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Abstract
Following the work of Burger, Iozzi and Wienhard for representations, in this paper we
introduce the notion of maximal measurable cocycles of a surface group. More precisely, let
G be a semisimple algebraic R-group such that G = G(R)◦ is of Hermitian type. If � ≤ L
is a torsion-free lattice of a finite connected covering of PU(1, 1), given a standard Borel
probability �-space (�,μ�), we introduce the notion of Toledo invariant for a measurable
cocycle σ : � × � → G. The Toledo invariant remains unchanged along G-cohomology
classes and its absolute value is bounded by the rank of G. This allows to define maximal
measurable cocycles. We show that the algebraic hullH of a maximal cocycle σ is reductive
and the centralizer of H = H(R)◦ is compact. If additionally σ admits a boundary map, then
H is of tube type and σ is cohomologous to a cocycle stabilizing a unique maximal tube type
subdomain. This result is analogous to the one obtained for representations. In the particular
case G = PU(n, 1) maximality is sufficient to prove that σ is cohomologous to a cocycle
preserving a complex geodesic. We conclude with some remarks about boundary maps of
maximal Zariski dense cocycles.

Keywords Hermitian Lie group · Tube type · Tightness · Shilov boundary · Maximal
measurable cocycle · Kähler form · Toledo invariant

1 Introduction

Given a torsion-free lattice � ≤ L in a semisimple Lie group L , any representation
ρ : � → H into a locally compact group H induces a well-defined map at the level of
continuous bounded cohomology groups. Hence fixed a preferred bounded class in the coho-
mology of H , one can pullback it and compare the resulting class with the fundamental class
determined by � via Kronecker pairing. This is a standard way to obtain numerical invari-
ants for representations, whose importance has become evident in the study of rigidity and
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superrigidity properties. In many cases (such as the Toledo invariant, the Volume invariant
or the Borel invariant) a numerical invariant has bounded absolute value and the maximum
is attained if and only if the representation can be extended to a representation L → H of
the ambient group.

Several examples of these phenomena are given by the work of Bucher, Burger, Iozzi
[2,3,29] in the case of representations of real hyperbolic lattices, by Burger and Iozzi [10]
and by Duchesne and Pozzetti [16,40] for complex hyperbolic lattices and by the work of
Burger, Iozzi and Wienhard [11–13] when the target group is of Hermitian type. In the latter
case, of remarkable interest is the analysis of the representation space Hom(�,G) when G
is a group of Hermitian type and � is a lattice in a finite connected covering of PU(1, 1),
that is a hyperbolic surface group. Burger, Iozzi and Wienhard [13] exploited the existence
of a natural Kähler structure on the Hermitian symmetric space associated to G in order
to define the notion of Toledo invariant of a representation ρ : � → G. That invariant
has bounded absolute value and its maximality has important consequences on the Zariski

closure H = ρ(�)
Z
of the image of the representation. Indeed the authors show that in the

case of maximalityH is reductive, H = H(R)◦ has compact centralizer and it is of tube type
and the representation ρ is injective with discrete image and it preserves a unique maximal
tube type subdomain [13, Theorem 5]. A domain is of tube type if it can be written in the
form V + i�, where V is a real vector space and � ⊂ V is an open convex cone. Maximal
tube type subdomains in a Hermitian symmetric space X generalize the notion of complex
geodesic in Hn

C
and they are all G-conjugated.

A source of inspiration for [13, Theorem 5] is represented by the work of Toledo [43].
Indeed he proved that maximal representations into PU(n, 1) must preserve a complex
geodesic. Partial results in the direction of [13, Theorem 5] were obtained by several authors.
It is worth mentioning the papers by Hernández [27], by Koziarz and Maubon [31] and by
Bradlow, García-Prada and Gothen [5,6]. In the latter case those results were obtained using
different techniques based on the notion of Higgs bundle (see also [32] for the study of
representations of complex hyperbolic lattices via Higgs bundles).

It is worth noticing that in the particular case of split real groups and surfaces without
boundary, the set of maximal representations contains the Hitchin component [28]. The
Hitchin component has been sistematically studied by serveral mathematicians. For instance
Labourie [33] focused his attention on the Asonov property, whereas Fock and Goncharov
[17,18] related the Hitchin component with the notion of Lusztig’s positivity.

A crucial point in the proof of [13, Theorem 5] is that maximal representations are tight,
that is the seminorm of the pullback of the boundedKähler class κb

G is equal to the norm of κb
G .

The tightness property has an analytic counterpart in terms ofmaps between symmetric spaces
and Burger, Iozzi and Wienhard [12] give a complete characterization of tight subgroups of
a Lie group of Hermitian type.

Recently the author [41] together with Moraschini [36,37] and Sarti [42] has applied
bounded cohomology techniques to the studymeasurable cocycles with an essentially unique
boundarymap. The existence of a boundarymap allows to define a pullback in bounded coho-
mology as in [7] and hence to develop a theory of numerical invariants, called multiplicative
constants, also in the context of measurable cocycles.

The main goal of this paper is the study of measurable cocycles of surface groups. Let
� ≤ L be a torsion-free lattice of a finite connected covering L of PU(1, 1). Consider a
standard Borel probability �-space (�,μ�) and let G be a semisimple real algebraic group
such that G = G(R)◦ is of Hermitian type. Using a measurable cocycle σ : � × � → G,
we can define a pullback map in bounded cohomology and hence mimic the techniques
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used in [36,37] to define the Toledo invariant of σ . In the particular case that σ admits a
boundary map φ : S1 × � → ŠG into the Shilov boundary of G, then we recover the same
approach developed in [36,37] (see Lemma 2.10). In an analogous way to what happens
for representations, the Toledo invariant is constant along G-cohomology classes and has
absolute value bounded by rk(X ), the rank of the symmetric space X associated to G. Thus
it makes sense to speak aboutmaximalmeasurable cocycles. This will be a particular example
of tight cocycles (see Definition 3.5).

Maximality allows to give a characterization of the algebraic hull of ameasurable cocycle,
as stated in the following

Theorem 1 Let � ≤ L be a torsion-free lattice of a finite connected covering L of PU(1, 1)
and let (�,μ�) be a standard Borel probability �-space. Let G be a semisimple algebraic
R-group such that G = G(R)◦ is a Lie group of Hermitian type. Consider a measurable
cocycle σ : � × � → G. Denote by H the algebraic hull of σ in G and set H = H(R)◦. If
σ is maximal, then

(1) The algebraic hull H is reductive;
(2) The centralizer ZG(H) is compact;

If additionally σ admits a boundary map φ : S1 × � → ŠY into the Shilov boundary of the
symmetric space Y associated to H, then

(3) The symmetric space Y is Hermitian of tube type;
(4) It holdsH(R) ⊂ Isom(T ) for some maximal tube type subdomain T ofX . Equivalently

there exists a cocycle cohomologous to σ which preserves T .

The above theorem should be interpreted as a suitable adaptation of [13, Theorem 5] to
the context of maximal measurable cocycles. The first two properties are immediate con-
sequences of the tightness of maximal cocycles, as shown in Theorem 3.7. The tube type
condition is more involving and it is proved in Theorem 4.2.

It is worth mentioning that Theorem 1 can be translated in the language of principal G-
bundles. Indeed suppose that� is actually a smooth manifold and σ is the cocycle associated
to the section of a principal G-bundle P with a �-action. The maximality assumption is
telling us that we can find a �-invariant principal subbundle of P with fibers of tube type.
This has application for instance to the reducibility of G-structures on �.

In the particular case G = PU(n, 1), imitating [9, Theorem 8] and [31, Theorem C],
maximality implies the existence of a cohomologous cocycle preserving a complex geodesic.
Indeed we are going to prove the following

Proposition 2 Let L a finite connected covering of PU(1, 1) and let � ≤ L be a torsion-free
lattice. Let (�,μ�) be a standard Borel probability. If a measurable cocycle σ : � × � →
PU(n, 1) is maximal, then it is cohomologous to a measurable cocycle which preserves a
complex geodesic.

Notice that in the previous statement the requirement of a boundary map is not necessary,
since the existence of such a map will be part of the proof.

We conclude with some remarks about boundary maps of maximal Zariski dense cocy-
cles. For representations, the relation between maximality and boundary maps preserving
positivity of triples were studied by Guichard [25], Labourie [33] and Fock and Goncharov
[17]

Here we attempt to extend [13, Theorem 5.2] to the context of measurable cocycles. Given
amaximal Zariski dense cocycle, we can construct a boundarymapwhich has left-continuous
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(respectively right-continuous) slices. Moreover each slice preserves transversality and it is
monotone, as proved in Theorem 4.10. Unfortunately, to get the statement, we need to make
an additional assumption on the measurable map φ : S1 × � → ŠX . More precisely we
need to assume that the essential image of almost every slice intersects nicely all closed
algebraic subset of ŠX (Assumption 4.6). This assumption is clearly verified by cocycles
cohomologous to maximal Zariski dense representations [13, Proposition 5.2], but we do not
know more generally under which conditions on both σ or φ this is true and it would be
interesting to know it. The proof of Theorem 4.10 follows the line of [14, Section 8] and of
[13, Theorem 5.2].

Plan of the paper

In Sect. 2 we recall the preliminary definitions and results that we need in the paper. In
Sect. 2.1 we remind the notion of measurable cocycle and of cohomology class determined
by a cocycle. Of particular importance for our purposeswill be the definitions of algebraic hull
and Zariski density. Then we conclude the section with some elements of boundary theory.
Section 2.2 is devoted to continuous and continuous bounded cohomology. We remind the
functorial approach byBurger andMonod. In Sect. 2.3wedescribe the theoretical background
to define pullback in terms of measurable cocycles. When a boundary map exists we recover
the approach already studied by the author and Moraschini (see Lemma 2.10). The last part
is devoted to Hermitian symmetric spaces (Sect. 2.4).

The main theorem of paper is proved in Sect. 3. We first introduce the notion of Toledo
invariant of a measurable cocycle in Sect. 3.1. In Sect. 3.2 it appears the definition of maximal
cocycle. Maximal cocycles are tight by Proposition 3.8. In Sect. 4 we focus our attention on
maximal Zariski dense cocycles. The tightness property together with Theorem 4.2 allows
to prove Theorem 1. We conclude with Sect. 4.2, where we prove Theorem 4.10.

2 Preliminary definitions and results

2.1 Measurable cocycles

The following section is devoted to a quick review about measurable cocycles theory. We
are going to recall the definitions of both measurable cocycle and cohomology class. Then
we will introduce the notion of algebraic hull and we will conclude the section with some
elements of boundary theory. For a more detailed discussion about those topics we refer the
reader to the work of both Furstenberg [22,23] and Zimmer [44–46].

Consider two locally compact second countable groups G, H endowed with their Haar
measurable structure. Given a standard Borel measure space (�,μ�) we say that it is a
G-space if G acts on � by measure-preserving transformations. Additionally if μ� is a
probability measure, we are going to call (�,μ�) a standard Borel probability G-space.
Given another measure space (�,μ�), we are going to denote by Meas(�,�) the space of
measurable functionswith the topology of the convergence inmeasure. The latter is generated
by the base of open sets of the form

S (K , h, α, ε) = { f ∈ Meas(�,�)| μ�{x ∈ K |d( f (x), h(x)) > α} < ε} , (1)

where K ⊆ � is measurable, h ∈ Meas(�,�) and α, ε > 0. Later on we are going to
consider the Borel structure generated by the topology of convergence in measure, that is
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the measurable structure generated by countable unions and intersections of sets given by
Equation (1). We refer the reader to [34, Chapter VII.1] for more details.

Definition 2.1 Let G, H two locally compact second countable groups and let (�,μ�) be a
standard Borel probabilityG-space. Ameasurable function σ : G×� → H is ameasurable
cocycle if it holds

σ(g1g2, s) = σ(g1, g2s)σ (g2, s) , (2)

for almost every g1, g2 ∈ G and almost every s ∈ �.

Measurable cocycles are quite ubiquitous in Mathematics and Eq. (2) can be suit-
ably interpreted as a naive generalization to the measurable context of the chain rule for
differentiation of smooth functions. By writing a measurable cocycle σ as an element
σ ∈ Meas(G,Meas(�, H)), Eq. (2) boils down the cocycle condition. Indeed σ may be
interpreted as a Borel 1-cocycle in the sense of Eilenberg-MacLane (see [20,44] for more
details about this interpretation). Following this line, one could naturally ask when two dif-
ferent cocycles are cohomologous.

Definition 2.2 Let σ : G × � → H be a measurable cocycle and let f : � → H be a
measurable function. The f -twisted cocycle of σ is defined as

σ f : G × � → H , σ f (g, s) := f (gs)−1σ(g, s) f (s) .

We say that two cocycles σ1, σ2 : G×� → H are cohomologous if there exists a measurable
function f : � → H such that

σ
f
2 = σ1 .

Choosing a measurable function f : � → H is a typical way to construct cocycles
starting from representations. Indeed, given a continuous representation ρ : G → H , one
can verifiy that the measurable function

σρ : G × � → H , σρ(g, s) := ρ(g) ,

is a measurable cocycle as a consequence of the morphism condition. This allows to see
representations theory into the wider world of measurable cocycles theory. Additionally this
offers us the possibility to interpret the notion of cohomologous cocycles as a generalization
of conjugated representations.

Given a representation ρ : G → H , if the image is not closed, it is quite natural to consider
its closure, which it is still a subgroup of H . Unfortunately the image of a cocycle has no
structure a priori. Nevertheless, if H corresponds to the real points of a real algebraic group,
then there is a notion which is in some sense similar to take the closure of the image of a
representation.

Definition 2.3 Suppose that H is a real algebraic group. Let σ : G × � → H(R) be a
measurable cocycle. The algebraic hull associated toσ is (the conjugacy class of) the smallest
algebraic subgroup L ofH such that L(R) contains the image of a cocycle cohomologous to
σ .

As proved in [46, Proposition 9.2] this notion is well-defined by the descending chain
condition on algebraic subgroups and it depends only the cohomology class of the cocycle. It
is worth noticing that the algebraic hull can be exploited to give a concept of Zariski density
for measurable cocycles. More precisely, we have the following
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Definition 2.4 Consider H a real algebraic group. We say that a measurable cocycle σ :
G × � → H(R) is Zariski dense it its algebraic hull is exactly H.

In Sect. 4 we are going to focus our attention on Zariski dense cocycles of surface groups
to obtain important properties for their targets.

We conclude this brief discussion about measurable cocycles introducing some elements
of boundary theory. In order to do this, we are going to assume that G is a semisimple Lie
group of non-compact type. Let P be a minimal parabolic subgroup of G and suppose that
H acts measurably on a measure space (Y , ν) by preserving the measure class of ν.

Definition 2.5 Let σ : G×� → H be a measurable cocycle. A (generalized) boundary map
is a measurable map φ : G/P × � → Y which is σ -equivariant, that is

φ(gξ, gs) = σ(g, s)φ(ξ, s) ,

for every g ∈ G and almost every ξ ∈ G/P, s ∈ �.

It is easy to check that, if φ : G/P × � → Y is a boundary map for σ , then φ f :
G/P × � → Y , φ f (ξ, s) := f (s)−1φ(ξ, s) is a boundary map for σ f for any measurable
function f : � → H .

The existence and the uniqueness of a boundary map associated to a cocycle σ rely on the
dynamical properties of σ . For a more detailed discussion about it we refer the reader to [23].
Boundary maps for measurable cocycles will be crucial in Sect. 4 to study the propreties of
the target group of maximal measurable cocycles of surface groups.

2.2 Continuous bounded cohomology and functorial approach

Given a locally compact group G we are going to remind the notion of continuous and
continuous bounded cohomology groups of G. A remarkable aspect of continuous bounded
cohomology is that it can be computed using any strong resolution by relatively injective
modules. Formore details about continuous bounded cohomology and its functorial approach
we refer to the work of Burger and Monod [15,35].

We consider the set of real continuous bounded functions on G•+1 given by

C•
cb(G;R) := { f : G•+1 → R | f iscontinuousand

‖ f ‖∞ := sup
g0,...,g•

| f (g0, . . . , g•)| < ∞} ,

where | · | is the usual absolute value on R. Each C•
cb(G;R) is a normed via the supremum

norm and it can be endowed with an isometric action of G defined by

(g f )(g0, . . . , g•) := f (g−1g0, . . . , g
−1g•) , (3)

where f ∈ C•
cb(G;R) and g, g0, . . . , g• ∈ G. Notice that in this case R is endowed with the

structure of trivial G-module. Defining the standard homogeneous coboundary operator by

δ• : C•
cb(G;R) → C•+1

cb (G;R) ,

δ•( f )(g0, . . . , g•+1) :=
•+1∑

i=0

(−1)i f (g0, . . . , ĝi , . . . , g•+1) ,

we get a cochain complex (C•
cb(G;R), δ•).
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Definition 2.6 Let G be a locally compact group. The k-th continuous bounded cohomology
group of G is the k-th cohomology group of the G-invariant subcomplex (C•

cb(G;R)G , δ•),
that is

Hk
cb(G;R) := Hk(C•

cb(G;R)G) ,

for every k ≥ 0.

It is worth noticing that each cohomology group H•
cb(G;R) has a natural seminormed

structure inherited by the normed structure on the continuous bounded cochains.
By dropping the assumption of boundedness one can define similarly the complex of

continuous cochains (C•
c(G;R), δ•) and the standard inclusion i : C•

cb(G;R) → C•
c(G;R)

induces a map at a cohomological level

comp• : H•
cb(G;R) → H•

c(G;R) ,

called comparison map.
Computing continuous bounded cohomology of a locally compact groupG using only the

definition given above may reveal quite difficult. For this reason Burger and Monod [15,35]
introduced a way to compute continuous bounded cohomology groups based on the notion
of resolutions. More precisely the authors showed [15, Corollary 1.5.3] that given any strong
resolution (E•, d•) of R by relatively injective Banach G-modules, it holds

Hk
cb(G;R) ∼= Hk((E•)G) ,

for every k ≥ 0. Since we will not need the notion of strong resolution and of relatively
injective Banach G-module, we omit them and we refer to the book of Monod [35] for more
details.

Unfortunately the isomorphism given above it is not isometric a priori, that is it may
not preserve the seminormed structure. Nevertheless there are specific resolutions for which
the isomorphism it is actually isometric. This is the case for instance when we consider
the resolution of essentially bounded measurable functions (L∞((G/Q)•+1;R), δ•) on the
quotient G/Q [15, Theorem 1], where G is a semisimple Lie group of non-compact type and
Q ≤ G is any amenable subgroup.

Something relevant can be said also about the complex of bounded measurable functions
(B∞((G/Q)•+1;R), δ•). Indeed the latter is a strong resolution of E by [7, Proposition 2.1],
together with the natural injection of coefficients. In this way, the projection on equivalence
classes B∞((G/Q)•+1;R) → L∞((G/Q)•+1;R) induces a well-defined map in cohomol-
ogy

c• : H•(B∞((G/P)•+1;R)G) → H•
cb(G;R) ,

as stated by Burger and Iozzi [7, Proposition 2.2]. Hence any bounded measurable invariant
cocycles naturally determines a class in the continuous bounded cohomology of G.

2.3 Pullbackmaps induced bymeasurable cocycles

In this brief section we are going to recall the pullback determined by a boundary map
associated to a measurable cocycle. We will actually introduce a more general way to define
the pullback and we will show that it coincides with the approach introduced by the author
and Moraschini [36,37] when a boundary map exists.
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Let � ≤ G be a lattice of a semisimple Lie group of non-compact type. Let H be another
locally compact group and consider (�,μ�) a standard Borel probability �-space. Given a
measurable cocycle σ : � × � → H , we can define the map

C•
b(σ ) : C•

cb(H ;R) → C•
b(�;R) ,

ψ �→ C•
b(σ )(ψ)(γ0, . . . , γ•) :=

∫

�

ψ(σ(γ −1
0 , s)−1, . . . , σ (γ −1• , s)−1)dμ� .

Notice that the previous definition is motivated by the formula appearing in [4, Theorem 5.6]
and it is inspired by the cohomological induction introduced by Monod and Shalom [39] for
measurable cocycles associated to couplings.

Lemma 2.7 For a measurable cocycle σ : � × � → H, the map C•
b(σ ) is a well-defined

cochain map which restricts to the subcomplexes of invariant cochains

C•
b(σ ) : C•

cb(H ;R)H → C•
b(�;R)� ,

and hence it induces a map in bounded cohomology

H•
b(σ ) : H•

cb(H ;R) → H•
b(�;R) , H•

b(σ )([ψ]) := [
C•
b(σ )(ψ)

]
.

Proof Since μ� is a probability measure, it is clear that C•
b(σ ) preserves boundedness. The

fact that C•
b(σ ) is a cochain map is an easy computation that we leave to the reader.

To conclude the proof we need to show that C•
b(σ ) restricts to invariant cochains. Let

ψ ∈ C•
cb(H ;R)H be a H -invariant cochain. For any γ, γ0, . . . , γ• ∈ � it holds

γ · C•
b(σ )(ψ)(γ0, . . . , γ•) = C•

b(σ )(ψ)(γ −1γ0, . . . , γ
−1γ•)

=
∫

�

ψ(σ(γ −1
0 γ, s)−1, . . . , σ (γ −1• γ, s)−1)dμ�(s)

=
∫

�

ψ(σ(γ, s)−1σ(γ −1
0 , γ s)−1, . . . ,

σ (γ, s)−1σ(γ −1• , γ s)−1)dμ�(s)

=
∫

�

ψ(σ(γ −1
0 , s)−1, . . . , σ (γ −1• , s)−1)dμ�(s)

= C•
b(σ )(ψ)(γ0, . . . , γ•) ,

where we used Eq. (2) to move from the second line to the third one and we exploited jointly
the H -invariance of ψ and the �-invariance of μ� to move from the third line to the fourth
one. This concludes the proof. �

Thank to Lemma 2.7 we can give the following

Definition 2.8 Let � ≤ G be a lattice in a semisimple Lie group of non-compact type and let
(�,μ�) be a standard Borel probability �-space. Given a measurable cocycle σ : � ×� →
H with values into a locally compact group, we define the pullback induced by σ as the map

H•
b(σ ) : H•

cb(H ;R) → H•
b(�;R) .

It is quite natural to ask how the pullback map defined above varies along the cohomology
class of a fixed measurable cocycle. We are going to show that it is actually constant.
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Lemma 2.9 Let � ≤ G be a lattice in a semisimple Lie group of non-compact type and let
(�,μ�) be a standard Borel probability �-space. Let f : � → H be a measurable function
with values into a locally compact group. Given a measurable cocycle σ : � × � → H, it
holds that

H•
b(σ

f ) = H•
b(σ ) ,

where σ f is the f -twisted cocycle associated to σ .

Proof We are going to follow the line of [35, Lemma 8.7.2]. The main goal to prove the
statement is to find a chain homotopy betweenC•

b(σ ) andC•
b(σ

f ) to show that they determine
the same map in cohomology.

Let ψ ∈ C•
cb(H ;R)H . We have

C•
cb(σ

f )(ψ)(γ0, . . . , γ•) =
∫

�

ψ(σ f (γ −1
0 , s)−1, . . . , σ f (γ −1• , s)−1)dμ�

=
∫

�

ψ( f (s)−1σ(γ −1
0 , s)−1 f (γ −1

0 s), . . . )dμ�

=
∫

�

ψ(σ(γ −1
0 , s)−1 f (γ −1

0 s), . . .)dμ� , (4)

where we moved from the first line to the second one using the definition of σ f and we
exploited the H -invariance of ψ to move from the second line to the third one.

For 0 ≤ i ≤ • − 1 we now define the following map

s•
i (σ, f ) : C•

cb(H ;R) → C•−1
b (�;R) , s•

i (σ, f )(ψ)(γ0, . . . , γ•−1)

:=
∫

�

ψ(σ(γ −1
0 , s)−1 f (γ −1

0 s), . . . , σ (γ −1
i , s)−1 f (γ −1

i s), σ (γ −1
i , s)−1, . . . ,

σ (γ −1
•−1, s)

−1)dμ�(s) ,

and we set s•(σ, f ) := ∑•−1
i=0 (−1)i s•

i (σ, f ). By defining for −1 ≤ i ≤ • the map

ρ•
i (σ, f ) : C•

cb(H ;R) → C•
b(�;R) , ρ•

i (σ, f )(ψ)(γ0, . . . , γ•)

:=
∫

�

ψ(σ(γ −1
0 , s)−1 f (γ −1

0 s), . . . , σ (γ −1
i , s)−1 f (γ −1

i s), σ (γ −1
i+1, s)

−1, . . . ,

σ (γ −1• , s)−1)dμ�(s) ,

we can notice that ρ•−1(σ, f ) = C•
b(σ ). Following the same computation of [35, Lemma

8.7.2], we get that

s•+1(σ, f )δ• = −δ•s•(σ, f ) +
•∑

i=0

(ρ•
i−1(σ, f ) − ρ•

i )

= −δ•s•(σ, f ) + C•
b(σ ) − ρ•• (σ, f ) ,

where δ• is the usual homogeneous coboundary operator. Since by Eq. (4) on the subcomplex
of H -invariants cochains it holds

ρ•• (σ, f ) = C•
b(σ

f ) ,

we get that
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s•+1(σ, f )δ• + δ•s•(σ, f ) = C•
b(σ ) − C•

b(σ
f ) ,

and the claim follows. �
We want now to relate Definition 2.8 with the approach followed by the author and

Moraschini in [36,37]. In the same setting of Definition 2.8, consider a minimal parabolic
subgroup P ≤ G. Let (Y , ν) be any measure space such that the group H acts on Y by
preserving the measure class of ν. Given a boundary map φ : G/P × � → Y associated
to a measurable cocycle σ : � × � → H , there exists a natural map defined at the level of
cochains as

C•(��) : B∞(Y •+1;R)H → L∞((G/Q)•+1;R)� ,

C•(��)(ψ)(ξ0, . . . , ξ•) :=
∫

�

ψ(φ(ξ0, s), . . . , φ(ξ•, s))dμ�(s) ,

where C•(��)(ψ) has to be intended as an L∞-equivalence class. As shown by the author
and Moraschini [36,37], the above map is a chain map which does not increase the norm and
it induces a well-defined map in cohomology

H•(��) : H•(B(Y •+1;R)H ) → H•
cb(G;R) , H•(��)([ψ]) := [C•(��)(ψ)] .

We are going to call the map H•(��) pullback induced by the boundary map φ. We have the
following result which should be interpreted as an extension of [7, Corollary 2.7].

Lemma 2.10 Let� ≤ G be a lattice in a semisimple Lie group of non-compact type. Consider
a minimal parabolic subgroup P ≤ G and a standard Borel probability �-space (�,μ�).
Let (Y , ν) be a measure space on which a locally compact group H acts by preserving the
measure class of ν. Suppose that a measurable cocycle σ : � × X → H admits a boundary
map φ : G/P × � → Y . Given ψ ∈ B∞(Y •+1;R)H , then

C•(��)(ψ) ∈ L∞((G/P)•+1;R)� ,

is a natural representative of the class H•
b(σ )([ψ]) ∈ H•

cb(�;R).

Proof It is sufficient to apply [7, Proposition 1.2] to get the following commutative diagram

H•(B∞(Y •+1;R)H )

c•

H•(��)
H•
b(�;R)

H•
cb(H ;R)

H•
b(σ )

,

and the statement follows. �
We are going to use the pullback maps introduced so far to define properly the Toledo

invariant of a measurable cocycle of a surface group.

2.4 Lie groups of Hermitian type

In this section we are going to recall the main definitions and results about Lie groups
of Hermitian type. We are going to remind the notion of Shilov boundary for a Hermitian
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symmetric space andwe are going to define a suitable cocycle on it, called Bergmann cocycle,
which will enable us to define the notion of maximality for measurable cocycles of surface
groups. For a more detailed discussion about these notions, we refer mainly to the work of
Burger, Iozzi and Wienhard [11–13].

Definition 2.11 Let X be a Riemannian symmetric space and denote by G = Isom(X )◦ the
connected component of the identity of the isometry group associated to X . We say that X is
Hermitian if there exists a G-invariant complex structure J on X . Given a semisimple real
algebraic group G, we say that G = G(R)◦ is of Hermitian type if its symmetric space X is
Hermitian.

Among all the possible ones, a family of examples of particular interest in this paper will
be the one of Hermitian symmetric spaces of tube type. We say that a Hermitian symmetric
space X is of tube type if it is biholomorphic to a complex subset of the form V + i�, where
V is a real vector space and � ⊂ V is a proper convex cone. The prototypical example is
given by the upper half plane model for the complex hyperbolic line H

1
C
. The latter is the

symmetric space associated to the group PU(1, 1), and more generally is of tube type the
symmetric space associated to PU(p, p) when p ≥ 2.

A Hermitian symmetric space X can be bihomolorphically realized as bounded convex
domainDX inCn . For such a realization, the groupG = Isom(X )◦ acts via biholomorphisms
and its action can be extended in a continuous way to the boundary ∂DX . Unfortunately the
latter is not a homogeneous G-space, but it admits a unique closed G-orbit. The latter will
be identified with the Shilov boundary.

More precisely we give first the following

Definition 2.12 Let D ⊂ C
n be a bounded domain. The Shilov boundary ŠD of D is the

unique closed subset of ∂D such that, given a function f continuous on D and holomorphic
on D, then

max
D

| f | = max
ŠD

| f | .

Given a Hermitian symmetric space X , we denote by ŠX the Shilov boundary associated to
the bounded realization of X and we call it the Shilov boundary of X .

As already anticipated the Shilov boundary associated to a Hermitian symmetric space X
is a homogeneous G-space. Indeed if we denote by G the algebraic group associated to the
complexified Lie algebra of G = Isom(X )◦, then there exists a maximal parabolic subgroup
Q ⊂ G such that ŠX can be identified with (G/Q)(R). Such an identification determines
naturally a structure of algebraic variety on ŠX .

Although ŠX is an amenable G-space only when the rank of G is equal to 1, we can
use the resolution of bounded measurable functions (B∞((ŠX )•+1;R), δ•) to obtain in a
canonical way a class in the continuous bounded cohomology of G, as noticed in Sect. 2.2.
We are going to focus our attention to the particular case when the degree is equal to 2. In
order to describe more accurately the second bounded cohomology group of G, recall that if
X is Hermitian, then there exists a G-invariant complex structure J on it. If we denote by g
the G-invariant Riemannian metric on X , we can define the Kähler form at a ∈ X as

(ωX )a(X , Y ) := ga(X ,JaY ) ,
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for any X , Y ∈ TaX . Being G-invariant, the form ωX is automatically closed by Cartan’s
Lemma [26, VII.4]. Define now

βX : (X )(3) → R, βX (a1, a2, a3) := 1

2π

∫

�(a1,a2,a3)
ωX , (5)

where �(a1, a2, a3) is any triangle with geodesic sides determined by a1, a2, a3 ∈ X . Since
ωX is closed, by Stokes’ Theorem the function βX is an alternating G-invariant cocycle on
X . Remarkably the cocycle βX can be extended to a strict measurableG-invariant cocycle on
the Shilov boundary ŠX [11, Corollary 3.8] and its absolute value is bounded by rk(X )

2 . We
are going to denote such an extensionwithβX with an abuse of notation. As previously said in
Sect. 2.2 the cocycle βX ∈ B∞((ŠX )(3);R)G determines canonically a class in H2

cb(G;R).

Definition 2.13 We call Bergmann cocycle the measurable extension βX : Š(3) → R to the
Shilov boundary of the cocycle defined by Eq. (5).

We denote by κb
G ∈ H2

cb(G;R) the class determined by βX and we call it bounded Kähler
class.

Recall that two points ξ, η ∈ ŠX are transverse if they lie in the unique open G-orbit in
(ŠX )2. A triple of points (ξ, η, ω) will be said maximal if it satisfies |βX (ξ, η, ω)| = rk(X )

2 .
We conclude the section by recalling some properties of the Bergmann cocycle when X is a
Hermitian symmetric space of tube type. As stated in [13, Lemma 5.5], if X is of tube type
then

(1) The cocycle βX takes values in the discrete set
{
− rk(X )

2
,− rk(X )

2
+ 1, . . . ,

rk(X )

2
− 1,

rk(X )

2

}
;

(2) If the triple (ξ, η, ω) is maximal, then ξ, η, ω are pairwise transverse;
(3) We can decompose

(ŠX )(3) = �rk(X )
i=0 O− rk(X )+2i ,

where O− rk(X )+2i is the open subset of (ŠX )(3) where βX is identically equal to
− rk(X )

2 + i ;

(4) Given ξ, (ξn)n∈N, (ξ ′
n)n∈N where ξ, ξn, ξ

′
n ∈ ŠX , if limn→∞ ξn = ξ and the triple

(ξ, ξn, ξ
′
n) is maximal for every n ∈ N, then limn→∞ ξ ′

n = ξ .

3 Maximal measurable cocycles of surface groups

In this section we are going to introduce the definition and the main properties of the Toledo
invariant of a measurable cocycle associated to a surface group. Such invariant will have
bounded absolute value and we will see that in case of maximality one can get important
information about the target group of the measurable cocycle.

3.1 The Toledo invariant of a measurable cocycle

Let L be a finite connected covering of the group PU(1, 1) and consider a torsion-free lattice
� ≤ L . Let (�,μ�) be a standard Borel probability �-space. Denote by G = Isom◦(X )

the connected component of the identity of the isometry group of an irreducible Hermitian
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symmetric space X . Let G be the connected Lie group associated to the complexified Lie
algebra of G, so that G = G(R)◦. Let σ : � × � → G be a measurable cocycle.

Since we are exactly in the situation described by Definition 2.8, we have a pullback map
in cohomology

H•
b(σ ) : H•

cb(G;R) → H•
b(�;R) .

In particular we are allowed to consider the pullback of the bounded Kähler class κb
G . Being

� a lattice of L , we have a well-defined transfer map. Since we are going to use it later, we
are going to recall its definition using the resolution of essentially bounded functions. The
transfer map is given at the level of cochains by

T̂•
b : L∞((S1)•+1;R)� → L∞((S1)•+1;R)L ,

T̂•
b(ψ)(ξ0, . . . , ξ•) :=

∫

�\L
ψ(gξ0, . . . , gξ•)dμ�\L(g) ,

where g denotes the equivalence class of g in �\L and μ�\L is the normalized L-invariant
measure on the quotient. Being a chain map, T̂•

b induces a well-defined map in cohomology
called transfer map

T•
b : H•

b(�;R) → H•
cb(L;R), T•

b([ψ]) := [T̂•
b(ψ)] .

It is worth recalling that the boundedKähler class κb
L is a generator of the groupH

2
cb(L;R)

which is indeed a one dimensional vector space. In this particular setting, we are allowed to
give the following

Definition 3.1 Let � ≤ L be a torsion-free lattice and (�,μ�) a standard Borel probability
�-space. Consider a measurable cocycle σ : � × � → G. The Toledo invariant tb(σ )

associated to σ is defined as

T2
b ◦ H2

b(σ )(κb
G) = tb(σ )κb

L . (6)

The first natural question that one could ask is how the Toledo number varies along the
cohomology class of G. We are going to prove that it is constant along that class and it has
bounded absolute value.

Lemma 3.2 Let � ≤ L be a torsion-free lattice and (�,μ�) a standard Borel probability
�-space. Consider a measurable cocycle σ : �×� → G. Then the Toledo invariant depends
only on the G-cohomology class of σ and it holds

|tb(σ )| ≤ rk(X ) .

Proof The fact that the Toledo invariant is constant on the G-cohomology class is a direct
consequence of Lemma 2.9.

To prove the boundedness of the absolute value, recall that both T2
b and H2

b(σ ) are norm
non-increasing maps. Thus it follows that

‖tb(σ )κb
L‖∞ = ‖T2

b ◦ H2
b(σ )(κb

G)‖∞ = rk(X )

2
,

and since it holds ‖κb
L‖∞ = 1

2 , the claim follows. �

Suppose now that σ : � × � → G admits a boundary map φ : S1 × � → ŠX , where
ŠX is the Shilov boundary of the Hermitian symmetric space X . From Sect. 2.3 we know
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that the Toledo invariant can be computed alternatively with the use of the boundary map φ.
Indeed if we consider the pullback along φ, namely

H2(��) : H2(B∞((ŠX )3;R)G) → H2
b(�;R) ,

then we know by Lemma 2.10 that it holds

H2
b(σ )(κb

G) = H2(��)([βX ]) ,

where we used the fact that the Bergmann cocycle βX is a canonical representative of the
bounded Kähler class κb

G . As a consequence, Eq. (6) can be alternatively rewritten as follows

T2
b ◦ H2(��)([βX ]) = tb(σ )κb

L . (7)

Recall now that κb
L can be representend by βS1 (which is nothing else that the orientation

cocycle up to a factor equal to 1
2 ). Since the �-action on the circle is doubly ergodic and the

cocycles that we are considerng are alternating, Equation (7) holds actually at the level of
bounded measurable cochains, that is

∫

�\L

∫

�

βX (φ(gξ, s), φ(gη, s), φ(gω, s))dμ�(s)dμ�\L(g)

= tb(σ )βS1(ξ, η, ω) , (8)

and the equation holds for every triple of pairwise distinct points ξ, η, ω ∈ S
1, as a conse-

quence of either Burger and Iozzi [10] or Pozzetti [40], for instance. Notice that Eq. (8) is
simply a suitable adaptation of [13, Corollary 4.4] to the context of measurable cocycles.
Indeed, suppose that σ is a measurable cocycle associated to a Zariski dense representation
ρ : � → G. Then the boundary map of σ will be nothing else that the boundary map associ-
ated to ρ (which exists by [8, Proposition 7.2]) and the formula given by Eq. (8) boils down
to [13, Corollary 4.4].

It is immediate to verify that the Toledo invariant is a multiplicative constant in the sense
of [37, Definition 3.16]. Indeed following the notation of that paper, the setting required by
[37, Definition 3.16] is satisfied and one has

tb(σ ) = λβX ,β
S1

(σ ) ,

where λβX ,β
S1

(σ ) denotes the multiplicative constant associated the measurable cocycle σ

for the Bergmann cocycles βX , βS1 .

Remark 3.3 We could have defined the Toledo invariant in a different way. Let � ≤ L be a
torsion-free lattice and let (�,μ�) be a standard Borel probability �-space. Denote by� the
finite-area surface obtained as the quotient of H2

R
by �, that is � = �\H2

R
. If � is uniform

we know that � is closed, whereas when � is non-uniform then the surface � has finitely
many cusps. In the latter case we are going to denote by S a compact core of �, otherwise
we set S = �.

Following [36, Section 3.4] we can define the following composition of functions

J•S,∂S : H•
b(�;R) → H•

b(�;R) → H•
b(�,� \ S) → H•

b(S, ∂S) , (9)

where the first map is the isomorphism given by the Gromov’sMapping Theorem [19,24,30],
the second map is obtained by the long exact sequence in bounded cohomology [1] and the
last map is induced by the homotopy equivalence (�,� \ S) � (S, ∂S).
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Given a measurable cocycle σ : � × � → G, we could have defined the Toledo number
of the cocycle σ as

Tb(σ ) := 〈comp2S,∂S ◦ J2S,∂S ◦ H2
b(σ )(κb

G), [S, ∂S]〉 ,

where we denoted by

comp2S,∂S : H2
b(S, ∂S) → H2(S, ∂S) ,

the comparison map associated to the pair (S, ∂S).
To compare the two different definitions of the Toledo invariant, one can follows the same

strategy of the proofs of either [36, Proposition 1.2, Proposition 1.6] or [37, Proposition 5.5].
It is worth mentioning that the same idea contained in the proofs of those propositions can
be actually adapted also to the case when σ does not admits a boundary. In this way it is
possible to show that

tb(σ ) = Tb(σ )

|χ(�)| , (10)

where χ(�) is the Euler characteristic of the surface �. Notice that Eq. (10) is analogous to
the one obtained by Burger, Iozzi and Wienhard [13, Theorem 3.3]. In particular Tb(σ ) is an
invariant of the G-cohomology class of σ and it holds the following estimate

|Tb(σ )| ≤ rk(X )|χ(�)| .

3.2 Maximal measurable cocycles of surface groups

In this section we are going to introduce the notion of maximality. Maximal measurable
cocycles represent the first example of tight cocycles and this has important consequences
on their algebraic hull.

We start by giving the definition of maximality.

Definition 3.4 Let � ≤ L be a torsion-free lattice and let (�,μ�) be a standard Borel
probability �-space. Consider a measurable cocycle σ : � × � → G. We say that σ is
maximal if it holds tb(σ ) = rk(X ).

In order to show that maximal cocycles are tight, we need first to introduce the notion of
tightness formeasurable cocycles of surface groups. Inspired by the notion for representations
studied by Burger, Iozzi and Wienhard [12], we can give the following

Definition 3.5 Let � ≤ L be a torsion-free lattice and (�,μ�) a standard Borel probability
�-space. Consider a measurable cocycle σ : � × � → G. We say that σ is tight if it holds

‖H2
b(σ )(κb

G)‖∞ = rk(X )

2
.

Remark 3.6 It is worth mentioning that in the particular case when σ admits a boundary map
φ : S1 × � → ŠX , then the notion of tightness can be alternatively rewritten as follows

‖H2(��)([βX ])‖∞ = rk(X )

2
.

Clearly the definition above mimic the one given for representations. Indeed it is imme-
diate to check that if the cocycle is cohomologous to the one induced by a representation,
Definition 3.5 boils down to the standard one. Another important aspect is that the tightness
property is invariant along theG-cohomology class of a given cocycle by Lemma 2.9. Notice
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that we could have introduced the notion of tightness in a much more general setting, but this
would be not so useful for our purposes.

The deep study of tight representations done by Burger, Iozzi and Wienhard [12] enables
us to state the following theorem which characterizes the algebraic hull of a tight cocycle
and which is a direct consequence of [12, Theorem 3], where a full characterization of tight
subgroups is given.

Theorem 3.7 Let � be a torsion-free lattice of a finite connected covering L of PU(1, 1) and
let (�,μ�) be a standard Borel probability �-space. Consider G a semisimple algebraic
R-group such that G = G(R)◦ is a Lie group of Hermitian type. Given a measurable cocycle
σ : � × � → G, denote by H the algebraic hull of σ in G and set H = H(R)◦. If σ is tight
then

(1) H is a reductive group;
(2) The centralizer ZG(H) is compact;
(3) If Y is the symmetric space associated to H, there exists a unique H-invariant complex

structure on Y such that the inclusion H → G is tight and positive.

Proof Since the cocycle is tight and this condition is invariant along theG-cohomology class
of σ , the inclusion i : H → G is tight. The conclusion follows by direct application of [12,
Theorem 7.1] which characterize tight subgroups of G. �

The next step is to prove that maximal cocycles are tight in the sense of Definition 3.5,
similarly for what happens in the case of representations [13, Lemma 6.2]. This result will
have important consequence for the algebraic hull of amaximal cocycle as a direct application
of Theorem 3.7.

Proposition 3.8 Let � ≤ L be a torsion-free lattice and let (�,μ�) be a standard Borel
probability �-space. Consider a measurable cocycle σ : � × � → G. If σ is maximal then
it is tight.

Proof Suppose that σ : � × � → G is maximal. Then it holds tb(σ ) = rkX . By definition
we have that

T2
b ◦ H2

b(σ )(κb
G) = rk(X )κb

L ,

and hence it follows

rk(X )

2
= ‖rk(X )κb

L‖∞ = ‖T2
b ◦ H2

b(σ )(κb
G)‖ ≤‖H2

b(σ )(κb
G)‖∞ .

Since the pullback is norm non-increasing, we have also that ‖H2
b(σ )(κb

G)‖∞ ≤ rk(X )
2 ,

whence we must have equality and the cocycle σ is tight. �

4 Maximality and Zariski density

In this section we will focus our attention to maximal measurable cocycles of surface groups
which are Zariski dense. Under the necessary assumption of the existence of a boundary map
we are going to show that the symmetric space associated to their algebraic hull is of tube
type. We will study also some regularity properties of the boundary map.
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4.1 Algebraic hull and Zariski density

Let � ≤ L be a torsion-free lattice in a finite connected covering of PU(1, 1) and let (�,μ�)

be a standar Borel probability �-space. Consider a semisimple real algebraic group G such
that G := G(R)◦ is of Hermitian type. Suppose to have a maximal measurable cocycle
σ : � × � → G. Up to twisting σ and restricting the image to its algebraic hull, we will
assume that σ is Zariski dense.

Since in this section we will have to work with Eq. (8), we will need to assume that there
exists a boundary map φ : S1 × � → ŠX associated to σ .

It is quite natural to ask under which condition a boundary map exists. In the particular
case that G = PU(1, 1), every non-elementary measurable cocycle σ : � × � → PU(1, 1)
admits a boundary map φ : S1 × � → S

1 by [38, Proposition 3.3]. In this situation non-
elementary means that the algebraic hull of σ does not lie inside an elementary subgroup of
PU(1, 1).

For more general group of Hermitian type the existence of boundary map in the Zariki
dense case is not known to the author. SinceS1×� is an amenable�-space by [46, Proposition
4.3.4], there exists a probability measure-valued map φ̂ : S1 × � → M1(ŠX ). To show that
φ̂ takes values in the set of Dirac measures and hence to obtain a boundary map into the
Shilov boundary, one could try to verify that σ acts proximally on ŠX (see [23, Theorem
4.5]). For representations proximality boils down to the existence of a R-regular element
in the image (see [34, Theorem 3.7] and [8, Proposition 7.2] for Hermitian Lie groups).
Since the Zariski density implies the existence of a R-regular element [8, Theorem 3.4], a
boundary map exists in the case of Zariski dense representations. In the context of Zariski
densemeasurable cocycle it is more likely that one needs the existence of ameasurable family
of R-regular elements because of the characterization of proximality in terms of slices of
the boundary map [23, Lemma 3.3]. Unfortunately at the moment we cannot say something
more relevant about it.

Remark 4.1 In [42] the author, together with Sarti, analyze the case of maximal cocycle
admitting a boundary map with Zariski dense slices. The latter property clearly is stronger
than the Zariski density assumption we made here, but in [42, Proposition 4.2] we proved
that if (�,μ�) is a �-ergodic space, the Zariski density of the cocycle implies the Zariski
density of the slices of the associated boundary map.

Before studying more carefully the algebraic hull of σ , we need to remind briefly some
notation regarding the triple products studied by Burger, Iozzi and Wienhard [11]. If we
denote by (ŠX )(3) the set of triples of distinct points in ŠX , the Hermitian triple product is
defined as

〈〈·, ·, ·〉〉 : (ŠX )(3) → R
×\C× ,

〈〈ξ, η, ω〉〉 = eiπ pX βX (ξ,η,ω) modR× ,

for every (ξ, η, ω) ∈ Š(3)
X . The number pX is an integer defined in terms of the root system

associated to G.
Recall that ŠX is a homogeneous G-space, which can be realized as the quotient G/Q,

where Q = Q(R) andQ is a maximal parabolic subgroup ofG. Burger, Iozzi and Wienhard
were able to extend the Hermitian triple product to a complex Hermitian triple product
〈〈·, ·, ·〉〉C defined on (G/Q)3 with values into �×\A×. Here A× is the group C

× × C
×

endowedwith real structure (λ, μ) �→ (μ, λ) and�× is the image of the diagonal embedding
of C×. More precisely, the authors [11, Section 2.4] showed that the following diagram
commutes
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(ŠX )(3)
〈〈·,·,·〉〉

(ı)3

R
×\C×

�

(G/Q)3
〈〈·,·,·〉〉C

�×\A× .

where ı : ŠX → G/Q is the map given by the G-equivariant identification of ŠX with
(G/Q)(R) and � is the diagonal embedding.

It is worth mentioning that the complex Hermitian triple product is a rational function on
(G/Q)3 since it can be written as a product of determinants of complex automorphy kernels
(see [11, Equation 2.4]).

Given any pair of transverse points (ξ, η) ∈ (ŠX )(2), following [11, Section 5.1], we
denote by Oξ,η the open Zariski subset of G/Q of points transverse to both ξ and η. On the
set Oξ,η we have that the map

pξ,η : Oξ,η → �×\A×, pξ,η(ω) := 〈〈ξ, η, ω〉〉C ,

is well-defined and algebraic, by the rationality of the complex Hermitian triple product.
Burger, Iozzi andWienhard [11, Lemma 5.1] proved that if there exists an integerm ∈ Z\{0}
such that ω �→ pξ,η(ω)m is constant, then X must be of tube type.

Now we can proceed proving the following theorem, which should be thought of as a
generalization of [13, Theorem 4.1(1)].

Theorem 4.2 Let L be a finite connected covering of PU(1, 1) and let � ≤ L be a torsion-
free lattice. Let (�,μ�) be a standard Borel probability �-space and let σ : � × � → G
be a measurable cocycle which is Zariski dense. Assume that there exists a boundary map
φ : S1 × � → ŠX . If σ is maximal, then X must be of tube type.

Proof Consider a positively oriented triple of distinct points ξ, η, ω ∈ S
1. By the maximality

assumption we have that tb(σ ) = rk(X ). Recalling that the cocycle βS1 is the orientation
cocycle rescaled by 1

2 and substituting the value of the Toledo invariant in Eq. (8) we obtain
∫

�\L

∫

�

βX (φ(gξ, s), φ(gη, s), φ(gω, s))dμ�(s)dμ�\L(g) = rk(X )

2
. (11)

Being βX bounded from above by rk(X )
2 , for almost every g ∈ �\L and almost every s ∈ �

it must hold

βX (φ(gξ, s), φ(gη, s), φ(gω, s)) = rk(X )

2
,

and by the equivariance of the map φ it follows

βX (φ(gξ, s), φ(gη, s), φ(gω, s)) = rk(X )

2
, (12)

for almost every g ∈ L and almost every s ∈ �.
For almost every s ∈ �, we know that the s-slice φs : S1 → ŠX , φs(ξ) := φ(ξ, s) is

measurable by [21, Lemma 2.6] and, by Eq. 12 it satisfies

βX (φs(gξ), φs(gη), φs(gω)) = rk(X )

2
, (13)

for almost every g ∈ L . Since the same reasoning applies to a negatively oriented triple, we
must have

βX (φs(ξ), φs(η), φs(ω)) = ± rk(X )

2
, (14)
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for almost every triple ξ, η, ω such that βS1(ξ, η, ω) = ±1/2. Recalling that it holds

〈〈φs(ξ), φs(η), φs(ω)〉〉 = eiπ pX βX (ξ,η,ω) modR× ,

Eq. (14) implies that

〈〈φs(ξ), φs(η), φs(ω)〉〉2 = e±iπ pX rk(X ) = 1 modR× , (15)

for almost every ξ, η, ω ∈ S
1 distinct.

Fix now a pair (ξ, η) ∈ (S1)2 such that Eq. (15) holds for almost everyω ∈ S
1. A particular

consequence of maximality is that φs(ξ) and φs(η) are transverse for almost every s ∈ �.
Denoting by (ŠX )(2) the subset of Š2

X of pairs of transverse points, we have a map

� → (ŠX )(2) , s �→ (φs(ξ), φs(η)) ,

which is measurable by the measurability of φ. By the transitivity of G on pairs of trans-
verse points (ŠX )(2), the latter can be thought of as the quotient of G by the stabilizer
StabG((ξ0, η0)) of a fixed pair (ξ0, η0). Hence we have a measurable map

� → G/StabG((ξ0, η0)) ,

and by composing with a measurable section G/StabG((ξ0, η0)) → G given by [46, Corol-
lary A.8], we get a measurable function f : � → G such that

φs(ξ) = f (s)ξ0 , φs(η) = f (s)η0 , (ξ0, η0, f (s)−1φs(ω)) is maximal

for almost every ω ∈ S
1, s ∈ �. For such a measurable function f , we consider σ f and

the map φ f as the ones defined in Sect. 2.1. For the ease of notation we are going to write
α = σ f and ψ = φ f . By the choice of the map f , Eq. (15) can be rewritten as

〈〈ξ0, η0, ψs(ω)〉〉2 = 1 modR× ,

for almost every ω ∈ S
1, s ∈ �. The previous equation implies that ψs(ω) ∈ Oξ0,η0 for

almost every ω ∈ S
1 and almost every s ∈ �. We denote by E the subset of full measure in

S
1 × � such that ψs(ω) ∈ Oξ0,η0 for all E . Define

E� :=
⋂

γ∈�

γ E ,

which has full measure being a countable intersection of full measure sets (notice that �

preserves the measure class on S
1 × �). Since σ is Zariski dense, the cocycle α is Zariski

dense too. Since the Zariski closure of ψ(E�) is preserved by the algebraic hull of α which
coincides with G, the set ψ(E�) is Zariski dense in G/Q, whence is ψ(E�) Zariski dense
in Oξ0,η0 . Thus the map ω → pξ0,η0(ω)2 is constant on Oξ0,η0 and X is of tube type, as
claimed. �

An important consequence of the previous theorem is the following

Corollary 4.3 Let L be a finite connected covering of PU(1, 1) and let� ≤ L be a torsion-free
lattice. Let (�,μ�)be a standardBorel probability�-space.Consider amaximalmeasurable
cocycle σ : � × � → G and assume that there exists a boundary map φ : S1 × � → ŠX .
If G is not of tube type, then σ cannot be Zariski dense.

As a consequence of Theorem 4.2, if H is the algebraic hull of a maximal cocycle σ and
H = H(R), then H◦ must be a Hermitian group of tube type.
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The following theorem collects all the properties we discovered about the algebraic hull
of a maximal cocycle and it should be thought of as a statement equivalent to [13, Theorem
5] in the context of measurable cocycles.

Theorem 1 Let � ≤ L be a torsion-free lattice and let (�,μ�) be a standard Borel prob-
ability �-space. Let G be a semisimple algebraic R-group such that G = G(R)◦ is a Lie
group of Hermitian type. Consider a measurable cocycle σ : � × � → G. Denote by H the
algebraic hull of σ in G and set H = H(R)◦. If σ is maximal, then

(1) The algebraic hull H is reductive;
(2) The centralizer ZG(H) is compact;

If additionally σ admits a boundary map φ : S1 × � → ŠY into the Shilov boundary of the
symmetric space Y associated to H, then

(3) The symmetric space Y is Hermitian of tube type;
(4) It holdsH(R) ⊂ Isom(T ) for some maximal tube-type subdomain T ofX . Equivalently

there exists a cocycle cohomologous to σ which preserves T .

Proof Being maximal, the cocycle σ is tight by Proposition 3.8. Hence we can apply Theo-
rem 3.7 to get properties 1) and 2). Since we assumed the existence of a boundary map, by
Theorem 4.2 the symmetric space Y must be of tube type, whence point 3).

The inclusion i : H → G is tight because the cocycle σ is tight. Since the symmetric
space Y associated to H is of tube type and the inclusion is tight, by [12, Theorem 9(1)]
there exists a unique maximal tube type subdomain T of X preserved by H . By uniqueness,
T must be preserved by the whole H(R) and we are done. �

In the particular case that G = PU(n, 1), then maximality of a measurable cocycle σ :
� × � → PU(n, 1) is sufficient to recover that fact that σ is cohomologous to a measurable
cocycle which preserves a complex geodesic (in the case of representations see [9, Theorem
8], [31, Theorem C]), as shown by the following

Proposition 2 Let L be a finite connected covering of PU(1, 1) and let � ≤ L be a torsion-
free lattice. Let (�,μ�) a standard Borel probability �-space. If a measurable cocycle
σ : � × � → PU(n, 1) is maximal, then it is cohomologous to a measurable cocycle which
preserves a complex geodesic.

Proof The proof is very similar to the one of Theorem 4.2, so here we are going to omit some
details.

Since σ : � × � → PU(n, 1) is maximal, it cannot be elementary, otherwise its Toledo
invariant would vanish. Thus we can apply [38, Proposition 3.3] to a get boundary map
φ : S1 × � → ∂∞H

n
C
.

Recall that in the particular case of PU(n, 1) the Bergmann cocycle is nothing else than
the Cartan cocycle rescaled by 1

2 . Choose now a triple of points ξ, η, ω ∈ S
1 with sign ±1.

Using Eq. (8), the maximality assumption implies that
∫

�\L

∫

�

cn(φ(gξ, s), φ(gη, s), φ(gω, s))dμ�(s)dμ�\L (g) = ±1 ,

where cn is the Cartan cocycle. As a consequence we have that

cn(φs(gξ), φs(gη), φs(gω)) = ±1 , (16)

for almost every s ∈ �, g ∈ L and the sign is the same of the one of the triple (ξ, η, ω).
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Fix now ξ, η ∈ S
1 distinct. Recall that a chain is the boundary of a complex geodesic and

given two distinct points in ∂∞H
n
C
there is a unique chain passing through them. We denote

by Cs the chain passing through φs(ξ) and φs(η). Notice that Cs depends measurably on
s ∈ � because φs varies measurably with respect to it by the measurability of φ.

Since the Cartan invariant is equal to ±1 if and only if the distinct points in the triple lie
on the same chain [9, Lemma 6.3], by Eq. (16) it holds

φs(ω) ∈ Cs ,

for almost every s ∈ � and almost every ω ∈ S
1. In this way we obtain that

EssIm(φs) ⊂ Cs , Cγ s = σ(γ, s)Cs ,

where the second equation follows by the σ -equivariance of φ. Choose now a chain C0 in
∂∞H

n
C
. The transitivity of the action of PU(n, 1) on the space of chains, implies the existence

of a measurable map f : � → PU(n, 1) such that

f (s)(C0) = Cs ,

by a similar argument to the one in the proof of Theorem 4.2. Thus the twisted cocycle σ f

preserves C0, indeed we have

C0 = f (γ s)−1Cγ s = f (γ s)−1σ(γ, s)Cs = f (γ s)−1σ(γ, s) f (s)C0 = σ f (γ, s)C0 ,

and the claim is proved. �

4.2 Regularity properties of boundarymaps

Imitating what happens in the context of representations, we are going to study the regu-
larity properties of boundaries map associated to maximal measurable cocycles. Given a
maximal Zariski dense measurable cocycle, under suitable hypothesis on the push-forward
measure with respect to the slices of the boundary map, we are going to show that there exists
an essentially unique equivariant measurable map with left-continuous (respectively right-
continuous) slices which preserve transversality and maximality. We are going to follow the
line of [13, Section 5].

Before introducing the setup of the section, we say that a measurable map φ : S1 → ŠX is
maximal if it satisfies Eq. (13). Notice that almost every slice of a boundarymap associated to
amaximal cocycle ismaximal. If ameasurablemapφ ismaximal,wewill similarly say that its
essential graphEssGr(φ) ismaximal. Recall that the essential graph is the support of the push-
forward of the Lebesgue measure on S1 with respect to the map ξ �→ (ξ, φ(ξ)) ∈ S

1 × ŠX .

Setup 4.4 From now until the end of the section we are going to assume the following

• � ≤ L be a torsion-free lattice of a finite connected covering L of PU(1, 1);
• (�,μ�) is a standard Borel probability �-space;
• σ : �×� → G isamaximalZariski dense cocyclewith boundarymapφ : S1×� → ŠX ;
• denote by {Es}s∈� the family of essential graphs Es = EssGr(φs) associated to the

slices.

Having introduced the setup we needed, we can now move on proving the following
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Lemma 4.5 In the situation of Setup 4.4, suppose that Es is maximal. Let (ξi , ηi ) ∈ Es for
i = 1, 2, 3 be points such that ξ1, ξ2, ξ3 are pairwise distinct and η1, η2, η3 are pairwise
transverse. Then it holds

βX (η1, η2, η3) = rk(X )βS1(ξ1, ξ2, ξ3) .

Proof Denote by Ii for i = 1, 2, 3 open paiwise non-intersecting intervals such that ξi ∈ Ii
and for any ωi ∈ Ii it holds

βS1(ω1, ω2, ω3) = βS1(ξ1, ξ2, ξ3) .

Consider a open neighborhood Ui of ηi , for i = 1, 2, 3, such that U1 ×U2 ×U3 ∈ (ŠX )(3).
Then the measurable set

Ai = {ω ∈ Ii | φs(ωi ) ∈ Ui } ,

is a set of positivemeasure, since η1, η2, η3 are in the essential image ofφs . Sincewe assumed
the slice Es is maximal, for almost every (ω1, ω2, ω3) ∈ A1 × A2 × A3 we have that

βX (φs(ω1), φs(ω2), φs(ω3)) = rk(X )βS1(ω1, ω2, ω3) = rk(X )βS1(ξ1, ξ2, ξ3) .

By setting ε = 2βS1(ξ1, ξ2, ξ3), we have that |ε| = 1 and for almost every (ω1, ω2, ω3) ∈
A1 × A2 × A3 we have that

(φs(ω1), φs(ω2), φs(ω3)) ∈ U1 ×U2 ×U3 ∩ Oε rkX ,

where Oε rkX is the open set in Š3
X on which βX is identically equal to rk(X )/2. By the

arbitrary choice of the neighborhood Ui , must have (η1, η2, η3) ∈ Oε rkX .
Since we have that

Oε rkX ∩ (ŠX )(3) = Oε rkX ∩ (�rk(X )
i=0 O− rkX+2i ) = Oε rkX

and (η1, η2, η3) ∈ (ŠX )(3), the triple is maximal and the claim follows. �
In order to proceed we have now to discuss a condition we have to impose on the slices

of the boundary map. Recall that ŠX can be identified with G/Q, where Q is a maximal
parabolic subgroup. We denote by Vξ ⊂ G/Q the Zariski closed set of points transverse to
ξ and set Vξ := Vξ (R), the set of points transverse to ξ in the Shilov boundary.

Burger, Iozzi andWienhard [13, Proposition 5.2] proved that the boundarymap associated
to aZariski dense representation has very strong properties, since its essential image intersects
any proper Zariski closed set of the Shilov boundary in a set of measure zero. The author
wonders under which hypothesis the same property should hold for almost every slice of a
boundary map associated to a cocycle. Here we are going to assume it. More precisely

Assumption 4.6 In the situation of Setup 4.4, we suppose that for every proper Zariski closed
set V ⊂ G/Q it holds

ν(φ−1
s (V(R))) = 0 ,

for almost every s ∈ �. Here ν is the round measure on S
1.

Assumption 4.6 is satisfied in the trivial case G = PU(1, 1) but also by cocycles which
are cohomologous to a Zariski dense representation ρ : � → G, as a consequence of [13,
Proposition 5.2].We are not aware if this property can be extended to awider class of cocycles.
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Lemma 4.7 Let Es be a maximal graph satisfying Assumption 4.6 and let (ξ1, η1), (ξ2, η2) ∈
Es with ξ1 �= ξ2. Then η1 and η2 are transverse.

Proof For any distinct ξ, ω ∈ S
1 we denote by

((ξ, ω)) :=
{
η ∈ S

1 | βS1(ξ, ζ, ω) = 1

2

}
.

Thanks to Assumption 4.6, we can suppose that the essential image of the slice φs meets any
Zariski closed set in a measure zero set. Hence we can find α1 ∈ ((ξ1, ξ2)) such that φs(α1)

is transverse to both η1 and η2. In the same way there will exist a point α2 ∈ ((ξ2, ξ1)) such
that φs(α2) is transverse to η1 and η2.

Using now jointly Lemma 4.5 and the cocycle condition on βX we get

0 = βX (φs(α1), η1, φs(α2)) − βX (η1, η2, φs(α2))

+ βX (η1, φs(α1), φs(α2)) − βX (η1, φs(α1), η2))

= rk(X )

2
− βX (η1, η2, φs(α2)) + rk(X )

2
− βX (η1, φs(α1), η2) .

Theprevious line implies thatβX (η1, η2, φs(α2)) = rk(X )
2 andhenceη1 andη2 are transverse.

�
Given now any subset A ⊂ S

1 we put

Fs
A := {η ∈ ŠX | ∃ ξ ∈ A : (ξ, η) ∈ Es} .

We define also

((ξ, ω]] := ((ξ, ω)) ∪ {ω} .

Lemma 4.8 Let s ∈ � be a point such that Es is a maximal graph satisfying Assumption 4.6.
Let ξ �= ω be two points in S1. Then Fs

((ξ,ω]] ∩ Fs
ξ and Fs

[[ω,ξ)) ∩ Fs
ξ consist each of one point.

Proof We prove that Fs
((ξ,ω]] ∩ Fs

ξ consists of exactly one point. The same strategy can be

applied to Fs
[[ω,ξ)) ∩ Fs

ξ to prove the same statement.

Let η, η′ ∈ Fs
((ξ,ω]] ∩ Fs

ξ and consider (ξn, ηn) ∈ Es a sequence such that

ξn ∈ ((ξ, ω]], lim
n→∞ ξn = ξ, lim

n→∞ ηn = η .

Given any ζ ∈ ((ξ, ω)), we can apply the same reasoning of [13, Lemma 5.8], to say that

Fs
((ξ,ω]] ∩ Fs

ξ = Fs
((ξ,ζ ]] ∩ Fs

ξ .

Thanks to the previous equation, consider a sequence (ωn, η
′
n) ∈ Es so that

ωn ∈ ((ξ, ξn)), lim
n→∞ ωn = ξ, lim

n→∞ η′
n = η′ .

Applying Lemma 4.7 we have that η, η′
n, ηn are pairwise transverse. Hence we can apply

Lemma 4.5 to the triples (ξ, ωn, ξn) and (η, η′
n, ηn) to get

βX (η, η′
n, ηn) = rk(X )βS1(ξ, ωn, ξn) = rk(X )

2
.

Since limn→∞ ηn = η, Property 4) of Sect. 2.4 of the Bergmann cocycles βX forces
limn→∞ η′

n = η and hence η = η′. �
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In this way wet get immediately the following

Corollary 4.9 Let s ∈ � be a point such that Es is amaximal graph satisfying Assumption 4.6.
For every ξ ∈ S

1 the set Fs
ξ contains either one or two points.

Proof Consider ω−, ξ, ω+ ∈ S
1 and let η ∈ Fs

ξ . Since it holds

Fs
ξ =

(
Fs

[[ω−,ξ)) ∩ Fs
ξ

)
∪

(
Fs

((ξ,ω+]] ∩ Fs
ξ

)
,

the claim follows by Lemma 4.8. �

We are know ready to prove the main theorem of the section which extends in some sense
[13, Theorem 5.1] to the context of measurable cocycles.

Theorem 4.10 In the situation of Assumption 4.6, there exist two measurable maps

φ± : S1 × � → ŠX

such that

(1) The slice φ+
s : S1 → ŠX is right continuous for almost every s ∈ �;

(2) The slice φ−
s : S1 → ŠX is left continuous for almost every s ∈ �;

(3) The maps φ± are measurable and σ -equivariant;
(4) For every ξ �= ω in S

1 and almost every s ∈ �, φε
s (ξ) is transverse to φδ

s (ω), where
ε, δ ∈ {±};

(5) Almost every slice is monotone, that is for every ξ, ω, ζ ∈ S
1 and almost every s ∈ � it

holds

βX (φε
s (ξ), φδ

s (ω), φθ
s (ζ )) = rk(X )βS1(ξ, ω, ζ ) ,

where ε, δ, θ ∈ {±}.

Proof By assumption we know that for almost every s ∈ �, the slice φs is maximal and it
satisfies Assumption 4.6. For any such s, we define for every ξ ∈ S

1 the following maps

φ+
s (ξ) = Fs

[[ω−,ξ)) ∩ Fs
ξ , φ−

s (ξ) = Fs
((ξ,ω+]] ∩ Fs

ξ ,

whereω−, ξ, ω+ is a positively oriented triple in S1 andω± are arbitrary. The right continuity
of φ+

s and the left continuity of φ−
s are clear by their definitions. We can define

φ± : S1 × � → ŠX , φ±
s (ξ, s) := φ±

s (ξ) .

The measurability of the functions φ±
s comes from the fact the slice φ±

s are measurable and
varies measurably with respect to s by the measurability of φ. The σ -equivariance of the
latter implies that φ± are σ -equivariant.

Finally property 4) follows by Lemma 4.7 and property 5) follows by Lemma 4.5. �
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