be the map in (9). Then f : Manp () — Mo, (1),
fu, w) = (pu), w), is a totally geodesic Kiihler immersion.

Proof From Sect. 2.2 the map ¢ is Kihler, thus by Lemma 1 f also is. Let us use the
parametrization described in Sect. 2.2. In terms of the Christoffel symbols, since:

n
_ sr 0
f)“jn+lfj 3Mkn+l—k - Z rjn-l—l—j,kn-‘rl—kausr +Fj”+]7j,kn+]7kawv

s, r=1
and
n
— 3 0
VauBugnir s = 2 T kni140us + 10 tns1— s
s,r=1
the map f to be totally geodesic is equivalent to:
Sr — sr —
Diii—j knt1—x = L0, kng1—k = 0, (28)

fors #n+1—randl < j,k < n/2.Observing that ®q, ,(u, w) = g, ,(Z(u), w) once
substituted p with /2 in the second term, we have:

000, 0P 9P, 0log(det?A — [w]?) N dlog(det2A — [w|?)

aﬁrs azrs 825;‘ azrs aZSr (29)
_ Gdet? A (] o det Agyzee () — Y7 ers det Agy 2 ()
det?A — |w|? '

and
32@92# . 32CI>Q],M 32@91”“
dwdtt,s  dwdZs  JWIZyr
E% det%_lA (Z’Z:l €pr det X@r s (u) - Z’Z=1 €rs det ZZS Zer (u)) (30)

(det%A - |w|2)2

For (u, w) € f(App) andr #n+1—s, we get

¢
ow Uyg

@ Springer



Geometriae Dedicata (2022) 216:51 Page 110f23 51

K’ ~ ~
% detz™'A (€n+1—rr det Apy1—srZnt1—ss(U) — €p41—55 det Aﬂ+1—rszn+1—rr(u))

= =0.
det7A — w2
Notice that
P Do, (a%w B acbg,,u> (a%,,u B a@gl,ﬂ>
aujk 0l g aij aij 0Zrs 0Zsr 31)

2 2 2 2
_ 0P, 7P 7P 7 Poiu
0zjk0Zrs  0zkj0Zsr  0Zkj0Zrs 02k 0Zgr

If we take u,s withr # n+1—sand u j; with (j, k) # (r, s), then the indexes of 3z, :;‘Z"f

Pdo . PPo . 2Pou . . . .
T2k 0oy * 2 02rs Fj5 05y 1D (31) must satisfiesr #n + 1 —s, (j, k) # (r,s) and (k, j) #

(r, s). Under this conditions on the indexes, it is just a straightforward computation to prove

that ( 222 i = (Z%a -
0Zjk 0Zrs 0zkj 0Zsr 0zkj 0Zrs
[, w)€ f(Afny21) [, w)€ f(Afny21) [, w)€ f(Afn/21)

92 ®
( 5 ,jlz#) = 0, and in particular that (ﬁ = 0. We conclude
T @ wre f By : Zwen

that for (u, w) € f(Apy2) andr #n + 1 — 5 we have

;08 z _ 9 -
K X kn+1—k, ¢ rs.7s 98kn+1—k,7s
rsr = rs,t _ s ,
0,knt+1—k = % :g o 8 T ow

and

Zg” 798nt1-kkt _ s 08n+1—kk,Fs
Ottpy1-jj Qupy1—jj

sr
n+l—jjn+l—kk —

Deriving (30), we can see that %’"["g% 0, which readily implies that T3, | _, = 0.

It remains to prove that, under the above conditions W = 0 (or equivalently that
nrl=jj

?3"’2 — = (). We have

OUpt1—j j On1—kk Olhps

B Do, 4
0Zj[n+1—10Zk[n+1—k] 0Zrs

_ 9 ( Do, )
0Zj[n+1—j1 \ 0Zk[n+1-k] 0Zrs

. - -
9 (’;(’; — 1) det 2 A€y det Ak Zin1—k1€nt1—sr et Apuy1—s)r Znt1—sls
1

0Zj[n+1-j det7A — |w|? (32)
" ~ _ ~
5 det? YA (€pns1—s1r €4y det Apy1—s)r kk Tk (n1—k) Zint1—s1s + €kr det Agy Sjng1—k1s) n

m
detZA — |w|?

2
o ~ ~ _
(% det? 1A> €n-+1—s]r A€t A 1—s1r Z[n+1-s]s€kk A€ Akk Tk [n+1-4]

(det%A - |w|2)2
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If we assume that (#, w) € f(A[,/2]), we obtain

3
"D,
02 [n41—j1 02k [n+1—k] 0Zrs
won “_p ~ 3 det Apsi—s)
B 5(5 — 1) det2 " “Aejy det AkkZk[n+17k]€[n+lfs]rWZM#»]*J]S
= i
detZA — |w|?
K1 det A, I—s]r.kk — g
% det2 A <€In+l—s|r€1/{kﬁzkln+l—klzln+l—sls + €k det Akr8|n+l—kls> (33)
+ m
det5A — |w|?

) o
&_q ddet Apyt1—g]r o
<% det > A) €lnt1—slr gz e 21 —s)s€kk det Ak Zk [t 1-4)

. 2
(det%A - |w|2)

hence if we also assume s # n 4+ 1 —r and 1 < j,k < [n/2] we see that
83‘1)91’},,
02 [n+1—j] 02k [n+1—k] 0Zrs

= 0. Thus (28) holds true, concluding the proof. O

3.3 Cartan-Hartogs domain of the third type

By (1), (3) and (10), the Cartan—Hartogs associated to a third type domain is given by:
Moy () = {(Z, w) € Qn] x C | [w]* < det” (I, — ZZ*)},
and its Kobayashi metric is described by the Kéhler potential:
oy (Z, w) = —log (det" (L, — ZZ*) — |w|?).

Lemma4 Let ¢ : A" — Qs[m] be the map in (11). Then f : Mam () — Mo,m1 (1),
f(z, w) = (¢(2), w), is a totally geodesic Kiihler immersion.

Proof The proof is similar to those of Lemma 2 and Lemma 3 and therefore is omitted. O

3.4 Cartan-Hartogs domain of the fourth type

By (1), (3) and (12), the Cartan—Hartogs associated to a fourth type domain is given by:
2 H

n n
Maym(o) = { (e, w) € Qaln] x € [JwP < [ 1432 =23 |2 ¢}
j=1 j=1

and a Kéhler potential for the Kobayashi metric is:

2 I3

n n
b, uzw) = —log [ | 1+|D 22 =2 " [z | —wP
j=1 j=1

Lemma5 Let ¢ : A — Qqln] be the map in (13). Then f : Mp2(n) — Mo, (1),
f(z1, 22, w) = (¢(z1, 22), W), is a totally geodesic Kiihler immersion.
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Proof From Sect. 2.4 the map ¢ is a Kihler immersion, thus by Lemma 1 f also is. It remains
to prove that f is totally geodesic, which is equivalent to Ff ¢ =0foré >2and0 < j, k <2,
where:

n
¢ 0
Vo, 0z = erk 0z + g 0w, Vo, 0z ZFOk 3z, + T0y Oy

=1
We have
2 3
90q,, —0oz (1420 2 - 250, 12P) " — jwP)
07k 0Zk

2 u=l
H (1 + X T -2 |Zz|2> (2zk Y0 27 — 2z)
2 7
(1+ 1zt 2 — 25 1) — wl?

2 =l _
220, K (1 + X g -2y Izglz) 2z Y- 22 —2z)w

’

owozy . . 2 2 o OY
((1 + X 2 X0 |Z£|2) - |w|2>
and
Pg,, - (1+[2 3 22 ll«el) a2 - 2a) (20 Y, T - 23)
i (1+1Zim 2P =250 12?) " — lwp?
(14 [T 2 2 ) e - 20000
(1+1Zi 3 -2 20P) —
w2 (14 S 2P -2 o)™ (@5 i 2 - 20 (22 Ty B - 25)
((+ IS 2P -2 k) = )’ ‘
Hence for (z, w) € f(Ma,), 2> j,h > 1and k > 2, we have
rk, _Z keaghz _ kk%
and
]h _Z keaghe _ kk%’
0z
where we used that for (z, w) € f(Ma,) = {(z, w) € Mo |l z3=" =2, = 0}, k>2

and k # £ we have gk*z(z, w) = 0. It is straightforward to check that under this conditions

PP (2 ) = 0and 2B (2 ) = 0, namely that I'C, (z, w) = 0. Therefore f(Ma,)
Jwazpoz; o W= dz;0zn0%; o W =1, y jklew) =10 Ar
is totally geodesic in Mg, [,). The proof is complete. O

3.5 Cartan-Hartogs domains with reducible base
Let us consider a Cartan—Hartogs domain Mg () where Q = Q1 X --- X €, is a product

of the irreducible Cartan domains 21, . .., €2,,. The generic norm and the Kobayashi metric
are given by (2) and (3).
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Let r; be the rank of ©; and let ¢; : A"/ — Q; the map given in (6), (9), (11) or
(13), accordingly with the type of €2, and let us denote by A" the polydisk of €2 of rank
r=ri+---+ry.

Lemma6 Lety : A" — Qbethe productp = @1 X - X @p. Then f : Mar(n) = Mq(w),
f(z, w) = (¢(z), w), is a totally geodesic Kdihler immersion.

Proof By applying Lemma 1 we see that f is a Kéhler immersion. Let us prove that f is
totally geodesic form = 2,i.e. 2 = Q| x Q.

LetZ = (z1,..., 20, U1, ..., up) € 21 X Q, forn = dim (27) and & = dim (£27), and
denote by r and s the ranks of €2 and €2, respectively. We will use j, k, i, £, for the indices
of z and «, B, y, for those of u. By construction of f and up to reordering the coordinates
we can write

fMar(u) ={(Z,w) € Mo() | Zr41 =+ =2p = Ugy1 =-- = up = 0}.
In order to prove that f is totally geodesic it is enough to show that
Vi, 925 Vo, dus Vo, 9z, Vo, 8w € T (Mar(p) (35

forj,k=1,....,r,a=1,...,s.
Let us define:
¢ 1= Pg, =—log(N'N} —|w|*) and
¢i = Do, = —log (N —w?), i=1.2
In order to compute the Christoffel symbols at (Z, w) € f (Mar(p)), thatisat Z € {z,41 =
cee=7Zp = Ugy] = - - - = up = 0}, we will first write the derivatives of ¢ in terms of those
of ¢;. Then, we will apply the computations in the proofs of Lemma 2, 3, 4 and 5, and in

particular that at (z, w) € f1 (Mar(n)), where f denotes the map in Lemma 2, 3, 4 or 5
accordingly with the type of Qp, fori, j =1,...,r,andk =r +1,..., n, we have:

a1 g1 3% CR CR P

= — = — = — = 3 — = — = 0. (36)
0Zk 0707k 0Zxow 07;0740z; 0 waZk 0z7;0Zx0w
"
Observing that % =—(N}' - |w|2)%, we have:
d¢ NY NI dpy Ny (N} —wl?)
T T N = o T NENK ’ (7
0zk N{'NY —|w|?> 9z dzk Ny Ny —|w|?
thus,at Z € {z,41 = --- = 2, = usy1 = - -- = up = 0}, (36) applied to (37) gives:
B
—d): , fork=r+1,...,n. (38)
0z
Further we have:
o _ ¢ NS (N —[wP)  agy @ (NF (N Jwl?) (39)
9zkdz;  0zkdz; NINY — w2 8z 0z \ NENY — w2 7
¢ _ g1 a (N (N —[wP) 40)
o dzg  Ozx Oy \ NINY — w2 )’

(41)

3¢ ¢ Ny (NI —1wl?)  ag @ (N5 (N{ —wl?)
wizk  0wdzx NI'Ny — w2~ 0z 9w \ NNy — |w|?
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By (36) evaluating (39), (40)and (41) at Z € {zy41 =+ =2 = Ug41 = - = up, = 0}
one has:
¢ 9% *¢

0Zx0z;  Oligdzx 9wz

=0 forj=1,...,r, k=r+1,...,n, (42)

PYNIL
Finally, let us deal with the derivatives of the third order. Observe first that from % =
*J

9 .. INY 9
—(NI' = |w|2)% (and similarly 552 = —(N}' — [w[) 522) we get:
o Ny (N —wP) _ NPV —qwP) [ NS (N = [wl) | ag
AT = T T NENE - AT Y 43)
3z; NINE —|wp? NENE = |w]? NENE = wl? | oz,
a Ny (N —wP) _ (Nf —[wP) (N — [wP) NINY T 94
P N 2 = - N 2 11— N 2 ’ (44)
dua NINE =l NENE = |w| NINE = wP? | uq
0> Ny (N —[wP?) o | (N{' —[wP) (N — |wP?) Ny N 3¢
N == T | =~ -(45)
9zj0ug Ni Ny —|w|? 9z N{'NY — |w|? N{NY — w2 /) | duq

Then from (39), (40) and (41) we have:
Po B¢ Ny (N[ —wP) | 9% a NI (N{ —|wl?)
02;070z; _3Zi32k3Zj N{LNzu — |w|? 07,0z 0z N{LN; — |w|?
3¢ 9 (N; (N} - |w|2)> L 32 (N; (N} — |w|2)>

92i9z; 97k \ NI'NJ — [w]? dzj 0z;07k \ NI'NY — |w|?

Po 3% 9 (N;(N{‘—|w|2)>+a¢, 52 (N;‘(N{‘—|w|2))

32i0gdz; 020z, ditg \ NI'NY — [w]? dzj 020U \ NI'NJY — [w]?

o _ P o (NE(N—wP)) | oy 02 NE (N jwp)
0z;0ugdZ;  9z;0Z; dug \ NI'Ny — w2 0z, 0zidug \ NI'Ny — |w|?
P _ 1 9 (N (N —wP)) ag 92 [Ny (N} —[wP)
wdigdz;  dwdzj dug \ NINY — |w|? dzj dwdig \ NI'Ny — w2 ]’
B¢ 0 NI(NC—wP) 8¢ 9 Ny (N —[wP)
dwdzxdz; dwdzxdz; N{'Ny —|w|>  9zxdz; dw N|'NY —|w|?

91 0 <N(N—'“")>+8¢ o <N5<N5—|w|2>)

dwadzj 07k Nf‘Nﬁ‘ — |w|? 0z; dwdzg N{‘Nﬁ‘ — w2
D6 _ o NE(NE—IwP) 9% 0 NE(NE - leP)
dw2dz;  dw?2dz; NNy — |w|? dwdz; dw NINE — |w|?
L 0¢1 92 (Ny (N} —[wP)
oz; ow? \ NINF — w2 |
which, evaluating at Z € {z,41 = -+ = 2y = ug41 = -+ = up = 0} and applying (306),
(43), (44) and (45), gives:
P Pe ¢
0z;070z; T 0z;0uq 97k dwoz 0z
83
:ﬁzo’ fori,j=1,....r; k=r+1,...,n, (46)
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Py

02i0Uq0z;  Qwiledz;

=0, fora=s+1,...,h (47)

We can now proceed with the proof of (35). Let us first show that Vﬁzf 0, € Tf (Mar(u)),
for j,k =1, ..., r.Recalling that '

Vi 0y =T +ZF,1<3Z,+Z Oy

this is equivalent to show that for j,k =1,...,r, F;k = Fﬁ( =0foranyi =r+1,...,n
andanya=s+1,...,h.By(42)ng=0whenj=1,...,rand£=r+1,...,n,andthe

same of course holds for g ;g since g is a product metric. Thus, also the inverse g/t enjoys

the same property and at Z € {z,41 = --- = 2, = ug41 = - - - = u;, = 0} we have:
n h n
. 5 08,7 .73gk* 5087
i il kit ip B _ il ke _ . _
=S S T o o,
=1 J B=1 J f=r+1 J
where to obtain the last equality we apply (46). Similarly, applying (47) instead of (46), at
Ze{zp11 =" =2y =usy1 = --- = uy, = 0} we have:
n h h
7987 5983 5988
o al ke aff B _ aff B _ . _
jk_Zg P +Zg B s Zg . =0, j,k=1,...r.
(=1 T =1 I B=s+1 J

‘We move now to show that Vazja,,a eTf(Mar(w),forj=1,...,r,a=1,...,5.By
definition:

8Ha_F aw‘}'zrg 821+Z ja “5’

thusweneedtoshowthatl"}a = Ffa =O0forallj=1,...,r,a=1,...,s5,i=r+1,...,n,
B=s+1,....mAtZe{z;41 =+ =2y = Usy+1 = --- = up, = 0} we have:
) " 5087 hoo 0g.:3 " - 087
B 7
F/l'ot — thé J + Zgzﬁ P Z gté Jt 0,
: e 0Z¢ — 0Z¢ < 0Z¢
= B=1 =r+1

where last equality follows by (46). The case Fﬁx is obtained by this one exchanging the role
of the first and second domain.
Let us now deal with Vy, 9, € Tf (Mar(u)). We have:

h

n
Vaw azk = F(?kaw + Z F(;kazi + Z F(‘):;( aua’
i=1 a=1

and weneed I}, =T, =0atZ € {zy41 = =z, =Us41 = =u; =0} for k =
I...,ryi=r+1,...,n,0 =5+ 1,..., h. Similarly as before and using (46) and (47)
wegetat Z € {z,41 =+ =2y = Uy = -+ =up = 0}:
n h n
. - ag - .78g03 fag -
|y il 0¢ + iB — il 0L =0,
Ok Zg A7k Zg dZk Z & 9
=1 B=1 l=r+1
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n

e = Zgaz 9807 i Xh:gag 9808 _ Xn: %P 9808 —o.
Pt 0zk st 0Zk Pt 0Zk

Finally, to show that Vy, 9,, € T f (Mar(w)) recall that:

n h
Vaw aw = F(?Oaw + Z Féoazi + Z F(;)é)auut’
i=1 a=l1

thusweneedtoshowthatlﬁé0 = F&) =0fori=r+1,...,n,a=s5+1, ..., h.Conclusion
follows by (46):

n n

' goz iB 8g0ﬁ iz 9807
| - tK — 0’

and the same holds for [(;.
The proof for m = 2 is complete. The general case can be recursively obtained replacing
(36) with (46) and (47). O

3.6 The proof of the Hartogs-Polydisk theorem

We need two further preliminary results.
Lemma 7 Let Q2 be a bounded symmetric domain.

(1) If ¢: Q@ — Qis an isometric automorphism of 2 then ¢ lifts to an isometric automor-
phism ¢ : Mq() — Mq(u) defined by

bz w) = (), e Ow),
for an appropriate holomorphic function hy : 2 — C.

(2) If ¢: Q2 — Qs an automorphism of 2 which fix the origin, then ¢ lifts to an isometric
automorphism ¢ : Mg () — Mq () defined by

Pz, w) = (¢(2), w).

Proof Let ¢ : 2 — 2 be an isometric automorphism of 2. Then ¢ satisfies:
9910z (N (¢, @) = 90 log (N (=, 2)

and hence N (¢ (2), ¢(Z)> = N(z,2) Mo @+he(@ for an opportune holomorphic function
hg : @ — C. The holomorphic map f : Mq(u) — Mgq(ji) defined by:

few) = (@) e Ow).

is well defined, as [e#¢ @ w[* < [eths @) N (z,7) = N (¢ (2), ¢>(z)), and it is an isometry
of Mg (1), since:

99 log <N“ (¢(z), m) — \eﬂ’w@w)z) =39 log (N* (z,2) — |w]?).
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For the second part, it is enough to recall that automorphisms of €2 that fix the origin preserves
the minimal polynomial Ng (see e.g [1, Prop. II1.2.7] or [23, Section 2.2]), thus in this case
h¢ =0. m}

Proposition 1 Let A" C Q be an r-dimensional totally geodesic polydisk of a bounded
symmetric domain of classical type of rank r. Then

Car ={(z,w) € Mo(w) | z € A"}
is a totally geodesic Kihler submanifold of Mg (i) biholomorphically isometric to M ar (1).

Proof By (1) of Lemma 7 we can assume without loss of generality that A" passes through the
origin. Observe that Nor = Ngq,, (see [26, Proposition V1.2.4 and V1.3.6]). Now the proof
is an immediate consequence of lemmata 2, 3, 4, 5, 7 and the Polydisk Theorem that assure
us that Auto(€2) acts transitively on the set of the r-dimensional totally geodesic polydisk
through the origin of Q2 (see also [26, Theorem VI1.3.5]). O

Proof of Theorem 1 Let X € T (., Mq (i) be a fixed tangent vector. Consider the decompo-
sition X = X| + X», where X; € T, and X, € C. From the Polydisk Theorem we know
that there exists a totally geodesic polydisk A" C €, through z, such that X; € T,A”. By
Proposition 1 we know that {(z, w) € Mq(n) | z € A"} is the Cartan-Hartogs M ar (1) real-
ized as a totally geodesic Kéhler submanifold of Mq(1). The proof is complete by observing
that by construction X € ToA" x C = Tz wyMar (). m]

4 Proof of theorem 2

In order to proof Theorem 2 we need the following lemma, which generalize Proposition 1
to polydisks of dimension less than the rank of .

Lemma8 Let A" C A" be a totally geodesic r-dimensional polydisk of an n-dimensional
polydisk. Then

[z w) € Man(p) | z € A"} (48)
is a totally geodesic Kdahler submanifold of M an (1) biholomorphic isometric to M ar ().

Proof Let us first show that the inclusion i; : CH' — A" of CH! in the j-th factor of A",

is a holomorphic and totally geodesic immersion of CH! in A”. Let us denote by K CH' and
K2" the holomorphic sectional curvatures of CH! and A" respectively. We have (see [8,
Propostion 1X.9.2]),

n
n n a
KO x) = kY G;,%0 = Y KA <a4£), VX € T,CH!,
=1 |

wherei; (X) = Z:l ay 367( We conclude that all but one of the ay, . . ., a, are forced to be

zero. We can therefore assume, without loss of generality, that CH! x---x CH! = A" =

{z eA|z; =0, j> r}. Clearly (z1, ..., 25, w) |£> (z1y--.»2r,0,...,0, w) defines an
holomorphic isometric immersion of Mar (i) in Man (), in order to complete the proof of
the lemma we are going to prove that it is also totally geodesic.

Let V be the Levi-Civita connection of M a» (1), let us denote Tio = % and let Fl]fj be the

associated Christoffel symbols defined by V 2 % =Y %o Fl]fj % In order to prove that f
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is totally geodesic we need to show that Ff,. =0for0<i,j<randk >r.Fork, £ >0
and k # ¢, we have '

. n
i
8kt = _Eazk&zz log (1_[(1 - |Zj|2)u - |w|2)

j=l1
. 1 — 2\u—1 17" 1—|z; 2y
i omze( =z Ty (=121
2 T (1= [z P)» — [w]?
L e e R o | N C B ko L | O e
2 2

(I = 12,y = wl?)

i P zez (U= lze D A = |z T2y jes (1= 12 HF
2 1= (1 — Iz " — |w]?

and

n

[
807 = —50wdz log | [T — 12" — wp?
j=1

i mze(U—lze P Ty e (1 — 12 )"

T2 T (1= [z;PF — w]?
i wpze( =z T (U= 12"
2 [T =1z 5" — |w]?

Therefore, for k > r and z; = 0, we get

_ ag - _ ag T
rk — ke ZSjt _ kk _Sjk _ 0,
Y Xe:g 0 8 oy

for any i, j # k. The proof is complete. O

Proof of Theorem 2 As ' is a totally geodesic Kihler submanifold of the bounded symmetric
domain €2, it is an HSSNCT and therefore can be realized as a bounded symmetric domain
Q' c C™, where m = dim(2"). With a slight abuse of notation, let us denote by f :
Q' c C" - Q' C C" the totally geodesic Kihler immersion of €' in Q. Without loss of
generality (up to automorphisms of €2 and ) we can assume f(0) = 0. Once observed that
No = NQm, it is easy to verify that f Mg () - Mgq(w) given by f(z, w) = (f(2),w)
defines a Kihler embedding, with Cqy = f (Mg (1)) >~ Mg (10).

It remains to prove that Cgy is totally geodesic in Mg (u). Let p € Cqy C Mg () and let
X e T,Cqo C TyMq(w). We want to prove that the geodesic y of Mg () with y(0) = p
and y’(0) = X is also a geodesic of Cq/. By Theorem 1 and Proposition 1, we know that
there exist t.g. Kdhler immersed polydisks A" C € and A" C € such that the associated
Hartogs-Polydisk C,, C Mg () and Car C Mq(u) are totally geodesics (here r’ and
r are the ranks of © and € respectively). Using similar argument to that used in first part
of the proof of Lemma 8 we can see that A’ N A is a t.g. polydisk of " (and therefore of
2). By Lemma 8 we conclude that Carna = {(z, w) € Mg (1)} is a totally geodesic Kéhler
submanifold of Cg and Mg (1) at the same time. It is a simple observation that p € Carna
and X € T,Cana, hence y is a geodesic of Mg (i) as wished. ]
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5 Proof of theorem 3

We start this section giving the explicit expression of a holomorphic and isometric immersion
[ of (Mar (1), war (1)) in (12(C), wp).

Lemma9 The holomorphic map f: Mar() — 12(C) given by:

f(Zaw):(l//l’-“’I//ra\p)a
wherefor j =1,...,r

Z*
wj:=ﬁ(zj,... ’) (49)

1 na+kp—1 na +ky — 1\ g X
v=\...,— LooZrw?, o), 50
( \/5\/< ki > ( ki Ent 0

fork = (ky, ..., k), k| =0,1,2,...,anda = 1,2, ..., satisfies f*wy = war(1).

Proof We have:
00 5 |Z‘|2k~/
DP=nd Y
j=0 Jok /
wa+ky—1 wa+k—1 2 o, Wl
+Z< 0 ) < kr e

k.a

(to avoid confusion the sums are always taken in the parameters’ range) and:
J2j 1% - > - 2
D> =D toe(—IgP) = —log [ [Ta =1z |,
ik J j=1 j=1
/la—f‘kl —1 Ma'f‘kr_l 2k, 2k | ‘w|2a
2 el —Z i
I kr callj_ (1= z;/H~

k,a

lw?
=—log(1- -],
¢ ( T (L= 2, PF

which imply:

r

o0
Dol =—log | [T = Iz;1H* = lwi* ],
j=0

j=1

as requested. O

We use Lemma 9 to obtain geodesic equations for Mar (u). From (49), deriving twice
Y (y (1)) wrt. t gives:

1//_/()’)”:«/17<"4'j~~w."
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and, denoting by A(u, a, k) := ﬁ\/(’“tﬁ‘_l) e (“‘HZ:’_I), from (50) we get:

W(y) = ( A a k@ by )
The tangent space Ty(y) f (Mar (1)) is spanned by
vf(l/) = (alfvn'varfsawf)(y)?

and the condition for y to be a geodesic is equivalent to the system:

(fW)" afy=-=W" ) =" duf) =0, (S
namely:
SO f) =y aA’(wa, k)G i) w .l =0, (52)
k,a
andfors =1,...,r:

o0
(F)' 0 f) =y uy™ @)+
k=1 (53)
+ 3 ke A2 a k)G k) Tt = 0.
k,a

Let us now prove Theorem 3.

Proof of Theorem 3 Let y be a geodesic with linear support in Mq (1), passing through (¢, 0)
with direction £. By Lemma 7 up to automorphisms we can assume ¢ = 0 and by the Hartogs
polydisk Theorem y is contained in an Hartogs polydisk Mar(u) passing through 0 with
direction &£.Then y is a geodesic with linear support passing through the origin in Mar (1)
and conclusion follows by Lemma 10 below. O

Lemma 10 Ify(t) = (§1v(1), ..., &v(t), Ev(2)) is a geodesic in M ar (1), then either y C
A" = Mar(p)N{w = 0} ory C CH' = Mar(w)N{z =0orr =1 = p, ie
Mar(u) ~ CH2.

Proof A geodesic in Mar (1) must satisfy (52) and (53). Plugging y respectively into (52)
and (53) gives:

Eo ) aA’(u a, D& P2 &P A0 v kT = 0, (54)
k,a
B (o ¢]
ks Y 1E P Vv a0
k=1
+E ) ke A (o a Rl 16 PETY 1 P15 P @) o e = 0,
k,a
(55)
fors=1,...,r, k| =0,1,2,...,anda = 1,2, .... Evaluating at t = 0 we get:
&v(0) = u&19(0) = -+ = pn&v(0) =0,
and since &y, £;, j = 1, ..., r cannot be all vanishing, it implies #(0) = 0.
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Taking into account that v(0) = ¥(0) = 0 and v(0) = 1, deriving (54) and (55) once with
respect to ¢ and evaluating at t = 0 gives:

p
Eo [ v (0) + 21807 + 21 Y 1€/ 1P | = 0= & (v(0) +20& + 260l . (56)
Jj=1
Ifég =0or& =0foralls = 1,...,r then, since by Theorem 2 Mar () N {z = 0} and
Mar () N {w = 0} are totally geodesic in Mar(u), y C A" = Mar(n) N {w = 0} or
y € CH! = Mar () N {z = 0}. Thus, assume that £ # 0 and at least one between the &;’s
is different from 0. From (56) we get:

.
Yy |E;1F =&, foranys=1,....r, (57)
j=1

which implies that all the &’s are equal in module, and thus ru = 1.
To conclude that » = u = 1, we need to consider the third order derivative of (54) and
(55) evaluated at t = 0. Observe first that:
[ v0)]" ) =260"(0), [N v1)*]" (0) =36,

and recall that from (56) we get v/ (0) = —2(|&0|> + |&|?). Deriving three times (54) with
respect to ¢ and evaluating at r = 0 we get:

"

Eo | v + [ 1801 + 1) 1517 | 260"(0) +36 | 15" +2ul80* ) 1 1°+

j=1 j=1
(e =D Y IE T+ Y g P& | | =0,
j=1 jk=1
which by (57) reads:
&0 [0 — 16 (g0l + &%) +36(n — D& I*] = 0. (58)

On the other hand, (55) gives:

uEs [ 00) + 26 (I8 + [60l%) v (0) + 36 (1€ + 160l?)” + 36]0 (MZ 11> — |§V|2) =0,
j=1
ie.:
= 2
ks [v20) = 16 (16 + 150?) "] = 0. (59)
Comparing (58) and (59) we get © = r = 1 and we are done. ]
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