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Abstract
We study the distribution of non-discrete orbits of geometrically finite groups in SO(n, 1)
acting onRn+1, and more generally on the quotient of SO(n, 1) by a horospherical subgroup.
Using equidistribution of horospherical flows, we obtain both asymptotics for the distribution
of orbits for the action of general geometrically finite groups, and we obtain quantitative
statements with additional assumptions.
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1 Introduction

We often seek to understand a group through the distribution of its orbits on a given space.
In this paper, we will consider the action of certain geometrically finite groups on Rn+1 and
other spaces.

When � is a lattice in SL2(R) acting on R
2, this question was considered by Ledrappier

[10], who proved that

lim
T →∞

1

T

∑

γ∈�,‖γ ‖≤T

f (Xγ ) = c(�)

∫

R2

f (Y )

|X ||Y |dY

for compactly supported functions f and X ∈ R
2, where c(�) is some constant depending on

the covolume of the lattice�, and ‖γ ‖ denotes the �2 normon�. Nogueira [15] independently
obtained this result for � = SL2(Z) using different methods. More recently, Macourant and
Weiss obtained a quantitative version of this theorem for cocompact lattices in SL2(R), and
also for � = SL2(Z) in [13]. The case of lattices in SLn(R) acting on different spaces V has
also been considered, see for instance [5,7].

In [16], Pollicott proved a similar quantitative theorem for the action of a lattice in SL2(C)

onC2. In the p-adic case, Ledrappier and Pollicott [11] considered lattices in SL2(Qp) acting
on Q

2
p .

Similar questions have been studied extensively for lattices in a wide variety of groups G.
For instance, Gorodnik andWeiss consider in [8] second countable, locally compact groupsG
with a general axiomatic approach, with several examples.More recently, Gorodnik andNevo
comprehensively studied the action of a lattice in a connected algebraic Lie group acting on
infinite volume homogeneous varieties in [6], including obtaining quantitative results under
appropriate assumptions.

The case when � has infinite covolume was recently studied by Maucourant and Schapira
in [12], where they obtained an asymptotic version of Ledrappier’s result for convex cocom-
pact subgroups of SL2(R), with a scaling factor permitted. Moreover, they prove that an
ergodic theorem like Ledrappier’s in the lattice case cannot be obtained in the infinite volume
setting, because there is not even a ratio ergodic theorem. More specifically, [12, Proposition
1.5] shows that if � ⊆ SL2(R) is geometrically finite with −I the unique torsion element,
then there exist small bump functions f and g such that for ν-almost every v (where ν is
defined in Sect. 7),

∑
γ∈�T

f (vγ )
∑

γ∈�T
g(vγ )

does not have a limit. Thus, it is impossible to obtain an ergodic theorem in this setting
with a normalization factor that does not depend on the functions. The key obstruction is the
fluctuating behaviour of the Patterson–Sullivan measure. However, they show that with an
additional averaging to address these fluctuations, there is a Log-Cesaro convergence, see
[12, Theorem 1.6].

Throughout this paper, let G = SO(n, 1)◦ and let � ⊆ G be a Zariski dense geometrically
finite subgroup. As a consequence of a more general ratio theorem we will discuss later in
this section, we will obtain the following asymptotic behaviour for � orbits acting on

V = en+1G \ {0},

123



Geometriae Dedicata (2022) 216 :12 Page 3 of 38 12

which is similar to a result of Maucourant and Schapira for n = 2. Note that V consists of
null vectors of a certain quadratic form and corresponds to the upper half of the “light cone”
in the usual representation of SO(n, 1); see Sect. 7.1 for more details.

When � is geometrically finite, the limit set of �, denoted �(�) ⊆ ∂(Hn), decomposes
into radial and bounded parabolic limit points:

�(�) = �r (�) 	 �bp(�).

For the precise definitions, see Sect. 2.

Proposition 1.1 Let � be convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V with
v− ∈ �(�), as T → ∞, we have that

1

T δ�/2

∑

γ∈�T

ϕ(vγ ) 

∫

V
ϕ(u)

dν(u)

(‖v‖2 ‖u‖2)δ�/2 ,

where the implied constant depends on v and �. Here, δ� denotes the critical exponent of �,
‖u‖2 denotes the Euclidean norm of u ∈ R

n+1, and �T = {γ ∈ � : ‖γ ‖ ≤ T }, where ‖γ ‖
denotes the max norm of γ as a matrix in SLn+1(R). The notation v− ∈ �r (�) is discussed
in Sect. 7.

Here, the notation a 
 b means that there exists a constant λ > 1 such that

λ−1 ≤ a

b
≤ λ.

The precise definition of the measure ν is discussed in Sect. 7. It is the pushforward of the
measure ν defined in Sect. 2.3, which is part of the product structure of the Burger–Roblin
(BR) measure, defined fully in that section.

Let U = {ut : t ∈ R
n−1} be the expanding horospherical subgroup for the frame flow A.

Let P ⊂ G be the parabolic subgroupwhich contains the contracting horospherical subgroup.
Parametrizations of these groups are given in Sect. 2.

Proposition 1.1 is obtained by counting orbit points in U\G. We will also establish a
stronger version, specifically showing that a more precise ratio tends to 1. With additional
assumptions on �, we obtain a quantitative version of this statement. We need to define
additional notation in order to state this result.

Let U AK be the Iwasawa decomposition of SLn+1(R), and let � : U\G → G be the
map

�(Ug) = ak,

where g = uak in the Iwasawa decomposition.
We view G as embedded in SLn+1(R). For g ∈ G, let ‖g‖ denote the max norm as a

matrix in SLn+1(R). The following “product” is useful for our statements (a similar definition
exists in the SL2(R) case). For x, y ∈ U\G, let

x�y :=
√
1

2

∥∥�(x)−1E1,n+1�(y)
∥∥, (1)

where E1,n+1 is the (n + 1) × (n + 1) matrix with one in the (1, n + 1)-entry and zeros
everywhere else. For x ∈ U\G and g ∈ G, x�xg measures the difference between the U
components of the Iwasawa decomposition of x and xg. More specifically, it measures the
(1, n + 1) component of g.
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For L ⊆ G, define

LT := {g ∈ L : ‖g‖ ≤ T }
and

BU (T ) := {ut ∈ U : ‖t‖ ≤ T },
where ‖t‖ denotes the max norm of t ∈ R

n−1. Let πU : G → U\G denote the natural
projection map.

We will be interested in the following quantity:

I (ϕ, T , x) :=
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p). (2)

Here, ϕ is a function on U\G, x ∈ U\G, T > 0, μPS denotes the PS measure, fully defined
in Sect. 2.2, and ν is defined in Sect. 2.3.

For two functions of T , a(T ), b(T ), we write

a(T ) ∼ b(T ) ⇐⇒ lim
T →∞

a(T )

b(T )
= 1.

We can now state a qualitative version of our ratio theorem:

Theorem 1.2 Let � be geometrically finite. For any ϕ ∈ Cc(U\G) and every x ∈ U\G such
that �(x)− ∈ �r (�),

∑

γ∈�T

ϕ(xγ ) ∼ I (ϕ, T , x).

The notation g− for g ∈ G is defined in Sect. 2.

By the shadow lemma, Proposition 2.1, we obtain the following corollary, which will in
turn imply Proposition 1.1:

Corollary 1.3 Assume that� is convex cocompact. For any ϕ ∈ Cc(U\G)and every x ∈ U\G
such that �(x)− ∈ �(�), as T → ∞,

1

T δ�/2

∑

γ∈�T

ϕ(xγ ) 

∫

P

ϕ(πU (p))

(x�πU (p))δ�
dν(p),

where the implied constant depends on x and �.

Remark 1.4 The proof also works for � geometrically finite when the geodesic of �(x)� is
bounded. We must then assume that �(x)− ∈ �r (�).

In order to state the quantitative version of Theorem 1.2, we need an additional definition,
which gives a precise formulation of the notion that x ∈ G/� does not escape to the cusps
“too quickly”:

Definition 1.5 For 0 < ε < 1 and s0 ≥ 1, we say that x ∈ G/� with x− ∈ �(�) is
(ε, s0)-Diophantine if for all s > s0,

d(C0, a−s x) < (1 − ε)s,

where C0 is a compact set arising from the thick-thin decomposition, and is fully defined in
Sect. 2.1. We say that x ∈ G/� is ε-Diophantine if it is (ε, s0)-Diophantine for some s0.
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Remark 1.6 A point x ∈ G/� is ε-Diophantine for some ε > 0 if and only if x− ∈ �r (�),
because Definition 1.5 precisely says that x− /∈ �bp(�), by the construction of the thick-thin
decomposition.

When � is convex cocompact, every x ∈ G/� with x− ∈ �(�) is ε-Diophantine for
some ε, because all limit points are radial in this case. Observe also that in the lattice case,
this condition is always satisfied, because �(�) = ∂(Hn). See [18] for further discussion of
this definition.

Definition 1.7 We say that � satisfies property A if one of the following holds:

• � is convex cocompact, or
• � is geometrically finite, and either

1. n ≤ 4 and Hn/� has a cusp of rank n − 1, or
2. δ� > n − 2.

Remark 1.8 The assumptions on� inDefinition 1.7 are to ensure the effective equidistribution
theorem in [18, Theorem 1.4] holds (see Theorem 2.15 for a statement of this theorem in this
setting). As discussed in [18], this theorem holds whenever the frame flow satisfies an explicit
exponential mixing statement, [18, Assumption 1.1], and this condition is satisfied under the
conditions in Definition 1.7. However, Definition 1.7 could be replaced with assuming that
the more technical statement [18, Assumption 1.1] is satisfied.

Throughout the paper, the notation

x � y

means there exists a constant c such that

x ≤ cy.

If a subscript is denoted, e.g. �� , this explicitly indicates that this constant depends on �.

Theorem 1.9 Let � satisfy property A. For any 0 < ε < 1, there exist � = �(�) ∈ N and
κ = κ(�, ε) satisfying: for every ϕ ∈ C∞

c (U\G) and for every x ∈ U\G such that �(x)�

is ε-Diophantine, and for all T ��,suppϕ,x 1,
∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )
∫

P μPS
�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

− 1

∣∣∣∣∣∣

��,suppϕ,x T −κ
(
1 + S�(ϕ)ν(ϕ ◦ πU )−1) .

The dependencies in this statement are quite explicit. The dependence of T on x in
Theorem 1.9 arises from the constant in Lemma 3.2, which is explicitly defined in that proof,
and the precise Diophantine nature of x , through Theorem 2.15 (i.e. the ε and s0 that appear
in Definition 1.5). The implied dependence on x in the conclusion is discussed at the end of
Sect. 6.

If the support of the function is small enough, then we can get a more explicit estimate
(see Sect. 5). This is used as a main step in the proof of Theorem 1.9.

This paper is organized as follows. In Sect. 2, we present notation used throughout the
paper, the definitions and fundamental properties of themeasureswe areworkingwith, and the
equidistribution theorems that will be key in our arguments. In Sect. 3, we explore the duality
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between � orbits on U\G and of U orbits on G/�, and prove key lemmas that are common
to the proofs of both Theorems 1.2 and 1.9 . This involves a thickening argument, due to
Ledrappier, to reduce the problem to that of equidistribution of U orbits. In Sect. 4, we prove
Theorem 1.2, using an equidistribution theorem of Mohammadi and Oh, Theorem 2.14. In
Sect. 6, we prove Theorem 1.9, using a quantitative equidistribution theorem, Theorem 2.15.
Finally, in Sect. 7, we consider two specific examples, and prove Proposition 1.1.

2 Notation and preliminary results inG/0

Let G = SO(n, 1)◦ and let � ⊆ G be a Zariski dense discrete subgroup. Let π� : G → G/�

be the quotient map.
Let �(�) ⊆ ∂(Hn) denote the limit set of G/�, i.e., the set of all accumulation points of

�z for some z ∈ H
n ∪ ∂(Hn).

The convex core of X := G/� is the image in X of the minimal convex subset of Hn

which contains all geodesics connecting any two points in �(�).
We say that � is geometrically finite if a unit neighborhood of the convex core of � has

finite volume.
Fix a reference point o ∈ H

n . Let K = StabG(o) and let d denote the left G-invariant
metric on G which induces the hyperbolic metric on K\G = H

n . Fix wo ∈ T1(Hn) and let
M = StabG(wo) so that T1(Hn) may be identified with M\G. For w ∈ T1(Hn),

w± ∈ ∂Hn

denotes the forward and backward endpoints of the geodesic w determines. For g ∈ G, we
define

g± := w±
o g.

We say that a limit point ξ ∈ �(�) is radial if there exists a compact subset of X so that
some (and hence every) geodesic ray toward ξ has accumulation points in that set. We denote
by �r (�) the set of all radial limit points.

An element g ∈ G is called parabolic if the set of fixed points of g in ∂(Hn) is a singleton.
We say that a limit point is parabolic if it is fixed by a parabolic element of �. A parabolic
limit point ξ ∈ �(�) is called bounded if the stabilizer �ξ acts cocompactly on �(�) − ξ .

We denote by�r (�) and�bp(�) the set of all radial limit points and the set of all bounded
parabolic limit points, respectively. Since � is geometrically finite (see [2]),

�(�) = �r (�) ∪ �bp(�).

Let A = {as : s ∈ R} be a one parameter diagonalizable subgroup such that M and A
commute, and such that the right as action on M\G = T1(Hn) corresponds to unit speed
geodesic flow.

We embed G in SLn+1(R), parametrize A by A = {as : s ∈ R}, where

as =
⎛

⎝
es

I
e−s

⎞

⎠

123



Geometriae Dedicata (2022) 216 :12 Page 7 of 38 12

and I denotes the (n − 1) × (n − 1) identity matrix, and let

M =
⎧
⎨

⎩

⎛

⎝
1

m
1

⎞

⎠ : m ∈ SO(n − 1)

⎫
⎬

⎭ .

Let U denote the expanding horospherical subgroup

U = {g ∈ G : a−s gas → e as s → +∞} ,

let Ũ be the contracting horospherical subgroup

Ũ = {g ∈ G : as ga−s → e as s → +∞} ,

and let P = M AŨ be the parabolic subgroup.
The group U is isomorphic to R

n−1. We use the parametrization U = {ut : t ∈ R
n−1},

where t is viewed as a row vector, and

ut =
⎛

⎝
1 t 1

2 ‖t‖2
I tT

1

⎞

⎠ .

For more details on these parametrizations and the interactions between these groups, see
[18, §2].

2.1 Thick-thin decomposition and the shadow lemma

There exists a finite set of �-representatives ξ1, . . . , ξq ∈ �bp(�). For i = 1, . . . , q , fix
gi ∈ G such that g−

i = ξi , and for any R > 0, set

Hi (R) :=
⋃

s>R

K a−sUgi , and Xi (R) := Hi (R)� (3)

(recall, K = StabG(o)). Each Hi (R) is a horoball of depth R.
The rank ofHi (R) is the rank of the finitely generated abelian subgroup �ξi = Stab�(ξi ).

It is known that each rank is strictly smaller than 2δ� .
Let

suppmBMS := {
g� ∈ X : g± ∈ �(�)

}
. (4)

Note that the condition g± ∈ �(�) is independent of the choice of representative of x = g�

in the above definition, because �(�) is �-invariant. Thus, the notation x± ∈ �(�) is well-
defined. For now, suppmBMS is simply notation, but as we will see, this coincides with
the support of the BMS measure, mBMS. We say that a point x ∈ X is a BMS point if
x ∈ suppmBMS.

According to [2], there exists R0 ≥ 1 such that X1(R0), . . . ,Xq(R0) are disjoint, and for
some compact set C0 ⊂ X ,

suppmBMS ⊆ C0 	 X1(R0) 	 · · · 	 Xq(R0).

123
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2.2 Patterson–Sullivanmeasure

A family of finite measures {μx : x ∈ H
n} on ∂(Hn) is called a �-invariant conformal

density of dimension δμ > 0 if for every x, y ∈ H
n , ξ ∈ ∂(Hn) and γ ∈ �,

γ∗μx = μxγ and
dμy

dμx
(ξ) = e−δμβξ (y,x),

where γ∗μx (F) = μx (Fγ ) for any Borel subset F of ∂(Hn).
We let {νx }x∈Hn denote the Patterson–Sullivan density on ∂Hn , that is, the unique (up to

scalar multiplication) conformal density of dimension δ� .
For each x ∈ H

n , we denote by mx the unique probability measure on ∂(Hn) which is
invariant under the compact subgroup StabG(x). Then {mx : x ∈ H

n} forms a G-invariant
conformal density of dimension n − 1, called the Lebesgue density. Fix o ∈ H

n .
For x, y ∈ H

n and ξ ∈ ∂(Hn), the Busemann function is given by

βξ (x, y) := lim
t→∞ d(x, ξt ) − d(y, ξt )

where ξt is a geodesic ray towards ξ .
For g ∈ G, we can define measures on Ug using the conformal densities defined previ-

ously. The Patterson–Sullivan measure (abbreviated as the PS-measure):

dμPS
Ug(utg) := eδ�β(utg)+ (o,utg(o))dνo((utg)+), (5)

and the Lebesgue measure

dμLeb
Ug (utg) := e(n−1)β(utg)+ (o,utg(o))dmo((utg)+).

Note that for any g ∈ G, a point h ∈ Ug satisfies h ∈ suppμPS
Ug if and only if h+ ∈ �(�).

Therefore, we refer to the points x ∈ X which satisfy x+ ∈ �(�) as PS points.
The conformal properties of mx and νx imply that this definition is independent of the

choice of o ∈ H
n .

We often view μPS
Ug as a measure on U via

dμPS
g (t) := dμPS

Ug(utg).

The measure

dμLeb
Ug (utg) = dμLeb

U (ut) = dt

is independent of the orbit Ug and is simply the Lebesgue measure on U ≡ R
n−1 up to a

scalar multiple.
If x ∈ X is such that x− ∈ �r (�), then

u �→ ux

is injective, and we can define the PS measure on U x ⊆ X , denoted μPS
x , simply by pushfor-

ward of μPS
g , where x = g�. In general, defining μPS

x requires more care, see e.g. [14, §2.3]
for more details. As before, we can view μPS

x as a measure on U via

dμPS
x (t) = dμPS

x (utx).

Recall that for T > 0,

BU (T ) := {ut : ‖t‖ ≤ T }, (6)
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where ‖t‖ is the max norm of t as measured in Rn−1.
We will need the following version of Sullivan’s shadow lemma:

Proposition 2.1 ([12, Proposition 5.1, Remark 5.2])
There exists a constant λ = λ(�) ≥ 1 such that for all x ∈ suppmBMS and all T > 0, we

have

λ−1T δ� e(k(x,T )−δ�)d(C0,a− log T x) ≤ μPS
x (BU (T ))

≤ λT δ� e(k(x,T )−δ�)d(C0,a− log T x), (7)

where k(x, T ) denotes the rank of the cusp containing a− log T x (and is zero if a− log T x ∈ C0).

Remark 2.2 In [12], the shadow lemma is proven using the distance measured in H
n/�.

However, because C0 is K -invariant and Hn = K\G, we obtain the form above.

Remark 2.3 When � is convex cocompact, C0 = suppmBMS, and the shadow lemma simpli-
fies to

λ−1T δ� ≤ μPS
x (BU (T )) ≤ λT δ� .

We will need the following, which says that the PS measure is doubling.

Lemma 2.4 ([18, Corollary 9.9]) There exist constants σ1 = σ1(�) ≥ δ� , σ2 = σ2(�) > 0
such that for every c > 0, every x ∈ suppmBMS and every T > 0,

μPS
x (BU (cT )) �� max{cσ1 , cσ2}μPS

x (BU (T )).

We will also require control of the PS measure of slightly larger balls, specifically as will
be established below in Lemma 2.9. This will be a result of the friendliness of the PS density
when � is geometrically finite, established in [3]. More specifically, we will show that the
measure of the boundary of certain balls can be controlled.

Let d be a left-invariant Riemannianmetric onG/� that projects to the hyperbolic distance
on H

n .
Denote by dE the Euclidean metric on Rn−1. For a subset S ⊆ R

n−1 and ξ > 0, let

N (S, ξ) = {x ∈ R
n−1 : dE (x, S) ≤ ξ}.

For v ∈ R
n−1 and r > 0, let

B(v, r) = {
u ∈ R

n−1 : dE (u, v) ≤ r
}

be the Euclidean ball of radius r around v.
We say that a hyperplane L is on the boundary of a closed ball B if

∅ �= L ∩ B ⊆ ∂(B).

Below, we obtain estimates for the PS measure of small neighbourhoods of hyperplanes on
the boundary of a ball centered at a BMS point. Though not written here, estimates also hold
when the center of the ball is a PS point but not a BMS point, as long as the ball is sufficiently
small. In this case, one may use arguments similar to those in the appendix of [18].

We caution the reader that the estimates below hold only for hyperplanes on the boundary
of such a ball; to obtain such estimates for general hyperplanes, absolute friendliness of the
PS density is necessary. By [3, Theorem 1.9], this is satisfied if and only if all cusps ofHn/�

are of maximal rank n − 1 (note that this is vacuously satisfied if � is convex cocompact). In
this case, one may use [18, Corollary 9.14] when � is geometrically finite or [17, Theorem
2] if � is convex cocompact.
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Lemma 2.5 There exists a constant α = α(�) > 0 satisfying the following: for all λ ∈ �(�),
ξ > 0, 0 < η ≤ 1, and every hyperplane L that is on the boundary of B(λ, η), we have that

νo(N (L, ξ) ∩ B(λ, η)) ��

(
ξ

η

)α

νo(B(λ, η)).

Proof By [3, Theorem 1.9], νo is friendly when � is geometrically finite. In particular, this
means that there exists α = α(�) > 0 such that for all λ ∈ �(�), ξ > 0, 0 < η ≤ 1, and
every affine hyperplane L ⊆ ∂(Hn),

νo(N (L, ξ ‖dL‖νo,B(λ,η)) ∩ B(λ, η)) �� ξανo(B(λ, η)),

where

‖dL‖νo,B(λ,η) := sup {d(y, L) : y ∈ B(λ, η) ∩ �(�)} .

Since λ ∈ �(�), for any L that is on the boundary of B(λ, η), we have that

‖dL‖νo,B(λ,η) ≥ η/2.

Thus, for any L that is on the boundary of B(λ, η), we have

νo(N (ξη/2) ∩ B(λ, η)) �� ξανo(B(λ, η)).

Replacing ξ with 2ξη−1 then implies that for every such L ,

νo(N (L, ξ) ∩ B(λ, η)) ��

(
ξ

η

)α

νo(B(λ, η)),

as desired. �	
By flowing with a−s for s > 0, we obtain similar estimates for large balls centered at

BMS points:

Corollary 2.6 Let α = α(�) > 0 be as in Lemma 2.5. For every x ∈ suppmBMS such that
x− ∈ �r (�), every η, ξ > 0, and every hyperplane L in the boundary of BU (η)x, we have

μPS
x (NU (L, ξ) ∩ BU (η)) ��

(
ξ

η

)α

μPS
x (BU (η)).

Proof We will first prove that there exists a constant c = c(�) > 0 so that for all x ∈
suppmBMS ∩ C0 with x− ∈ �r (�), ξ > 0, η satisfying

0 < η ≤ c−1,

and every hyperplane L in the boundary of BU (η)x , the inequality in the statement is satisfied.
Since C0 is compact, there exists c = c(�) > 1 such that for any x ∈ C0 we can find

g ∈ G such that x = g� and d(o, g(o)) < c. Then, for any ut ∈ BU (c−1), we have

|β(utg)+(o, utg(o))| ≤ d(u−1
t (o), g(o))

≤ d(u−t(o), o) + d(o, g(o))

≤ 2c.

Then, by the definition of the PS measure, we have

μPS
x (NU (L, ξ) ∩ BU (η)) = μPS

g (NU (L, ξ) ∩ BU (η))
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=
∫

t∈NU (L,ξ)∩BU (η)

eδ�β(utg)+ (o,utg(o))dνo((utg)+)

�� νo
(
Prg−(N (L, ξ) ∩ BU (η))

)
,

where Prg− : Ug → ∂(Hn) \ {g−} is the visual map w �→ w+. Using [18, Corollary 9.5],
we may assume that c satisfies

νo
(
Prg−(N (L, ξ) ∩ BU (η))

) �� νo
(N (L ′, c2ξ) ∩ B

(
g+, c2η

))
,

where L ′ is a hyperplane in the boundary obtained from the projection of L under the visual
map Prg− . Thus, for any x ∈ C0 and ut ∈ BU (c), we arrive at

μPS
x (NU (L, ξ) ∩ BU (η)) �� νo

(N (L ′, c2ξ) ∩ B
(
g+, c2η

))
, (8)

and in a similar way, one may also deduce

μPS
x (BU (η)) �� νo

(
B
(
g+, c−2η

))
, (9)

Now, we may conclude

μPS
x (NU (L, ξ) ∩ BU (η)) �� νo

(N (L ′, c2ξ) ∩ B
(
g+, c2η

))
by (8)

��

(
ξ

η

)α

νo(B(g+, c2η)) by Lemma 2.5

��

(
ξ

η

)α

νo(B(g+, c−2η)) by [18,Lemma 9.6/9.7]

��

(
ξ

η

)α

μPS
x (BU (η)) by (9),

Now, let x ∈ suppmBMS with x− ∈ �r (�) and let η > 0. Since a−s x has accumulation
points in C0, there exists s > 0 so that e−sη < c−1 and a−s x ∈ C0. By the first step of the
proof, we then have that

μPS
x (NU (L, ξ) ∩ BU (η))

μPS
x (BU (η))

= μPS
a−s x (NU (L, e−sξ) ∩ BU (e−sη))

μPS
a−s x (BU (e−sη))

��

(
e−sξ

e−sη

)α

=
(

ξ

η

)α

.

�	
Proposition 2.7 Let α = α(�) > 0 be as in Corollary 2.6. Then for all x ∈ suppmBMS such
that x− ∈ �r (�), T > 0, and 0 < ε ≤ 1, we have that

μPS
x (BU ((1 + 2ε)T )) − μPS

x (BU (T )) �� εαμPS
x (BU (T )).

Proof By the geometry of (BU ((1+ 2ε)T ) − BU (T ))x , there exists a constant m depending
only on n and hyperplanes L1, . . . , Lm in the boundary of BU ((1 + 2ε)T )x so that

(BU ((1 + 2ε)T ) − BU (T ))x ⊆
m⋃

i=1

NU (Li , 2εT ) ∩ BU ((1 + 2ε)T )x .

Then by Corollary 2.6, we have that

μPS
x (BU ((1 + 2ε)T )) − μPS

x (BU (T ))
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≤
m∑

i=1

μPS
x (NU (Li , 2εT ) ∩ BU ((1 + 2ε)T ))

��

(
2εT

(1 + 2ε)T

)α

μPS
x (BU ((1 + 2ε)T ))

�� εαμPS
x (BU (T )) by Lemma 2.4

Note that the assumption ε ≤ 1 is for convenience in the last step only; one may still use
Lemma 2.4 if ε is not bounded, but the exponent on ε must change. �	

We can obtain estimates for all (ε, s0)-Diophantine points for balls that are sufficiently
large (in a way that is uniform and linear in s0). In fact, for any compact set � ⊆ G/�, there
exists a T0 = T0(�) satisfying the statement below for all x ∈ � with x− ∈ �r (�), see e.g.
[14, Lemma 3.3]. Thus, the statement below could take many forms and this is not as strong
as possible; we simply write it in a way that is useful for our setting.

Corollary 2.8 Let α = α(�) > 0 be as in Proposition 2.7, let 0 < ε ≤ 1 and let s0 ≥ 1.
There exists T0 = T0(�, s0) > 0 so that for every (ε, s0)-Diophantine point x ∈ G/�, all
T ≥ 2T0 + 1, and all ξ > 0,

μPS
x (BU ((1 + 2ξ)T )) − μPS

x (BU (T )) ��

(
ξ + T0

T − T0

)α

μPS
x (BU (T )). (10)

In particular, if x− ∈ �r (�), there exists T0 = T0(x) > 0 so that for all T ≥ 2T0 + 1 and
all ξ > 0, (10) holds.

Proof By [18, Lemma 3.8], there exists T0 = T0(�, s0) > 0 (in fact, it is linear in s0) so that
for every (ε, s0)-Diophantine point x , there exists

y ∈ BU (T0)x ∩ suppmBMS.

For T ≥ T0, we have

BU (T − T0)y ⊆ BU (T )x ⊆ BU (T + T0)y.

In particular,

BU ((1 + 2ξ)T )x ⊆ BU ((1 + 2ξ)(T + T0))y

and

BU (T − T0)y ⊆ BU (T )x . (11)

Since all Diophantine points are radial, by assuming that T ≥ 2T0 + 1, we may use
Proposition 2.7 below:

μPS
x (BU (1 + 2ξ)T ) − μPS

x (BU (T ))

≤ μPS
y (BU (1 + 2ξ)(T + T0)) − μPS

y (BU (T − T0))

≤ μPS
y

(
BU

(
(1 + 2ξ)

(
1 + 2T0

T − T0

)
(T − T0)

))
− μPS

y (BU (T − T0))

��

(
ξ + T0

T − T0
+ ξT0

T − T0

)α

μPS
y (BU (T − T0)) by Proposition 2.7

��

(
ξ + (1 + ξ)T0

T − T0

)α

μPS
x (BU (T )) by (11)
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Since T ≥ 2T0 + 1,

ξT0
T − T0

≤ ξ,

and it can be absorbed into the ξ term, completing the proof. �	
We may now state the form in which we will need this control. The implied constant

below depends on x through the initial time in Corollary 2.8, so it can be made uniform over
a compact set or over all points with the same Diophantine properties. However, this level of
detail is not necessary for our results.

Lemma 2.9 Let α = α(�) > 0 be as in Corollary 2.8. For every x ∈ G/� with x− ∈ �r (�),

c > 0, 0 < η ≤ 1, and 0 < r+ < � < r− satisfying

r+
r−

< 1 + η,

there exists T0 = T0(x, r+, r−) > 0 such that for any T > T0,
∣∣∣∣∣μ

PS
x

(
BU

(√
T ± c

r±
± η

))
− μPS

x

(
BU

(√
T

�

))∣∣∣∣∣

��,x

(
η + c + 1√

T

)α

μPS
x

(
BU

(√
T

�

))

Proof First, observe that by Corollary 2.8, there exists T1 = T1(x) so that for all T ≥ 2T1+1
and all ξ > 0,

μPS
x (BU (T + ξ)) − μPS

x (BU (T ))

μPS
x (BU (T ))

��

(
ξ + T1

T − T1

)α

��

(
ξ + T1

T

)α

. (12)

This follows immediately from the fact that

μPS
x (BU (T + ξ)) ≤ μPS

x (BU (1 + 2ξ)T ).

Thus, if we assume that T is sufficiently large so that
√

T /� ≥ 2T1 + 1 (and note that
this condition can be taken to rely on r− rather than on � specifically), and note that by the
assumption,

1 ≤ �

r+
≤ 1 + η,

we see from (12) that

μPS
x

(
BU

(√
T + c

r+
+ η

))
− μPS

x

(
BU

(√
T

�

))

��

(
r−1+ (

√
T + c) + η − �−1

√
T

�−1
√

T
+ T1

�−1
√

T

)α

μPS
x

(
BU

(√
T

�

))

��

(
�r−1+ (

√
T + c) + �η − √

T + T1√
T

)α

μPS
x

(
BU

(√
T

�

))
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��

(
(1 + η)(

√
T + c) + �η − √

T + T1√
T

)α

μPS
x

(
BU

(√
T

�

))

��

(
η + c + η� + T1√

T

)α

μPS
x

(
BU

(√
T

�

))

��,x

(
η + c + η� + 1√

T

)α

μPS
x

(
BU

(√
T

�

))

Note that the implied constant depends on x because we have absorbed the constant T1.Now,
choose T0 ≥ T1 so that T ≥ T0 implies �√

T
< 1 (a condition which depends on x and r− in

this case), which implies the claim because we may then absorb this term into the η term.
The second case can be shown in a similar way, with the choice of T0 depending on x and

r+ there. �	

2.3 Burger–Roblin and Bowen–Margulis–Sullivanmeasures

Let π : T1(Hn) → H
n be the natural projection. Recalling the fixed reference point o ∈ H

n

as before, the map

w �→ (w+, w−, s := βw−(o, π(w)))

is a homeomorphism between T1(Hn) and

(∂(Hn) × ∂(Hn) − {(ξ, ξ) : ξ ∈ ∂(Hn)}) × R.

This homeomorphism allows us to define the Bowen-Margulis-Sullivan (BMS) and the
Burger–Roblin (BR) measure on T1(Hn), denoted by m̃BMS and m̃BR, respectively:

dm̃BMS(w) := eδ�βw+ (o,π(w))eδ�βw− (o,π(w))dνo(w
+)dνo(w

−)ds,

dm̃BR(w) := e(n−1)βw+ (o,π(w))eδ�βw− (o,π(w))dmo(w
+)dνo(w

−)ds.

The conformal properties of {νx } and {mx } imply that these definitions are independent
of the choice of o ∈ H

n . Using the identification of T1(Hn) with M\G, we lift the above
measures to G so that they are all invariant under M from the left. By abuse of notation,
we use the same notation (m̃BMS and m̃BR). These measures are left �-invariant, and hence
induce locally finite Borel measures on X , which are the Bowen-Margulis-Sullivan measure
mBMS and the Burger–Roblin measure mBR, respectively.

Note that

supp
(
mBR) = {

x ∈ X : x− ∈ �(�)
}
,

and the support of the BMS measure indeed satisfies (4).
Recall the definition of Ũ , and P = M AŨ from the begining of Sect. 2. P is the stabilizer

ofw+
o in G. Hence, one can define a measure ν on Pg for g ∈ G, which will give us a product

structure for m̃BMS and m̃BR that will be useful in our approach. For any g ∈ G, define

dν(pg) := eδ�β(pg)− (o,pg(o))dνo(w
−
o pg)dmds, (13)

on Pg, where s = β(pg)−(o, pg(o)), p = mav ∈ M AŨ and dm is the probability Haar
measure on M .
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Then for any ψ ∈ Cc(G) and g ∈ G, we have

m̃BR(ψ) =
∫

Pg

∫

U
ψ(ut pg)dtdν(pg) (14)

and

m̃BMS(ψ) =
∫

Pg

∫

U
ψ(ut pg)dμPS

pg(t)dν(pg). (15)

2.4 Sobolev norms

In the next section we formulate the equidistribution and effective equidistribution results
which we will use in the proof of the main theorems. In order to formulate them, we first
need to defineSobolev norms.Our proofswill require constructing smooth indicator functions
and partitions of unity with controlled Sobolev norms. This section also includes lemmas
constructing such partitions.

For � ∈ N, 1 ≤ p ≤ ∞, and ψ ∈ C∞(X) ∩ L p(X) we consider the following Sobolev
norm

Sp,�(ψ) =
∑

‖Uψ‖p

where the sum is taken over all monomials U in a fixed basis of g = Lie(G) of order at most
�, and ‖·‖p denotes the L p(X)-norm. Since we will be using S2,� most often, we set

S� = S2,�.

Lemma 2.10 ([9, Lemma 2.4.7])

(1) Let X , Y be Riemannian manifolds, and let ϕ ∈ C∞
c (X), ψ ∈ C∞

c (Y ). Consider ϕ · ψ

as a function on X × Y . Then

S�(ϕ · ψ) ≤ c(X , Y )S�(ϕ)S�(ψ),

where c(X , Y ) is a constant depending only on X and Y (independent of ϕ,ψ).
(2) Let X be a Riemannian manifold of dimension N and let x ∈ X. Then for any 0 < r < 1,

there exists a non-negative function f ∈ C∞
c (X) such that supp( f ) is contained in the

ball of radius r centered at x,
∫

X f = 1, and

S�( f ) ≤ c(X , x)r−�+N/2,

where c(X , x) is a constant depending only on X and x, not r .

The following lemma is an immediate consequence of the product rule.

Lemma 2.11 Let X be a Riemannian manifold and let ϕ,ψ ∈ C∞
c (X). For any � ∈ N,

S�(ϕ · ψ) �� S�(ϕ)S�(ψ).

Lemma 2.12 For any �′ there exists � > �′ which satisfies the following. Let X , Y be Rie-
mannian manifolds, ϕ ∈ C∞

c (X), and ψ : Y → X be a smooth function. Then

S�′(ϕ ◦ ψ) ��′,ψ S�(ϕ).
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Proof By the chain rule, for any 1 ≤ k ≤ �′,
∥∥∥(ϕ ◦ ψ)(k)

∥∥∥
2

�ψ,k

k∑

i=0

∥∥∥ϕ(i) ◦ ψ

∥∥∥
2

�ψ,k

k∑

i=0

∥∥∥ϕ(i)
∥∥∥∞ mHaar(suppϕ)

�ψ,k S∞,�′(ϕ)mHaar(suppϕ)

�ψ,k S�(ϕ),

where in the last line, we have used [1] to choose � > �′ satisfying

S∞,�′( f )mHaar(supp f ) � S�( f )

for any f , where the implied constant is global. �	
Lemma 2.13 Let H be a Riemannian manifold of dimension N, 0 < r < 1, � ∈ N, and E
a bounded subset of H. Then, there exists a partition of unity σ1, . . . , σk of E in Hr (E) =
{g ∈ G : dH (g, E) ≤ r} where dH denotes the Riemannian metric on H, i.e.

k∑

i=1

σi (x) =
{
0 if x /∈ Hr (E)

1 if x ∈ E,

such that for some u1, . . . , uk ∈ E and all 1 ≤ i ≤ k

σi ∈ C∞
c (Hr (ui )), S�(σi ) �N r−�+N/2.

Moreover,

k∑

i=1

S�(σi ) �N ,E r−�+N/2.

Proof According to Lemma 2.10(b) there exists a non-negative smooth function σ supported
on Hr/2 such that

∫

H
σ(h)dmHaar(h) = 1, S�(σ ) �N r−�+N/2.

Since H is a Riemannian manifold and E is bounded, there exists a smooth partition of
unity, fi : H → R, i = 1, . . . , k, such that each fi is supported on a ball of radius r/2 with
a center ui ∈ E and

k∑

i=1

fi (x) =
{
0 if x /∈ Hr (E)

1 if x ∈ Hr/2(E).

For i = 1, . . . , k define σi by

σi := fi ∗ σ.

We will show that σ1, . . . , σk satisfy the claim.
By definition, for i = 1, . . . , k, σi is supported on a ball of radius r and centered at a point

in E . By Young’s convolution inequality, we have

S�(σi ) ≤ S1,0( fi )S�(σ ) �N r−�+N/2. (16)
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For any h ∈ E , h−1E contains the identity, and so we have h−1Hr/2(E) ⊇ Hr/2. Thus,

k∑

i=1

σi (h) =
k∑

i=1

∫

H
fi (x) σ (hx−1)dmHaar(x)

=
∫

H

k∑

i=1

fi (x) σ
(
hx−1) dmHaar(x)

=
∫

Hr (E)

σ
(
hx−1) dmHaar(x)

= 1.

If h /∈ Hr (E), then we have h−1Hr/2(E) ∩ Hr/2 = ∅. Hence, the above computation
yields

k∑

i=1

σi (h) = 0.

Note that by (16), and since fi is a partition of unity, we may also deduce

k∑

i=1

S�(σi ) ≤ S�(σ )

k∑

i=1

S1,0( fi )

= S�(σ )

∫

H

k∑

i=1

fi (x)dmHaar(x)

≤ S�(σ )mHaar(Hr (E))

�N ,E r−�+N/2.

�	

2.5 Equidistribution results

For the proof of the main theorems we use the equidistribution results stated below.
The following theorem was proved for G = SL2(R) by Maucourant and Schapira in [12]

and for G = SO(n, 1)◦ by Mohammadi and Oh in [14].

Theorem 2.14 Let � be geometrically finite. Fix x ∈ G/� such that x− ∈ �r (�). Then for
any ψ ∈ Cc(G/�) we have

lim
T →∞

1

μPS
x (BU (T ))

∫

BU (T )

ψ(ux)du = mBR(ψ).

Theorem 2.15 ([18, Theorem 1.4 and Remark 7.3]) Assume � satisfies property A. For any
0 < ε < 1 and s0 ≥ 1, there exist � = �(�) ∈ N and κ = κ(�, ε) > 0 satisfying: for every
compact � ⊂ G/� and ψ ∈ C∞

c (�), there exists c = c(�, suppψ) such that for every
x ∈ G/� that is (ε, s0)-Diophantine, and for all r ��,�,ε s0,

∣∣∣∣
1

μPS
x (BU (r))

∫

BU (r)

ψ(utx)dt − mBR(ψ)

∣∣∣∣ ≤ cS�(ψ)r−κ ,

where S�(ψ) is the �-Sobolev norm.
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3 Duality betweenG/0 and U\G
The goal of this section is to prove the following proposition, which shows that one can use
equidistribution results of U orbits in G/� in order to study the distribution of the points in
x�T for x ∈ U\G. This will be used to prove Theorems 1.2 and 1.9 .

Recall that for x, y ∈ U\G, we defined

x�y :=
√
1

2

∥∥�(x)−1E1,n+1�(y)
∥∥, (17)

where E1,n+1 is the (n + 1) × (n + 1) matrix with one in the (1, n + 1)-entry and zeros
everywhere else.

Recall the Iwasawa decomposition G = SO(n, 1)◦ = U × A × K . Define a continuous
section by � : U\G → AK by

�(Ug) = ak,

where g = uak is the Iwasawa decomposition of g.
For ϕ ∈ Cc(U\G), define

Rϕ := max
y∈suppϕ

(x�y), rϕ := min
y∈suppϕ

(x�y). (18)

Proposition 3.1 Let η > 0, � ⊂ U\G be a compact set, ϕ ∈ C(�), and ψ ∈ C(BU (η)) be
a non-negative function such that

∫
U ψ = 1. Fix x ∈ U\G. Define F ∈ Cc(G/�) by

F(g�) :=
∑

γ∈�

ψ(u(gγ ))ϕ(πU (gγ )).

Then, for some c = c(x,�) > 0,
∫

BU

(√
T −c
Rϕ

−η
) F(ut�(x)�)dt ≤

∑

γ∈�T

ϕ(xγ ) ≤
∫

BU

(√
T +c
rϕ

+η
) F(ut�(x)�)dt.

Observe that

g�(Ug)−1 ∈ U

is by definition the U -component of the Iwasawa decomposition of g. Similarly, for any
g, h ∈ G, the U -component of �(Uh)g is given by

�(Uh)g�(Uhg)−1 = (h�(Uh)−1)−1(hg�(Uhg)−1) ∈ U .

Hence, for any x ∈ U\G and g ∈ G, we can define cx (g) := t ∈ R
n−1, where t is such that

�(x)g�(xg)−1 = ut. Then by the actions of U and A, we can see that this satisfies

ce(utg) = ce(g) + t, ce(as g) = esce(g) (19)

and for any x ∈ U\G,

cx (g) = ce(�(x)g). (20)

Observe that (20) implies that

ce(hg) = ce(h) + ce(�(Uh)g) = ce(h) + cUh(g). (21)

Note that for g ∈ G,

g = ue(g)�(Ug).
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That is, ue(g) is the U component of the Iwasawa decomposition of G, and �(Ug) is the
AK component.

For x ∈ U\G and g ∈ G, we will abuse notation and write

ux (g) := ucx (g).

Lemma 3.2 For any compact � ⊂ U\G and x ∈ U\G there exist c = c(�, x) > 0 such
that for any xg ∈ � and T > c, we have

(1) If ‖g‖ ≤ T , then ux (g) ∈ BU

(√
T +c

x�xg

)
.

(2) If ‖g‖ ≥ T , then ux (g) /∈ BU

(√
T −c

x�xg

)
.

Proof We have g = �(x)−1ux (g)�(xg). For t := cx (g) we get

g = �(x)−1ux (g)�(xg)

= �(x)−1

⎛

⎝I +
⎛

⎝
0 t 0
0 0 tT

0 0 0

⎞

⎠ + ‖t‖2 E1,n+1

⎞

⎠�(xg)

Denote

c1 := max
y∈�

{∥∥�(x)−1�(y)
∥∥} ,

c2 := max
y∈�,‖t‖≤1

⎧
⎨

⎩

∥∥∥∥∥∥
�(x)−1

⎛

⎝
0 t 0
0 0 tT

0 0 0

⎞

⎠�(y)

∥∥∥∥∥∥

⎫
⎬

⎭ .

Then, c1 and c2 are functions of x and �. By the triangle inequality,

‖g‖ ≤ ‖t‖2(x�xg)2 + ‖�(x)−1�(xg)‖ +
∥∥∥∥∥∥
�(x)−1

⎛

⎝
0 t 0
0 0 tT

0 0 0

⎞

⎠�(xg)

∥∥∥∥∥∥

≤ ‖t‖2(x�xg)2 + c1 + c2‖t‖.
In a similar way

‖g‖ ≥ ‖t‖2(x�xg)2 − ‖�(x)−1�(xg)‖ −
∥∥∥∥∥∥
�(x)−1

⎛

⎝
0 t 0
0 0 tT

0 0 0

⎞

⎠�(xg)

∥∥∥∥∥∥

≥ ‖t‖2(x�xg)2 − c1 − c2‖t‖.
We conclude that for any g ∈ �,

∣∣‖g‖ − (x�xg)2 ‖t‖2∣∣ ≤ c1 + c2 ‖t‖ . (22)

Assume ‖g‖ ≥ T ≥ c1. Then, by (22)

0 ≤ (x�xg)2 ‖t‖2 + c2 ‖t‖ + (c1 − T ).

Using the quadratic formula, we may deduce that the right hand side of the above equation
is equal to zero when

‖t‖ =
−c2 ±

√
c22 + 4(T − c1)(x�xg)2

2(x�xg)2
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Since (x�xg)2 and ‖t‖ are non-negative, it follows that

‖t‖ ≥
−c2 +

√
c22 + 4(T − c1)(x�xg)2

2(x�xg)2

Using the inequality
√

a ± b ≥ √
a − √

b, we arrive at

‖t‖ ≥
√

T

x�xg
− c2 + c1x�xg

(x�xg)2

A similar computation shows that ‖g‖ ≤ T implies

‖t‖ ≤
√

T

x�xg
+ c2 + c1x�xg

(x�xg)2
.

Letting c be the maximum of c2+c1x�xg
(x�xg)2

for g ∈ � completes the proof. �	
Lemma 3.3 Let ϕ ∈ Cc(U\G) and suppose that ψ ∈ Cc(U ) satisfies

∫

U
ψ = 1.

For g ∈ G, define

f (g) = ψ(u(g))ϕ(πU (g)).

Then for every g ∈ G,

ϕ(πU (g)) =
∫

supp(ψ)u(g)−1
f (utg)dt.

Proof By the definition of ψ ,

ϕ(πU (g)) = ϕ(πU (g))

∫

supp(ψ)

ψ(ut)dt

= ϕ(πU (g))

∫

u(g)−1 supp(ψ)

ψ(u(g)ut)dt.

Since πU (ut g) = πU (g), we have

ϕ(πU (g)) =
∫

u(g)−1 supp(ψ)

ψ(u(utg))ϕ(πU (utg))dt

=
∫

u(g)−1 supp(ψ)

f (utg)dt

�	
We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1 Without loss of generality, we may assume that ϕ ≥ 0. Define f :
G → R by

f (g) = ψ(u(g))ϕ(πU (g)).

By Lemma 3.3, for every g ∈ G,

ϕ(πU (g)) =
∫

u(g)−1BU (η)

f (utg)dt. (23)
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By Lemma 3.2, there exist c > 0 depending on� and x such that for all T ≥ c, if γ ∈ �T

and xγ ∈ �, then

ux (γ )−1BU (η) ⊆ BU

(√
T + c

x�xγ
+ η

)
. (24)

Observe also that since supp(ψ) ⊆ BU (η), if ut /∈ ux (γ )−1BU (η), then

f (ut�(x)γ ) = ψ(utu(�(x)γ ))ϕ(πU (�(x)γ )) = 0.

Thus, using (21) and Lemma 3.3, for γ ∈ �T with xγ ∈ �, we have that

ϕ(xγ ) =
∫

u(�(x)γ )−1BU (η)

f (ut�(x)γ )dt

=
∫

ux (γ )−1BU (η)

f (ut�(x)γ )dt

=
∫

BU

(√
T +c

x�xγ
+η

) f (ut�(x)γ )dt. (25)

Note that

F(g�) :=
∑

γ∈�

f (gγ ) (26)

Thus, from (23), for r = rϕ := min
y∈suppϕ

(x�y), we obtain

∑

γ∈�T

ϕ(xγ ) ≤
∑

γ∈�T

∫

BU

(√
T +c
r +η

) f (ut�(x)γ )dt

≤
∫

BU

(√
T +c
r +η

) F(ut�(x)�)dt.

To obtain a lower bound, we must control the terms arising from γ ∈ � \ �T in the
definition of F . Note that by Lemma 3.2, if γ ∈ (� \ �T ) and xγ ∈ �, then we see that

ux (γ )−1BU (η) ∩ BU

(√
T − c

x�xγ
− η

)
= ∅.

Thus, by (23), we obtain

∑

γ∈�T

ϕ(xγ ) =
∑

γ∈�T

∫

BU

(√
T −c

x�xg −η
) f (ut�(x)γ )dt

=
∑

γ∈�

∫

BU

(√
T −c

x�xγ
−η

) f (ut�(x)γ )dt

Now, similarly to the above, we conclude that

∑

γ∈�T

ϕ(xγ ) ≥
∑

γ∈�

∫

BU

(√
T −c
R −η

) f (ut�(x)γ )dt,

where R = Rϕ := max
y∈suppϕ

(x�y), Then, the claim follows from the definition of F , (26). �	
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Lemma 3.4 Let ϕ ∈ Cc(U\G) and F be as defined in Proposition 3.1. Then,

mBR(F) =
∫

P
ϕ(πU (p))dν(p) (27)

Proof By the definition of F and the assumption that
∫

U ψ = 1, by the product structure of
the BR measure in (14), we obtain

mBR(F) =
∫

G
ψ(u(g))ϕ(πU (g))dm̃BR(g)

=
∫

P

∫

U
ψ(utu(p))ϕ(πU (p))dtdν(p)

=
∫

P
ϕ(πU (p))dν(p).

�	
For a set H ⊆ G, let

B(H , r) = {g ∈ G : d(g, H) ≤ r},
where d is the Riemannian metric on G. That is, B(H , r) is the r -thickening of H with
respect to d . For h ∈ G, we denote B({h}, r) by B(h, r) (in this case we get the Riemannian
ball around the point h).

For H ⊆ G, denote by

inj(H)

the infimum over all r > 0 satisfying that for every h ∈ H ,

π�|B(h,r) : B(h, r) → G/�

is injective.
In the later sections, we will require a partition of ϕ, say into ϕ1, . . . , ϕk so that for each

i , Rϕi and rϕi are close.

Lemma 3.5 Fix x ∈ U\G. For a compact set H ⊆ G, there exists 0 < η0 = η(H) < inj(H),

β = β(H) > 1 so that for any 0 < η < η0 and ϕ ∈ Cc(U\G) with suppϕ ⊂ πU (B(h, η))

for some h ∈ H, we have that

Rϕ

rϕ

− 1 ≤ ‖�(x)−1‖βη.

Proof Since B(H , 1) is a compact set, by [4, Lemma 9.12], there exist constants 0 < η0 =
η(H) < inj(H), β = β(H) > 1, such that η0 < 1 and for all g, h ∈ B(H , 1) with
d(g, h) ≤ η0,

β−1‖g − h‖ ≤ d(g, h) ≤ β‖g − h‖. (28)

Therefore, for any h ∈ H and 0 < η < η0, we have

B(h, η) ⊆ {g ∈ G : ‖g − h‖ ≤ βη}.
Note that for any g ∈ G,

E1,n+1�(πU (g)) = E1,n+1g.

Thus, if ‖g − h‖ < βη, then
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∥∥�(x)−1E1,n+1�(πU (g))
∥∥ = ∥∥�(x)−1E1,n+1g

∥∥

≤ ∥∥�(x)−1E1,n+1h
∥∥ + ∥∥�(x)−1E1,n+1(g − h)

∥∥

≤ ∥∥�(x)−1E1,n+1�(πU (h))
∥∥ + βη

∥∥�(x)−1
∥∥ ,

and similarly
∥∥�(x)−1E1,n+1�(πU (g))

∥∥ ≥ ∥∥�(x)−1E1,n+1�(πU (h))
∥∥ − βη

∥∥�(x)−1
∥∥ .

Thus, it follows from (17) that for

R = max
y∈πU (B(h,η))

(x�y), r = min
y∈πU (B(h,η))

(x�y),

we have

R − r ≤ 2β‖�(x)−1‖η.

Since r is bounded below by a constant depending on H , this implies that
(

R

r

)
− 1 �H ‖�(x)−1‖η. �	

Corollary 3.6 Fix x ∈ U\G and ϕ ∈ Cc(U\G). Let η0 = η0(�(suppϕ)) be as in Lemma 3.5.
For any 0 < η < η0, there exist some k and ϕ1, . . . , ϕk ∈ Cc(U\G) so that

k∑

i=1

ϕi = ϕ and
Rϕi

rϕi

− 1 ��,suppϕ η.

Moreover, if ϕ ∈ C∞
c (U\G), then we also have ϕi ∈ C∞

c (U\G), and that for any �′ > 0,
there exists � > �′ satisfying

k∑

i=1

S�′(ϕi ) ��,suppϕ η−�+n(n+1)/4S�(ϕ). (29)

Proof For the first case (only assuming ϕ ∈ Cc(U\G)), cover�(suppϕ)with balls of radius
η, and let σ1, . . . , σk be a partition of unity subordinate to this cover. Defining

ϕi = ϕ · (σi ◦ �)

yields functions with the desired property, by Lemma 3.5.
Now, assume that ϕ ∈ C∞

c (U\G), and let � > �′ satisfy the conclusion of Lemma 2.12
for �′. We must be more careful in order to control Sobolev norms. By Lemma 2.13, for
0 < η ≤ η0, there exist h1, . . . , hk ∈ �(suppϕ) and σ1, . . . , σk ∈ C∞

c (B(hi , η)) with

k∑

i=1

σi = 1 on �(suppϕ) and = 0 outside B(�(suppϕ), η) (30)

and such that

k∑

i=1

S�(σi ) �n,suppϕ η−�+n(n+1)/4. (31)

Define

ϕi = ϕ · (σi ◦ �).
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Then, by Lemma 3.5,

Rϕi

rϕi

− 1 �suppϕ ‖�(x)−1‖η.

Since � is smooth and � > �′, by Lemmas 2.11 and 2.12,

S�′(ϕi ) �� S�′(ϕ)S�′(σi ◦ �)

��,� S�(ϕ)S�(σi ). (32)

From (31) and (32), we conclude that

k∑

i=1

S�′(ϕi ) ��,n,suppϕ,� η−�+n(n+1)/4S�(ϕ).

�	

4 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is restated below for convenience.

Theorem 4.1 Let � be geometrically finite. For any ϕ ∈ Cc(U\G) and every x ∈ U\G such
that �(x)− ∈ �r (�),

∑

γ∈�T

ϕ(xγ ) ∼ I (ϕ, T , x).

We will need the following lemma. Theorem 1.2 will then follow by a partition of unity
argument.

Lemma 4.2 Let ϕ ∈ Cc(U\G) and let x ∈ U\G be such that �(x)− ∈ �r (�). Let R = Rϕ

and r = rϕ be as in (18). Let η > 0, and suppose that R
r < 1+ η and that BU (η)�(suppϕ)

injects into G/�.
Then for any ε > 0, there exists T1 = T1(x, η, ϕ) > 0 such that for all T ≥ T1,

∣∣∣∣∣∣

∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,x μPS
�(x)�

(
BU

(√
T

r

))[(
η + c + 1√

T

)α ∫

P
ϕ(πU (p))dν(p) + ε

]
, (33)

where α = α(�) is from Lemma 2.9, and c = c(x, suppϕ) > 0 is as in Proposition 3.1.

Remark 4.3 Note that T1 depends on η through a non-canonical choice of bump function ψ ,
as seen in the proof. When we apply this lemma to a partition of unity, the same ψ will be
used for each part.

Proof Let ψ ∈ C(BU (η)) be a non-negative function such that
∫

U ψ = 1. Let F and
c = c(x, suppϕ) > 0 be as in the statement of Proposition 3.1 for this ψ , and let ε > 0.

By Theorem 2.14, there exists T1 = T1(x, ψ, ϕ) such that for T ≥ T1,

μPS
�(x)�

(
BU

(√
T − c

R
− η

))
(
mBR(F) − ε

)
(34)
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≤
∑

γ∈�T

ϕ(xγ )

≤ μPS
�(x)�

(
BU

(√
T + c

r
+ η

))
(
mBR(F) + ε

)
. (35)

Let y ∈ supp(ϕ). By combining the above with Lemma 2.9 (using R, r , and � = x�y),
we see that there exist constants c0 = c0(�, x) and T2 = T2(�, x, suppϕ) > 0 such that for
T ≥ T2,

(
1 − c0

(
η + c + 1√

T

)α) (
mBR(F) − ε

)

≤ 1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ )

≤
(
1 + c0

(
η + c + 1√

T

)α) (
mBR(F) + ε

)
. (36)

By Lemma 3.4, mBR(F) = ∫
P ϕ(πU (p))dν(p), and so by (36), for any y ∈ suppϕ, we

obtain that
∣∣∣∣∣∣

1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ ) −
∫

P
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��

(
η + c + 1√

T

)α ∫

P
ϕ(πU (p))dν(p) + ε.

Since the above holds for any y ∈ suppϕ, by bounding

∑

γ∈�T

ϕ(xγ ) − μPS
�(x)�

(
BU

(√
T

r

))∫

P
ϕ(πU (p))dν(p).

≤
∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

≤
∑

γ∈�T

ϕ(xγ ) − μPS
�(x)�

(
BU

(√
T

R

))∫

P
ϕ(πU (p))dν(p),

we obtain
∣∣∣∣∣∣

∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,x μPS
�(x)�

(
BU

(√
T

r

))[(
η + c + 1√

T

)α ∫

P
ϕ(πU (p))dν(p) + ε

]
.

�	

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2 By Corollary 3.6, there exists η0 = η0(�(suppϕ)) > 0 so that for
every 0 < η < η0, there exists {ϕi : 1 ≤ i ≤ k} that are a partition of ϕ, i.e.,

ϕ =
k∑

i=1

ϕi

so that all the ϕi are supported on a small neighborhood of suppϕ, which we denote by B,
and each ϕi satisfies the assumptions of Lemma 4.2.

For any 1 ≤ i ≤ k let,

Ri = Rϕi , ri = rϕi

as in (18).
Note that

R := max
y∈B

(x�y), r := min
y∈B

(x�y)

satisfy R ≥ Ri ≥ ri ≥ r for any i .
Fix ε > 0. By Lemma 4.2, there exists T1 > 0 (depending on the ϕi ’s, x , η, and ε) such

that for all T ≥ T1 and for each i ,
∣∣∣∣∣∣

∑

γ∈�T

ϕi (xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕi (πU (p))dν(p)

∣∣∣∣∣∣

��,x μPS
�(x)�

(
BU

(√
T

r

))[(
η + c + 1√

T

)α ∫

P
ϕi (πU (p))dν(p) + ε

k

]
.

Summing over i , we obtain
∣∣∣∣∣∣

∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,x μPS
�(x)�

(
BU

(√
T

r

))[(
η + c + 1√

T

)α ∫

P
ϕ(πU (p))dν(p) + ε

]
. (37)

Recall that

I (ϕ, T , x) :=
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p).

By Lemma 2.4, there exists σ = σ(�) > 0 so that for any y ∈ suppϕ,

μPS
�(x)�

(
BU

(√
T

r

))

μPS
�(x)�

(
BU

(√
T

x�y

)) ��

(
R

r

)σ

.

Thus, from (37), we obtain
∣∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )

I (ϕ, T , x)
− 1

∣∣∣∣∣∣∣
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��

(
R

r

)σ

ν(ϕ ◦ πU )−1
[(

η + c + 1√
T

)α ∫

P
ϕ(πU (p))dν(p) + ε

]
.

Since η and ε can be chosen arbitrarily small, the claim follows. �	
We will now deduce Corollary 1.3 using the shadow lemma, Proposition 2.1.

Proof of Corollary 1.3 Since �(x)− ∈ �r (�), there exists r = r(x) ≥ 0 such that

BU (r)�(x)� ∩ suppmBMS �= ∅.

Let w ∈ BU (r)�(x)� ∩ suppmBMS ⊆ G/�. Then for any T ≥ 0,

μPS
w (BU (T − r)) ≤ μPS

�(x)�(BU (T )) ≤ μPS
w (BU (T + r)).

Thus, by Proposition 2.1, there exists λ = λ(�) > 1 such that for all T ≥ 0,

λ−1(T − r)δ� ≤ μPS
�(x)�(BU (T )) ≤ λ(T + r)δ� .

For every y ∈ suppϕ, we therefore have that for all T ≥ 2r ,

T δ�/2

(x�y)δ�
��,x μPS

�(x)�

(√
T

x�y

)
��,x

T δ�/2

(x�y)δ�
. (38)

By Theorem 1.2, there exists T0 = T0(x, ϕ) such that for T ≥ T0,
∣∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )

I (ϕ, T , x)
− 1

∣∣∣∣∣∣∣
≤ 1/2.

Then

1

μPS
�(x)�

(√
T

x�y

)
∑

γ∈�T

ϕ(xγ ) ≤ 2

μPS
�(x)�

(√
T

x�y

) I (ϕ, T , x)

so by (38), we obtain

1

T δ�/2

∑

γ∈�T

ϕ(xγ ) ��,x
1

T δ�/2

∫

P
μPS

�(x)�

( √
T

x�πU (p)

)
ϕ(πU (p))dν(p)

��,x
1

T δ�/2

∫

P

T δ�/2

(x�πU (p))δ�
ϕ(πU (p))dν(p)

��,x

∫

P

ϕ(πU (p))

(x�πU (p))δ�
dν(p). (39)

The lower bound is very similar. �	

5 A small support “Ergodic Theorem”

In this section, we prove an ergodic-theorem type statement for functions with small support.
This result will be used in the next chapter to prove Theorem 1.9.

Recall that for x ∈ U\G and a compact set H ⊂ U\G, let

R(H , x) := max
y,z∈H

x�y

x�z
.
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Theorem 5.1 Let � satisfy property A. There exists � = �(�) ∈ N so that for any 0 < ε < 1,
there exists κ = κ(�, ε) satisfying: for every x ∈ U\G such that �(x)� is ε-Diophantine
and every compact � ⊂ G, there exists T0 = T0(x,�) so that for every T ≥ T0, there exists
η = η(T , �, κ, n,�) > 0 such that if ϕ ∈ C∞

c (U\G) with �(suppϕ) ⊆ � and satisfies
R(suppϕ, x) − 1 < η, then for every y ∈ suppϕ,

∣∣∣∣∣∣
1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ ) −
∫

P
ϕ(πU (p))dν(p)

∣∣∣∣∣∣
��,�,x S�(ϕ)T −κ .

Proof Fix x ∈ U\G such that �(x)� is ε-Diophantine. Let 0 < η1 = η1(�) < 1 be such
that for all g ∈ �,

π�|B(g,η1) : B(g, η1) → G/�

is injective, where B(g, η1) = {h ∈ G : ‖g − h‖ ≤ η1}. Let 0 < η < η1. Then if
�(suppϕ) ⊂ � ⊂ G, we have that

B := BU (η)�(suppϕ)

injects into G/�. Let R = Rϕ , r = rϕ as in (18). We are assuming that

R(suppϕ, x) − 1 = R

r
− 1 < η. (40)

We will find T0 = T0(x,�) as in the statement of the theorem, and choose η depending on
T ≥ T0 later.

According to Lemma 2.10(2), there exists ψ : U → R such that suppψ = BU (η) and
∫

U
ψ = 1, S�(ψ) � η−�+n−1. (41)

We can now use Proposition 3.1 with the above ψ and ϕ to get an expression that we can
estimate using the effective equidistribution theorem, Theorem 2.15.

Let F and c = c(�, x) be as in Proposition 3.1 for ψ, ϕ. There exists �, κ ′, c2 =
c2(�, suppψ, x) as in the statement of Theorem 2.15 and T1 = T1(x,�) ≥ c such that
for all T ≥ T1,

μPS
�(x)�

(
BU

(√
T + c

R
− η

))(
mBR(F) − c2S�(F)T −κ ′)

(42)

≤
∑

γ∈�T

ϕ(xγ )

≤ μPS
�(x)�

(
BU

(√
T + c

r
+ η

))(
mBR(F) + c2S�(F)T −κ ′)

. (43)

We now need to expressmBR(F) and S�(F) in terms of ϕ, and to compare the PSmeasures
of the balls arising in (42) and (43).

Let y ∈ suppϕ. Note that, by definition of r and R, r ≤ x�y ≤ R. Hence, we may use
Lemma 2.9 to deduce that for r− := R and r+ := r , there exists T2 = T2(x,�) > 0 so that
for all T ≥ T2, we have that
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∣∣∣∣∣μ
PS
�(x)�

(
BU

(√
T ± c

r±
± η

))
− μPS

�(x)�

(
BU

(√
T

x�y

))∣∣∣∣∣

��,x

(
η + c + 1√

T

)α

μPS
�(x)�

(
BU

(√
T

x�y

))

According to Lemma 3.4, we have

mBR(F) =
∫

P
ϕ(πU (p))dν(p).

Combining the above with (42) and (43) implies that, for some c0 = c0(�, x),
(
1 − c0

(
η + c + 1√

T

)α)(∫

P
ϕ(πU (p))dν(p) − c2S�(F)T −κ ′

)

≤ 1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ )

≤
(
1 + c0

(
η + c + 1√

T

)α)(∫

P
ϕ(πU (p))dν(p) + c2S�(F)T −κ ′

)
. (44)

We are left to find S�(F). Since B �→ B� is injective and f is supported on B (recall that
f is defined as in Lemma 3.3), using Lemma 2.10(1), Lemma 2.12, and (41), we have

S�(F) = S� ( f )

�n S�(ψ)S� (ϕ ◦ πU )

�n,� η−�+n−1S�(ϕ). (45)

Finally, we need to put this all together. Combining (44) and (45), for any y ∈ suppϕ, we
obtain that

∣∣∣∣∣∣
1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ ) −
∫

P
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,x

(
η + c + 1√

T

)α ∫

P
ϕ(πU (p))dν(p) + η−�+n−1S�(ϕ)T −κ ′

��,�,x

[(
η + T −1/2)α + η−�+n−1T −κ ′]

S�(ϕ). (46)

Choose ρ sufficiently small so that

(� − n + 1)ρ < κ ′/2.

Let η = T −ρ , for T ≥ T0(x,�) := max{T1, T2}. Let
κ = min{ρα, α/2, κ ′/2}.

Then we conclude that
∣∣∣∣∣∣

1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ ) −
∫

P
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,�,x T −κ S�(ϕ).

�	
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6 Proof of Theorem 1.9

In this section, we will use a partition of unity argument and the previous section to establish
Theorem 1.9, which is restated below for convenience.

Theorem 6.1 Let � satisfy property A. There exists � = �(�) ∈ N so that for any 0 < ε < 1,
there exists κ = κ(�, ε) satisfying: for every ϕ ∈ C∞

c (U\G) and for every x ∈ U\G such
that �(x)� is ε-Diophantine, and for all T ��,suppϕ,x 1,

∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )
∫

P μPS
�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

− 1

∣∣∣∣∣∣

��,suppϕ,x T −κ
(
1 + S�(ϕ)ν(ϕ ◦ πU )−1) .

Assume throughout this section that � satisfies property A. We begin by interpreting (46)
in another form, as in the following lemma. This form will be easier to work with when using
a partition of unity. Note that the main idea here is that for ϕ of small support and for any
y ∈ suppϕ, x�y is very close to both R and r .

For H ⊆ U\G compact and x ∈ U\G, define

RH = max
y∈H

x�y and rH = min
y∈H

x�y.

Lemma 6.2 There exists � = �(�) > 0 which satisfies the following. Let � ⊆ G be a
compact set, let x ∈ U\G be such that �(x)� is ε-Diophantine, let ϕ ∈ C∞

c (U\G) with
�(suppϕ) ⊂ �, and let η > 0 be smaller than the injectivity radius of �. Let R = RπU (�)

and r = rπU (�) and assume they satisfy R
r − 1 < η. Then for T ��,�,x 1,

∣∣∣∣∣∣

∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,�,x μPS
�(x)�

(
BU

(√
T

r

))
(
η + T −1/2)α

∫

P
ϕ(πU (p))dν(p)

+ μPS
�(x)�

(
BU

(√
T

r

))
η−�+(n−1)/2S�(ϕ)T −κ ′

.

Proof Following the arguments in the proof of Theorem 5.1 (more explicitly, the compu-
tations leading to (46)), one may deduce that there exists � = �(�) > 0 such that for any
T ��,�,x 1,

∣∣∣∣∣∣
1

μPS
�(x)�

(
BU

(√
T

x�y

))
∑

γ∈�T

ϕ(xγ ) −
∫

P
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,�,x

[(
η + T −1/2)α + η−�+(n−1)/2T −κ ′]

S�(ϕ).

Therefore, we may conclude

− μPS
�(x)�

(
BU

(√
T

R

))[(
η + T −1/2)α

∫

P
ϕ(πU (p))dν(p) − η−�+(n−1)/2S�(ϕ)T −κ ′

]
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��,suppϕ,x

∑

γ∈�T

ϕ(xγ ) − μPS
�(x)�

(
BU

(√
T

R

))∫

P
ϕ(πU (p))dν(p)

≤
∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

≤
∑

γ∈�T

ϕ(xγ ) − μPS
�(x)�

(
BU

(√
T

r

))∫

P
ϕ(πU (p))dν(p)

��,suppϕ,x μPS
�(x)�

(
BU

(√
T

r

))

×
[(

η + T −1/2)α
∫

P
ϕ(πU (p))dν(p) + η−�+(n−1)/2S�(ϕ)T −κ ′

]
.

�	
Proof of Theorem 1.9 Step 1: Use an appropriate partition of ϕ.

Let �′ = �′(�) > 0 satisfy the conclusion of Lemma 6.2 and � > �′ satisfy the conclusion
of Corollary 3.6 for �′.

By Corollary 3.6, there exists a partition ϕ1, . . . , ϕk of ϕ satisfying Lemma 6.2 with
� = �(suppϕ) and

k∑

i=1

S�′(ϕi ) ��,suppϕ η−�+n(n+1)/4S�(ϕ). (47)

Thus, by Lemma 6.2, we have that for each ϕi ,
∣∣∣∣∣∣

∑

γ∈�T

ϕi (xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕi (πU (p))dν(p)

∣∣∣∣∣∣

��,suppϕ,x μPS
�(x)�

(
BU

(√
T

ri

))
·

[(
η + T −1/2)α

∫

P
ϕi (πU (p))dν(p) + η−�+(n−1)/2S�(ϕi )T

−κ ′
]

. (48)

Let

r = min{r1, . . . , rk}.
Summing over i , using (47), and noting that η < 1 yields

∣∣∣∣∣∣

∑

γ∈�T

ϕ(xγ ) −
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

∣∣∣∣∣∣

��,suppϕ,x μPS
�(x)�

(
BU

(√
T

r

))
(
η + T −1/2)α

∫

P
ϕ(πU (p))dν(p)

+ μPS
�(x)�

(
BU

(√
T

r

))
η−2�+(n2+3n−2)/4S�(ϕ)T −κ ′

. (49)
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Step 2: Putting it together.
Recall

I (ϕ, T , x) :=
∫

P
μPS

�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p).

Let

R = Rϕ := max
y∈suppϕ

x�y.

By Lemma 2.4, we have that there exists σ = σ(�) > 0 so that

μPS
�(x)�

(
BU

(√
T

r

))

I (ϕ, T , x)
≤

μPS
�(x)�

(
BU

(√
T

r

))

μPS
�(x)�

(
BU

(√
T

R

))
ν(ϕ ◦ πU )

��

(
R

r

)σ

ν(ϕ ◦ πU )−1

��,suppϕ,x ν(ϕ ◦ πU )−1, (50)

where the last line follows because (R/r)σ is simply a constant depending on suppϕ, �,

and x .
From (49) and (50), we obtain that

∣∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )

I (ϕ, T , x)
− 1

∣∣∣∣∣∣∣
��,suppϕ,x

μPS
�(x)�

(
BU

(√
T

r

))

I (ϕ, T , x)

(
η + T −1/2)α

∫

P
ϕ(πU (p))dν(p)

+
μPS

�(x)�

(
BU

(√
T

r

))

I (ϕ, T , x)
η−2�+(n2+3n−2)/4S�(ϕ)T −κ ′

��,suppϕ,x
√

T + c
(
η + T −1/2)α + ν(ϕ ◦ πU )−1η−2�+(n2+3n−2)/4S�(ϕ)T −κ ′

��,suppϕ,x
√

T + c
(
η + T −1/2)α + η−2�+(n2+3n−2)/4S�(ϕ)T −κ ′

ν(ϕ ◦ πU )

��,suppϕ,x T −κ
(
1 + S�(ϕ)ν(ϕ ◦ πU )−1) , (51)

where (51) follows by choosing η = T −ρ , where ρ = 1 if 2� − n2+3n−2
4 < 0, and

ρ = κ ′

4� − n + 1 − 1
2n(n + 1)

otherwise, and letting

κ = min{ρα, α/2, κ ′/2}.
�	

Remark 6.3 Note that the implied dependence on x is quite explicit. It arises from suppressing
the factors Rϕ, rϕ, ‖�(x)−1‖, and c throughout the argument. Specifically, c is suppressed
in the use of Lemma 6.2, and rϕ, Rϕ are suppressed in (51). Note that these constants depend
on x and suppϕ through the � operation, as can be seen from the definitions and the proof of
Lemma 3.2, and they can also be computed explicitly if desired. The factor of ‖�(x)−1‖ is
suppressed in the construction of the partition in Corollary 3.6. The implied constant from
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Theorem 2.15 also depends on x through the explicit Diophantine behaviour of x , i.e. the
(ε, s0).

Remark 6.4 The suppressed constants Rϕ, rϕ, c, and ‖�(x)−1‖ mentioned in Remark 6.3
are continuous functions of x by definition of �. This will be used in the next section.

7 Applications

Let V be a manifold on which G acts smoothly and transitively from the right, so that V may
be identified with H\G for some closed subgroup H of G that is the stabilizer of a point
v0 ∈ V . Let σ : H\G → V be the identification

σ(Hg) = v0 · g. (52)

Note that σ is smooth because G acts smoothly.
Assume further that U ⊆ H ⊆ U M . In particular, πU (H) is compact in U\G (recall

from Sect. 2 that πU : G → U\G is the quotient map). Define θ : U\G → H\G by

θ(Ug) = Hg. (53)

We will now show that θ is smooth. Since U is closed, πU : G → U\G is a smooth
submersion. Thus, θ is smooth if and only if θ ◦ πU is smooth. Since θ ◦ πU = πH , the
quotient map from G → H\G, it is smooth, which establishes the smoothness of θ .

For v, u ∈ V , let x, y ∈ U\G be such that u = σ(θ(x)), v = σ(θ(y)). We may define

v�u = x�y.

This is well-defined because U M stabilizes E1,n+1, and H ⊆ U M (see (1) for the definition
of � on U\G).

Recall the definition of � : U\G → G from Sect. 3:

�(Ug) = ak,

where g = uak is the Iwasawa decomposition of g.

Definition 7.1 A vector v ∈ V is called ε-Diophantine if there exists x ∈ U\G such that
v = v0 · x and �(x)� is ε-Diophantine. Such x is called an ε-Diophantine representative
of v.

Remark 7.2 Note that for any g ∈ G, g− ∈ �r (�) if and only if (umg)− ∈ �r (�) for all
um ∈ U M , since U M does not change g−. Thus, for v ∈ V , we may define the notation

v− ∈ �r (�)

if for any representative �(x), �(x)− ∈ �r (�). Note also that since C0 is M invariant and
A commutes with M , the definition of v being ε-Diophantine is independent of the choice
of a representative x ∈ U\G.

Observe that ν uniquely defines a measure on U\G by ν(ϕ ◦ πU ) for any continuous
function ϕ defined on U\G. One can use the push-forward of this measure to H\G and the
identification of V with H\G to uniquely define a measure on V . Denote this measure by ν̄.
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Corollary 7.3 For any 0 < ε < 1, there exist � = �(�) ∈ N and κ = κ(�, ε) satisfying:
for every ϕ ∈ C∞

c (V ) and ε-Diophantine v ∈ V with Diophantine representative x ∈ U\G
(i.e., v0x = v), and T ��,suppϕ,v 1,

∣∣∣∣∣∣

∑
γ∈�T

ϕ(vγ )
∫

P μPS
�(x)�

(
BU

(√
T

v�u

))
ϕ(u)dν(u)

− 1

∣∣∣∣∣∣
��,suppϕ,x T −κ

(
1 + S�(ϕ)ν(ϕ)−1) .

Proof Let �′ satisfy the conclusion ofTheorem1.9 and � satisfy the conclusion ofLemma2.12
for �′.

Recall the definitions of σ : H\G → V in (52) and θ : U\G → H\G in (53). Define
ϕ ∈ C∞

c (U\G) by

ϕ = ϕ ◦ σ ◦ θ.

Let x ∈ U\G be an ε-Diophantine representative of v. In particular, note that σ(θ(x)) =
σ(H�(x)) = v. Then, since

ϕ(xγ ) = ϕ(σ(θ(x)) · γ ) = ϕ(v · γ ),

by Theorem 1.9, for T ��,suppϕ,ε,x 1,

T −κ
(
1 + S�(ϕ)ν(ϕ ◦ πU )−1)

��,suppϕ,x T −κ

∣∣∣∣∣∣

∑
γ∈�T

ϕ(xγ )
∫

P μPS
�(x)�

(
BU

( √
T

x�πU (p)

))
ϕ(πU (p))dν(p)

− 1

∣∣∣∣∣∣

��,suppϕ,x T −κ

∣∣∣∣∣∣

∑
γ∈�T

ϕ(vγ )
∫

P μPS
�(x)�

(
BU

(√
T

v�u

))
ϕ(u)dν(u)

− 1

∣∣∣∣∣∣
.

Note that the dependence of T on x is through ε, s0 such that x is (ε, s0)-Diophantine,
and by Remark 7.2, this is in fact independent of the choice of Diophantine representative
x of v. By Remark 6.4, the dependence on x in the implied constant in the above inequality
can be made uniform over all representatives of v, as they vary by elements in M , a compact
set. Thus, both dependencies on x can be replaced by dependence on v.

Observe that ϕ can be viewed as a function on U\H × H\G ∼= U\G by

ϕ(y, x) = idU\H (y) · (ϕ ◦ σ)(x).

Therefore, Lemmas 2.10 and 2.12 imply

S�′(ϕ) �H S�′(idU\H )S�′(ϕ ◦ σ) �H ,σ,suppϕ S�(ϕ),

where the Sobolev norm of idU\H is finite since we are assuming U\H is compact. �	
In a similar way, one may deduce the following from Corollary 1.3 (see Remark 7.2 for

the notation v− ∈ �r (�)):

Corollary 7.4 Assume that � is convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V with
v− ∈ �r (�), as T → ∞,

1

T δ�/2

∑

γ∈�T

ϕ(vγ ) 

∫

P

ϕ(u)

(v�u)δ�
dν(u),

where the implied constant depends on v and �.
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7.1 Identification with null vectors

Let G act on R
n+1 by right matrix multiplication, and let

V = en+1G \ {0}.
To better understand the set V , note that the representation of SO(n, 1) we are using is

SO(n, 1) = {A ∈ SLn+1(R) : AJ AT = J },
where

J =
⎛

⎝
0 0 1
0 −In−1 0
1 0 0

⎞

⎠ .

Let P be such that

J ′ :=
(−In 0

0 1

)
= P J PT .

Then V P is the upper half of the “light cone” in the standard representation of SO(n, 1). In
particular, this consists of null vectors of

Q′(x1, . . . , xn+1) = x2n+1 − x21 − · · · − x2n

with xn+1 > 0. In our case, V consists of null vectors of

Q(x1, . . . , xn+1) = 2x1xn+1 − x22 − · · · − x2n .

Proposition 7.5 Let � be convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V with
v− ∈ �r (�), as T → ∞, we have that

1

T δ�/2

∑

γ∈�T

ϕ(vγ ) 

∫

V
ϕ(u)

dν(u)

(‖v‖2 ‖u‖2)δ�/2 ,

where the implied constant depends on v and �.

The measure ν is described more explicitly in (59), below.
Let

en+1 = (0, . . . , 0, 1) ∈ R
n+1.

Then

StabG(en+1) = U M, (54)

and hence

A × M\K ∼= U M\G ∼= V (55)

via right matrix multiplication

U Mg �→ en+1g.

Wewill now interpret Corollary 7.3 in this setting. We start by understanding the measure
ν.

We view V as (M\K ) × R
+, via the “polar decomposition” of v ∈ V ,

v = ‖v‖2en+1k = en+1a− log ‖v‖2k, (56)
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where R+ = {r ∈ R : r > 0} and ‖ · ‖2 denotes the Euclidean norm on V . We may also
identify M\K with ∂(Hn) via

Mk �→ w−
o k. (57)

Thus, given v ∈ V , (56) and (57) uniquely determine a pair (a− log ‖v‖2 , Mk) ∈ A× M\K ,
or equivalently, a pair (a− log ‖v‖2 , w−

o k) ∈ A × ∂(Hn).
Viewing ∂(Hn) as M\K as in (57), we may in turn identify this with S

n ⊆ R
n+1 via

w−
o k �→ en+1k.

Thus, νo uniquely determines a measure νo on S
n ∩ V via

dνo(en+1k) = dνo(w
−
o k). (58)

Then, since K stabilizes o and M stabilizes wo, ν can be described from (13): if s =
β(a− log ‖v‖2 k)−(o, a− log ‖v‖2k(o)) = log ‖v‖2,

dν(v) := dν(a− log ‖v‖2k)

= e
δ�β(a− log ‖v‖2 k)− (o,a− log ‖v‖2 k(o))

dνo(w
−
o a− log ‖v‖2k)ds

= eδ�sdνo(w
−
o k)ds

= ‖v‖δ�−1
2 dνo(en+1k)d‖v‖2.

For v ∈ V , define

v− := en+1k ∈ S
n,

where v corresponds to (a− log ‖v‖2 , Mk) ∈ A × M\K . Then we have

dν(v) = ‖v‖δ�−1
2 dνo(v

−)d‖v‖2. (59)

As discussed in the previous section, v�u may be computed by the formula in (1) for any
choice of representatives of v and u in U\G. In particular, if

v = ‖v‖2en+1kv, u = ‖u‖2en+1ku,

then

v�u =
√
1

2
‖v‖2‖u‖2 max

1≤i, j≤n+1

∣∣∣(k−1
v )i,1(ku)n+1, j

∣∣∣,

where ki, j denotes the (i, j) entry of k. In particular

v�u 
 √‖v‖2 ‖u‖2.
Putting this together with Corollary 7.4 yields the proposition.

7.2 Wedge products

The previous example can be generalized to
∧ j

R
n+1 for any 1 ≤ j ≤ n. Fix j , and let

W =
j∧
R

n+1, and v0 = v0( j) = en− j+1 ∧ · · · ∧ en+1,
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with G acting on W by right multiplication. Then,

Staben− j+1∧···∧en+1 = U · M j

for some M j ⊆ M . Define

V = v0G \ {0}.
Fix a norm on V which is invariant under K such that ‖v0‖ = 1.

Since any v ∈ V can be written as

v = v0a− log‖v‖k,

where k ∈ M j\K , in a similar way to the construction in the previous section, one can show
that if a− log ‖v‖k ∈ U P and can be written as uamv ∈ U AMŨ , then

dν(v) = ‖v‖δ�−1 dνo(v
−)d ‖v‖ dm,

where v− := w−
o k, and dm is the push forward of the probability Haar measure on M j\M .

dν(v) is zero if a− log ‖v‖k /∈ U P , because the original measure ν is supported on P .
Moreover, by reasoning in the beginning of Sect. 7, v�u is well defined and, as in the

previous section, we have that

v�u 
 √‖v‖ ‖u‖.
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