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Abstract We give an explicit construction of a maximal torsion-free finite-index subgroup
of a certain type of Coxeter group. The subgroup is constructed as the fundamental group of a
finite and non-positively curved polygonal complex. First we consider the special case where
the universal cover of this polygonal complex is a hyperbolic building, andwe construct finite-
index embeddings of the fundamental group into certain cocompact lattices of the building.
We show that in this special case the fundamental group is an amalgam of surface groups
over free groups. We then consider the general case, and construct a finite-index embedding
of the fundamental group into the Coxeter group whose Davis complex is the universal cover
of the polygonal complex. All of the groups which we embed have minimal index among
torsion-free subgroups, and therefore are maximal among torsion-free subgroups.

Keywords Coxeter group ·Torsion-free ·Lattice ·Building ·Complex of groups · Polygonal
complex
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1 Introduction

In the study of locally compact groups, the theory of lattices in the automorphism groups
of connected, simply-connected, locally finite polyhedral complexes is a natural extension
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of the theory of lattices in algebraic groups. By the work of Bruhat–Tits, Ihara, Serre and
others, algebraic groups over non-archimedean local fields can be realized as groups of
automorphisms of Bruhat–Tits buildings. These buildings can be viewed as certain highly
symmetric piecewise Euclidean (simplicial) polyhedral complexes which satisfy the CAT(0)
condition.

Given a connected, simply-connected, locally finite polyhedral complex X , we define
the full automorphism group G = Aut(X) to be the group of cellular isometries of X . The
groupG is a locally compact group in the compact-open topology (equivalently the pointwise
convergence topology) which acts properly on X (see [13, Chapter I]).

A subgroup of G is discrete if and only if it acts on X with finite cell stabilizers. A
discrete subgroup Γ < G is called a lattice if Γ \G has finite Haar measure, and a lattice is
cocompact if Γ \G is compact. Note that it may happen that G is discrete, in which case the
theory of its lattices is trivial. Lattices in the automorphism groups of locally finite trees (the
1-dimensional case) are called “tree lattices” and have been widely studied (see the book of
Bass and Lubotzky [2]). We refer the reader to [8] for a recent survey of what is known in
higher dimensions. In this paper we study polygonal complexes (the 2-dimensional case).
Using covering theory of complexes of groups, we construct minimal index embeddings of a
class of torsion-free groups into cocompact lattices of polygonal complexes in two different
settings: hyperbolic buildings and Davis complexes.

In our first setting (see Sect. 4.2) we let L be the complete bipartite graph Kq1,q2 on q1+q2
vertices, where q1, q2 ≥ 2. For m ≥ 2, let I2m,L denote the Bourdon building which is the
unique simply connected polygonal complex such that all faces are regular right-angled 2m-
gons and the link at each vertex is L . Following Bourdon [4], we present this building as the
universal cover of a polygon of groups G(P) whose fundamental group Γ = π1(G(P)) is a
cocompact lattice in Aut(I2m,L). We then construct a covering of the polygon of groupsG(P)

by a certain polygonal complex X = X2m,L . We show this covering has q1q2 sheets, and
hence induces an embedding of the torsion-free group H = π1(X) in Γ with index q1q2. By
considering torsion in the lattice Γ , we show that H is a maximal torsion-free subgroup of Γ .

Theorem 1 When L = Kq1,q2 with q1, q2 ≥ 2, the group H is an index q1q2 subgroup of
Γ . Moreover, H is a maximal torsion-free subgroup of Γ with minimal index.

In our second setting (see Sect. 4.3) we allow L to be any connected bipartite graph and
correspondingly generalize the construction of X = X2m,L . Let (W,S) denote the Coxeter
system which is determined by L as follows: the generators are the vertices, and the product
of a pair of generators has order 1 if they are equal, m if they are adjacent, and ∞ otherwise.
We present W as the fundamental group of a complex of groups G(K) whose universal
cover is the 2-dimensional Davis complex Σ of (W,S). The Coxeter group W is naturally
a cocompact lattice in Aut(Σ). We construct a covering of G(K) by X with 2m sheets and
show H is a maximal torsion-free subgroup of W .

Theorem 2 The group H is an index 2m subgroup of W.Moreover, H is a maximal torsion-
free subgroup of W with minimal index.

A pair of groups are called commensurable if they contain finite-index subgroups which
are abstractly isomorphic. It is a result of Haglund [11] that any two cocompact lattices
in Aut(I2m,L), for m ≥ 3, are commensurable. When L = Kq1,q2 , the Davis complex Σ

can be viewed as the barycentric subdivision of the building I2m,L (see Corollary 4). Hence
Γ and W are both cocompact lattices in Aut(I2m,L), and the subgroup H witnesses their
commensurability.

Finally (see Sect. 5.2) we prove that in the first setting we have the following:
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Theorem 3 When L = Kq1,q2 with q1, q2 ≥ 2, the group H is an amalgamof (q1−1)(q2−1)
many genus (m − 1) surface groups over rank (m − 1) free groups.

In Sects. 5.3 and 5.4 we explain how these amalgams generalize both the way that certain
right-angled Artin groups can be recognized as amalgams of the free abelian group of rank 2
over infinite cyclic groups, and the geometric amalgams of free groups studied by Lafont [14].

We begin with Sect. 2, where we collect some preliminary material. In Sect. 3 we give
a brief exposition of the theory of complexes of groups, which has been tailored to suit our
needs. This section also includes some important constructions which are introduced via a
sequence of examples. Our main results are proved in Sects. 4 and 5.

2 Preliminaries

We begin by collecting the basic definitions and results relevant to this paper. We briefly
recall polygonal complexes, Bourdon buildings and the Davis complex of a Coxeter group.

2.1 Polygonal complexes

ACWcomplex is called regular if the attachingmaps are injective.One of themain attractions
of regular CW complexes is the fact that they are rigid with respect to their set of closed cells
ordered by inclusion (see [3]). We say a regular CW complex has the intersection property if
the intersection of any two closed cells is either empty or exactly one cell. Equivalently the
ordered set of cells has the property that if two cells are bounded below, they have a greatest
lower bound.

Definition 1 A polygonal complex is a connected 2-dimensional regular CW complex with
the intersection property.

The prototypical example of a polygonal complex is a connected 2-dimensional simplicial
complex. Since we are restricting ourselves to two dimensions, let us adopt the following
terminology; we call 0-cells vertices, 1-cells edges, and 2-cells faces. We associate to each
vertex σ of a polygonal complex a simplicial graph called its link, which we denote by
link(σ ). It is the graph whose vertices are edges which intersect σ , and whose edges are
faces which intersect σ . We call a polygonal complex locally finite if each of its links is a
finite graph.

The boundary of each face in a polygonal complex is a cycle of at least three edges.
Hence faces may be regarded as abstract polygons with at least three sides. Let k ≥ 3 and
L be a finite connected simplicial graph. A (k, L)-complex is a polygonal complex whose
faces are all k-gons and whose links are all isomorphic to L . A crucial question is the
uniqueness of simply-connected (k, L)-complexes with respect to a fixed pair (k, L), i.e.
to what extent does this local structure determines global structure? In general we don’t
have uniqueness. For example, for the case where k ≥ 6 and L is a complete graph on four
or more vertices, a continuum of non-isomorphic simply-connected (k, L)-complexes was
independently constructed by Ballmann and Brin [1], and by Haglund [10]. Also there are
pairs (k, L) for which no simply-connected (k, L)-complex exists.

For k ≥ 4, L = Kq1,q2 with q1, q2 ≥ 1,we have the following: if k is even there is a unique
simply-connected (k, L)-complex, and if k is odd there is a simply-connected (k, L)-complex
if and only if q1 = q2, in which case it is unique (see [19,20]). More generally Lazarovich
in [15] gives a combinatorial condition on L for which a simply-connected (k, L)-complex
is unique if it exists.
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Polygonal complexes are metrized as follows. We metrize each face as either a spherical,
Euclidean or hyperbolic polygon such that the metrics agree on any non-empty intersection
of faces. Finally any edges not yet carrying a metric are metrized as intervals of the real line.
We equip the polygonal complex with the corresponding quotient pseudometric (see [6], p.
65, for details). In general this pseudometric is not a metric, however if the complex has only
finitely many isometry types of cells, then this pseudometric is a complete geodesic metric
(see [6], p. 97). If in addition the complex is locally finite, it follows from the Hopf–Rinow
Theorem that the complex is a proper geodesic metric space. In the locally finite case it is also
true that the CW topology and metric induced topology will agree. One can always replace
a metrized polygonal complex by its barycentric subdivision, which is a metrized simplicial
complex (see [6], p. 115). From now on we shall assume that a given polygonal complex
comes equipped with a metric.

Finally we remark that the more general “polyhedral complexes” are not required to be
regular by most authors. Therefore the notion of a polygonal complex presented here is
stronger than the usual notion of a “2-dimensional polyhedral complex”.

2.2 Bourdon buildings

We recall the 2-dimensional buildings that we will be considering. Let m, q1, q2 ≥ 2 be
integers (not necessarily distinct). Let q be the 2m-tuple q = (q1, q2, . . . , q1, q2)with entries
alternating between q1 and q2. Let P be a Euclidean square, if m = 2, and a regular right-
angled hyperbolic 2m-gon, if m ≥ 3. We define I2m,q to be the unique simply-connected
(2m, Kq1,q2)-complex in which each face is metrized as a copy of P . In the setting where
L = Kq1,q2 , we also denote this building by I2m,L .

The complex I2m,q is often called a Bourdon building. We refer the reader to [4,5] where
they are defined and studied. The most general case of a Bourdon building is Ip,q where
p ≥ 4 and q is any p-tuple of cardinalities at least 2. The chambers of Bourdon’s building
are its faces, so each chamber is isometric to P . If m = 2 then I2m,q is the product of the q1-
and q2-regular trees, and its apartments are copies of the tessellation of the Euclidean plane
by squares. If m ≥ 3 then I2m,q is not a product space, and its apartments are copies of the
tessellation of the hyperbolic plane by regular right-angled 2m-gons.

Regarding P as a polygon in the Euclidean plane, if m = 2, and in the hyperbolic plane,
if m ≥ 3, let SP = {s1, . . . , s2m} be the set of reflections in the sides of P , so that si and
si+1 are the reflections in adjacent sides for i ∈ Z/2mZ. Let (WP , SP ) be the corresponding
right-angled Coxeter system. That is, WP has generating set SP and relations s2i = 1 and
(si si+1)

2 = 1 for all i ∈ Z/2mZ. Then I2m,q is a right-angled building of type (WP , SP ),
meaning exactly that its apartments are copies of the tessellation of either the Euclidean plane
(if m = 2) or the hyperbolic plane (if m ≥ 3) induced by the action of WP .

2.3 Coxeter groups and Davis complexes

We now describe the Coxeter groups and associated 2-dimensional Davis complexes that we
will be considering. A reference for the material in this section is the book of Davis [7].

Let m ≥ 2 be an integer. Let L be a finite, connected, simplicial and bipartite graph with
vertex set

SL = {x1, . . . , xq1} � {y1, . . . , yq2},
where q1, q2 ≥ 2 are integers (possibly equal), and every edge of L connects a vertex xi
to a vertex y j . We write E(L) for the edge set of L and (xi , y j ) for elements of E(L). For

123



Geom Dedicata (2018) 193:121–143 125

Fig. 1 An example of the graph
L

x1

x2

y1

y2

y3

example if E(L) contains all possible edges then L is the complete bipartite graph Kq1,q2 , but
we do not restrict to this case. Figure 1 shows an example of L for the case q1 = 2, q2 = 3.

We define W = W2m,L to be the Coxeter group with generating set SL , and relations
x2i = y2j = 1 for 1 ≤ i ≤ q1, 1 ≤ j ≤ q2, and (xi y j )m = 1 for all (xi , y j ) ∈ E(L). Note
that (W2m,L , SL) is a right-angled Coxeter system if and only if m = 2. By Moussong’s
Theorem (see Theorem 12.6.1 of [7]), since L is bipartite the group W is hyperbolic for all
m ≥ 3, and if m = 2 is hyperbolic if and only if L contains no embedded 4-cycles.

We next recall the construction of the Davis complex Σ = Σ2m,L for the Coxeter system
(W2m,L , SL). To simplify notation, put S = SL . If T is a subset of S, the special subgroup
WT is the subgroup of W generated by T , with W∅ trivial by convention. For example, each
W{xi } and W{y j } is cyclic of order 2, while if (xi , y j ) ∈ E(L) then W{xi ,y j } is the dihedral
group of order 2m. A spherical subset of S is a subset T ⊆ S for which WT is finite. In
this setting, the spherical subsets of S are ∅, {xi } for 1 ≤ i ≤ q1, {y j } for 1 ≤ j ≤ q2, and
{xi , y j } whenever (xi , y j ) ∈ E(L).

Let L ′ be the first barycentric subdivision of the graph L and let K be the cone on L ′.
The 2-dimensional simplicial complex K is called a chamber (note that this chamber is not
the same as the chamber for Bourdon’s building in Sect. 2.2 above). We assign types to the
vertices of K as follows. The cone point of K has type ∅, and each vertex of K which is also
a vertex s of L has type {s}. Each remaining vertex of K is the midpoint of an edge (xi , y j )
in L , and we assign this vertex of K to have type {xi , y j }. Observe that this assignment
of types induces a bijection between vertices of K and spherical subsets of S, so that the
endpoints of each edge in K have types T ′

� T . We metrize K as a polygonal complex in the
following way: each simplex is metrized as the unique geodesic simplex in either Euclidean
or hyperbolic space with angle π/2m at the vertex of type {xi , y j }, angle π/2 at the vertex
of type {s}, and angle π/4 at the vertex of type ∅. Observe the simplices are Euclidean only
whenm = 2. Figure 2 shows K locally at the edge (x2, y2) of the graph in Fig. 1. The vertices
have been colored according to their type.

For each s ∈ S, let Ks be the subcomplex of K consisting of all edges of L ′ which contain
the vertex s. In our situation, Ks is the star graph of valence equal to the valence of s in L .
The subcomplex Ks is called the mirror (of type s) of K . Note that two mirrors Ks and Ks′
intersect, with Ks ∩ Ks′ a point, if and only if the vertices s and s′ are adjacent in L . For each
point z ∈ K let S(z) = {s ∈ S | z ∈ Ks}. Then S(z) is empty if and only if z is not in the
subcomplex L ′ of K , and otherwise S(z) is either {xi }, {y j }, or {xi , y j }, with the last case
occurring, for the unique point z = Kxi ∩ Kyj , if and only if (xi , y j ) ∈ E(L).

TheDavis complexΣ = Σ2m,L is obtained by, roughly speaking, gluing togetherW -many
copies of the chamber K along mirrors. Formally, Σ is the quotient

Σ := W × K/∼
where (w, z) ∼ (w′, z′) if and only if z = z′ and w−1w′ is in the special subgroup WS(z).
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Fig. 2 The metrized simplicial
complex K
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In our setting, Σ is simplicially isomorphic to the barycentric subdivision of a simply-
connected (2m, L)-complex, where each 2m-gon is metrized as a regular right-angled
polygon. Thus in the special case that L is the complete bipartite graph Kq1,q2 , the Davis
complex Σ = Σ2m,L may be identified with the barycentric subdivision of Bourdon’s build-
ing I2m,q = I2m,L . In this identification, the vertices of type ∅ in Σ are the vertices of I2m,q,
and the vertices of type {xi , y j } in Σ are the barycenter of faces of I2m,q. Note that the
Coxeter groups W2m,L and WP are distinct, except if m = 2 and L = K2,2, in which case
I2m,q is just the tessellation of the Euclidean plane by squares and Σ2m,L is the barycentric
subdivision of this tessellation.

The assignment of types to the vertices of K induces an assignment of types to the vertices
of Σ , so that two adjacent vertices in Σ have types spherical subsets T ′

� T . The group
W then has a natural type-preserving left-action on Σ with compact quotient K , so that the
stabilizer of each vertex of Σ of type T is a conjugate of the finite group WT . In particular,
W acts freely on the set of vertices of Σ of type ∅ (these are the cone points of the copies of
K in Σ).

3 Complexes of groups and construction of lattices

In this sectionwe recall the theory of complexes of groups that wewill need,mainly following
the reference [6, Chapter III.C]. We will skip many details and give only special cases of
definitions. We also use the sequence of examples in this section to recall the construction of
Bourdon’s building I2m,q as the universal cover of a complex of groups whose fundamental
group is a lattice in Aut(I2m,q) (see Sect. 2.2), and to realize the Coxeter groupW2m,L as the
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fundamental group of a complex of groups with universal cover the Davis complex Σ2m,L

(see Sect. 2.3). The examples in this section are the key information for our proofs in Sect. 4,
as is Corollary 2, which gives us a lower bound on the index of torsion-free subgroups.

3.1 Small categories without loops

We will be constructing our complexes of groups over small categories without loops
(scwols). Scwolswill also serve as combinatorial counterparts to polygonal complexes, allow-
ing us to construct coverings of complexes of groups by polygonal complexes in two different
settings, that of Bourdon’s building I2m,q and that of the Davis complex Σ2m,L .

Definition 2 A scwol X is the disjoint union of a set V (X) of vertices and a set E(X) of
edges, with edge a oriented from its initial vertex i(a) to its terminal vertex t (a), such that
i(a) �= t (a) for all a ∈ E(X). A pair of edges (a, b) is composable if i(a) = t (b), in which
case there is a third edge ab, called the composition of a and b, such that i(ab) = i(b) and
t (ab) = t (a), and if both (a, b) and (b, c) are composable then (ab)c = a(bc) (associativity).

Scwols can be characterized as “small categories” (i.e. categories with a set of objects and
a set of morphisms) which don’t contain any non-identity endomorphisms or isomorphisms.
A scwol is called thin if there is at most one edge between each pair of vertices. Observe that
the composition of edges in a thin scwol is uniquely determined. Thin scwols are equivalent
to partially ordered sets (recall that a partially ordered set (Q,≤) is naturally a small category
by taking Q as its set of objects and including a morphism σ → τ whenever σ ≥ τ ). The
dimension of a thin scwol is defined to be one less than the supremum of the lengths of chains
in the corresponding partially ordered set.

One can associate a simplicial complex to a thin scwol by taking the geometric realization
of the corresponding partially ordered set (see [6], p. 370). The dimension of this simplicial
complex is equal to the dimension of the scwol. In the case of a 2-dimensional scwol, if
each face of the geometric realization is metrized as a geodesic triangle in either spherical,
Euclidean or hyperbolic space such that the metrics agree on edges, then the geometric
realization is naturally a metrized (simplicial) polyhedral complex.

More generally, for any scwol one can construct the geometric realization of its category
theoretic “nerve” (see [6], p. 522). This can then be metrized to give a (simplicial) polyhedral
complex (see [6], p. 562).

A scwol is called connected or simply-connected if its geometric realization is respectively
connected or simply-connected. From now on all scwols are thin, connected, and at most
2-dimensional.

Example 1 1. Let X be a polygonal complex. We now associate two scwols X and Xop

to X such that the geometric realizations of both scwols are equal to the barycentric
subdivision of X . The scwol X will be used to construct a covering of complexes of
groups in the setting of Bourdon’s building I2m,q, whereasXop will be used in the setting
of the Davis complex Σ2m,L . Let X ′ denote the barycentric subdivision of X .

(a) The usual way to associate a scwol X to X is as follows. Define V (X) := V (X ′)
and E(X) := E(X ′). The edges of X are then oriented from higher-dimensional to
lower-dimensional cells in X , that is, there is an edge a ∈ E(X) so that i(a) is the
barycenter of cell σ and t (a) is the barycenter of cell τ if and only if τ � σ in
X . More concretely, any edge of X goes from the barycenter of a face of X to the
midpoint of an edge of X , or from the midpoint of an edge of X to a vertex of X ,
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or from the barycenter of a face of X to a vertex of X . This construction naturally
metrizes (the geometric realization of) X allowing us to recover X from X. Finally
we observe that X is equivalent to the set of closed cells of X ordered by inclusion.

(b) For X as in (a), we define the opposite scwol Xop to have V (Xop) := V (X) and
E(Xop) := E(X), and the orientations of all edges reversed. That is, for each a ∈
E(Xop) = E(X), the initial vertex of a inX is the terminal vertex of a inXop , and vice
versa. So inXop , edges go from lower-dimensional cells to higher-dimensional cells.
Similarly this construction naturally equips Xop with a metric. Finally we observe
that Xop is equivalent to the set of closed cells of X ordered by reverse inclusion.

2. Let K be the chamber for the Coxeter system (W2m,L , SL), as defined in Sect. 2.3 above.
We associate a scwol K to K such that the geometric realization of K is equal to K as
follows. Let V (K) := V (K ) and E(K) := E(K ). Recall that the endpoints of each edge
of K have types T ′

� T where T ′ and T are spherical subsets of S = SL . The edges
of the scwol K are then oriented by inclusion of type, that is, i(a) has type T ′ and t (a)

has type T if and only if T ′
� T . Note that a pair of edges (a, b) in K is composable if

and only if the edge b goes from the cone point of K (which has type ∅) to a vertex of
type either {xi } or {y j }, and the edge a goes from t (b) to a vertex of type {xi , y j } where
(xi , y j ) ∈ E(L). The metric on K naturally equips K with a metric.

Coverings of complexes of groups are defined over the following maps of scwols. Condi-
tion (3) here restricts the kinds of “foldings” which are allowed.

Definition 3 LetX andY be scwols. A non-degeneratemorphism f :X → Y is amap sending
V (X) to V (Y) and E(X) to E(Y), so that:

1. i( f (a)) = f (i(a)) and t ( f (a)) = f (t (a)) for each a ∈ E(X);
2. f (ab) = f (a) f (b) for each pair of composable edges (a, b) in X; and
3. for each σ ∈ V (X), the restriction of f to the set of edges {a ∈ E(X) | i(a) = σ } is a

bijection onto the set of edges {a′ ∈ E(Y) | i(a′) = f (σ )}.
3.2 Complexes of groups

We now define complexes of groups.

Definition 4 A complex of groups G(X) = (Gσ , ψa) over a scwol X is given by:

1. a group Gσ for each σ ∈ V (X), called the local group at σ ; and
2. a monomorphism ψa :Gi(a) → Gt (a) along the edge a for each a ∈ E(X), so that

ψab = ψa ◦ ψb for each pair of composable edges (a, b).

A complex of groups is trivial if each local group is trivial. We identify scwols with their
corresponding trivial complexes of groups.

Example 2 We continue notation from Examples 1.

1. For any polygonal complex X we have the trivial complex of groups H(X) over the asso-
ciated scwol X, and the trivial complex of groups H(Xop) over the opposite scwol Xop .

2. Let m, q1, q2 ≥ 2 be integers (not necessarily distinct). Let P be the regular 2m-gon
defined in Sect. 2.2 with P the associated scwol as in Examples 1(1a). Let G1 be any
group of order q1, and G2 any group of order q2. We now use the groups G1 and G2

to construct a complex of groups G(P) = (Gσ , ψa) over P. Let σ ∈ V (P). If σ is
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Fig. 3 The complex of groups
G(K) over K

1

Z2 Z2

Dm

Dm

Dm Dm

the barycenter of the face of P , the local group Gσ is trivial. If σ is a vertex of P , the
local group Gσ is the direct product G1 × G2. The remaining σ are the midpoints of
edges of P , and the local groups for these 2m edges alternate between G1 and G2, so
that at each vertex of P , one of the adjacent local groups is G1 and the other is G2. All
monomorphisms of local groups are the natural inclusions.

3. Let K be the scwol associated to the chamber K for the Coxeter system (W2m,L , SL)

as in Examples 1(2). We construct a complex of groups G(K) over K as follows. Let
σ ∈ V (K). Then σ has type a spherical subset T ⊆ S, and we define Gσ to be the
(finite) special subgroup WT . Note that the cone point has trivial group, and all other
local groups are either cyclic of order 2 or dihedral of order 2m. All monomorphisms are
the natural inclusions.

If L is the graph shown in Fig. 1, then Fig. 3 shows G(K) locally at the (image of the)
edge (x2, y2) in K. The dihedral group of order 2m is denoted by Dm and the cyclic group
of order 2 is denoted by Z2.

We refer the reader to [6] for the general definition of the fundamental group π1(G(X))

of a complex of groups G(X). We will only need the following examples, where we continue
notation from Examples 2.

Example 3 1. If a polygonal complex X has (topological) fundamental group H , then the
trivial complexes of groups H(X) and H(Xop) have fundamental group H as well.

2. The fundamental group of G(P) has presentation

π1(G(P)) = 〈
G1,1, . . . ,G1,m,G2,1, . . . ,G2,m | [G1,k,G2,k] = [G2,k,G1,k+1] = 1

〉

where for i = 1, 2 and k ∈ Z/mZ, each Gi,k is isomorphic to Gi . (In this presentation,
the relations within each group Gi,k are included implicitly.) The commutator relations
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mean that local groups on adjacent edges of P commute with each other in π1(G(P)).
Thus π1(G(P))may be viewed as a graph product of groups, where the underlying graph
is a 2m-cycle and the groups G1 and G2 are placed on alternate vertices in this cycle.

3. The fundamental group of G(K) is the Coxeter group W2m,L .

Every complex of groups has a universal cover which is a (possibly non-trivial) complex
of groups with a trivial fundamental group. Induced by the action of a groupΓ on a scwolX is
the quotient complex of groups Γ �X. IfX is simply connected thenX is the universal cover
of Γ �X and π1(Γ �X) ∼= Γ . A complex of groupsG(X) = (Gσ , ψa) is called developable
if it arises as a quotient complex of groups in this way. Unlike graphs of groups, complexes
of groups are not in general developable. The examples H(X), H(Xop), G(P) and G(K)

above are all developable. This follows from the fact that they are all non-positively curved
(see [9]). For the general construction of the complex of groups induced by a group acting
on a scwol, see [6].

Conversely, if the universal cover G̃(X) of a complex of groups G(X) is trivial, and hence
a simply-connected scwol, then G̃(X) is naturally equipped with an action of π1(G(X)) such
that the complex of groups induced by this action is (isomorphic to) G(X). Hence G(X) is
developable.

It can be shown that the existence of a trivial universal cover for a complex of groups
G(X) is equivalent to the following: for all σ ∈ V (X), the local group Gσ embeds in the
fundamental group π1(G(X)).

If X is metrized, then G̃(X) is naturally metrized by developing the metric equivariantly.
Conversely the complex of groups induced by a group acting on a metrized scwol is naturally
metrized.

We will only need the following examples.

Example 4 1. Let X̃ be the simply-connected polygonal complex which is the (classical)
universal cover of X . Then the universal cover of the trivial complex of groups H(X)

is the scwol associated to X̃ as in Examples 1(1a), and the universal cover of the trivial
complex of groups H(Xop) is the opposite scwol associated to X̃ as in Examples 1(1b).
The complexes of groups H(X) and H(Xop) are induced by the free action of H = π1(X)

on X̃ , and X is the quotient space H\X̃ .
2. The universal cover of G(P) is the scwol associated to the unique simply-connected

(2m, L)-complex with L = Kq1,q2 . Hence the universal cover of G(P) is (the scwol
associated to) Bourdon’s building I2m,q, and the complex of groups G(P) is induced by
the action of π1(G(P)) on I2m,q. It follows that π1(G(P)) acts on I2m,q with compact
quotient P , so that the stabilizer of each face of I2m,q is trivial, the stabilizer of each edge
of I2m,q is isomorphic to either G1 or G2, and the stabilizer of each vertex of I2m,q is
isomorphic to G1 × G2.

3. The geometric realization of the universal cover G̃(K) of G(K) is the Davis complex
Σ2m,L . The action of W2m,L on Σ2m,L can naturally be regarded as an action of W2m,L

on G̃(K), and G(K) is the induced complex of groups.

A developable complex of groups is faithful if its fundamental group acts effectively
on its universal cover. A sufficient condition for faithfulness of a developable complex of
groups G(X) = (Gσ , ψa) is that one of the local groups Gσ be trivial. Thus all of the
examples H(X), H(Xop), G(P) and G(K) we have been discussing are faithful. If G(X) is
developable and faithful, with universal cover Y := G̃(X), we may identify π1(G(X)) with
a subgroup of Aut(Y).
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Let Y be either a simply-connected locally finite polygonal complex or the Davis complex
Σ2m,L . If Y is a polygonal complex, we pair it with the associated scwol in the sense of

Examples 1(1a), and if Y is the Davis complex Σ2m,L we pair it with G̃(K). Suppose the
universal cover Y is the scwol paired with Y . Identify the automorphisms of Y with their
corresponding automorphisms of Y , allowing π1(G(X)) to be identified with a subgroup
of Aut(Y ). Then π1(G(X)) acts cocompactly on Y if and only if X is a finite scwol. Also,
π1(G(X)) is a discrete subgroup of Aut(Y ) if and only if all local groups in G(X) are finite.
It follows that if X is finite and all local groups of G(X) are finite, we may regard π1(G(X))

as a cocompact lattice in Aut(Y ). In particular we have the following:

Example 5 1. Let X be a finite polygonal complexwith fundamental group H and universal
cover X̃ . Then H = π1(H(X)) = π1(H(Xop)) is a cocompact lattice in Aut(X̃).

2. From now on, write Γ2m(G1,G2) or simply Γ for the fundamental group π1(G(P))with
presentation given in Examples 3(2) above. Then Γ is a cocompact lattice in Aut(I2m,q).

3. TheCoxeter groupW2m,L = π1(G(K)) is a cocompact lattice inAut(Σ2m,L). It is known
that Aut(Σ2m,L) is non-discrete if L has a non-trivial automorphism which fixes the star
of a vertex (see [12]). For example the graph in Fig. 1 has a non-trivial automorphism
which fixes the star of the vertex x1.

3.3 Coverings of complexes of groups

We now define a covering of complexes of groups. We give this definition only in the special
case that we will need.

Definition 5 Let f :X → Y be a non-degenerate morphism of scwols. Let H(X) be a trivial
complex of groups and letG(Y) = (Gσ , ψa)be a complex of groups.A covering of complexes
of groups Φ: H(X) → G(Y) over f consists of an element φ(a) ∈ G f (t (a)) for each
a ∈ E(X), such that:

1. for all pairs of composable edges (a, b) in E(X), φ(ab) = φ(a) ψ f (a)(φ(b)); and
2. for each σ ∈ V (X) and each b ∈ E(Y) such that t (b) = f (σ ), the map

Φσ/b: {a ∈ E(X) | f (a) = b and t (a) = σ } → G f (σ )/ψb(Gi(b))

induced by a �→ φ(a) is a bijection.

Let Φ: H(X) → G(Y) be a covering of complexes of groups as in Definition 5. Suppose
that X and Y are finite scwols and that all local groups in G(Y) are finite. Let τ ∈ V (Y). The
number of sheets of the covering Φ is the positive integer

n :=
∑

σ∈ f −1(τ )

|Gτ |
|Hσ | = | f −1(τ )| · |Gτ |.

This definition is independent of the choice of τ ∈ V (Y), since Y is connected, and the last
equality holds since H(X) is a complex of trivial groups. IfΦ has n sheets we may say thatΦ
is an n-sheeted covering. In particular, if some local group Gτ is trivial then Φ is n-sheeted
where n = | f −1(τ )|.

The next two theorems are special cases of results on functoriality of coverings which are
implicit in [6], and stated and proved explicitly in [16].

Theorem 4 Let H(X) be a trivial complex of groups and G(Y) be a complex of groups, where
X and Y are finite scwols. Suppose both complexes of groups are developable and that there
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is an n-sheeted covering of complexes of groups Φ: H(X) → G(Y). Put H = π1(H(X))

and G = π1(G(Y)). Then Φ induces an embedding of H as an index n subgroup of G and

an equivariant isomorphism of universal covers H̃(X) −→ G̃(Y).

Theorem 5 Suppose G(Y) = (Gσ , ψa) is a developable complex of finite groups over a
finite scwol Y. Let G = π1(G(Y)). Then for any torsion-free index n subgroup H of G, there
is an n-sheeted covering of complexes of groups Φ: H(X) → G(Y), where H(X) is a trivial
complex of groups over a finite scwol X and π1(H(X)) = H.

Using Theorem 5, we can obtain lower bounds on the index of a torsion-free subgroup,
as follows.

Corollary 1 Let G(Y) be as in the statement of Theorem 5. Suppose H is a torsion-free index
n subgroup of G = π1(G(Y)). Then n ≥ |Gτ | for all τ ∈ V (Y).

Proof Let τ ∈ V (Y) and letΦ: H(X) → G(Y) be an n-sheeted covering corresponding to H ,
as guaranteed by Theorem 5. Then by definition of the number of sheets, n = | f −1(τ )| · |Gτ |.
Now f is surjective so | f −1(τ )| ≥ 1, and the result follows. ��

Applying this to the groups considered in the sequence of examples in this section, we
have:

Corollary 2 Let Γ2m(G1,G2) and W2m,L be the groups realized above as fundamental
groups of the complexes of groups G(P) and G(K), respectively. Then:

1. Any torsion-free finite-index subgroup of Γ2m(G1,G2) has index at least q1q2.
2. Any torsion-free finite-index subgroup of W2m,L has index at least 2m.

Proof The complexes of groups G(P) and G(K) are both developable. The complex of
groups G(P) has local groups including G1 × G2 of order q1q2, and the complex of groups
G(K) has local groups including the dihedral group of order 2m.

4 Embeddings of maximal torsion-free finite-index subgroup

In this section we construct two coverings of complexes of groups, which induce finite-index
embeddings of a maximal torsion-free group in the lattices constructed in Sect. 3.2. We
continue notation from Sect. 3.

4.1 Construction of the torsion-free group

First we construct the torsion-free group H as the (topological) fundamental group of a
polygonal complex X . Let us introduce some notation that will be used throughout Sect. 4.
Let L continue to denote a finite, connected, simplicial and bipartite graph as in Sect. 2.3.
For each edge (xi , y j ) ∈ E(L), let Pi j be a copy of the 2m-gon P described in Sect. 2.2. If
L = Kq1,q2 there are q1q2 such polygons, and otherwise there are strictly fewer than q1q2
of them. Now orient the edges of each Pi j cyclically, and label the edges in the resulting
2m-cycle going around the boundary of Pi j by the word x1i y

1
j x

2
i y

2
j . . . xmi ymj .

For each k ∈ Z/mZ, we label the vertex of Pi j with incoming edge xki and outgoing edge
ykj by u

k
i j , and we label the vertex of Pi j with incoming edge ykj and outgoing edge x

k+1
i by
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Fig. 4 The labeling of Pi j
x1
i

y1
j

x2
i

y2
j

x3
i

y3
j

u1
ij

v1ij

u2
ijv2ij

u3
ij

v3ij

vki j . In Pi j , the link of each uki j and each vki j is a single edge, which can be identified with the
edge (xi , y j ) ∈ E(L). Figure 4 shows the labeling of Pi j for the case m = 3.

The polygonal complex X = X2m,L is that obtained by gluing together all of the polygons
Pi j according to these edge labels, respecting orientation. Note that the 2m edges of each
Pi j have pairwise distinct labels, so each polygon Pi j injects into X . We define the group
H = H2m,L to be the fundamental group of the polygonal complex X .

Lemma 1 The polygonal complex X = X2m,L has 2m vertices, and the link of each vertex
in X is the graph L.

Proof Fix k with 1 ≤ k ≤ m. When we glue together all of the Pi j , since the graph L is
connected, all vertices uki j will be identified to a single vertex in X , say uk , and all vertices vki j

will be identified to a single vertex in X , say vk . Thus X has 2m vertices u1, v1, . . . , um, vm ,
which occur in this cyclic order going around the image of any Pi j in X .

We claim that at each vertex uk in X , the link is the graph L . By construction, at uk , the
incoming edges are xk1 , . . . , x

k
q1 and the outgoing edges are yk1 , . . . , y

k
q2 . So the vertices of

link(uk) can be identified with the vertex set of L . Now an incoming edge xki is connected to
an outgoing edge ykj in link(u

k) if and only if Pi j is a face of X , which occurs if and only if

(xi , y j ) in an edge of the graph L . The claim follows. Similarly, link(vk) is L for each vertex
vk in X . ��
Corollary 3 The universal cover of X = X2m,L is a simply-connected (2m, L)-complex.

Example 6 Let L be the complete bipartite graph K3,4. The vertex set is S1 � S2, where
|S1| = 3 and |S2| = 4. Label the vertices of S1 by x1, x2, x3 and those of S2 by y1, y2, y3, y4.
For each edge in L , with endpoints xi and y j , label the edges of an 8-gon cyclically by
the word x1i y

1
j x

2
i y

2
j x

3
i x

3
i x

4
i y

4
j . So, we have twelve polygons corresponding to the following

words:
x11 y

1
1 x

2
1 y

2
1 x

3
1 y

3
1 x

4
1 y

4
1 x12 y

1
1 x

2
2 y

2
1 x

3
2 y

3
1 x

4
2 y

4
1 x13 y

1
1 x

2
3 y

2
1 x

3
3 y

3
1 x

4
3 y

4
1

x11 y
1
2 x

2
1 y

2
2 x

3
1 y

3
2 x

4
1 y

4
2 x12 y

1
2 x

2
2 y

2
2 x

3
2 y

3
2 x

4
2 y

4
2 x13 y

1
2 x

2
3 y

2
2 x

3
3 y

3
2 x

4
3 y

4
2

x11 y
1
3 x

2
1 y

2
3 x

3
1 y

3
3 x

4
1 y

4
3 x12 y

1
3 x

2
2 y

2
3 x

3
2 y

3
3 x

4
2 y

4
3 x13 y

1
3 x

2
3 y

2
3 x

3
3 y

3
3 x

4
3 y

4
3

x11 y
1
4 x

2
1 y

2
4 x

3
1 y

3
4 x

4
1 y

4
4 x12 y

1
4 x

2
2 y

2
4 x

3
2 y

3
4 x

4
2 y

4
4 x13 y

1
4 x

2
3 y

2
4 x

3
3 y

3
4 x

4
3 y

4
4
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Fig. 5 The labeling of P e1

f1

e2

f2

e3

f3

u1

v1

u2v2

u3

v3

4.2 Embedding in the lattice of Bourdon’s building

In this section we consider the special case L = Kq1,q2 with q1, q2 ≥ 2. We show that
the group H constructed in Sect. 4.1 above embeds with index q1q2 in the lattice Γ of
I2m,L = I2m,q (see Examples 5).

Let X = X2m,L be as constructed in Sect. 4.1 above. Let X be the scwol associated to X
and P be the scwol associated to the polygon P as in Examples 1(1a). Let H(X) be the trivial
complex of groups over X and let G(P) be the complex of groups over P as constructed in
Example 2(2) above. Recall from Examples 5(2) that the fundamental group of G(P) is the
lattice Γ = Γ2m(G1,G2) of Aut(I2m,L).

Let us label the polygon P underlyingG(P) as follows.Orient the edges of P cyclically and
label the resulting 2m-cycle going around the boundary of P by the word e1 f1e2 f2 . . . em fm .
For k ∈ Z/mZ, label the vertex of P with incoming edge ek and outgoing edge fk by uk , and
label the vertex of P with incoming edge fk and outgoing edge ek+1 by vk . Figure 5 shows
the labeling of P for m = 3.

We now prove:

Proposition 1 There is a covering of complexes of groups Φ: H(X) → G(P) with q1q2
sheets.

Proof In addition to notation introduced above, we continue notation from Sect. 4.1.
We first define a non-degenerate morphism of scwols p:X → P. This will be induced by

the natural projection X → P . There is an isometry from each polygon Pi j to P given by,
for 1 ≤ k ≤ m, sending the edge xki to ek and the edge ykj to fk , respecting orientations.

Note that the vertex uki j maps to uk and the vertex vki j maps to vk . Since X is obtained from
the polygons Pi j by gluing them together according to (oriented) edge labels, this collection
of isometries Pi j → P induces a projection p: X → P . By abuse of notation, we write
p:X → P for the induced map of scwols. Recall from the proof of Lemma 1 that the 2m
vertices of X are u1, v1, u2, v2, . . . , um, vm . For each 1 ≤ k ≤ m, we have p(uk) = uk and
p(vk) = vk . It is straightforward to verify that p:X → P is a non-degenerate morphism of
scwols.
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αk
ij

fk
ij

ekijak
ij

ckij

βk
ijdkij

bk+1
ijbkij

yk
j vk

xk+1
i

uk

xk
i

Pij

Fig. 6 The labeling of (the image of) Pi j

We now construct a covering of complexes of groups Φ: H(X) → G(P) over p:X → P.
For this, we need to construct a family of elements {φ(a) ∈ Gt (p(a)) | a ∈ E(X)} which
satisfies the conditions in Definition 5. We begin by labeling the edges of the scwol X as
follows:

– aki j goes from the midpoint of xki to the vertex uk ;

– bki j goes from the barycenter of Pi j to the midpoint of xki ;

– cki j goes from the midpoint of ykj to the vertex uk ;

– dki j goes from the barycenter of Pi j to the midpoint of ykj ;

– eki j goes from the midpoint of xk+1
j to the vertex vk ; and

– f ki j goes from the midpoint of ykj to the vertex vk .

Noting carefully the order of composition in Definition 2, the pairs of edges (aki j , b
k
i j ) and

(cki j , d
k
i j ) are composable, with αk

i j := aki j b
k
i j = cki j d

k
i j the edge from the barycenter of Pi j

to the vertex uk of X . Similarly, the pairs of edges (eki j , b
k+1
i j ) and ( f ki j , d

k
i j ) are composable,

with βk
i j := eki j b

k+1
i j = f ki j d

k
i j the edge from the barycenter of Pi j to the vertex vk of X .

Figure 6 shows the labeling of (the image of) Pi j at the sector between the midpoint of xki
and the midpoint of xk+1

i .
In the complex of groups G(P), for 1 ≤ k ≤ m we specify that the local group at the

midpoint of edge ek is G2, and the local group at the midpoint of edge fk is G1. Enumerate
the elements of G1 as {g1,1, . . . , g1,q1} and those of G2 as {g2,1, . . . , g2,q2}. We identify G1

and G2 with their images in the direct product G1 ×G2, and write the elements of G1 ×G2

as {g1,i g2, j | 1 ≤ i ≤ q1, 1 ≤ j ≤ q2}.
We are now ready to define the group element φ(a) ∈ Gt (p(a)), for each a ∈ E(X). For

1 ≤ i ≤ q1, 1 ≤ j ≤ q2 and k ∈ Z/mZ, we put:

φ(aki j ) = φ(dki j ) = φ(eki j ) = g1,i ∈ G1, φ(bki j ) = φ(cki j ) = φ( f k−1
i j ) = g2, j ∈ G2

and

φ(αk
i j ) = φ(βk

i j ) = g1,i g2, j ∈ G1 × G2.
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Since the elements g1,i and g2, j commute in G1 × G2, Condition (1) of Definition 5 holds.
For Condition (2), let σ ∈ V (X) and let b ∈ E(P) be such that t (b) = p(σ ). Then the
quotient Gt (b)/ψb(Gi(b) is one of G1/{1} ∼= G1, G2/{1} ∼= G2, (G1 × G2)/{1} ∼= G1 ×
G2, (G1 × G2)/G1 ∼= G2 or (G1 × G2)/G2 ∼= G1. In each case, it may be checked that
the elements of the quotient are enumerated by the set {φ(a) | p(a) = b and t (a) = σ }.
Hence Condition (2) holds. Thus we have constructed a covering of complexes of groups
Φ: H(X) → G(P).

Finally, we show that the covering Φ has q1q2 sheets. Since L = Kq1,q2 has q1q2 edges,
the polygonal complex X has q1q2 faces. Let τ ∈ V (P) be the barycenter of the face of P .
Then the set p−1(τ ) has q1q2 elements, one for each face in X . Now the local group Gτ is
trivial, so the number of sheets of Φ is |p−1(τ )| = q1q2, as required. ��

We are now able to prove our first main result:

Theorem 1 When L = Kq1,q2 with q1, q2 ≥ 2, the group H is an index q1q2 subgroup of
Γ . Moreover, H is a maximal torsion-free subgroup of Γ with minimal index.

Proof Combining Theorem 4 and Proposition 1 tells us H is an index q1q2 subgroup of Γ .
The fact that H is a maximal torsion-free subgroup is a consequence of Corollary 2.

4.3 Embedding in the Coxeter group

In this sectionwe return to the settingwhere L is any finite, connected, simplicial and bipartite
graph. We show that the group H embeds with index 2m in the Coxeter group W .

Let X = X2m,L and H = H2m,L be as constructed in Sect. 4.1 above. Let Xop be the
opposite scwol associated to X , as in Examples 1(1b), and let K be the scwol associated
to the chamber K for (W2m,L , SL), as in Examples 1(2). We work with the opposite scwol
in this section so that the natural map from the barycentric subdivision of X to K induces
a non-degenerate morphism of scwols. Let H(Xop) be the trivial complex of groups over
Xop and let G(K) be the complex of groups over K with fundamental group W = W2m,L

constructed in Sect. 3.2. We now prove:

Proposition 2 There is a covering of complexes of groups Ψ : H(Xop) → G(K) with 2m
sheets.

Proof We first construct a non-degenerate morphism of scwols f : Xop → K. For this, we
assign types to the vertices of Xop as follows. Let σ ∈ V (Xop). If σ is a vertex of X , then
σ has type ∅. If σ is the midpoint of the edge xki of X then σ has type {xi } and if σ is the
midpoint of the edge ykj of X then σ has type {y j }. Finally, if σ is the barycenter of the face
Pi j of X then σ has type {xi , y j }. Then for each edge a ∈ E(Xop), i(a) is of type T ′ and
t (a) is of type T where T ′ ⊆ T are spherical subsets of S = SL . The map f :X → K is that
induced by sending each vertex of Xop which has type T to the unique vertex of K which
has type T . It is straightforward to check that f is a non-degenerate morphism of scwols.

We nowconstruct a covering of complexes of groupsΨ : H(Xop) → G(K) over f :Xop →
K. We first label the edges of the scwolXop . Although E(Xop) = E(X), we will use different
labels to those in the proof of Proposition 1 above. Our labeling for Xop is as follows:

– The edges A1
i j , . . . , A

m
i j have terminal vertex the barycenter of Pi j . Their initial vertices

are the midpoints of the m edges x1i , y
m
j , xmj , . . . , y

j , x

i , respectively, if m = 2 − 3 is

odd, and the m edges x1i , y
m
j , xmj , . . . , x+1

i , y
j , respectively, if m = 2 − 2 is even.
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Fig. 7 The labeling of (the image of) Pi j

– The edges B1
i j , B

3
i j , . . . , B

2m−1
i j have terminal vertices equal to the initial vertices of

A1
i j , . . . , A

m
i j , respectively. Their initial vertices are u

1, vm, um, . . . , v, u, respectively,

if m = 2 − 3 is odd, and u1, vm, um, . . . , u+1, v, respectively, if m = 2 − 2 is even.
– The edges B2

i j , B
4
i j , . . . , B

2m
i j have terminal vertices equal to the initial vertices of

A1
i j , . . . , A

m
i j , respectively. Their initial vertices are vm, um, . . . , u, v−1, respectively,

if m = 2 − 3 is odd, and vm, um, . . . , v, u, respectively, if m = 2 − 2 is even.
– The edges C1

i j , . . . ,C
m
i j have terminal vertex the barycenter of Pi j . Their initial vertices

are the midpoints of the m edges y1j , x
2
i , y

2
j , . . . , x


i , y

−1
j , respectively, if m = 2 − 3 is

odd, and the m edges y1j , x
2
i , y

2
j , . . . , y


j , x


i , respectively, if m = 2 − 2 is even.

– The edges D1
i j , D

3
i j , . . . , D

2m−1
i j have terminal vertices equal to the initial vertices of

C1
i j , . . . ,C

m
i j , respectively. Their initial vertices are u

1, v1, u2, . . . , u−1, respectively, if

m = 2 − 3 is odd, and u1, v1, u2, . . . , v−1, respectively, if m = 2 − 2 is even.
– The edges D2

i j , D
4
i j , . . . , D

2m
i j have terminal vertices equal to the initial vertices of

C1
i j , . . . ,C

m
i j , respectively. Their initial vertices are v1, u2, v2, . . . , v−1, respectively,

if m = 2 − 3 is odd, and v1, u2, v2, . . . , u, respectively, if m = 2 − 2 is even.

Noting carefully the order of composition in Definition 2, the compositions of edges are:

– two distinguished edges εi j := A1
i j B

1
i j = C1

i j D
1
i j and ε′

i j := Am
i j B

2m
i j = Cm

i j D
2m
i j ;

– for 1 ≤ k ≤ m − 1, an edge γ k
i j := Ak

i j B
2k
i j = Ak+1

i j B2k+1
i j ; and

– for 1 ≤ k ≤ m − 1, an edge δki j := Ck
i j D

2k
i j = Ck+1

i j D2k+1
i j .

Figure 7 shows the labeling of the (image of the) whole polygon Pi j for the case m = 3.
We neglect to label the compositions, but leave them drawn as dotted lines.
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v1

u2

v2

y2
j x2

i

Pij

C3
ij C2

ij

D4
ij

D6
ij

D5
ij

D3
ij

Wij

(yj)2 (1= xi)2 = 1

1

Fig. 8 The covering of G(K) by Xop

We next establish some notation and recall some facts concerning finite dihedral groups.
Let (xi , y j ) be an edge of L and recall that the special subgroup W{xi ,y j } is dihedral of order
2m. To simplify notation, write Wi j for W{xi ,y j }. For 1 ≤ k ≤ m, we denote by wk(xi , y j )
the element of Wi j given by the alternating product xi y j xi . . . which starts with xi and has k
letters. Similarly define wk(y j , xi ) to start with y j . Then if w is a nontrivial element of Wi j ,
we have w = wk(xi , y j ) or w = wk(y j , xi ) for some k with 1 ≤ k ≤ m, and this expression
for w is unique except for the case w = wm(xi , y j ) = wm(y j , xi ). For example, if m = 3
then the 6 elements of Wi j are 1, xi , y j , xi y j , y j xi and xi y j xi = y j xi y j .

We are now ready define the family {φ(A) ∈ Gt ( f (A)) | A ∈ E(Xop)}. Recall that in
G(K), the local group at Gσ is the special subgroup WT where σ is of type T . We describe
the assignment of group elements φ(A) ∈ Gt ( f (A)) according to the type of the vertex
t (A) ∈ V (Xop). First suppose that t (A) has type {xi }. Then A is the edge B2k−1 or B2k with
k odd, or D2k−1 or D2k with k even. We put φ(B2k−1) = 1 and φ(B2k) = xi if k is odd and
φ(D2k−1) = 1 and φ(D2k) = xi if k is even. The assignment is similar if t (A) has type {y j }:
we put φ(B2k−1) = 1 and φ(B2k) = y j if k is even and φ(D2k−1) = 1 and φ(D2k) = y j if
k is odd.

Now suppose that t (A) has type {xi , y j }. Then we put φ(A1
i j ) = φ(C1

i j ) = 1, and for

2 ≤ k ≤ m we put φ(Ak
i j ) = wk−1(xi , y j ) and φ(Ck

i j ) = wk−1(y j , xi ). This takes care of
all edges A with t (A) of type {xi , y j } and i(A) of type either {xi } or {y j }. The remaining
edges are the compositions, and so have initial vertex of type ∅. We define φ(εi j ) = 1 and
φ(ε′

i j ) = wm(xi , y j ) = wm(y j , xi ), and for 1 ≤ k ≤ m − 1 we define φ(γ k
i j ) = wk(xi , y j )

and φ(δki j ) = wk(y j , xi ). Figure 8 shows the covering locally at the edges x2i and y2j of Pi j
for the casem = 3. Again the color of vertices denotes type. Thicker arrows have been drawn
to indicate where a “folding” takes place.

The verification of Condition (1) in Definition 5 is straightforward, keeping in mind the
order of composition of edges in Definition 2, since for m ≥ 3 the elements xi and y j do not
commute in Wi j . For example, we have A2

i j B
4
i j = γ 2

i j , and φ(A2
i j ) = xi , φ(B4

i j ) = y j and

φ(γ 2
i j ) = xi y j .
For Condition (2) in Definition 5, let σ ∈ V (Xop) and let b ∈ E(K) be such that t (b) =

f (σ ). Then σ has type {xi }, {y j } or {xi , y j }. If σ has type {xi }, there are exactly two edges
in Xop which have terminal vertex σ , say A and A′. These are both mapped by f to b, and
by construction the sets {φ(A), φ(A′)} and {1, xi } are equal. Hence A �→ φ(A) induces the
desired bijection from {A ∈ E(Xop) | f (A) = b and t (A) = σ } to G f (σ )/ψb(Gi(b) =
W{xi }/W∅ ∼= W{xi } = {1, xi }. The argument is similar if σ has type {y j }.
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If σ has type {xi , y j } we consider cases according to the type of i(b). Suppose i(b) has
type {xi }. By definition of f , the set {A ∈ E(Xop) | f (A) = b and t (A) = σ } is equal to

{
A ∈ E(Xop) | i(A) ∈ {x1i , . . . , xmi } and t (A) = σ

}
.

It is then not difficult to check that the map A �→ φ(A) induces a bijection from this set to a
set of representatives of the left cosets of W{xi } = {1, xi } in the dihedral group Wi j of order
2m. For example, ifm = 3 then the edges A1

i j , C
2
i j and A3

i j have initial vertices the midpoints

of x1i , x
2
i and x3i , respectively, and we have φ(A1

i j ) = 1, φ(C2
i j ) = y j and φ(A3

i j ) = xi y j ,
while the left cosets of {1, xi } in Wi j are {1, xi }, {y j , y j xi } and {xi y j , xi y j xi }. Condition
(2) then follows. The argument is similar if i(b) has type {y j }.

The final case is when σ has type {xi , y j } and i(b) has type ∅. Then by construction, the
map A �→ φ(A) is a bijection from the set of composition edges

{
εi j , ε

′
i j

}
∪

{
γ k
i j , δ

k
i j | 1 ≤ k ≤ m − 1

}

to the elements ofWi j . Thus in this case Condition (2) holds aswell.We have now constructed
a covering of complexes of groups Ψ : H(Xop) → G(K).

We conclude by showing that the covering Ψ has 2m sheets. For this, recall that the
polygonal complex X has 2m vertices. Let τ ∈ V (K) be the cone point of K . Then the set
f −1(τ ) consists of all vertices ofXop which have type ∅, and these are exactly the 2m vertices
of X . Since the local group Gτ is trivial, the number of sheets of Ψ is | f −1(τ )| = 2m, as
required. ��

Using Proposition 2 and the same covering-theoretic results as in Sect. 4.2 above, we
obtain our second main result:

Theorem 2 The group H is an index 2m subgroup of W. Moreover, H is a maximal torsion-
free subgroup of W with minimal index.

We also note that by the last statement in Theorem 4, the covering Ψ induces an isomor-
phism between the universal covers of H(Xop) and G(K). Hence:

Corollary 4 Let X̃ be the universal cover of the polygonal complex X = X2m,L . Then the
barycentric subdivision of X̃ is simplicially isomorphic to the Davis complex Σ = Σ2m,L .

5 Description as an amalgam of surface groups over free groups

In our final section we describe H as an amalgam of genus (m − 1) surface groups over rank
(m − 1) free groups for the special case L is a complete bipartite graph.

5.1 A presentation for the torsion-free group

Let L = Kq1,q2 with q1, q2 ≥ 2. First we obtain a group presentation for H = H2m,L . Form
a polygonal complex homotopic to X = X2m,L by contracting the polygon labeled

x1q1 y
1
q2 x

2
q1 y

2
q2 . . . xmq1 y

m
q2

to a single vertex. The resulting complex has a single vertex, allowing us to obtain a presenta-
tion for its fundamental group by reading off relations from the boundaries of the remaining
2-dimensional cells (see [17], Theorem 72.1). We have two types of relations. The first type
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correspond to those polygons in X which didn’t contain edges in common with the collapsed
polygon. These are of the form

x1i y
1
j x

2
i y

2
j . . . xmi ymj = 1

for i ∈ {1, 2, . . . , q1 − 1}, j ∈ {1, 2, . . . , q2 − 1}. The second type correspond to those
polygons which contained contracted edges. After contracting, their edge labels are of the
form

x1i x
2
i . . . xmi = 1

for i ∈ {1, 2, . . . , q1 − 1}, or
y1j y

2
j . . . ymj = 1

for j ∈ {1, 2, . . . , q2 − 1}.
Proposition 3 The group H is generated by x1i , x

2
i . . . , xm−1

i , y1j , y
2
j . . . , ym−1

j subject to
the following (q1 − 1)(q2 − 1) many relations:
x1i y

1
j x

2
i y

2
j . . . xm−1

i ym−1
j (xm−1

i )−1(xm−2
i )−1 . . . (x1i )

−1(ym−1
j )−1(ym−2

j )−1 . . . (y1j )
−1 = 1

for i ∈ {1, 2, . . . , q1 − 1}, j ∈ {1, 2, . . . , q2 − 1}.
Proof Let us rearrange the relations of the second type to give

xmi = (xm−1
i )−1(xm−2

i )−1 . . . (x1i )
−1

for i ∈ {1, 2, . . . , q1 − 1}, and
ymj = (ym−1

j )−1(ym−2
j )−1 . . . (y1j )

−1

for j ∈ {1, 2, . . . , q2 − 1}. We can then substitute these expressions for xmi and ymj into the
relations of the first type to obtain the required presentation.

5.2 Amalgams of surface groups

We now show that our presentation for H can be recognized as a presentation of an amalgam
of surface groups.

For fixed i ∈ {1, 2, . . . , q1 − 1} and j ∈ {1, 2, . . . , q2 − 1}, denote the group generated
by x1i , x

2
i . . . , xm−1

i , y1j , y
2
j . . . , ym−1

j subject to the single relation

x1i y
1
j x

2
i y

2
j . . . xm−1

i ym−1
j (xm−1

i )−1(xm−2
i )−1 . . . (x1i )

−1(ym−1
j )−1(ym−2

j )−1 . . . (y1j )
−1 = 1

by Sm−1〈xi , y j 〉.
Lemma 2 The group Sm−1〈xi , y j 〉 is a surface group of genus (m − 1).

Proof Write the group’s relation on the boundary of a 4(m − 1)-gon. The corresponding
quotient space is a genus (m − 1) surface with a single vertex, allowing us to obtain a
presentation for its fundamental group by reading off a single relation from the boundary of
its 2-dimensional cell. This gives the group Sm−1〈xi , y j 〉. ��

Let us denote the free group with basis x1i , x
2
i , . . . , x

m−1
i by Fm−1〈xi 〉 and the free

group with basis y1i , y
2
i , . . . , y

m−1
i by Fm−1〈y j 〉. We denote the embedding Fm−1〈xi 〉 ↪→

123



Geom Dedicata (2018) 193:121–143 141

Fig. 9 The scwol X1,2

x1

y1

y2

Fig. 10 The complex of groups
G2(X1,2)

F2 x1

F2 y1

F2 y2

S2 x1, y1

S2 x1, y2

Sm−1〈xi , y j 〉 such that xi �→ xi by ιm−1(xi , y j ), and the embedding Fm−1〈y j 〉 ↪→
Sm−1〈xi , y j 〉 such that y j �→ y j by ιm−1(y j , xi ).

We now describe how to associate a scwol to a simplicial graph Θ . Let Θ ′ denote the
barycentric subdivision of Θ . We associate to Θ the scwol X = X(Θ) such that V (X) :=
V (Θ ′) and E(X) := E(Θ ′). Each edge a ∈ E(X) is then oriented so that i(a) is a vertex of
Θ and t (a) is the barycenter of an edge of Θ . Let us denote X(Kq1−1,q2−1) by Xq1−1,q2−1.
Figure 9 shows X1,2.

The scwol X(Θ) is an example of a 1-dimensional scwol (see Sect. 3.1), i.e. a scwol
which has no composable pairs of edges. Scwols which are 1-dimensional have two kinds
of vertices; sources are initial vertices of edges and sinks are terminal vertices of edges.
Complexes of groups over 1-dimensional scwols are (equivalent to) graphs of groups in the
sense of Bass–Serre [18].

We now use the groups Sm−1〈xi , y j 〉, Fm−1〈xi 〉 and Fm−1〈yi 〉 to construct a complex
of groups Gm−1(X) = (Gσ , ψa) over X = Xq1−1,q2−1. Our construction can probably be
deduced from Fig. 10, which shows G2(X1,2).

Explicitly let σ ∈ V (X). If σ is the barycenter of (xi , y j ), the local group Gσ is
Sm−1〈xi , y j 〉. If σ is the vertex xi , the local group Gσ is Fm−1〈xi 〉. If σ is the vertex y j ,
the local group Gσ is Fm−1〈y j 〉. Let a ∈ E(X). If i(a) = xi and t (a) = (xi , y j ) then
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ψa = ιm−1(xi , y j ). If i(a) = y j and t (a) = (xi , y j ) then ψa = ιm−1(y j , xi ). We now prove
our final main result.

Theorem 3 When L = Kq1,q2 with q1, q2 ≥ 2, the group H is an amalgamof (q1−1)(q2−1)
many genus (m − 1) surface groups over rank (m − 1) free groups.

Proof We claim the direct limit (i.e. the colimit) of Gm−1(X) as a diagram of groups is
isomorphic to H . Direct limits of diagrams of groups can easily be constructed by generators
and relations (see [18], p. 1). Since Gm−1(X) is a diagram over a 1-dimensional scwol which
contains only embeddings, the construction can be simplified as follows. First one takes as
generators and relations the disjoint union of sets of generators and relations for each Gσ

such that σ ∈ V (X) is a sink. One then identifies each pair of generators h, h′ such that there
exist ψa and ψb with i(a) = i(b) = σ , and g ∈ Gσ with ψa(g) = h and ψb(g) = h′.

Each local group at a sink of Gm−1(X) is a surface group Sm−1〈xi , y j 〉 which comes
equipped with the group presentation given above. By the way we have constructed our local
groups, the effect of taking the disjoint union of generators and then identifying generators
in the required manner is the same as simply taking their union. Hence the direct limit
of Gm−1(X) is the group generated by x1i , x

2
i . . . , xm−1

i , y1j , y
2
j . . . , ym−1

j subject to the
relations

x1i y
1
j x

2
i y

2
j . . . xm−1

i ym−1
j (xm−1

i )−1(xm−2
i )−1 . . . (x1i )

−1(ym−1
j )−1(ym−2

j )−1 . . . (y1j )
−1 = 1

for i ∈ {1, 2, . . . , q1 − 1}, j ∈ {1, 2, . . . , q2 − 1}. This coincides with the presentation of H
found in Proposition 3.

5.3 Right-angled Artin groups

Ifm = 2 we recover a special case of the following construction. A right-angled Artin group
is a group AΘ associated to a simplicial graph Θ in the following way: one takes the free
group on the vertices of Θ , and then quotients out the commutators of any adjacent vertices.
The group AΘ is then the direct limit of a diagram of groups over X(Θ), where sink groups
are free abelian groups of rank 2, and source groups are infinite cyclic groups. Therefore if
AΘ is connected and contains at least two edges, then AΘ is a non-trivial amalgam of free
abelian groups of rank 2 over infinite cyclic groups. In this sense H , form ≥ 3, can be viewed
as a generalization of right-angled Artin groups associated to complete bipartite graphs to
higher genus.

5.4 Geometric amalgams

In [14], Lafont introduces a family of diagrams of free groups equipped with some geometric
data, and a family of geodesic metric spaces such that the fundamental group functor π1

induces a bijection between (the isomorphism classes of) the two families. The diagrams are
1-dimensional scwols such that sources have valency at least three, and are populated with
groups by putting free groups of rank 1 on sources, and free groups of rank ≥ 2 on sinks.
The metric spaces are amalgams of hyperbolic surfaces-with-boundary over totally geodesic
loops. Lafont proves π1 rigidity for the metric spaces, giving “diagram rigidity” (i.e. colimit
rigidity) for the diagrams of free groups.

In the spirit of Lafont one can construct a K (G, 1) for H by gluing together (q1−1)(q2−1)
many 4(m−1)-gons according to their labeling by our surface group relations. The resulting
space is an amalgam of closed genus (m − 1) surfaces over bouquets of (m − 1) many loops.
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