

CORRECTION

Correction to: Structure of attractors for boundary maps associated to Fuchsian groups

Svetlana Katok¹ · Ilie Ugarcovici²

Published online: 6 March 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Correction to: Geom Dedicata (2017) 191:171–198 https://doi.org/10.1007/s10711-017-0251-z

The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ . If \mathbb{D} denotes the Poincaré unit disk model endowed with the standard hyperbolic metric, then $\Gamma \setminus \mathbb{D}$ is a compact surface of constant negative curvature and of a certain genus g > 1. Most of the considerations and proofs in the paper were done for a special case of surface groups, those that admit a fundamental domain \mathcal{F} given by a *regular* (8g - 4)-sided polygon. On p. 172 in the Introduction, we neglected to explain in the paragraph below equation (1.2) that, although not all surface groups admit such a fundamental domain, it is possible to reduce the general case to this special situation without affecting the results of the paper (see also [1, Appendix A]).

More precisely, given $\Gamma' \setminus \mathbb{D}$ a compact surface of genus g > 1, there exists a Fuchsian group Γ such that:

- (i) $\Gamma \setminus \mathbb{D}$ is a compact surface of the same genus *g*;
- (ii) Γ has a fundamental domain \mathcal{F} given by a regular (8*g* 4)-sided polygon;
- (iii) By the Fenchel–Nielsen theorem [3] there exists an orientation preserving homeomorphism *h* from $\overline{\mathbb{D}}$ onto $\overline{\mathbb{D}}$ such that $\Gamma' = h \circ \Gamma \circ h^{-1}$.

The original article can be found online at https://doi.org/10.1007/s10711-017-0251-z.

Ilie Ugarcovici iugarcov@depaul.edu
Svetlana Katok sxk37@psu.edu

¹ Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

² Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, USA

One can now extend the considerations described in the introductory section of the paper to any compact surface $\Gamma' \setminus \mathbb{D}$, using the orientation preserving homeomorphism *h* and the setting for $\Gamma \setminus \mathbb{D}$. Let

$$T'_{i} = h \circ T_{i} \circ h^{-1}, P'_{i} = h(P_{i}) \text{ and } Q'_{i} = h(Q_{i}).$$

Then the set $\{T'_i\}$ satisfies relations (1.3)–(1.5) and the order of the points $\{P'_i\} \cup \{Q'_i\}$ will be the same as for the set $\{P_i\} \cup \{Q_i\}$. The geodesics $P'_i Q'_{i+1}$ will produce the (8g - 4)-sided polygon \mathcal{F}' whose sides are identified by transformations T'_i . Adler and Flatto [1, Appendix A] conclude that region \mathcal{F}' satisfies all the conditions of Poincaré's theorem, hence it is the fundamental domain for Γ' .

The main object of study in our paper is the generalized Bowen-Series circle map f_A : $S \rightarrow S$ given by (1.8)

$$f_{\bar{A}}(x) = T_i(x)$$
 if $A_i \le x < A_{i+1}$,

with the set of jump points $\overline{A} = \{A_1, A_2, \dots, A_{8g-4}\}$ satisfying the condition that $A_i \in (P_i, Q_i), 1 \le i \le 8g-4$. The corresponding two-dimensional extension map given by (1.9) is

$$F_{\bar{A}}(x, y) = (T_i(x), T_i(y))$$
 if $A_i \le y < A_{i+1}$.

Even though the main results of the paper (Theorems 1.2 and 1.3) were proved for the special situation of a genus g compact surface $\Gamma \setminus \mathbb{D}$ that admits a regular (8g - 4)sided fundamental region, the results remain true in full generality for an arbitrary genus g compact surface $\Gamma' \setminus \mathbb{D}$ with the set of (8g - 4) generators $\{T'_i\}$, the set of jump points $\overline{A'} = \{A'_1, A'_2, \dots, A'_{8g-4}\}$ with $A'_i = h(A_i) \in (P'_i, Q'_i)$ and the corresponding maps:

$$f_{\bar{A}'}(x) = T'_i(x) \quad \text{if } A'_i \le x < A'_{i+1}; \quad F_{\bar{A}'}(x, y) = (T'_i(x), T'_i(y)) \quad \text{if } A'_i \le y < A'_{i+1}.$$

The orientation preserving homeomorphism $h: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ and the relations

$$f_{\bar{A}'} = h \circ f_{\bar{A}}$$
 and $F_{\bar{A}'} = (h \times h) \circ F_{\bar{A}}$

allow us to conclude that:

(a) A partition point $A'_i \in (P'_i, Q'_i), 1 \le i \le 8g - 4$, satisfies the cycle property, i.e., there exist positive integers m_i, k_i such that

$$f_{\bar{A}'}^{m_i}(T_i'A_i') = f_{\bar{A}'}^{k_i}(T_{i-1}'A_i')$$

if and only if the corresponding partition point $A_i = h^{-1}(A'_i) \in (P_i, Q_i)$ satisfies the cycle property

$$f_{\bar{A}}^{m_i}(T_iA_i) = f_{\bar{A}}^{k_i}(T_{i-1}A_i).$$

(b) A partition point A'_i satisfies the short cycle property

$$f_{\bar{A}'}(T'_iA'_i) = f_{\bar{A}'}(T'_{i-1}A'_i)$$

if and only if the corresponding partition point $A_i = h^{-1}(A'_i)$ satisfies the short cycle property:

$$f_{\bar{A}}(T_iA_i) = f_{\bar{A}}(T_{i-1}A_i).$$

🖉 Springer

(c) If $\Omega_{\bar{A}} = \bigcap_{n=0}^{\infty} F_{\bar{A}}^n(\mathbb{S} \times \mathbb{S} \setminus \Delta)$ is the global attractor of the map $F_{\bar{A}}$, then $\Omega_{\bar{A}'} = (h \times h)(\Omega_{\bar{A}})$ is the global attractor of the map $F_{\bar{A}'}$. Also, if $\Omega_{\bar{A}}$ has finite rectangular structure, then $\Omega_{\bar{A}'}$ has finite rectangular structure, since $h \times h$ preserves horizontal and vertical lines.

We would like to use this opportunity to also correct some misprints: on p. 173, last paragraph, the text "of the fundamental domain \mathcal{F} " should read "of \mathbb{D} "; on p. 193, in equation (7.2), the term " A_i + 1" should read " A_{i+1} "; on p. 193, Proposition 7.1, the relations " $B_i = T_i A_i$, and $C_i = T_{i-1} A_i$ " should read " $B_i = T_{\sigma(i-1)} A_{\sigma(i-1)}$, and $C_i = T_{\sigma(i+1)} A_{\sigma(i+1)+1}$."

References

- Adler, R., Flatto, L.: Geodesic flows, interval maps, and symbolic dynamics. Bull. Am. Math. Soc. 25(2), 229–334 (1991)
- Katok, S., Ugarcovici, I.: Structure of attractors for boundary maps associated to Fuchsian groups. Geom. Dedicata 191, 171–198 (2017). https://doi.org/10.1007/s10711-017-0251-z
- Tukia, P.: On discrete groups of the unit disk and their isomorphisms. Ann. Acad. Sci. Fenn. Ser. A I. Math. 504, 5–44 (1972)