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Abstract
We study the distribution of non-discrete orbits of geometrically finite groups in SO(n, 1)
acting on R"*!, and more generally on the quotient of SO(n, 1) by a horospherical subgroup.
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of orbits for the action of general geometrically finite groups, and we obtain quantitative
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Keywords Homogeneous dynamics - Ergodic theory - Discrete subgroups of Lie groups -
Flows in homogeneous spaces

Mathematics Subject Classification 22F30 - 22E40 - 37A05

Contents

W

~N O A

Introduction . . .. ... ... ... o L.
Notation and preliminary resultsin G/I" . . . .. ... ...
2.1 Thick-thin decomposition and the shadow lemma . . . .
2.2 Patterson—Sullivan measure . . . . . . . ... ... ...

2.3 Burger—Roblin and Bowen—Margulis—Sullivan measures

24 Sobolevnorms . . . . . .. ...
2.5 Equidistribution results . . . . ... ... ... ..
Duality between G/T'and U\NG . . . . . . . ... ... ...
Proof of Theorem 1.2 . . . . ... ... ... ... .....
A small support “Ergodic Theorem™ . . . . . ... ... ...
Proof of Theorem 1.9 . . . . .. ... ... ... ......
Applications . . . .. ... Lo
7.1 Identification with null vectors . . . ... ... ... ..
7.2 Wedge products . . . ... ...
References

B Jacqueline M. Warren

1

j4warren @ucsd.edu

Department of Mathematics, University of California, San Diego, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-021-00669-0&domain=pdf
http://orcid.org/0000-0003-3124-3294

12 Page2o0f38 Geometriae Dedicata (2022) 216:12

1 Introduction

We often seek to understand a group through the distribution of its orbits on a given space.
In this paper, we will consider the action of certain geometrically finite groups on R”*+! and
other spaces.

When I is a lattice in SL,(R) acting on RR2, this question was considered by Ledrappier
[10], who proved that

1 - )
Jim = > fGn= C(F)/Rz XY
vellyl=T

for compactly supported functions f and X € R?, where c(I") is some constant depending on
the covolume of the lattice I", and ||y || denotes the £ norm on I". Nogueira [15] independently
obtained this result for I' = SL;(Z) using different methods. More recently, Macourant and
Weiss obtained a quantitative version of this theorem for cocompact lattices in SLy (R), and
also for I' = SL,(Z) in [13]. The case of lattices in SL,, (R) acting on different spaces V has
also been considered, see for instance [5,7].

In [16], Pollicott proved a similar quantitative theorem for the action of a lattice in SL; (C)
on C2. In the p-adic case, Ledrappier and Pollicott [11] considered lattices in SL, (Q p) acting
on Q?J.

Similar questions have been studied extensively for lattices in a wide variety of groups G.
For instance, Gorodnik and Weiss consider in [8] second countable, locally compact groups G
with a general axiomatic approach, with several examples. More recently, Gorodnik and Nevo
comprehensively studied the action of a lattice in a connected algebraic Lie group acting on
infinite volume homogeneous varieties in [6], including obtaining quantitative results under
appropriate assumptions.

The case when I has infinite covolume was recently studied by Maucourant and Schapira
in [12], where they obtained an asymptotic version of Ledrappier’s result for convex cocom-
pact subgroups of SL;(RR), with a scaling factor permitted. Moreover, they prove that an
ergodic theorem like Ledrappier’s in the lattice case cannot be obtained in the infinite volume
setting, because there is not even a ratio ergodic theorem. More specifically, [12, Proposition
1.5] shows that if I' € SL,(R) is geometrically finite with —/ the unique torsion element,
then there exist small bump functions f and g such that for v-almost every v (where v is
defined in Sect. 7),

ZyeFT f(UJ/)
> yery 8VY)

does not have a limit. Thus, it is impossible to obtain an ergodic theorem in this setting
with a normalization factor that does not depend on the functions. The key obstruction is the
fluctuating behaviour of the Patterson—Sullivan measure. However, they show that with an
additional averaging to address these fluctuations, there is a Log-Cesaro convergence, see
[12, Theorem 1.6].

Throughout this paper, let G = SO(n, 1)° and letI' € G be a Zariski dense geometrically
finite subgroup. As a consequence of a more general ratio theorem we will discuss later in
this section, we will obtain the following asymptotic behaviour for I" orbits acting on

V =e,11G\ {0},
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which is similar to a result of Maucourant and Schapira for n = 2. Note that V consists of
null vectors of a certain quadratic form and corresponds to the upper half of the “light cone”
in the usual representation of SO(n, 1); see Sect. 7.1 for more details.

When I' is geometrically finite, the limit set of I", denoted A(I") € d(H"), decomposes
into radial and bounded parabolic limit points:

AT)=A,T)u Abp(F).
For the precise definitions, see Sect. 2.

Proposition 1.1 Let I be convex cocompact. For any ¢ € C.(V) and every v € V with
v e A(l), as T — oo, we have that

R S R
m Z ‘P(U)/) "/ W(u)(”v”z”ul'z)(sl"/z’

yel'r v

where the implied constant depends on v and T'. Here, 8t denotes the critical exponent of T,
llu|l2 denotes the Euclidean norm of u € R and Ty = {y e T :|lyll <T}, where ||y
denotes the max norm of y as a matrix in SL,,+1 (R). The notation v~ € A, (T") is discussed
in Sect. 7.

Here, the notation a < b means that there exists a constant A > 1 such that

A< Z <.

SR

The precise definition of the measure v is discussed in Sect. 7. It is the pushforward of the
measure v defined in Sect. 2.3, which is part of the product structure of the Burger—Roblin
(BR) measure, defined fully in that section.

Let U = {ug : t € R"~!} be the expanding horospherical subgroup for the frame flow A.
Let P C G be the parabolic subgroup which contains the contracting horospherical subgroup.
Parametrizations of these groups are given in Sect. 2.

Proposition 1.1 is obtained by counting orbit points in U\G. We will also establish a
stronger version, specifically showing that a more precise ratio tends to 1. With additional
assumptions on I', we obtain a quantitative version of this statement. We need to define
additional notation in order to state this result.

Let UAK be the Iwasawa decomposition of SL,41(R), and let ¥ : U\G — G be the
map

VY (Ug) = ak,

where ¢ = uak in the Iwasawa decomposition.

We view G as embedded in SL,,+1(R). For g € G, let ||g|| denote the max norm as a
matrix in SL;,, 41 (R). The following “product” is useful for our statements (a similar definition
exists in the SLo (R) case). For x, y € U\G, let

1
Xxy = \/5 W) Ep 1 ¥ (y)

; ey

where Ej ,41 is the (n + 1) x (n + 1) matrix with one in the (1, n + 1)-entry and zeros
everywhere else. For x € U\G and g € G, xxxg measures the difference between the U
components of the Iwasawa decomposition of x and xg. More specifically, it measures the
(1, n + 1) component of g.
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For L C G, define
Lr:={geL:lgll=T}
and
By(T) :=={ug e U : |It| =T},

where ||t|| denotes the max norm of t € R*~!. Let 7y : G — U\G denote the natural
projection map.
We will be interested in the following quantity:

T
I, T, x):= fP T (BU (f»w(m(p))dv(p). )

xxy (p)

Here, ¢ is a function on U\G, x € U\G, T > 0, /J,PS denotes the PS measure, fully defined
in Sect. 2.2, and v is defined in Sect. 2.3.
For two functions of T, a(T), b(T), we write

a1
a(T) ~b(T) <— Th_)mooﬁ =

We can now state a qualitative version of our ratio theorem:

Theorem 1.2 Let I' be geometrically finite. For any ¢ € C.(U\G) and every x € U\G such
that W (x)~ € A (),

> eley) ~ 1. T, x).

vel'r
The notation g~ for g € G is defined in Sect. 2.

By the shadow lemma, Proposition 2.1, we obtain the following corollary, which will in
turn imply Proposition 1.1:

Corollary 1.3 Assume that I is convex cocompact. Forany ¢ € C.(U\G) andeveryx € U\G
such that ¥ (x)~ € A(T"), as T — oo,

1
i 3 el = [ LU ),

)
i p (xxmy (p))°r
where the implied constant depends on x and T.

Remark 1.4 The proof also works for I' geometrically finite when the geodesic of W (x)I" is
bounded. We must then assume that ¥ (x)~ € A, (I").

In order to state the quantitative version of Theorem 1.2, we need an additional definition,
which gives a precise formulation of the notion that x € G/I" does not escape to the cusps
“too quickly”:

Definition 1.5 For 0 < ¢ < 1 and s9 > 1, we say that x € G/T" with x~ € A() is
(&, so)-Diophantine if for all s > sp,

d(Cp, a—sgx) < (1 —&)s,
where Cp is a compact set arising from the thick-thin decomposition, and is fully defined in

Sect. 2.1. We say that x € G/ T is e-Diophantine if it is (&, so)-Diophantine for some sp.
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Remark 1.6 A point x € G/ T is e-Diophantine for some ¢ > 0 if and only if x~ € A, ("),
because Definition 1.5 precisely says that x~ ¢ A, ("), by the construction of the thick-thin
decomposition.

When I' is convex cocompact, every x € G/T" with x~ € A(I") is e-Diophantine for
some ¢, because all limit points are radial in this case. Observe also that in the lattice case,
this condition is always satisfied, because A(I") = d(H"). See [18] for further discussion of
this definition.

Definition 1.7 We say that I" satisfies property A if one of the following holds:

e [ is convex cocompact, or
e [ is geometrically finite, and either

1. n <4 and H"/T has a cusp of rank n — 1, or
2. 0r >n—2.

Remark 1.8 The assumptions on I" in Definition 1.7 are to ensure the effective equidistribution
theorem in [18, Theorem 1.4] holds (see Theorem 2.15 for a statement of this theorem in this
setting). As discussed in [18], this theorem holds whenever the frame flow satisfies an explicit
exponential mixing statement, [18, Assumption 1.1], and this condition is satisfied under the
conditions in Definition 1.7. However, Definition 1.7 could be replaced with assuming that
the more technical statement [18, Assumption 1.1] is satisfied.

Throughout the paper, the notation
Ly
means there exists a constant ¢ such that
x <cy.
If a subscript is denoted, e.g. <, this explicitly indicates that this constant depends on T".

Theorem 1.9 Let T satisfy property A. For any 0 < & < 1, there exist £ = £(I') € N and
k = k(T &) satisfying: for every ¢ € C°(U\G) and for every x € U\G such that ¥ (x)I"
is e-Diophantine, and for all T > suppp,x 1,
Z)/EFT w(x)’)
Jp Wgwr (BU (Ffwﬁ(p))) ¢(my (p))dv(p)

KT, supp g, x T™* (1 + Se(@)v(po ”U)_l) .

-1

The dependencies in this statement are quite explicit. The dependence of 7" on x in
Theorem 1.9 arises from the constant in Lemma 3.2, which is explicitly defined in that proof,
and the precise Diophantine nature of x, through Theorem 2.15 (i.e. the ¢ and s¢ that appear
in Definition 1.5). The implied dependence on x in the conclusion is discussed at the end of
Sect. 6.

If the support of the function is small enough, then we can get a more explicit estimate
(see Sect. 5). This is used as a main step in the proof of Theorem 1.9.

This paper is organized as follows. In Sect. 2, we present notation used throughout the
paper, the definitions and fundamental properties of the measures we are working with, and the
equidistribution theorems that will be key in our arguments. In Sect. 3, we explore the duality
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between I' orbits on U\G and of U orbits on G/ I', and prove key lemmas that are common
to the proofs of both Theorems 1.2 and 1.9 . This involves a thickening argument, due to
Ledrappier, to reduce the problem to that of equidistribution of U orbits. In Sect. 4, we prove
Theorem 1.2, using an equidistribution theorem of Mohammadi and Oh, Theorem 2.14. In
Sect. 6, we prove Theorem 1.9, using a quantitative equidistribution theorem, Theorem 2.15.
Finally, in Sect. 7, we consider two specific examples, and prove Proposition 1.1.

2 Notation and preliminary results in G/I"

Let G = SO(n, 1)°andletI" € G be a Zariski dense discrete subgroup. Letnir : G — G/ T
be the quotient map.

Let A(I") € 9(H") denote the limit set of G/ T, i.e., the set of all accumulation points of
I'z for some z € H" U 9 (H").

The convex core of X := G/T is the image in X of the minimal convex subset of H"
which contains all geodesics connecting any two points in A(T").

We say that I' is geometrically finite if a unit neighborhood of the convex core of I" has
finite volume.

Fix a reference point 0 € H". Let K = Stabg (0) and let d denote the left G-invariant
metric on G which induces the hyperbolic metric on K\G = H". Fix w, € T'(H") and let
M = Stabg (w,) so that T!(H") may be identified with M\ G. For w € THH),

wt € oH"

denotes the forward and backward endpoints of the geodesic w determines. For g € G, we
define
gt = woi g.

We say that a limit point £ € A(T") is radial if there exists a compact subset of X so that
some (and hence every) geodesic ray toward & has accumulation points in that set. We denote
by A,(I") the set of all radial limit points.

Anelement g € G is called parabolic if the set of fixed points of g in d (H") is a singleton.
We say that a limit point is parabolic if it is fixed by a parabolic element of I". A parabolic
limit point § € A(I") is called bounded if the stabilizer I's acts cocompactly on A(I") — &.

We denote by A, (') and App (I') the set of all radial limit points and the set of all bounded
parabolic limit points, respectively. Since I' is geometrically finite (see [2]),

AT) = A (T) U App(I).
Let A = {a; : s € R} be a one parameter diagonalizable subgroup such that M and A
commute, and such that the right a; action on M\G = T'(H") corresponds to unit speed

geodesic flow.
We embed G in SL,, 1 (R), parametrize A by A = {a, : s € R}, where
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and 7 denotes the (n — 1) x (n — 1) identity matrix, and let

1
M = m :meSO(n—1)
1

Let U denote the expanding horospherical subgroup
U={geG :a_sga; — eass — 400},

let U be the contracting horospherical subgroup

U={geG :aga_s — eass - 400},

and let P = M AU be the parabolic subgroup.
The group U is isomorphic to R"~!. We use the parametrization U = {u : t € R""!},
where t is viewed as a row vector, and

1ot 5P
Ut = 1 t7
1

For more details on these parametrizations and the interactions between these groups, see
(18, §2].

2.1 Thick-thin decomposition and the shadow lemma

There exists a finite set of I'-representatives &, ...,&;, € App(I'). Fori = 1,...,¢, fix
g € G such that g;” = §&;, and for any R > 0, set

Hi(R) := | J Ka_sUg. and Xi(R):=H;(R)T (3)

s>R

(recall, K = Stabg (0)). Each H,; (R) is a horoball of depth R.

The rank of ‘H; (R) is the rank of the finitely generated abelian subgroup I'g; = Stabr (&;).
It is known that each rank is strictly smaller than 28p.

Let

suppm®MS := {gl € X : g¥ e A()}. 4)

Note that the condition g* € A(T") is independent of the choice of representative of x = gI"
in the above definition, because A (I) is ['-invariant. Thus, the notation x* € A (") is well-
defined. For now, suppmPMS is simply notation, but as we will see, this coincides with
the support of the BMS measure, mBMS. We say that a point x € X is a BMS point if
x € suppmBMS,

According to [2], there exists Ry > 1 such that X (Ry), ..., X, (Ro) are disjoint, and for
some compact set Cy C X,

suppm®MS C ¢y L X1 (Ro) U - - - U X, (Ro).
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2.2 Patterson-Sullivan measure

A family of finite measures {u, : x € H"} on d(H") is called a I'-invariant conformal
density of dimension §,, > O if forevery x,y e H", & € 9(H") and y €T,

I ) = ebupen),
dpx
where y.ux (F) = py(Fy) for any Borel subset F of o (H").

We let {v,} e denote the Patterson—Sullivan density on dH", that is, the unique (up to
scalar multiplication) conformal density of dimension §r.

For each x € H", we denote by m, the unique probability measure on d(H") which is
invariant under the compact subgroup Stabg (x). Then {m, : x € H"} forms a G-invariant
conformal density of dimension n — 1, called the Lebesgue density. Fix o € H".

For x, y € H" and & € d0(H"), the Busemann function is given by

Be(x,y) = Jim d(x, &) —d(y, &)

Vilx = Hxy and

where & is a geodesic ray towards &.
For g € G, we can define measures on U g using the conformal densities defined previ-
ously. The Patterson—Sullivan measure (abbreviated as the PS-measure):

P rp + (o,utg +
d,lLUSg (Mlg) =e (ugg) (.1t (0))dv0((utg) ), (5)
and the Lebesgue measure

AP ueg) = "D O g (ueg) ).

Note that for any g € G, apointh € Ug satisfies i € supp /ngjsg ifand only if n™ € A(T).

Therefore, we refer to the points x € X which satisfy x* € A(I") as PS points.

The conformal properties of m, and v, imply that this definition is independent of the
choice of 0 € H".

We often view /Lgsg as a measure on U via

> (4) = dugj, (uig).
The measure
Ay (ug) = dpg™ (ue) = dt

is independent of the orbit Ug and is simply the Lebesgue measure on U = R"~! up to a
scalar multiple.
If x € X issuchthat x~ € A, (I"), then

Ut ux

is injective, and we can define the PS measure on Ux C X, denoted /,LES, simply by pushfor-
ward of Mgs’ where x = gI". In general, defining 1S requires more care, see e.g. [14, §2.3]

for more details. As before, we can view ,uES as a measure on U via
dpS> () = dpb® (uex).
Recall that for T > 0,
By(T) :={u¢ : It = T}, (6)
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where ||| is the max norm of t as measured in R" !,
We will need the following version of Sullivan’s shadow lemma:

Proposition 2.1 ([12, Proposition 5.1, Remark 5.2])
There exists a constant » = M) > 1 such that for all x € suppm®MS and all T > 0, we
have

)L—l TSI‘ e(k(x.T)—Sr)d(Co,a,long) < //LES(BU (T))

< kTﬁre(k(x,T)—Sr)d(Co,a—long), 7

where k(x, T') denotes the rank of the cusp containing a_og7x (andis zero ifa_1og7x € Cp).

Remark 2.2 In [12], the shadow lemma is proven using the distance measured in H"/T.
However, because Cy is K -invariant and H" = K\ G, we obtain the form above.

Remark 2.3 When I' is convex cocompact, Co = supp mPMS, and the shadow lemma simpli-
fies to

AT < WS (By(T)) < AT
We will need the following, which says that the PS measure is doubling.

Lemma 2.4 ([18, Corollary 9.9]) There exist constants o1 = o1(I') > ér, 00 = 02(I") > 0
such that for every ¢ > 0, every x € suppm®™S and every T > 0,

1S (By (eT)) «r max{c”', ¢} uPS (By (T)).

We will also require control of the PS measure of slightly larger balls, specifically as will
be established below in Lemma 2.9. This will be a result of the friendliness of the PS density
when I is geometrically finite, established in [3]. More specifically, we will show that the
measure of the boundary of certain balls can be controlled.

Letd be aleft-invariant Riemannian metric on G/ I that projects to the hyperbolic distance
on H".

Denote by dr the Euclidean metric on R"~!. For a subset S € R"~! and £E>0,let

NS, &) ={x eR" : dp(x,$) <£).
Forv e R" landr > 0, let
B(v,r) = {u eR" ! dp(u,v) < r}

be the Euclidean ball of radius r around v.
We say that a hyperplane L is on the boundary of a closed ball B if

§#LNBCB).

Below, we obtain estimates for the PS measure of small neighbourhoods of hyperplanes on
the boundary of a ball centered at a BMS point. Though not written here, estimates also hold
when the center of the ball is a PS point but not a BMS point, as long as the ball is sufficiently
small. In this case, one may use arguments similar to those in the appendix of [18].

We caution the reader that the estimates below hold only for hyperplanes on the boundary
of such a ball; to obtain such estimates for general hyperplanes, absolute friendliness of the
PS density is necessary. By [3, Theorem 1.9], this is satisfied if and only if all cusps of H" /"
are of maximal rank n — 1 (note that this is vacuously satisfied if I is convex cocompact). In
this case, one may use [18, Corollary 9.14] when I" is geometrically finite or [17, Theorem
2] if T is convex cocompact.
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Lemma 2.5 There exists a constant @ = «(I") > 0 satisfying the following: forall . € A(T"),
&> 0,0 < n <1, and every hyperplane L that is on the boundary of B(\, n), we have that

VoWV (L, &) N B(x,n) <r (%) Vo(B (R, ).

Proof By [3, Theorem 1.9], v, is friendly when T is geometrically finite. In particular, this
means that there exists « = «(I") > O such that forall A € A(I'), & > 0,0 <n <1, and
every affine hyperplane L € 9(H"),

VoV (L, & ldLlly,. Borm)) N BOL ) K v (B, 1)),
where
ldLlly, 8oy = supld(y, L) : y € B(x,n) N AD)}.
Since A € A(T"), for any L that is on the boundary of B(A, 1), we have that
ldelly, B,y = n/2.
Thus, for any L that is on the boundary of B(A, n), we have
vo(N(En/2) N B(A, 1)) K §*vo(B (A, ).

Replacing £ with 2£5~! then implies that for every such L,

b (L. €) N B, ) <1 (%) v (BOw ),

as desired. O

By flowing with a_; for s > 0, we obtain similar estimates for large balls centered at
BMS points:

Corollary 2.6 Let @ = (") > 0 be as in Lemma 2.5. For every x € suppmPMS such that
x~ € Ar(T), every n, & > 0, and every hyperplane L in the boundary of By (n)x, we have

S Wy (L, &) N By () <r (%) 1S (By ().

Proof We will first prove that there exists a constant ¢ = ¢(I') > 0 so that for all x €
supp mBMS N ¢y with x~ € A, (T), & > 0, n satisfying

0<n§c_1,

and every hyperplane L in the boundary of By (17)x, the inequality in the statement is satisfied.
Since Cp is compact, there exists ¢ = ¢(I") > 1 such that for any x € Cy we can find
g € G such that x = gI" and d (o0, g(0)) < c. Then, for any u; € By (¢~ 1), we have

1Blugg)+ (0, urg(0))| < d(ug ' (0). g(0))
< d(u_(0), 0) +d(0, g(0))
< 2c.

Then, by the definition of the PS measure, we have

1y Ny (L, €) 0 By () = ph Ny (L, §) N By ()
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_ / esrﬂ(“tg)+(O’M‘g(o))dvo((utg)+)
te Ny (L.§)NBy (1)

&t v (Pr-(N(L, €) N By () .

where Pr,— : Ug — d(H") \ {g™} is the visual map w w™. Using [18, Corollary 9.5],
we may assume that ¢ satisfies

Vo (Pry-(W(L, ) N By()) <r vo (N(L, *6) N B (g, ¢™n)),

where L’ is a hyperplane in the boundary obtained from the projection of L under the visual
map Pr,-. Thus, for any x € Cp and uy € By (c), we arrive at

UES Wy (L, &) N By () <r ve (W(L', %) N B (g7, ¢*n)), ®)
and in a similar way, one may also deduce
1SS By ) >rvo (B (gh.c 7)), ©)
Now, we may conclude
UES Wy (L, E) N By () <r ve (N(L', %) N B (g7, ¢*n)) by (8)
<«r (%) vo(B(gT, *n)) by Lemma 2.5
< (5) te?
r ; v, (B(g",c™"n)) by [18, Lemma 9.6/9.7]
<r (%) 15> (By () by (9),

Now, let x € supp mBMS with x~ € A,(I') and let n > 0. Since a_sx has accumulation

points in Cp, there exists s > 0 so that e *n < clanda_sx € Q. By the first step of the
proof, we then have that

WISy (L, &) N By(m)  1e> WU (L, e™*§) N By(e™*n)

1ES(By () wES (Bu(e=sn))
AN AY
()

Proposition 2.7 Let o = a(T') > 0 be as in Corollary 2.6. Then for all x € supp mBMS such
thatx— € A,(I'), T > 0, and 0 < ¢ < 1, we have that

1P (By((1+26)T)) — uBS(By (1)) «r e 1B (By (T)).

[m}

Proof By the geometry of (By ((1+2¢)T) — By (T))x, there exists a constant m depending
only on n and hyperplanes Ly, ..., L,, in the boundary of By ((1 + 2¢)T)x so that

m
(Bu((1426)T) — By(T)x | JNu(Li, 26T) N By ((1 +2)T)x.
i=1
Then by Corollary 2.6, we have that

1P (By((1+2)T)) — uES(By(T))
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< > 1> (Nu(Li 26T) 0 By (1 +26)T))

< (M) PS(By (1 +26)T))
"\axa2or ) P ¢

«r SQMES(BU(T)) by Lemma 2.4

Note that the assumption ¢ < 1 is for convenience in the last step only; one may still use
Lemma 2.4 if ¢ is not bounded, but the exponent on & must change. O

We can obtain estimates for all (¢, sp)-Diophantine points for balls that are sufficiently
large (in a way that is uniform and linear in s¢). In fact, for any compact set 2 € G/ T, there
exists a Tp = Tp(S2) satisfying the statement below for all x € Q withx™ € A, ('), see e.g.
[14, Lemma 3.3]. Thus, the statement below could take many forms and this is not as strong
as possible; we simply write it in a way that is useful for our setting.

Corollary 2.8 Let « = a(I") > 0 be as in Proposition 2.7, let 0 < ¢ < 1 and let so > 1.
There exists Ty = To(T, so) > 0 so that for every (g, so)-Diophantine point x € G/ T, all
T >2Ty+ 1, and all &€ > 0,

T o
WS (Bu ((1+26)T)) — b3 (By (1)) <r (“fOTO) WS (Bu(T)).  (10)

In particular, if x= € A, (I"), there exists To = To(x) > 0 so that for all T > 2Ty + 1 and
all £ > 0, (10) holds.

Proof By [18, Lemma 3.8], there exists Ty = To(T", so) > O (in fact, it is linear in s¢) so that
for every (e, so)-Diophantine point x, there exists

y € By (Tp)x N supp mBMS
For T > Ty, we have
By(T —To)y € Bu(T)x < By(T + To)y.
In particular,
By((1+28)T)x € By((1 +26)(T + To))y
and
By(T —To)y € By(T)x. (1

Since all Diophantine points are radial, by assuming that 7 > 27y + 1, we may use
Proposition 2.7 below:

WS (By (14 26)T) — 5 (By(T))
< w53 (Bu (1 +26)(T + o)) — 1> (By (T — Tp))

2T,
< P (BU ((1 +26) (1 + — ) (T — To))) — 15> (Bu(T = Tv))

Ty
Tt Tt
o §To
T—-T, T-T
1+8T
T —To

o
&« <,§ + ) 115 (By (T — Ty)) by Proposition 2.7

<r <s + ) 1S (By (T)) by (11)

@ Springer



Geometriae Dedicata (2022) 216:12 Page130f38 12

Since T > 2Ty + 1,

&7
T-—Ty

=&,
and it can be absorbed into the & term, completing the proof. O

We may now state the form in which we will need this control. The implied constant
below depends on x through the initial time in Corollary 2.8, so it can be made uniform over
a compact set or over all points with the same Diophantine properties. However, this level of
detail is not necessary for our results.

Lemma29 Leta = a(I") > 0beasin Corollary2.8. Foreveryx € G/ U withx~ € A, (),
c>0,0<n<1,and0 < ry < € < r_ satisfying

ri<l+n,

there exists To = To(x, r4,r—) > 0 such that for any T > Ty,

o (o (7)) o (o ()
<L <n + Cfﬁly pubs <BU (f))

Proof First, observe that by Corollary 2.8, there exists 77 = T7(x) so thatforall 7 > 27} + 1

andall £ > 0,

uES(By(T + &)) — uPS(By (1)) T \* 71 \*
TS (By (1)) «r (S T T1> «r (g - 7) -

This follows immediately from the fact that

uPS(By (T +£)) < uPS(By (1 +26)T).

Thus, if we assume that T is sufficiently large so that ~/7 /¢ > 2T} + 1 (and note that
this condition can be taken to rely on r_ rather than on £ specifically), and note that by the
assumption,

14
1< —<1+n,
T+

we see from (12) that

oo (2o (o (7))

—1 1 o
i WT +o)+n— T Ty PS Y
«r ( T - z—h/?) Ha (BU< ¢

- <Er;‘(ﬁ+c)+zn—ﬁ+ﬂ)“ b (Bu (ﬁ))

~

VT * v
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A+DWT+)+ 0 —VT+Ti\" s VT
<<l_‘< ﬁ ) My BU 7

<r (n ARG Y/E; d )a s <BU (f))

<LTI,x (77 + C—H]\/ETHY MES <BU (f))

Note that the implied constant depends on x because we have absorbed the constant 7. Now,

choose Ty > Ti so that T > Tj implies % < 1 (a condition which depends on x and r_ in

this case), which implies the claim because we may then absorb this term into the 5 term.
The second case can be shown in a similar way, with the choice of T depending on x and
ry there. O

2.3 Burger-Roblin and Bowen-Margulis-Sullivan measures

Let v : T'(H") — H" be the natural projection. Recalling the fixed reference point o € H"
as before, the map

we (whw, s = Bu- (0, m(w)))
is a homeomorphism between T (H") and
(O(H") x 9(H") — {(§,8) : £ € 3(H")}) x R.

This homeomorphism allows us to define the Bowen-Margulis-Sullivan (BMS) and the
Burger—Roblin (BR) measure on T' (H"), denoted by /mBMS and /mBR, respectively:

dinBMS (1) 1= O Bu+ (07D oy (0.7W) gy, )Ty qv, (w)ds,

diBR () 1= e DByt @ W) Br By @7 g Yy (1 )ds.

The conformal properties of {v,} and {m,} imply that these definitions are independent
of the choice of 0 € H". Using the identification of T!(H") with M\G, we lift the above
measures to G so that they are all invariant under M from the left. By abuse of notation,
we use the same notation (7BMS and /mBR). These measures are left I'-invariant, and hence
induce locally finite Borel measures on X, which are the Bowen-Margulis-Sullivan measure
mBMS and the Burger—Roblin measure mPBR, respectively.

Note that
supp (m®}) = {x e X : x~ e A(D)},

and the support of the BMS measure indeed satisfies (4).

Recall the definition of U, and P = M AU from the begining of Sect. 2. P is the stabilizer
of w} in G. Hence, one can define a measure v on Pg for g € G, which will give us a product
structure for 7BMS and /#BR that will be useful in our approach. For any g € G, define

dv(pg) = earﬂ(l’@"(O‘pg(o))dvn(w;pg)dmds, (13)

on Pg, where s = B(,q)- (0, pg(0)), p = mav € MAU and dm is the probability Haar
measure on M.
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Then for any ¢ € C.(G) and g € G, we have

i) = [ [ vapgdtdvpe) (14)
Pg JU
and
M3 () = fP /U ¥ (uepg)d iy (Ddv(pg). (15)
8

2.4 Sobolev norms

In the next section we formulate the equidistribution and effective equidistribution results
which we will use in the proof of the main theorems. In order to formulate them, we first
need to define Sobolev norms. Our proofs will require constructing smooth indicator functions
and partitions of unity with controlled Sobolev norms. This section also includes lemmas
constructing such partitions.

For{ e N, 1 < p <oo,and ¢ € C*®°(X) N LP(X) we consider the following Sobolev
norm

Spe¥) =Y _NUYI,

where the sum is taken over all monomials U in a fixed basis of g = Lie(G) of order at most
¢, and |||, denotes the L?(X)-norm. Since we will be using S , most often, we set

Se=82¢.
Lemma 2.10 ([9, Lemma 2.4.7])

(1) Let X, Y be Riemannian manifolds, and let ¢ € C°(X), ¥ € CX(Y). Consider ¢ -
as a functionon X x Y. Then

Se - ¥) < (X, Y)Se(@)Se (),

where c(X, Y) is a constant depending only on X and Y (independent of ¢, V).

(2) Let X be a Riemannian manifold of dimension N and let x € X. Then forany0 < r < 1,
there exists a non-negative function f € CZ°(X) such that supp(f) is contained in the
ball of radius r centered at x, fX f=1,and

Se(f) < e(X, x)r N2,
where c(X, x) is a constant depending only on X and x, not r.
The following lemma is an immediate consequence of the product rule.
Lemma 2.11 Let X be a Riemannian manifold and let ¢,y € C2°(X). For any £ € N,
Se(p - ) Ko Se(@)Se(¥).

Lemma 2.12 For any ¢’ there exists £ > {' which satisfies the following. Let X, Y be Rie-
mannian manifolds, ¢ € C2°(X), and  : Y — X be a smooth function. Then

Sp(p o) Lo,y Se(p).
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Proof By the chain rule, forany 1 <k < ¢,

Jiow®], <oa et o],

mP (supp )

[ee)

k
Lk Y Hw(")
i=0

Ly .k Soo, 7 (@)m
Ly k Selp),

where in the last line, we have used [1] to choose ¢ > ¢ satisfying

Soo,er (f)m™ ™ (supp £) < Se(f)

for any f, where the implied constant is global. O

Haar

(supp ¢)

Lemma 2.13 Let H be a Riemannian manifold of dimension N, 0 <r < 1, £ € N, and E
a bounded subset of H. Then, there exists a partition of unity o1, ...,or of E in H.(E) =
{g € G:du(g, E) <r}wheredy denotes the Riemannian metric on H, i.e.

: 0 ifx ¢ H(E)
> oi(x) = .
= l ifx eE,
such that for some uy, ..., ux € Eandalll <i <k
oi € CO(Hy(u7)),  Seoy) Ky r= N2,

Moreover,

k
Z Se(oy) <n.p r N2,

i=1

Proof According to Lemma 2.10(b) there exists a non-negative smooth function o supported
on H, > such that

f o (Wdm™ @ (h) =1, Si(o) <y r N2,
H
Since H is a Riemannian manifold and E is bounded, there exists a smooth partition of

unity, fi : H — R,i =1, ..., k, such that each f; is supported on a ball of radius r /2 with
a center u; € E and

k .

0 if H,(E
Y fiwy =) B IE
Py 1 ifx € H,o(E).

Fori =1, ..., k define o; by

o = fixo0.
We will show that oy, .. ., oy satisfy the claim.
By definition, fori = 1, ..., k, 0; is supported on a ball of radius r and centered at a point
in E. By Young’s convolution inequality, we have
Se(0i) < S1,0(fi)Se(0) < r= N2, (16)
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Forany h € E, h~LE contains the identity, and so we have hl H,;2(E) 2 H, 2. Thus,

k k
S ot =3 [ fi ot dmt e
i=1 i=1YH
k
= / Zfi x)o (hxil) dm™ (x)
Hio

= / o (hx~') dm"* (x)
H, (E)
=1.

Ith ¢ H.(E), then we have h_lH,/z(E) N H,;» = #. Hence, the above computation
yields

k
Zo,-(h) =0.
i=1

Note that by (16), and since f; is a partition of unity, we may also deduce

k k
> Se00) < Se(0) Y S1o(f)

i=1 i=1
k
= S¢(0) /H D fix)dm™ ()
i=1

< S¢(o)ym™"* ™ (H,(E))

<ypr N

2.5 Equidistribution results

For the proof of the main theorems we use the equidistribution results stated below.
The following theorem was proved for G = SL;(IR) by Maucourant and Schapira in [12]
and for G = SO(n, 1)° by Mohammadi and Oh in [14].

Theorem 2.14 Let I be geometrically finite. Fix x € G/ T" such that x~ € A,(I"). Then for
any ¥ € C.(G/T') we have

lim ———— ¥ (ux)du = mBR ().
T—o00 uBS(By(T)) Jpy 1)
Theorem 2.15 ([18, Theorem 1.4 and Remark 7.3]) Assume T satisfies property A. For any
0 <e<landsy > 1, there exist £ = £(I') € Nand k = «(I', &) > 0 satisfying: for every
compact 2 C G/T and W € CX(Q), there exists ¢ = c(T', supp ¥) such that for every
x € G/ T thatis (e, so)-Diophantine, and for all v >r q ¢ So,

‘ 1

uPS(By () J, o)
where Sy (V) is the £-Sobolev norm.

¥ (uex)dt — mBR )| < eSe(yyr™,
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3 Duality between G/I" and U\G

The goal of this section is to prove the following proposition, which shows that one can use
equidistribution results of U orbits in G/ I' in order to study the distribution of the points in
xI'r for x € U\G. This will be used to prove Theorems 1.2 and 1.9 .

Recall that for x, y € U\G, we defined

1
Xy 1= \/5 ¥ EL v ()], (17

where Ej ,41 is the (n + 1) x (n + 1) matrix with one in the (1,n + 1)-entry and zeros
everywhere else.

Recall the Iwasawa decomposition G = SO(n, 1)° = U x A x K. Define a continuous
sectionby W : U\G — AK by

VY(Ug) = ak,

where g = uak is the Iwasawa decomposition of g.
For ¢ € C.(U\G), define

Ry = yé?u%)éw(x*y)’ Fo = yerglli)%(p(x*y). (18)

Proposition 3.1 Let n > 0, Q2 C U\G be a compact set, ¢ € C(R2), and y € C(By(n)) be
a non-negative function such that fU Y = 1. Fixx € U\G. Define F € C.(G/T) by

F(gD) := Y ¥ (u(gy)e(ru(gy)).

yell
Then, for some ¢ = c(x, 2) > 0,
/ F(u ¥ (0))dt < Z pxy) 5/ F(ug Y (x))dt.
B (4= -n) pery Bu ()
Observe that
gV(Ug) ' eU

is by definition the U-component of the Iwasawa decomposition of g. Similarly, for any
g, h € G, the U-component of W (Uh)g is given by

W(UhgV(Uhg)™' = (hWWUh)H " (hgW(Uhg)™") e U.

Hence, for any x € U\G and g € G, we can define ¢, (g) :=t € R"~!, where t is such that
W(x)gW(xg)~! = ug. Then by the actions of U and A, we can see that this satisfies

ce(urg) = ce(g) + 1. celasg) = e'ce(g) (19)
and for any x € U\G,
cx(8) = ce(W(x)g). (20)
Observe that (20) implies that
Cce(hg) = ce(h) + c.(V(Uh)g) = ce(h) + cun(g)- @2y
Note that for g € G,
8§ =ue(g)V(Ug).
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That is, u.(g) is the U component of the Iwasawa decomposition of G, and W(Ug) is the
AK component.
For x € U\G and g € G, we will abuse notation and write

uy(g) == Uc,(g)-

Lemma 3.2 For any compact @ C U\G and x € U\G there exist c = c¢(2, x) > 0 such
that for any xg € Q and T > ¢, we have

(1) Ifligll < T, thenu,(g) € By («/T+c).

X*XZ

(2) Ifligll = T, then u,(g) ¢ By ( XZX;L'>.

Proof We have g = W), (g)W(xg). Fort:=c,(g) we get

g =V ur(g)W(xg)
0Ot 0
=v) 1+ ]00th | +1tl? Erptr | Wxg)
000

Denote

e i=max {[W @) v}

0t O
¢y = max \IJ(x)_1 00t" | w(y)
yeQ,fit<1 00 0

Then, c1 and ¢, are functions of x and 2. By the triangle inequality,

0ot O
lgll < It (xexxg)? + ) ' W) + W@ {00t | Wixg)
000
< |It)? (xxxg)? + €1 + c2It]l.
In a similar way
0t O
gl = It (xexxg)? — W) ' W) — [ W) [00tT | wixg)
000
> ||t)|? (xxxg)? — 1 — c2t]l.
We conclude that for any g € €,
gl — (xxxg)? It1?| < 1 + 2 It - (22)

Assume || g|| > T > c1. Then, by (22)
0 < (xxxg)? It + c2 It + (1 — T).

Using the quadratic formula, we may deduce that the right hand side of the above equation
is equal to zero when

—c + \/C% + 4T — c1)(xxxg)?
2(xxxg)?

It =
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Since (xxxg)? and ||7]| are non-negative, it follows that

—c2 + \/C% +4(T — c1)(xxxg)?
2(xxxg)?
Using the inequality v/a +b > /a — /b, we arrive at

«/T C) + ClX*xg
X*Xg (x*xg)?

Il =

It =

A similar computation shows that || g|| < T implies

It < \/7 n C) + Clx*xg
T Xxxxg (xxxg)?

ctcrx*xxg

Letting ¢ be the maximum of “
(x*xg)

for g € 2 completes the proof. O

Lemma3.3 Let ¢ € C.(U\G) and suppose that v € C.(U) satisfies

/;]10:1.

f(&) = v w(g)e(ry(g)).

For g € G, define

Then for every g € G,

p(ry(g) = / fugg)dt.
supp(y¥)u(g)~!
Proof By the definition of v,
oy (g) = ey (g)) Y (up)dt
supp(y)
= o(y(g)) Y (u(g)uy)dt.

u(g)~! supp(¥)

Since my (u;g) = my(g), we have

oty () = f ¥ ((ueg)) o (ty (urg) )t

u(g)~! supp()

= / fugg)dt
u(g)~! supp(¥)

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1 Without loss of generality, we may assume that ¢ > 0. Define f :
G — Rby

f (&) =y u(@)elry(g)).
By Lemma 3.3, for every g € G,

oty (9)) = f Flug)dt. 23)

u(g)~' By (1)
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By Lemma 3.2, there exist ¢ > 0 depending on 2 and x such thatforall T > ¢,if y € I'r
and xy € €, then

- VT +¢
uy(y)"'Bu(n) S By ( +n]. (24)
X*XY
Observe also that since supp(y) € By (n), if us ¢ uy (y)~'By (1), then
SV ()y) = ¥ u(Yx)y))e@y (Y(x)y)) =0.
Thus, using (21) and Lemma 3.3, for y € 't with xy € €2, we have that
o = | F byt
u(W(x)y)~' By (n)
= / S eV (x)y)dt
ux(y)~1 By (n)
= S eV (x)y)dt. (25)
Lv(ﬁ‘* )
Note that
F(gl) =Y f(gy) (26)
yel
Thus, from (23), forr =ry, := min (x*y), we obtain
yEsupp ¢
> o< Y / I
yvel'r yel'r

F(ueW (x)IN)dt.
=/, (214 PO

To obtain a lower bound, we must control the terms arising from y € I' \ I'7 in the
definition of F. Note that by Lemma 3.2,if y € (I' \ I'r) and xy € 2, then we see that

_ ~T —c¢
ux(y) 1BU(T?)ﬁBU< -n) =0
X*XY
Thus, by (23), we obtain

Yo=Y f ) v

)/EFT )/EFT Aavg

> / L f¥(x)y)dt

T7
yel B"( o 7")

Now, similarly to the above, we conclude that

Yoo =) / [ ¥ (x)y)dt,

yel'r yel
where R = R, := max (xxy), Then, the claim follows from the definition of F, (26). O
yesupp ¢
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Lemma3.4 Let ¢ € C.(U\G) and F be as defined in Proposition 3.1. Then,
) = [ plm(pnavip) @
P

Proof By the definition of F and the assumption that f y ¥ = 1, by the product structure of
the BR measure in (14), we obtain

mBR(F) = /G Y () (my (8)dm®R (g)
= /P fU ¥ (g () (rmy (p))dtdv(p)

= /Pw(NU(p))dV(p)-

Foraset H C G, let
B(H,r)={geG:d(g,H) <r},

where d is the Riemannian metric on G. That is, B(H, r) is the r-thickening of H with
respect to d. For h € G, we denote B({h}, r) by B(h, r) (in this case we get the Riemannian
ball around the point ).

For H € G, denote by

inj(H)
the infimum over all r > 0 satisfying that for every h € H,
wrlmr 2 Bh,r) > G/T
is injective.
In the later sections, we will require a partition of ¢, say into ¢1, ..., ¢k so that for each
i, Ry, and ry, are close.

Lemma3.5 Fixx € U\G. Foracompact set H C G, there exists0 < ng = n(H) < inj(H),
B = B(H) > 1 5o that for any 0 < n < no and ¢ € C.(U\G) with suppe C my(B(h,n))
for some h € H, we have that

R _
1< |w@) s
Ty

Proof Since B(H, 1) is a compact set, by [4, Lemma 9.12], there exist constants 0 < ny =
n(H) < inj(H), B = B(H) > 1, such that no < 1 and for all g,k € B(H, 1) with
d(g, h) < no,

BlIg —hll <d(g.h) < Bllg —hl. (28)
Therefore, for any 7 € H and 0 < n < 19, we have
B(h,n) S{g€G:lg—nl=pnl.
Note that for any g € G,
EinnV(y(9)) = Eint18.
Thus, if ||g — k|| < Bn, then
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W) Ev s W (ru @) = | W) T Erngg|
< W@ Er b + [ W@ T ELsi (g — B
< Y@ EL a1 W au )| + B v,
and similarly
W) EL g1 Wru @) | = ¥ @) T Er 1 ¥ Gy ()| — Bn w0~
Thus, it follows from (17) that for

R= max (xxy), r=  min (xxy),
yemy (B(h,n)) yemy (B(h,n))

we have
R—r <2B1W @)~ n.
Since r is bounded below by a constant depending on H, this implies that

R -1
) 1 <a @ . O

Corollary 3.6 Fixx € U\G and g € C.(U\G). Letno = no(¥ (supp ¢)) be as in Lemma 3.5.
For any 0 < n < no, there exist some k and ¢1, . .., px € C.(U\G) so that

k

Ry
Zq)i =¢ and P I < suppp -
i=1 @i

Moreover; if ¢ € C°(U\G), then we also have ¢; € CX°(U\G), and that for any £’ > 0,
there exists £ > {' satisfying

k
D Su@i) Kesuppy 1TV (). (29)

i=1

Proof For the first case (only assuming ¢ € C.(U\G)), cover ¥ (supp ¢) with balls of radius
n, and let o, .. ., o} be a partition of unity subordinate to this cover. Defining

i =@ (0j0W)

yields functions with the desired property, by Lemma 3.5.
Now, assume that ¢ € C2°(U\G), and let £ > ¢’ satisfy the conclusion of Lemma 2.12
for £/. We must be more careful in order to control Sobolev norms. By Lemma 2.13, for

0 < n < no, there exist iy, ..., hx € Y(suppe) and o1, ..., o € C°(B(h;, n)) with
k
Z o; = 1 on W(suppg) and = 0 outside B(¥ (supp ¢), n) (30)

i=1
and such that

k
D Se(01) Knsuppy 1TV, 31

i=l1

Define

0i =@ (0j0W).
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Then, by Lemma 3.5,

Ry _ -1

1 Lsuppe V)~ lin.

Fo;
Since W is smooth and ¢ > ¢/, by Lemmas 2.11 and 2.12,

S (pi) K¢ Ser(@)Se (0 o W)

L, w Se(9)Se(oi). (32)
From (31) and (32), we conclude that

k
Z Sy (@i) <L,n,supp o, ¥ n—({+n(n+1)/4sz(¢)'

i=1

4 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is restated below for convenience.

Theorem 4.1 Let ' be geometrically finite. For any ¢ € C.(U\G) and every x € U\G such
that W(x)~ € Ap(),

> exy) ~ (g, T, x).
yel'r

We will need the following lemma. Theorem 1.2 will then follow by a partition of unity
argument.

Lemma4.2 Let ¢ € C.(U\G) and let x € U\G be such that W(x)~ € A,(I'). Let R = R,
andr =ry be as in (18). Let n > 0, and suppose that g < 1 4+ n and that By (n)\V (supp ¢)
injects into G/ T.

Then for any € > 0, there exists Ty = T1(x, n, ¢) > O such that for all T > Ty,

T
> exy) - / BT (BU <f>> @Gy (p))dv(p)

e P xx1y (p)

T 1\*
<LIx M{;S(x)r <BU <{>> |:(n + CJ—T ) /pr(ﬂU(P))dv(p) +8i| s (33)

where o = a(I") is from Lemma 2.9, and ¢ = c(x, supp ¢) > 0 is as in Proposition 3.1.

Remark 4.3 Note that 77 depends on 7 through a non-canonical choice of bump function v,
as seen in the proof. When we apply this lemma to a partition of unity, the same ¥ will be
used for each part.

Proof Let ¥ € C(By(n)) be a non-negative function such that f y¥ = 1. Let F and
¢ = c(x, supp @) > 0 be as in the statement of Proposition 3.1 for this ¥, and let ¢ > 0.
By Theorem 2.14, there exists 71 = T (x, ¥, ¢) such that for T > T,

T —
Wpor (Bu (fR - n)) (mPR(F) —¢) (34)
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<Y eky)

velr

T
< whr (BU (‘f+ ‘4 n)) (mBR(F) +¢). (35)

r

Let y € supp(¢). By combining the above with Lemma 2.9 (using R, r, and £ = xxy),
we see that there exist constants co = co(I, x) and 75 = T» (I, x, supp ¢) > 0 such that for

T >T1,,
(ofer ) o
1

< s (Bu (g)) V;:T p(xy)

<1 +co <n+ %) )(mBR(F)+8). (36)

By Lemma 3.4, mBR(F) = fP ¢(my(p))dv(p), and so by (36), for any y € supp ¢, we
obtain that

IA

1
3 pler) - f oGty (p)dv(p)
/‘S/S'(x)r (BU (%)) yelr P
c+ 1\*
<r (n + ﬁ) /Pw(nu(p))dv(p) +e.

Since the above holds for any y € supp ¢, by bounding

T
> 0Gy) = whr (BU (f)) /P ¢y (P)dv(p).

yel'r
VT
PS
SPILETE /P o (BU (W)>¢(NU(P))dV(P)
velr
T
< Y e0y) — Wotor (BU ({)) /P ¢ (ru (p)dv(p),
yelr
we obtain
T
> etey) —/ T (BU <f>> @Gy (p))dv(p)
= P Xy (p)

T 4+ 1\“
<LI,x M]\)Ils(x)l“ (BU <{>> |:<r] + C\;_T ) /Pfﬂ(ﬂU(P))dv(p) +8] .

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2 By Corollary 3.6, there exists n9p = no(¥(supp¢)) > 0 so that for
every 0 < n < no, there exists {¢; : 1 <i <k} that are a partition of ¢, i.e.,

k
0= o
i=1

so that all the ¢; are supported on a small neighborhood of supp ¢, which we denote by B,
and each ¢; satisfies the assumptions of Lemma 4.2.
Forany 1 <i <k let,

Ri =Ry, ri=ry

as in (18).
Note that

R :=max(xxy), 7 :=min(xxy)
yeB yeB

satisfy R > R; > r; > r for any i.
Fix ¢ > 0. By Lemma 4.2, there exists 77 > 0 (depending on the ¢;’s, x, 1, and ¢) such
that for all T > T and for each i,

T
> pitey) - [ Hpr (BU (*F)) @i Gy (p))dv(p)

= , xam0 (p)

T 1\*
LTox Ko ir (BU ({)) [(n + Cj? ) /P(pi(m(p))dv(p) + ﬂ .

Summing over i, we obtain

T
> ebey) —/ T <BU <I)> @Gy (p))dv(p)

e ’ x*70 (p)

T -+ 1\?
<LI,x //L\P;,S(x)l—\ (BU ({)) |:<7] + Ljf ) /P(ﬂ(ﬂU(P))dv(p) +8:| . 37

Recall that
T
I(g,T,x) = /P ME,S(X)F (BU <I>) @(mty (p))dv(p).

xxy (p)

By Lemma 2.4, there exists 0 = o (I") > 0 so that for any y € supp ¢,

“Ix;s(x)r (BU (4)) (R)"
,u&s(x)r (BU (g)) <r o)
Thus, from (37), we obtain

> exy)

yel'r 1
I(p, T, x)
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LN r‘[ et 1y’ (())d()]
<<r<r>vgoonU (n—}—ﬁ) /P(anp v(p) t+e|.

Since 1 and ¢ can be chosen arbitrarily small, the claim follows. O

We will now deduce Corollary 1.3 using the shadow lemma, Proposition 2.1.
Proof of Corollary 1.3 Since W(x)~ € A, ('), there exists r = r(x) > 0 such that
By (r)W (x)T" N suppmBMS £ ¢,
Letw € By (r)¥(x)I" NsuppmBMS € G/ T Then for any 7 > 0,
1y (By(T = 1)) < i (Bu(T)) < uhy (By (T + 7).
Thus, by Proposition 2.1, there exists A = A(I") > 1 such that forall T > 0,
AT = 1) < g r (Bu(T) < AT + 1)

For every y € supp ¢, we therefore have that for all T > 2r,

T6r/2 - JT T8r/2
Y- —. 38
)T Lrx Mg (oyr Txy LT rxy)r (38)
By Theorem 1.2, there exists Top = To(x, ¢) such that for T > Ty,

> elxy)

relr gl <1)2.
I(p, T, x)

Then

I(p, T, x)

S

1 2
- < -
PS JT Z pLy) = PS T
Hyor \xxy ) velr Hyoor  xey

so by (38), we obtain

1 1 JT
Tor/2 Z o(xy) <LTr,x W/ MES(X)F <X*7T(j(p)> o(my(p))dv(p)

yel'r P
1 T7or/2 J
<Lrx 7572 /P e (p))srw(ny(p)) v(p)
¢(u(p)
———d . 39
Sl Reerr 00 (39)
The lower bound is very similar. O

5 A small support “Ergodic Theorem”
In this section, we prove an ergodic-theorem type statement for functions with small support.

This result will be used in the next chapter to prove Theorem 1.9.
Recall that for x € U\G and a compact set H C U\G, let
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Theorem 5.1 Let I satisfy property A. There exists £ = £(I") € N so that forany 0 < ¢ < 1,
there exists k = k(I', €) satisfying: for every x € U\G such that ¥ (x)T" is e-Diophantine
and every compact Q C G, there exists Ty = To(x, Q) so that for every T > Ty, there exists
n=n(T,L k,n, Q) > 0such that if p € CWU\G) with V(supp ) S Q and satisfies
R(supp ¢, x) — 1 < n, then for every y € supp ¢,

1
> w(xy)—/ @y (p))dv(p)| Kr.o.x Se(@)T™ .
“S/S(x)r (BU (%)) yelr P

Proof Fix x € U\G such that ¥ (x)T" is e-Diophantine. Let 0 < n; = 11(2) < 1 be such
that for all g € €,

mrlB,m) - B(g.m) —> G/T

is injective, where B(g,n1) = {h € G : |lg — hll < m}. Let 0 < n < n;. Then if
W (suppy) C 2 C G, we have that

B := By (n)¥ (supp ¢)

injects into G/ I'. Let R = Ry, r = r, as in (18). We are assuming that

R
R(suppp,x) —1=——1<n. (40)
r

We will find Ty = To(x, 2) as in the statement of the theorem, and choose 1 depending on
T > Ty later.
According to Lemma 2.10(2), there exists i/ : U — R such that supp ¥ = By (n) and

/U =1 Sy <n 1)

We can now use Proposition 3.1 with the above ¥ and ¢ to get an expression that we can
estimate using the effective equidistribution theorem, Theorem 2.15.

Let F and ¢ = c(£2, x) be as in Proposition 3.1 for v, ¢. There exists ¢, k', cy =
c2(I, supp ¥, x) as in the statement of Theorem 2.15 and 771 = Tj(x, 2) > c such that
forall T > Tj,

T - 7
YRS T
< D ey

)/EFT
T ~ ’
< Wtor (BU (~Fr+ o n)) (™) + casemr™). 9

‘We now need to express mBR(F) and S, (F) in terms of ¢, and to compare the PS measures
of the balls arising in (42) and (43).

Let y € supp ¢. Note that, by definition of » and R, r < xxy < R. Hence, we may use
Lemma 2.9 to deduce that for r— := R and ry := r, there exists 7> = T>(x, 2) > 0 so that
forall T > T5, we have that
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JT ¢ VT
S S
Mgl(x)f‘ (BU ( e =3 - M&(x)r By E

c+ 1\ pg JT
<L, x 77+7 Myor | Bu Xxy

According to Lemma 3.4, we have

PR (F) — /P oty (9)dv(p).

Combining the above with (42) and (43) implies that, for some ¢y = co(T, x),

(1 — ¢ <n+ %) )( /P oy (p))dv(p) —Czse(F)T_K/>

< 1 D oy
B W or (BU (;%)) yelr
1\* /
= (1 +co (n + %) ) (/P @y (p)dv(p) + c2Se(F)T™* ) . (44)

We are left to find Sy (F). Since B — BT is injective and f is supported on B (recall that
f is defined as in Lemma 3.3), using Lemma 2.10(1), Lemma 2.12, and (41), we have

Se(F) =S¢ (f)
Ln Se()Se (@ o my)
Lnr 1S (). (45)

Finally, we need to put this all together. Combining (44) and (45), for any y € supp ¢, we
obtain that

s 3 v~ [ et (pnave
/‘\P;/S(x)r (BU (%)) yelr P

c+ 1\ —l+n—1 —k'
x d S, T
<r <n+ ﬁ) /P oGty (p)dv(p) + 1 /()

<ra [0+ 77" 4011 sy0). (46)
Choose p sufficiently small so that
—n+1p<«'/2.
Letn =T7P,for T > Ty(x, Q) := max{T, T»}. Let
k = min{pa, a/2, k' /2}.

Then we conclude that

1
> o)~ [ ot vy
/‘\P;JS(x)r (BU (%)) yelr P

Lr,ax T Se(p).

[m}
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6 Proof of Theorem 1.9

In this section, we will use a partition of unity argument and the previous section to establish
Theorem 1.9, which is restated below for convenience.

Theorem 6.1 Let T satisfy property A. There exists £ = £(I") € N so that forany 0 < ¢ < 1,
there exists k = k (I, &) satisfying: for every ¢ € C°(U\G) and for every x € U\G such
that ¥ (x)I" is e-Diophantine, and for all T >T suppp,x 1,
Z)’EFT ‘/’(x)’)
Jo 1855 (Bu (525) ) ¢(w (p)av(p)

Lrsuppor T (14 Se(@)v(g o) ™).

1

Assume throughout this section that I satisfies property A. We begin by interpreting (46)
in another form, as in the following lemma. This form will be easier to work with when using
a partition of unity. Note that the main idea here is that for ¢ of small support and for any
y € supp ¢, xxy is very close to both R and r.

For H € U\G compact and x € U\G, define

Ry = maxxxy andry = minxxy.
yeH yeH
Lemma 6.2 There exists £ = £(I') > 0 which satisfies the following. Let Q@ < G be a
compact set, let x € U\G be such that W (x)I" is e-Diophantine, let ¢ € CX°(U\G) with

W(supp @) C 2, and let n > 0 be smaller than the injectivity radius of Q. Let R = Ry, ()
and r = ry, () and assume they satisfy § —1 <n.ThenforT >rq.x 1L,

T
> ey - / Hg T (BU <f>>¢(ﬂU(P))dV(P)

STy P xx1y (p)
T o
LI Mywr (Bu ({)) (n+717'7) /P @y (p))dv(p)

VTN o o
+M?ys(x)r (BU <r n b 1)/ZS£(<P)T ©.

Proof Following the arguments in the proof of Theorem 5.1 (more explicitly, the compu-
tations leading to (46)), one may deduce that there exists £ = ¢(I") > 0 such that for any
T>raxl,

PS 1 JT > <p(xy)—/ ¢y (p))dv(p)
My nr (BU (m)) yely P

<rgu [(14+ T712)" 4y~ FODRT ] 5y,

Therefore, we may conclude
VT ~ o o
= Myor (Bu <R [(n+T 2y / o (p)dv(p) —n~ Sy ()T }
P
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T
<T,supp ¢, x Z p(xy) _ME;S(X)F <BU <§>) /Pw(ﬂU(P))dV(P)

velr
JT
_ PS B J
E}’EZFT p(xy) /PN\p(x)r< U (X*NU([))>></?(7TU(P)) v(p)
T
< Y eby) — mpir (BU (f)) fP ¢ (u (p))dv(p)
velr

VT
<T,supp . x Ml:ps(x)r (BU (r

x [(n +1712)* fP oGty (p))dv(p) + n—“("—”/zsz(so)r“] :

Proof of Theorem 1.9 Step 1: Use an appropriate partition of ¢.

Let ¢ = ¢/(T") > 0 satisfy the conclusion of Lemma 6.2 and £ > ¢’ satisfy the conclusion
of Corollary 3.6 for ¢'.

By Corollary 3.6, there exists a partition ¢, ..., ¢x of ¢ satisfying Lemma 6.2 with
Q = W(supp ¢) and

k
D Su(@i) Kesuppy 1T (). (47)

i=1

Thus, by Lemma 6.2, we have that for each ¢;,

T
> piley) - f T (BU (‘F» @i (ry (p))dv(p)

= P x*7y (p)
JT
<T,suppg,x M\P;/S(x)r‘ (BU < . :
1
[(n +771%)° f i (T (p))dv(p) + n—“‘"—”ﬂsz«por—”} : (48)
P

Let
r=min{ry, ..., rc}.

Summing over 7, using (47), and noting that n < 1 yields

T
> elbey) - f o or (BU (f» ¢ (y (p))dv(p)

ol P xx1y (p)
T o
LT,suppg.x )T (BU ({)) (n+1712) /;)‘P(TFU(P))G'V(P)

\/T _ 2 _ Y
+ W or <BU ( U A T A (49)

r
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Step 2: Putting it together.

Recall
JT
1. T.x) = / w8y () prw (pavip).
pl YT xx77 (p)
Let
R=R, := ma .
0T e Y

By Lemma 2.4, we have that there exists 0 = o (I") > 0 so that
PS VT PS VT
#r (Be (1)) __ Mebr (80 (1))
1o 10 7l (Bu () v omo)
R o
<r (7) v(gomy)™!

KT, supp ¢.x v(gpo 7TU)71 , (50)

where the last line follows because (R/r)? is simply a constant depending on supp ¢, I,
and x.
From (49) and (50), we obtain that

> okxy) PS VT
yelr 1« Hyor (BU (T))
1(p. T, x) PSP T (), T x)

(n+171%)" /P oy (p))dv(p)

PS JT
or (B0 (4F))

M‘I’U)F( U\ ’22+(”2+3”’2)/4Sg(<p)T”"
I(p, T, x)

_ 1 2 3, e
KTsuppor ﬁ+c(n+T 1/2)a+v(§0onu) L2 3= /A g, (K

*2K+(n2+3n—2)/4s T,K’
- 4
<<I‘,supp¢7,x VT +¢ (17 + T 1/2)01 + n (p)

v(p omy)
Lrsuppgx T (L + Se(@v(p o)), (51

< 0, and

where (51) follows by choosing n = T, where p = 1 if 2¢ — ”2+§+72

K_/

T aM—nt1-In+)

0

otherwise, and letting
k =min{pa, a/2, k' /2}.
[m}

Remark 6.3 Note that the implied dependence on x is quite explicit. It arises from suppressing
the factors Ry, 7y, | @ (x)~"||, and ¢ throughout the argument. Specifically, ¢ is suppressed
in the use of Lemma 6.2, and r,, R, are suppressed in (51). Note that these constants depend
on x and supp ¢ through the x operation, as can be seen from the definitions and the proof of
Lemma 3.2, and they can also be computed explicitly if desired. The factor of || W) is
suppressed in the construction of the partition in Corollary 3.6. The implied constant from
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Theorem 2.15 also depends on x through the explicit Diophantine behaviour of x, i.e. the
(e, 50).

Remark 6.4 The suppressed constants Ry, 7y, ¢, and W (x)~!|| mentioned in Remark 6.3
are continuous functions of x by definition of x. This will be used in the next section.

7 Applications

Let V be a manifold on which G acts smoothly and transitively from the right, so that V may
be identified with H\G for some closed subgroup H of G that is the stabilizer of a point
vg € V.Leto : H\G — V be the identification

o(Hg) =1 -g. (52)

Note that o is smooth because G acts smoothly.
Assume further that U € H C UM. In particular, 7wy (H) is compact in U\G (recall
from Sect. 2 that 7y : G — U\G is the quotient map). Define 6 : U\G — H\G by

0(Ug)=Hg. (53)

We will now show that 6 is smooth. Since U is closed, 7y : G — U\G is a smooth

submersion. Thus, 6 is smooth if and only if 6 o 7wy is smooth. Since 6 o 7y = 7y, the

quotient map from G — H\G, it is smooth, which establishes the smoothness of 6.
Forv,u € V,letx,y € U\G be such thatu = o (6(x)), v = 0 (6(y)). We may define

VXU = XK.

This is well-defined because U M stabilizes E ,+1, and H € UM (see (1) for the definition
of x on U\G).
Recall the definition of ¥ : U\G — G from Sect. 3:

V(Ug) = ak,
where ¢ = uak is the Iwasawa decomposition of g.

Definition 7.1 A vector v € V is called e-Diophantine if there exists x € U\G such that
v =g - x and W(x)I is e-Diophantine. Such x is called an e-Diophantine representative
of v.

Remark 7.2 Note that for any g € G, g~ € A,(I) if and only if (umg)~ € A,(T") for all
um € UM, since UM does not change g~. Thus, for v € V, we may define the notation

vo e A(D)

if for any representative W(x), W(x)~ € A,(I"). Note also that since Cp is M invariant and
A commutes with M, the definition of v being e-Diophantine is independent of the choice
of a representative x € U\G.

Observe that v uniquely defines a measure on U\G by v(¢ o my) for any continuous

function ¢ defined on U\G. One can use the push-forward of this measure to H\G and the
identification of V with H\G to uniquely define a measure on V. Denote this measure by v.
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Corollary 7.3 For any 0 < ¢ < 1, there exist £ = £(I') € N and k = «(T, ) satisfying:
for every g € C2°(V) and e-Diophantine v € V with Diophantine representative x € U\G
(ie, vox =v),and T >T.suppg,v L

ZyeFT o(vy)
Jo 15 or (Bo (LX) Paodvw

Proof Let ¢’ satisfy the conclusion of Theorem 1.9 and £ satisfy the conclusion of Lemma 2.12
for ¢'.

Recall the definitions of 0 : H\G — V in (§2) and 6 : U\G — H\G in (53). Define
¢ € CZ°(U\G) by

-1 <, supp@.x T (1 + SZ(@)V(E)_I) .

@ =¢ooob.

Let x € U\G be an e-Diophantine representative of v. In particular, note that o (6(x)) =
o (HWY(x)) = v. Then, since

p(xy) =@ @) - y) =9 y),

by Theorem 1.9, for T > suppg.e.x 1

T (1 + Se(@)v(p o))

Zy el'r (P(x)’)
PS B VT d

Jp yor (Bu (5205 ) ) ¢ Gru (P)dv(p)

Z]/EFT @(UV) _
Sp v o (Bu (4E)) pandvw)

Note that the dependence of T on x is through &, so such that x is (e, sp)-Diophantine,

and by Remark 7.2, this is in fact independent of the choice of Diophantine representative
x of v. By Remark 6.4, the dependence on x in the implied constant in the above inequality
can be made uniform over all representatives of v, as they vary by elements in M, a compact

set. Thus, both dependencies on x can be replaced by dependence on v.
Observe that ¢ can be viewed as a function on U\H x H\G = U\G by

1

>>I‘,supp @.x T

1.

—K
>>F,supp¢,x T

@y, x) =idy\u(y) - (@ 0 0)(x).
Therefore, Lemmas 2.10 and 2.12 imply
Sp(p) Kp S (idy\g)Se (@ 0 0) K o suppy Se(®),
where the Sobolev norm of idy\ g is finite since we are assuming U\ H is compact. O

In a similar way, one may deduce the following from Corollary 1.3 (see Remark 7.2 for
the notation v~ € A, (I")):

Corollary 7.4 Assume that I" is convex cocompact. For any ¢ € C.(V) and every v € V with
v e A(IN),as T — o0,
o)

1
—— © = d s
Tsr/z V;T (/)(UV) » (v*u)‘sf U(M)

where the implied constant depends on v and T.
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7.1 Identification with null vectors

Let G act on R"*! by right matrix multiplication, and let
V =e,41G\ {0}.
To better understand the set V, note that the representation of SO(n, 1) we are using is

SO(n, 1) = {A € SL,p 1 (R) : AJAT = J},

where
0 0 1
J=10-1,10
1 0 O
Let P be such that
/. _[no _ T
J '_<O 1)-PJP .

Then V P is the upper half of the “light cone” in the standard representation of SO(#n, 1). In

particular, this consists of null vectors of
/ 2 2 2
Q' (X1, ooy Xpgl) = Xy —X] — - — X

with x;,4+1 > 0. In our case, V consists of null vectors of

2 2
Q1 ooy Xpg1) = 2X1 X401 — X5 — -+ — X,

Proposition 7.5 Let I be convex cocompact. For any ¢ € C.(V) and every v € V with
v- e A(I'), as T — 00, we have that

L A L ) N
Tz D PY) A/ P ol Tl 72

velr v

where the implied constant depends on v and T.

The measure v is described more explicitly in (59), below.

Let
e =(0,...,0,1) e R*1,
Then
Stabg (e,+1) = UM, (54)

and hence

AXM\KZUM\G=ZV (55)
via right matrix multiplication

UMg ept1g.

We will now interpret Corollary 7.3 in this setting. We start by understanding the measure
V.
We view V as (M\K) x R*, via the “polar decomposition” of v € V,

v = [v]2€p11k = €10 10g vk, (56)
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where Rt = {r e R:r > 0} and || - ||» denotes the Euclidean norm on V. We may also
identify M\ K with o (H") via

Mk — w; k. (57)

Thus, given v € V, (56) and (57) uniquely determine a pair (a— 1og jju|,» Mk) € AX M\K,
or equivalently, a pair (a_jog |jv||,» W, k) € A x d(H").
Viewing d(H") as M\ K as in (57), we may in turn identify this with " € R"*+! via

w;k = en+1k.
Thus, v, uniquely determines a measure v, on S" NV via
dvy(ent1k) = dvo(w, k). (58)

Then, since K stabilizes o and M stabilizes w,, vV can be described from (13): if s =
lg(a,]og Il k)~ (0,a— log Hv||2k(0)) = log|lvll,

dv(v) == dv(a_1og |v],k)

— O TPlacrog oy~ - toe ik ()

= esrsdvo(w;k)ds

= ISt dv, (et ik)d V]2

dvo(w, a—1og |v],K)ds

For v € V, define
v i=eup1k €S,
where v corresponds to (a—jog |v|,, Mk) € A x M\K. Then we have
dv(v) = [vlly " dv,(v7)d vl (59)

As discussed in the previous section, v+« may be computed by the formula in (1) for any
choice of representatives of v and « in U\G. In particular, if

v = lvll2enqtky,  u = llull2enq ik,

then

1
-1
vk = [ —[v]l2lufl2 max ’(kv )it (kidn+1,j]s
2 1<i,j<n+l

where k; ; denotes the (i, j) entry of k. In particular

vt =< /vl [ull;.

Putting this together with Corollary 7.4 yields the proposition.

7.2 Wedge products

The previous example can be generalized to /\j R forany 1 < j < n. Fix j, and let

J
W=/\R"+1, and vo =vo(j) = ep—jr1 A+ Aentl,
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with G acting on W by right multiplication. Then,
Stabenf],rw...wn+1 =U-M;
for some M; C M. Define
V =G\ {0}.

Fix a norm on V which is invariant under K such that |Jvg| = 1.
Since any v € V can be written as

v = v0d-—log|v| K,

where k € M;\K, in a similar way to the construction in the previous section, one can show
thatif @_1g vk € U P and can be written as uamv € UAMU, then

dv(v) = [[v]|’" " dv,(v)d |[vll dm,

where v~ := w, k, and dm is the push forward of the probability Haar measure on M ;\M.
dv(v) is zero if a_og |y k ¢ U P, because the original measure v is supported on P.

Moreover, by reasoning in the beginning of Sect. 7, vxu is well defined and, as in the
previous section, we have that

vi </ o]l flull.
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