Skip to main content
Log in

The vanishing rate of Weil–Petersson sectional curvatures

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The Weil–Petersson metric for the moduli space of Riemann surfaces has negative sectional curvature. Surfaces represented in the complement of a compact set in the moduli space have short geodesics. At such surfaces the Weil–Petersson metric is approximately a product metric. An almost product metric has sections with almost vanishing curvature. We bound the sectional curvature away from zero in terms of the product of lengths of short geodesics on Riemann surfaces. We give examples and an expectation for the actual vanishing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burns, K., Masur, H., Wilkinson, A.: The Weil–Petersson geodesic flow is ergodic. Ann. Math. (2) 175(2), 835–908 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bochner, S.: Curvature in Hermitian metric. Bull. Am. Math. Soc. 53, 179–195 (1947)

    Article  MathSciNet  Google Scholar 

  3. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106. Birkhäuser Boston Inc., Boston (1992)

    MATH  Google Scholar 

  4. Bridgeman, M., Wu, Y.: Uniform bounds on harmonic Beltrami differentials and Weil–Petersson curvatures. J. Reine Angew. Math. 770, 159–181 (2021)

    Article  MathSciNet  Google Scholar 

  5. Cavendish, W., Parlier, H.: Growth of the Weil–Petersson diameter of moduli space. Duke Math. J. 161(1), 139–171 (2012)

    Article  MathSciNet  Google Scholar 

  6. Daskalopoulos, G., Wentworth, R.: Classification of Weil–Petersson isometries. Am. J. Math. 125(4), 941–975 (2003)

    Article  MathSciNet  Google Scholar 

  7. Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math. 293(294), 143–203 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  9. Huang, Z.: Asymptotic flatness of the Weil–Petersson metric on Teichmüller space. Geom. Dedicata. 110, 81–102 (2005)

    Article  MathSciNet  Google Scholar 

  10. Huang, Z.: On asymptotic Weil–Petersson geometry of Teichmüller space of Riemann surfaces. Asian J. Math. 11(3), 459–484 (2007)

    Article  MathSciNet  Google Scholar 

  11. Huang, Z.: Erratum to the paper “On asymptotic Weil-Petersson geometry of Teichmüller space of Riemann surfaces. Asian J. Math. 11(3), 459–484 (2007)” [mr2372726]. Asian J. Math. 16(3):427 (2012)

  12. Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math. (2) 117(2), 235–265 (1983)

    Article  MathSciNet  Google Scholar 

  13. Penner, R.C., Harer, J.L.: Combinatorics of Train Tracks. Princeton University Press, Princeton (1992)

    Book  Google Scholar 

  14. Tromba, A.J.: Teichmüller Theory in Riemannian Geometry. Birkhäuser, Basel (1992). Lecture notes prepared by Jochen Denzler

  15. Takhtajan, L.A., Zograf, P.G.: The Selberg zeta function and a new Kähler metric on the moduli space of punctured Riemann surfaces. J. Geom. Phys. 5(4), 551–570 (1989)

    Article  Google Scholar 

  16. Wells Jr., R.O.: Differential Analysis on Complex Manifolds, Volume 65 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2008). With a new appendix by Oscar Garcia-Prada

  17. Wolpert, S.A.: Families of Riemann surfaces and Weil–Petersson geometry, volume 113 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2010)

  18. Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)

    Article  MathSciNet  Google Scholar 

  19. Wolpert, S.A.: Geodesic length functions and the Nielsen problem. J. Differ. Geom. 25(2), 275–296 (1987)

    Article  MathSciNet  Google Scholar 

  20. Wolpert, S.A.: Geometry of the Weil-Petersson completion of Teichmüller space. In: Surveys in Differential Geometry VIII: Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck, pp. 357–393. Intl. Press, Cambridge (2003)

  21. Wolpert, S.A.: Behavior of geodesic-length functions on Teichmüller space. J. Differ. Geom. 79(2), 277–334 (2008)

    Article  Google Scholar 

  22. Wolpert, S.A.: Geodesic-length functions and the Weil–Petersson curvature tensor. J. Differ. Geom. 91(2), 321–359 (2012)

    Article  MathSciNet  Google Scholar 

  23. Yamada, S.: On the geometry of Weil–Petersson completion of Teichmüller spaces. Math. Res. Lett. 11(2–3), 327–344 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Wolpert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolpert, S.A. The vanishing rate of Weil–Petersson sectional curvatures. Geom Dedicata 215, 281–295 (2021). https://doi.org/10.1007/s10711-021-00650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-021-00650-x

Keywords

Mathematics Subject Classification

Navigation