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Abstract We describe a natural open stratum in the moduli space of smooth real pointed
quartic curves in the projective plane. This stratum consists of real isomorphism classes of
pairs (C, p) with p a real point on the curve C such that the tangent line at p intersects
the curve in two distinct points besides p. We will prove that this stratum consists of 20
connected components. Each of these components has a real toric structure defined by an
involution in the Weyl group of type E7.
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1 Introduction

A classical result found in Zeuthen [20] is the classification of smooth real plane quartic
curves. The set of real points of such a curve consists of at most four ovals in the real
projective plane and the six possible configurations are shown below in Fig. 1. The space
of real plane quartic curves is the projective space P4,3(R) = PSym4(R3) of dimension 14.
The discriminant subspace �(R) ⊂ P4,3(R) that consists of singular real quartic curves is of
codimension one. It was proved by Klein [9] that each of the six types of smooth real plane
quartic curves determines a connected component in the space P4,3(R)−�(R). We will be
interested in the moduli space

QR = PGL(3, R)\ (
P4,3(R)−�(R)

)

whose points represent real isomorphism classes of such quartics. This space also consists
of six connected components since the group PGL(3, R) is connected.
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Fig. 1 The six topological types of smooth real plane quartic curves obtained by deforming a union of two
ellipses

In this article we use modern techniques from the theory of root systems and del Pezzo
surfaces to study a variation on the classification by Zeuthen. Suppose we have a smooth
real plane quartic curve together with a general real point on the curve. By general point we
mean that the tangent line at this point intersects the curve in two other, distinct points. In
other words the tangent line at this point is not a bitangent or a flex line. These two other
points of intersection can be both real or form a pair of complex conjugate points. Our first
result is the classification of real quartic curves with a general point, similar to the one given
by Zeuthen.

Theorem 1.1 The moduli space (Q◦1)R of smooth real plane quartic curves with a general
point consists of 20 connected components. Representative curves for these twenty compo-
nents are shown in Fig. 2 below.

This classification is more subtle then the topological one: the second and fourth picture
from the first row are topologically equivalent but represent different components in the
moduli space. Something similar occurs in the study of smooth real plane curves of higher
degree. For example there exist two smooth real plane curves of degree six with the same
configuration of ovals that are non-isomorphic. For a discussion of this phenomenon we refer
to [5, Section 4.8].

Our second result concerns the structure of the 20 components of the moduli space. For
this we start by extending work of Looijenga [12,13] on moduli spaces of complex del Pezzo
pairs to the real numbers. We focus on del Pezzo surfaces of degree two as these are related
to plane quartic curves. A similar treatment could be given for del Pezzo surfaces of other
degrees. To formulate our result we introduce some notation. Let Q be a root lattice of type
E7 and define the complex adjoint torus T = Hom(Q, C

∗). The Weyl group W of type E7

acts by reflections on Q and thus on T. The set of fixed points in T of a reflection in W is
called a toric mirror. We denote by T

◦ the complement of all toric mirrors in T for this group
action of W . Now we can state our second result.

Theorem 1.2 Let (Q◦1)R be the moduli space representing real isomorphism classes of pairs
(C, p) with C a smooth real plane quartic curve and p ∈ C(R) a general real point. There
is an isomorphism of real orbifolds

(Q◦1)R −→ (
W\T◦) (R) (1)

where by definition the right hand side consists of all W-orbits of t ∈ T
◦ such that u · t = t̄

for some involution u ∈ W.
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Fig. 2 The real points of representative curves for the 20 connected components of the moduli space (Q◦1)R

This paper is organized in two parts. The first part consists of Sects. 2–6 and is dedicated to
the proof of Theorem 1.2. The necessary preliminaries on del Pezzo surfaces and involutions
in Weyl groups are presented in Sects. 2–5 and the proof of Theorem 1.2 is presented in
Sect. 6.

The second part consists of Sect. 7–9 and is dedicated to the proof of Theorem 1.1. The
main idea of the proof is to use the isomorphism of Eq. 1 to study the moduli space (Q◦1)R

using results on root systems and involutions inWeyl groups on the right hand side. In Sect. 7
we study the real points of such torus quotients and their connected components for general
root systems of type ADE . For type E7 we then prove that there are twenty connected
components. In Sects. 8 and 9 we relate these twenty components to the pictures of Fig.
2. This completes the proof of Theorem 1.1. A possible alternative approach to obtain the
classification of Theorem 1.1 would be to consider trigonal curves with a single node in the
Hirzebruch surface �2. This construction is described in [21]. However this approach would
not give a description of the moduli space and its components.

2 Involutions in Coxeter groups

In order tomake the right-hand side ofEq. 1more explicitweneed to understand the conjugacy
classes of involutions in the Weyl group of type E7. Weyl groups can be realized as finite
Coxeter groups. The classification of conjugacy classes of involutions in a Coxeter group
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was done by Richardson [16] and Springer [18]. Before this the classification of conjugacy
classes of elements of finite Coxeter groups was obtained by Carter [2]. In this section we
give a brief review of these results.

Definition 2.1 A Coxeter system is a pair (W, S) with W a group presented by a finite set
of generators S = {s1, . . . , sr } subject to relations

(si s j )
mi j = 1 with 1 ≤ i, j ≤ r

where mii = 1 and mi j = m ji are integers≥ 2. We also allow mi j = ∞ in which case there
is no relation between si and s j . These relations are encoded by the Coxeter graph of (W, S).
This is a graph with r nodes labeled by the generators. Nodes i and j are not connected if
mi j = 2 and are connected by mi j − 2 edges otherwise. If mi j = ∞ we connect the vertices
by a thick edge.

For a Coxeter system (W, S) we define an action of the group W on the real vector space
V with basis {es}s∈S . First we define a symmetric bilinear form B on V by the expression

B(ei , e j ) = 2 cos

(
π

mi j

)
.

Then for each si ∈ S the reflection: si (x) = x − B(ei , x)ei preserves this form B. In this
way we obtain a homomorphism W → GL(V ) called the geometric realization of W . For
each subset I ⊆ S we can form the standard parabolic subgroup WI < W generated by the
elements {si ; i ∈ I } acting on the subspace VI generated by {ei }i∈I . We say that WI (or also
I ) satisfies the (−1)-condition if there is a wI ∈ WI such that wI · x = −x for all x ∈ VI .
The elementwI necessarily equals the longest element of (WI , SI ). This implies in particular
thatWI is finite. Let I, J ⊆ S, we say that I and J areW -equivalent if there is a w ∈ W that
maps {ei }i∈I to {e j } j∈J . Now we can formulate the main theorem of [16].

Theorem 2.2 (Richardson) Let (W, S) be a Coxeter system and let J be the set of subsets
of S that satisfy the (−1)-condition. Then
1. If c ∈ W is an involution, then c is conjugate in W to wI for some I ∈ J .
2. Let I, J ∈ J . The involutions wI and wJ are conjugate in W if and only if I and J are

W-equivalent.

This theorem reduces the problem of finding all conjugacy classes of involutions in W
to finding all W -equivalent subsets in S satisfying the (−1)-condition. First we determine
which subsets I ⊆ S satisfy the (−1)-condition, thenwe present an algorithm that determines
when two subsets I, J ⊆ S are W -equivalent. If (WI , SI ) is irreducible and satisfies the
(−1)-condition then it is of one of the following types

A1, Bn, D2n, E7, E8, F4,G2, H3, H4, I2(2p) (2)

with n, p ∈ N and p ≥ 4. If (WI , SI ) is reducible and satisfies the (−1)-condition then WI

is the direct product of irreducible, finite standard parabolic subgroups (Wi , Si ) from (2).
The Coxeter diagrams of the (Wi , Si ) occur as disjoint subdiagrams of the types in the list
of the diagram of (W, S). The element wI is the product of the wIi which act as −1 on the
VIi . Now let K ⊆ S be of finite type and let wK be the longest element of (WK , SK ). The
element τK = −wK defines a diagram involution of the Coxeter diagram of (WK , SK )which
is non-trivial if and only if wK �= −1. If I, J ⊆ K are such that τK I = J then I and J are
W -equivalent. To see this, observe that wKwI · I = wK · (−I ) = τK I = J . Now we define
the notion of elementary equivalence.
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Fig. 3 The involutions A31 (left) and A3′1 (right)

Definition 2.3 We say that two subsets I, J ⊆ S are elementary equivalent, denoted by
I 
 J , if τK I = J with K = I ∪ {α} = J ∪ {β} for some α, β ∈ S.

It is proved in [16] that I and J areW -equivalent if and only if they are related by a chain
of elementary equivalences: I = I1 
 I2 
 · · · 
 In = J . This provides a practical algorithm
to determine all the conjugacy classes of involutions in a given Coxeter group (W, S) using
its Coxeter diagram

1. Make a list of all the subdiagrams of the Coxeter diagram of (W, S) that satisfy the
(−1)-condition. These are exactly the disjoint unions of diagrams in the list (2). Every
involution in W is conjugate to wK with K a subdiagram in this list.

2. Find out which subdiagrams of a given type are W -equivalent by using chains of ele-
mentary equivalences.

Example 2.4 (E7) We use the procedure described above to determine all conjugacy classes
of involutions in the Weyl group of type E7. This result will be used many times later on.
SinceW7 contains the element−1 the conjugacy classes of involutions come in pairs {u,−u}.
We label the vertices of the Coxeter diagram as in Fig. 6

It turns out that all involutions of a given type are equivalent with the exception of type
A3
1: here there are two non-equivalent involutions as seen in Fig. 3. The types of involutions

that occur are

{1, E7} , {A1, D6} ,
{
A2
1, D4A1

}
,

{
A3
1, A

4
1

}
,

{
D4, A

3′
1

}
. (3)

For example, consider the two subdiagrams of type A1 with vertices {1} and {2}. The diagram
automorphism τ{1,2} which is of type A2 exchanges the vertices {1} and {2}, so they are
elementary equivalent. One shows in a similar way that all diagrams of type A1 are equivalent.

3 Del Pezzo surfaces

In this section we review the theory of del Pezzo surfaces over the real and the complex
numbers. For del Pezzo surfaces over the complex numbers two excellent references for the
proofs in this section are [6,15].

3.1 Complex del Pezzo surfaces

Definition 3.1 A del Pezzo surface Y is a smooth, complex projective surface whose
anticanonical system | − KY | is ample. The degree of Y is the self-intersection number:
d = KY · KY of the canonical class in the Picard group Pic(Y ) of Y . It is an integer with
1 ≤ d ≤ 9.

A del Pezzo surface can be realized as the blowup of a configuration of points in the
projective plane. This is expressed by the following theorem.

123



176 Geom Dedicata (2016) 185:171–203

Theorem 3.2 A del Pezzo surface of degree d is isomorphic to either

1. The blowup Y = BlB P
2 of the projective plane in a set

B = {P1, . . . , Pr } ⊂ P
2(C)

of r = 9− d points in general position (1 ≤ d ≤ 9). A point set is in general position if
no 3 points are collinear, no 6 are on a conic and no 8 are on a cubic which is singular
at one of these points.

2. The smooth quadric P
1 × P

1 in which case d = 8.

From now on we only consider del Pezzo surfaces of the first kind. Exhibiting a del Pezzo
surface as a blowup π : Y → P

2 fixes a basis of the Picard group Pic(Y ). This basis consists
of the classes Ei = π−1(Pi ) with 1 ≤ i ≤ r of the exceptional curves over the blown up
points and the class E0 of the strict transform of a general line in P

2. The anticanonical class
expressed in this basis of Pic(Y ) is given by

−KY = 3E0 − E1 − · · · − Er .

It is represented by the strict transform of a cubic in P
2 through the points B = {P1, . . . , Pr }.

We alsowrite Pic0(Y ) for the orthogonal complement of−KY in Pic(Y ). From the description
of a del Pezzo surface as a blowup of P

2 it follows that the Picard group Pic(Y ) is isomorphic
to the hyperbolic lattice Z1,r of rank r + 1 and signature (1, r). It has a basis {e0, . . . , er }
with inner product defined by the relations

⎧
⎨

⎩

e0 · e0 = 1
ei · ei = −1 for 1 ≤ i ≤ r
ei · e j = 0 for i �= j.

An isomorphism φ : Z1,r → Pic(Y ) is called amarking of the del Pezzo surface Y if it maps
the element k = −3e0+ e0+ . . .+ er to the canonical class KY of Pic(Y ). An isomorphism
(Y, φ) ∼= (Y ′, φ′) of marked del Pezzo surfaces is an isomorphism F : Y → Y ′ such that the
following diagram commutes.

Z1,r Pic(Y )

Pic(Y ′)

φ

φ′
F∗

Exhibiting a del Pezzo surface as a blowup π : Y → P
2 is equivalent to adding a marking

to Y ; from the marking φ we recover the blowup map by blowing down the exceptional
curves φ(ei ) for 1 ≤ i ≤ r . This determines a set B = {P1, . . . , Pr } of r points in general
position in P

2. If two marked del Pezzo surfaces are isomorphic then the corresponding point
sets B and B ′ are related by an element of PGL(3, C). As a consequence the elements of the
space

D̃Pd =
(
(P2)r −�

)
/PGL(3, C) (4)

represent isomorphism classes of marked del Pezzo surfaces of degree d = 9 − r . Here �

denotes the set of configurations of r points in P
2 not in general position in the sense of

Theorem 3.2. For an r -tuple of points in P
2 in general position with r ≥ 4 there is a unique
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element of PGL(3, C) that maps the points to the configuration of points represented by the
columns of the matrix

⎛

⎝
1 0 0 1 x1 . . . xr−4
0 1 0 1 y1 . . . yr−4
1 1 1 1 1 . . . 1

⎞

⎠ .

This implies that D̃Pd is isomorphic to an open subset of (A2)r−4.

3.2 The Cremona action of the Weyl group

The stabilizer of the element k = −3e0 + e1 + · · · + er in the orthogonal group O(Z1,r ) is
a finite Coxeter group of type

A1A2, A4, D5, E6, E7, E8 (5)

for r = 3, . . . , 8. A set of generators S = {s1, . . . , sr } for Wr is given by the reflections in
the simple roots

α1 = e1 − e2, . . . , αr−1 = er−1 − er , αr = e0 − e1 − e2 − e3.

These root span a lattice Qr that is precisely the orthogonal complement of k⊥ in Z1,r . The
group Wr acts on marked del Pezzo surfaces by composing with the marking: w · (X, φ) =
(X, φ ◦ w−1) for w ∈ Wr . This action is simply transitive so that the orbit space DPd =
Wr\D̃Pd is a coarse moduli space for del Pezzo surfaces of degree d .

We now describe this action on the set of blown up points in P
2. Suppose (X, φ) is a

marked del Pezzo surface and π : X → P
2 is the corresponding blowing up map with

B ⊆ P
2 the set of blown up points. If φ′ is another marking of X then φ′ = φ ◦ w for

some element w ∈ Wr . The element w defines a birational transformation ρ(w) of P
2 in the

following way: first blow up P
2 in the points of B. Then blow down the exceptional curves

φ′(ei ) = φ(w · ei ) for 1 ≤ i ≤ r . This determines a new set of points B ′ and blowup map
π ′ : X → P

2 corresponding to φ′ such that the following diagram commutes.

X

P
2

P
2

π π ′

ρ(w)

In this way we obtain a homomorphism of the Weyl group Wr to the group of birational
transformations of P

2

ρ : Wr → Bir
(
P
2)

We can calculate this representation on the set S of simple reflections. The element ρ(si )
with 1 ≤ i ≤ r − 1 acts on Zr,r by

ei �→ e j

e j �→ ei

ek �→ ek k �= i, j.
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so that it corresponds to the transposition of the points Pi and Pi+1. The element sr gives a
more interesting transformation. It acts on Z1,r by

e1 �→ e0 − e2 − e3

e2 �→ e0 − e1 − e3

e3 �→ e0 − e1 − e2

ei �→ ei 4 ≤ i ≤ r.

Geometrically this means that ρ(sr ) is obtained by first blowing up P1, P2 and P3 and then
blowing down the strict transforms of the lines connecting them. This birational transfor-
mation ρ(sr ) is called the standard triangular Cremona transformation based in P1, P2 and
P3. A simple calculation shows that s7(2e0 − e1 − e2 − e3) = e0 so that the image of a
conic through P1, P2, P3 under the standard triangular Cremona transformation is a line. If
we assume that these points are

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1).
then ρ(sr ) is given by (x : y : z) �→ (yz : xz : xy). To summarise: the group Wr acts
on (P2)r −� by permuting the points and by standard triangular Cremona transformations
centered in triples of distinct points.

3.3 Del Pezzo surfaces of degree two

Suppose that Y is a del Pezzo surface of degree two so that it is isomorphic to the blowup of
the projective plane P

2 in 7 points. The anticanonical system of Y defines a morphism

|−KY | : Y → P
2.

It is a double cover of P
2 branched along a smooth quartic curve C ⊂ P

2. Conversely a
smooth quartic C = { f (x, y, z) = 0} determines a del Pezzo surface Y of degree two by the
formula

Y = {
w2 = f (x, y, z)

} ⊂ P(2, 1, 1, 1). (6)

Consequently every del Pezzo surface Y has a special involution that corresponds to the deck
transformation of the double cover Y → P

2. This is called the Geiser involution. In terms of
Eq. 6 this involution is given by

ρY : [w : x : y : z] �→ [−w : x : y : z].
If we choose a marking φ : Pic(Y ) → Z1,7 then the induced involution on the lattice Z1,7 is
given by

ρ : x �→ −x + (x · k)k. (7)

It fixes the element k and acts as −1 on k⊥ so that it corresponds to the central element
−1 ∈ W (E7). An element e ∈ Z1,7 that satisfies e · e = −1 and e · k = −1 is called
exceptional. The set E of exceptional elements forms a single W (E7)-orbit and consists of
the 56 elements

1. ei with 1 ≤ i ≤ 7, the class of the exceptional divisor Ei .
2. li j = e0 − ei − e j , the class of the strict transform of the line Li j through Pi and Pj .
3. ci j = −k− li j = 2e0−e1−· · ·− êi −· · ·− ê j −· · ·−e7, the class of the strict transform

of the conic Ci j through 5 of the 7 points.
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4. ki = −k − ei = 3e0 − e1 − · · · − 2ei − · · · − e7, the class of the strict transform of the
cubic Ki through 6 points with a node at a seventh point.

The elements of E come in 28 pairs (ei , ki ), (li j , ci j ) whose elements are interchanged
by the involution ρ. The geometric meaning of this is as follows. An exceptional element
E ∈ Pic(Y ) corresponds to a exceptional curve on the del Pezzo surface Y and there are
56 of these. The two elements of a pair (E, ρY (E)) are mapped to a single bitangent of the
quartic curve by the anticanonical map. This accounts for all 28 bitangents of a smooth plane
quartic curve.

3.4 Real del Pezzo surfaces

We review some results of Wall [19] on real del Pezzo surfaces. Other references on this
subject are Kollár [10] and Russo [17]. A real del Pezzo surface is a pair (Y, χY ) with Y
a complex del Pezzo surface and χY : Y → Y a real form on Y . The real points Y (R) of
Y are the fixed points under χY . The action of χ induces an involution χ∗Y on the Picard
group Pic(Y ) which preserves the canonical class K and the intersection product. By fixing
a marking φ : Z1,r → Pic(Y ) we obtain an involution of the lattice Z1,r by the formula

χ = φ−1 ◦ χ∗Y ◦ φ.

The involution χ preserves the element k ∈ Z1,r . As we have seen such an involution
corresponds to an involution u in the Weyl group Wr . The conjugacy class of this involution
in Wr is an important invariant of the real structure on Y .

A real del Pezzo surface Y of degree two is the double cover of the projective plane P
2

ramified over a smooth real plane quartic curve C ⊂ P
2 so that

Y = {
w2 = f (x, y, z)

}
.

We fix the sign of f so that f > 0 on the orientable interior part of C(R) ⊂ P
2(R). By using

the deck transformation ρY of the cover we see that there are two real forms of Y :

χ+Y : [w : x : y : z] �→ [w̄ : x̄ : ȳ : z̄]
χ−Y : [w : x : y : z] �→ [−w̄ : x̄ : ȳ : z̄]. (8)

These real forms satisfy: χ−Y = ρY ◦ χ+Y and we denote the real point sets of χ+Y and χ−Y
by Y+(R) and Y−(R) respectively. Note that Y+(R) is an orientable surface while Y−(R) is
non-orientable.

In [19] Wall determines the correspondence between the conjugacy classes of the u ∈
W (E7) and the topological type of Y (R). The results are shown in Table 1. We use the
notation kX for the disjoint union and #k X for the connected sum of k copies of a real
surface X . From this table we see that except for the classes of D4 and A3′

1 the conjugacy
class of u ∈ W (E7) determines the topological type of the real plane quartic curve C(R).

4 Moduli of del Pezzo pairs

In this section we study del Pezzo surfaces obtained by blowing up r points on a fixed plane
singular cubic. The strict transform of this cubic is a singular anti-canonical curve on the del
Pezzo surface. This is the situation studied by Looijenga for del Pezzo surfaces of degree
two in [12] and for general del Pezzo surfaces in [13]. In this article we restrict ourselves to
the case of del Pezzo surfaces of degree two.
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Table 1 The real topological
types of real del Pezzo surfaces
of degree two and their
corresponding involutions in the
Weyl group W (E7)

j C(R) u ∈ W (E7) Y (R)

1 1 #8P
2(R)

E7 4S2

2 A1 #6P
2(R)

D6 3S2

3 A21 #4P
2(R)

D4A1 2S2

4 A31 #2P
2(R)

A41 S2

5 D4 S2 � #2P
2(R)

A3′1 S1 × S1

6 ∅ D4 2P
2(R)

A3′1 ∅

Definition 4.1 A del Pezzo pair of degree two is a pair (Y, Z) consisting of a del Pezzo
surface Y of degree two and a singular anti-canonical curve Z ⊂ Y . We denote the moduli
space of del Pezzo pairs of degree two by DPP2. By adding a marking to the del Pezzo
surface Y we obtain a marked del Pezzo pair (Y, Z , φ) with φ : Z1,7 → Pic(Y ) a marking

of Y . The moduli space of marked del Pezzo pairs is denoted by D̃PP2.

The smooth points of an irreducible plane cubic admit a group law. For smooth cubics this
is well known. A similar construction for the group law can be applied to singular irreducible
cubics as follows. Let Z be a irreducible plane cubic curve and let O be an inflection point
of Z . The map

Zns(C)→ Pic0(Z)

P �→ [P] − [O]
is a bijection and defines a group law on Zns(C). For a nodal cubic it is well known that there
is an isomorphism of groups: Pic0(Z) ∼= C

∗. It is unique up to multiplication by an element
of Aut(C∗) ∼= {±1}. Similarly for a cuspidal cubic we have an isomorphism Pic0(Z) ∼= C

that is unique up to multiplication by an element of Aut(C) ∼= C
∗. A useful property of the

group law is the following.

Proposition 4.2 Let Z be a plane cubic curve and let P1, . . . P3d be points on Zns. Then∑3d
i=1 Pi = 0 if and only if {P1, . . . , P3d} = Cns ∩ D for some plane curve D of degree d.

In particular three points of Zns add up to zero if and only if they are colinear.

Proof The condition
∑3d

i=1 Pi = 0 is equivalent to
∑3d

i=1 ([Pi ] − [O]) = 0 in Pic0(C). This
implies that the divisor

∑3d
i=1 (Pi − O) is principal of the form div( f/gd)with g the equation

of the flex line at O and f a homogeneous polynomial of degree d which defines the curve
D. ��

Suppose that (Y, Z , φ) is a marked del Pezzo pair and π : Y → P
2 is the corresponding

blowup map. The image π(Z) is a plane cubic through the seven points B = {P1, . . . , P7}.
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Table 2 Strata in the moduli
space of del Pezzo pairs (Y, Z) of
degree two according to the
Kodaira type of Z

Z ZB

I1 Irreducible cubic with a node and B ⊂ Zns

I I Irreducible cubic with a cusp and B ⊂ Zns

I2 Irreducible cubic with a node that coincides
with a blown up point or reducible cubic
consisting of a conic and a line intersecting
in two points

I I I Irreducible cubic with a cusp that coincides
with a blown up point or reducible cubic
consisting of a conic and a tangent line

In Table 2 we distinguish four cases according to the type (nodal or cuspidal) of ZB and
the location of the points B. We will use the symbols used in Kodaira’s classification of the
singular fibers of an elliptic pencil to denote the type of the curve Z .

These four types of Z ⊂ Y each define a stratum in the moduli space of del Pezzo pairs.
The stratum of type I1 where ZB is an irreducible nodal cubic and B ⊂ Zns

B is generic
and defines an open subset DPP◦2 ⊂ DPP2. For now we assume that Z is of type I1 and
we identify Z with ZB so that we can make use of the group law on the singular cubic
ZB . By composing the marking φ : Z1,7 → Pic(Y ) with the restriction homomorphism
Pic(Y ) → Pic(Z) we obtain a map that assigns ei �→ [Pi ] for 1 ≤ i ≤ r and e0 �→ 3[O]
where [O] is an inflection point of Z . Restricting this map to the root lattice Q < Z1,7

induces a homomorphism χ ∈ Hom(Q,Pic0(Z)) characterized by the relations

χ(ei − ei+1) = [Pi ] − [Pi+1]
χ(e0 − e1 − e2 − e3) = 3[O] − [P1] − [P2] − [P3]. (9)

Proposition 4.3 No root lies in the kernel of the homomorphism χ : Q → Pic0(Z).

Proof From the construction of χ and Proposition 4.2 we see that

χ(ei − e j ) = 0⇔ Pi = Pj

χ(e0 − ei − e j − ek) = 0⇔ Pi , Pj , Pk are colinear

χ(2e0 − e1 − · · · − êi − · · · − e7) = 0⇔ P1, · · · , P̂i , · · · , P7 are conconic

so that the condition that the points are in general position is equivalent to χ(α) �= 0 for all
roots α ∈ R. ��

After fixing an isomorphism Pic0(Z) ∼= C
∗ we can identify the space

Hom(Q,Pic0(Z))

with the complex torus T = Hom (Q, C
∗). This identification is not canonical but is unique

up to multiplication by an element of Aut(C∗) ∼= {±1} which acts on T. The Weyl group W
of type E7 acts on T by its natural action on Q and we denote the complement of the toric
mirrors for this action by T

◦.

Theorem 4.4 (Looijenga) Let (Y, Z , φ) be a marked del Pezzo pair of degree two with Z a
nodal anti-canonical curve. The association

(Y, Z , φ) �→ (
χ : Q → Pic0(Z)

)
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extends to an isomorphism of orbifolds

D̃PP◦2 → {±1}\T◦. (10)

The left hand side is the open stratum of the moduli space of marked del Pezzo pairs of degree
two with Z of type I1. Similarly we have an isomorphism of orbifolds

DPP◦2 → W\T◦

Proof Let χ be an element of T
◦ = Hom(Q, C

∗)◦. We construct an inverse to the map of
Eq. 10 by constructing seven points on a fixed nodal cubic Z . Fix an isomorphism C

∗ → Zns

by choosing one of the three inflection points O on Z as a unit element. The group law then
satisfies ti t j tk = 1 if and only if the corresponding points Pi , Pj , Pk on Zns are colinear.
Since the seven points should satisfy (9) they must also satisfy the equality

Pi = χ(ei − e0/3) (11)

where we consider χ as an element of Hom(Q⊗Z C, C
∗). This determines the seven points

uniquely up to addition of an inflection point of Zns (or equivalently multiplication by a third
root of unity of C

∗). Blowing up these seven points determines a marked del Pezzo surface
Y and the pullback of Z under the blowup map defines a nodal anti-canonical curve on Y
isomorphic to Z . ��

To conclude this sectionwe obtain explicit descriptions of the standard triangular Cremona
transformation centered in three points on an irreducible plane nodal cubic ZB in terms of
the coordinate t ∈ C

∗ ∼= Zns(C). The Cremona map ρ(s7) centered in the points P1, P2, P3
of Z with coordinate t maps Z to another nodal cubic Z ′ which can be mapped back to Z
with new coordinate t ′ by an element of PGL(3, C). If ti , t j , tk, t1, t2, t3 ∈ Z are distinct
points lying on a conic, then t ′i , t ′j , t ′k lie on a line by the properties of the standard triangular
Cremona transformation so that

1 = ti t j tk t1t2t3 = t ′i t ′j t ′k .

Similarly, the standard triangular Cremona transformation maps the line L12 to t ′3, so that for
a point ti on L12:

1 = ti t1t2 = t ′3t
′−1
i .

From these formulas we compute

t ′ =
{
t (t1t2t3)−2/3 t = t1, t2, t3
t (t1t2t3)1/3 t general

(12)

which determines t ′ up to multiplication by a third root of unity. These formulas can also be
derived by computing the action of s7 ∈ W on Eq. 11.

5 Strata of smooth pointed quartic curves

We have seen in Sect. 3.3 that the moduli space DP2 of del Pezzo surfaces of degree two
and the moduli space Q of plane quartic curves are isomorphic. In this section we relate the
moduli space DPP2 of del Pezzo pairs of degree two and its strata to the moduli space of
smooth pointed plane quartics Q1. We first define this latter space Q1.
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Table 3 Strata in the space of
pointed quartics

Stratum D Z Codim.

�◦ (2, 1, 1) I1 0

�bit (2, 2) I2 1

�flex (3, 1) I I 1

�hflex (4) I I I 2

Definition 5.1 Let k be the field of real or complex numbers. A pointed plane quartic curve
is a pair (C, p) with C a plane quartic curve and p ∈ C(k). The space � of smooth pointed
quartics curve is defined by

�(k) = {(C, p); p ∈ C(k)} ⊂ P4,3(k)−�(k)× P
2.

The group PGL(3, k) acts on � and the quotient

Q1 = PGL(3, k)
∖
�(k)

represents isomorphism classes of smooth pointed plane quartics.

To a pointed quartic (C, p) we can associate a del Pezzo pair (Y, Z) in the following way.
The del Pezzo surface Y of degree two is defined by

Y = {
w2 = f (x, y, z)

} ⊂ P(2, 1, 1, 1) (13)

in weighted projective space. The morphism defined by the anti-canonical map is realized
by the projection map ψ : Y → P

2 given by:

[w : x : y : z] �→ [x : y : z].
Every anti-canonical curve on Y is the pullback under ψ of a line in P

2. We define Z =
ψ−1TpC to be the pullback of the tangent line to C at p. It is a singular anti-canonical curve
on Y of arithmetic genus 1. Its Kodaira type is determined by the type of the intersection
divisor D = (C · TpC) defined below.

Definition 5.2 Let D = ∑k
i=1 di (pi ) be a divisor on a curve C with the pi distinct and

ordered in such a way that d1 ≥ · · · ≥ dr . The type of D is the r -tuple d = (d1, . . . , dr ).

There are four possibilities for the type of D corresponding to the types for Z in Table 2.
Similarly we obtain four strata in the space � which are shown in Table 3. The strata �bit and
�flex where the point p is respectively a bitangent and an inflection point have codimension
one and the stratum �hflex where p is a hyperflex has codimension two in the space �.

6 Moduli of real del Pezzo pairs of degree two

Let (C, p) be a smooth real pointed plane quartic curve. By the results of the previous section
and Sect. 3.4 we can associate to (C, p) a real del Pezzo pair (Y, Z) with real form χ−Y such
that Y−(R) in nonorientable. The real form restricts to Z which is a real curve of arithmetic
genus 1 on Y and Zns(R) �= ∅. If (C, p) is in the open stratum �◦ then the tangent line TpC
intersectsC in two other distinct points which can both be real or a pair of complex conjugate
points. In both cases the curve Z is of type I1 (it has a single node). Since Zns(R) �= ∅ there
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Fig. 4 The two possibilities for
Y ns(R) for a quartic curve with
one oval. a Zns(R) ∼= R

∗. b
Zns(R) ∼= S1

(a)

(b)

are two possibilities for the real form induced by χ−Y on Zns(C) ∼= C
∗. Either it maps: t �→ t̄

and Zns(R) ∼= R
∗ or t �→ t̄−1 and Zns(R) ∼= S1. An example of both is given in Fig. 4.

Theorem 6.1 The map (C, p) �→ (
χ : Pic0 Y → Pic0 Z

)
extends to an isomorphism:

(Q◦1)R ∼= (W\T◦)(R)

where T
◦ denotes the complement in T = Hom(Q, C

∗) of the mirrors of the action of the
Weyl group W of type E7.

Proof A lot of work has already been done in the proof of Theorem 4.4. First we need to
show that the element χ : Q → C

∗ we associate to (C, p) is a real point of W\T◦. By
definition this means that w · χ = χ̄ for some element w ∈ W . The real structure χ−Y of
Eq. 3.4 acts on Pic0(Y ) ∼= Q as an involution u ∈ W . Since Y−(R) is nonorientable we see
from Table 1 that this involution is of type 1, A1, A2

1, A
3
1 or D4. The action of the restriction

of χ−Y to Pic0(Y ) ∼= C
∗ is one of t �→ t̄±1 so the element χ satisfies u · χ = χ̄±1. Since the

Weyl group W of type E7 contains−1 we can rewrite this as±u · χ = χ̄ so that χ is indeed
a real element of W\T◦.

Conversely, let χ be a real point of (W\T◦)(R). By Proposition 7.6 we can assume that
u ·χ = χ̄±1 with u ∈ W an involution of type 1, A1, A2

1, A
3
1 or D4. As in the proof of Theorem

4.4 we fix a real nodal cubic Z in P
2 and an isomorphism Zns(C) ∼= C

∗ by choosing a real
inflection point. The real form of Z is then equivalent to one of t �→ t̄±1. As in Eq. 4 the
element χ determines seven points in C

∗ by the formula ti = χ(ei − e0
3 ) which we interpret

as points on Zns(C). Since χ is real these points satisfy

u · (t1, . . . , t7) =
(
t̄±11 , . . . , t̄±17

)
.

where the involution u ∈ W acts by the Cremona action of the Weyl group as a birational
involution of P

2. This involution lifts to an anti-holomorphic involution of the del Pezzo
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surface Y obtained by blowing up the seven points. These two construction are inverse to
each other. ��

7 Reflection groups and real tori

In this section we study the connected components of the space (W\T◦)(R) where T is the
complex torus T = Hom(Q, C

∗) for Q a root lattice of type ADE . For type E7 this space
has 20 connected components which we describe explicitly as quotients of real subtori of T.

7.1 Reflection groups and root systems

We start by recalling some facts about reflection groups and root systems. Our main reference
is [1] Chapter VI. Let V be a real, finite dimensional vector space of dimension n with an
inner product (·, ·). For every nonzero α ∈ V we define the reflection sα ∈ O(V ) by

sα(x) = x − 2
(α, x)

(α, α)
α

for all x ∈ V . The mirror Hα is defined as the fixed point locus of the reflection sα . A
root system R ⊂ V is a finite set of nonzero vectors called roots that satisfy the following
properties

R1 The R-span of R is V .
R2 If α ∈ R then R ∩ Rα = {α,−α}.
R3 sαR = R for all α ∈ R.
R4 2 (β,α)

(α,α)
∈ Z for all α, β ∈ R.

A system of simple roots� = {α1, . . . , αr } ⊆ R is a basis for V such that every root is an
integral linear combination

∑r
i=1 ciαi of simple roots of the same sign. It is known that such

a simple system always exists. From now on we assume we have fixed a system of simple
roots � ⊂ R. For every root α ∈ R we define the coroot α∨ by

α∨ = 2α

(α, α)
.

The set of coroots R∨ is again a root system (the coroot system) with corresponding coroot
lattice Q∨ = ZR∨. A root system R is called irreducible if it is non-empty and cannot be
decomposed as an orthogonal direct sum R = R1 ⊕ R2 of two non-empty root systems
R1 and R2. Let R be an irreducible root system. We define the highest root α̃ of R with
respect to � as the unique root such that

∑r
i=1 ci is maximal. We also define α0 = −α̃. The

Weyl group W is the group generated by the reflections sα with α ∈ R or equivalently by
the simple reflection sα with α ∈ �. It is a finite group and acts simply transitively on the
connected components of V \ ∪Hα which are called chambers. The fundamental chamber C
with respect to a given system of simple roots � is defined by

C = {x ∈ V | (αi , x) > 0 for 1 ≤ i ≤ r} .
Its closure C̄ is a fundamental domain for the action of W on V .

The affine Weyl group Wa is the group generated by the affine reflections sα,k with α ∈ R
and k ∈ Z defined by

sα,k(x) = x − (α, x)α∨ + kα∨.
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The mirror of sα,k is the affine hyperplane Hα,k = {x ∈ V ; (α, x) = k}. The affine Weyl
group Wa is the semidirect product of W by the coroot lattice: Wa = Q∨ � W . This allows
us to write sα,k = t (kα∨)sα where t (kα∨) denotes translation over kα∨ in V . The group Wa

acts simply transitively on the connected components of the space V ◦ = V \ ∪Hα,k which
are called alcoves. The fundamental alcove A is the simplex given by

A = {x ∈ V | (α̃, x) < 1, (αi , x) > 0 for 1 ≤ i ≤ r}
and its closure Ā is a fundamental domain for the action ofWa on V . The r +1 closed facets
Āi of Ā are given by

Āi =
{
Hαi ∩ Ā if 1 ≤ i ≤ r

Hα̃,1 ∩ Ā if i = 0

A reducible root system R can be decomposed into a direct sum of irreducible root systems
{Ri }i∈I for some finite index set I . The Weyl group W (R) of R is the direct product of the
Weyl groups {W (Ri )}i∈I . This decomposition is unique up to permutation of the factors. A
fundamental domain for the action ofW (R) on V is now the direct product of the fundamental
chambers of the factors. Similarly for the affine Weyl group Wa(R) = Q∨ � W (R) a
fundamental domain on V is the product of the fundamental alcoves of the factors.

We want to determine the stabilizer StabWa (x) of an x ∈ V in the affine Weyl group.
Since all points in the orbitWa · x have conjugate stabilizers, we can assume that x ∈ Ā. The
stabilizer StabWa (x) is the group generated by the reflections in the mirrors Hα,k that contain
x . It is a Weyl group with root system R(x) and system of simple roots �(x) given by

R(x) = {α ∈ R; (α, x) ∈ Z} , �(x) = {
αi ; 0 ≤ i ≤ r, x ∈ Āi

}
. (14)

These root systems can be reducible, even if the root system R is irreducible.

7.2 The extended affine Weyl group

The coweight lattice P∨ is defined by

P∨ = {Z ∈ V ; (Z, α) ∈ Z ∀α ∈ R}
and contains Q∨ as a subgroup of finite index. It has a basis {
∨

1 , . . . , 
∨
r } dual to the basis

of simple roots of R, so that (αi ,

∨
j ) = δi j . The extended affine Weyl group W ′

a is defined
as the semidirect product P∨ � W with P∨ acting on V by translations. We will prove that
W ′

a is the extension of Wa by a finite subgroup of the automorphisms of the fundamental
alcove.

Let ni = (α̃,
∨
i ) be the coefficient ofαi in the highest root α̃. For notation it is convenient

to define 
∨
0 = 0 ∈ P∨ and n0 = 1. The fundamental alcove A is the open n-simplex with

vertices {
∨
i /ni }ri=0. Let J be the set of indices 0 ≤ i ≤ r such that ni = 1. The vertices


∨
i with i ∈ J or equivalently: R(
∨

i /ni ) ∼= R are called special. Put R0 = R and let w0

be the longest element ofW with respect to the basis of simple roots in equation {αi }ri=1. We
also define for every i ∈ J \ {0} the root system Ri generated by the simple roots

{α1, . . . , α̂i , . . . , αr }. (15)

Let wi be the longest element of the Weyl group W (Ri ) with respect to the basis of simple
roots (15). For every i ∈ J we now define the following element of the extended affine Weyl
group

γi = t (
∨
i )wiw0.
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Observe that γi (0) = 
∨
i and γ0 = w2

0 = 1. Proposition 6 from [1, §2] VI states that we
have equality

{w ∈ W ′
a;w(A) = A} = {γi }i∈J (16)

and we can identify the group (16) with the finite Abelian group P∨/Q∨ by assigning to γi
the class of 
i mod Q∨ where i ∈ J . We see that the group P∨/Q∨ acts simply transitively
on the special points. Since the affine Weyl group Wa acts simply transitively on the alcoves
it follows from the above that we have an isomorphism

Wa � P∨/Q∨ ∼−→ P∨ � W = W ′
a (17)

by assigning (t (Z)w, γi ) �→ t (Z + w
∨
i )wwiw0. The extended affine Weyl group acts

transitively on the connected components of V ◦, but the action need not be free. The action
of P∨/Q∨ on the fundamental alcove A can have fixed points. Also W ′

a is in general not a
Coxeter group.

Lemma 7.1 Let x ∈ Ā, then

StabW ′
a
(x) = StabWa (x) � StabP∨/Q∨(x)

Proof Let t (Z)w ∈ Wa and γ ∈ P∨/Q∨ be such that t (Z)wγ (x) = x . Define y := γ (x) ∈
Ā. Now t (Z)w(y) = x with x, y ∈ Ā, and because Ā is a strict fundamental domain for the
action of Wa we can conclude x = y, so γ (x) = x . This also implies that t (Z)w(x) = x . ��

7.3 The centralizer of an involution in a reflection group

In this sectionwe recall some known results on centralizers of involutions in reflection groups.
Let (W, S) be a finite Coxeter group and let u ∈ W be an involution. We want to determine
the centralizer CW (u) of u in W . By the classification of involutions in Coxeter groups there
is a subset I ⊆ S such that u is conjugate in W to the involution wI : the unique longest
element −1 in the parabolic subgroup WI . Felder en Veselov in [7] observe the following.

Proposition 7.2 If WI is a parabolic subgroup of W that satisfies the (−1) condition then
CW (wI ) = NW (WI ).

Proof The element u is the unique longest element of WI , so that wuw−1 = u for all
w ∈ NW (WI ) and consequently: NW (WI ) < CW (u). For the other inclusion letw ∈ CW (u).
We need to prove that wsαi w

−1 ∈ WI , or equivalently: w · αi ∈ R ∩ VI for all i ∈ I . This
holds since the element w preserves the eigenspace decomposition of the involution u. ��

Using this result we can use the classification of normalizers of parabolic subgroups
of reflection groups by Howlett [8]. We want to mention here that a lot of the results of
this section also appear in [11]. Let u = wI and decompose V into ±1-eigenspaces for u:
V = V+u +V−u where V−u = VI . This defines two orthogonal root systems and corresponding
Coxeter groups

R±u = R ∩ V±u , W±
u = W (R±u ).

Observe that W−
u = WI and that the eigenspace V−u is spanned by the roots of R−u . The

groupWu = W−
u ×W+

u is generated by all reflections that commute with u and is contained
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in the centralizer CW (u) of u. This centralizer also contains a non-reflection part Gu which
now describe. Consider the two Weyl elements

ρ± = 1

2

∑

α∈R±u (+)

α

where the sum runs over all positive roots of R±u , which we denote by R±u (+). The set

Rc
u = {α ∈ R; (α, ρ+) = (α, ρ−) = 0}

is a root system which can be written as an orthogonal disjoint union of subroot systems
Rc
u = R1∪R2. These factors are isomorphic root systems and are exchanged by the involution

u. The Weyl group W (Rc
u) is a product

W (Rc
u) = W (R1)×W (R2)

whose factors are exchanged by conjugacy with u. The group Gu consists of all elements of
W (Rc

u) that commute with u and is the diagonal of this product

Gu = {(w, uwu); w ∈ W (R1)}.
This group is generated by pairs of commuting reflections sαsu·α with α ∈ R1 and is isomor-
phic to W (R1). Now we can formulate the main theorem of this section.

Theorem 7.3 The centralizer of an involution u ∈ W splits as a semidirect product

CW (u) ∼= Wu � Gu

∼= W−
u � G+u

where G+u is the reflection group defined by G+u = {w ∈ W ;w I = I } which contains W+
u

as a normal subgroup.

7.4 Root tori and their invariants

If the type of a root system R occurs in Eq. 5 we say it is of del Pezzo type. Such root systems
are products of root systems of type ADE so that all roots have the same length. This implies
that we can identify the root (resp weight) and the coroot (resp coweight) lattices R and R∨
(resp P and P∨). To simplify notation we use this identification from now on. To a root
system R of del Pezzo type we associate the complex torus T = C

∗ ⊗ P = Hom(Q, C
∗). It

has a natural action of the Weyl group W .

Theorem 7.4 The quotient W\T is an affine toric variety and the algebra of W-invariants
of Z[Q] is the semi-group algebra given by

Z[Q]W ∼= Z[P+ ∩ Q] (18)

where P+ =∑n
i=1 Z≥0
i is the lattice cone spanned by the fundamental weights.

Proof For the proof of the isomorphism of Eq. 18 we refer to [14, Section 6.3.5]. The
coordinate ring of W\T is C[T]W ∼= C ⊗Z Z[P+ ∩ Q]. It is the complexification of a
semi-group algebra and its spectrum is by definition an affine toric variety. ��
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This theorem is a generalisation of classical exponential invariant theory for root systems
as described in [1, VI §3]. The main theorem of that section states that the algebra of W -
invariants of Z[P] is a polynomial algebra

Z[P]W ∼= Z[P+].
This is a toric analogue of a well known theorem of Chevalley. The algebra C[P] is the

coordinate ring of the algebraic torus T = C
∗⊗Q. Since theW -invariants form a polynomial

algebra we can rephrase the theorem as W\T ∼= C
n . The torus T is a finite cover of T where

the group of deck transformations is isomorphic to P/Q and there is an isomorphism of
orbifolds

W\T ∼= (P/Q)\Cn .

The action ofW on T on the complement of the mirrors T
◦ is not free in general: the group

P/Q can have fixed points in T
◦. The stabilizers are described by the following lemma.

Lemma 7.5 For t ∈ T the stabilizer StabW (t) is the extension of a reflection group StabrW (t)
by a finite subgroup of the automorphisms of a fundamental alcove of Wa.

Proof Consider the exponential sequence

0 Z C C
∗ 1

exp

where exp : z �→ e2π i z . By tensoring from the right with P we obtain another exact sequence

0 P VC T 1
exp

where VC = C ⊗ V is the complexification of V . From the sequence we read off that
W\T ∼= W ′

a\VC where the extended affine group W ′
a = P � W acts on VC by the formula

t (λ)w · (x + iy) = (w · x + Z)+ i(w · y)
for Z ∈ Q and w ∈ W . Write z = log t , by Lemma 7.1 the group StabW (t) is isomorphic to

StabW ′
a
(z) ∼= StabWa (z) � StabP/Q(z).

The group StabWa (z) is a Weyl group generated by the reflection in the mirrors that contain
z. ��
7.5 Real root tori and their connected components

Complex conjugacy on C
∗ defines a real form on the complex torus T = C

∗ ⊗ P . This in
turn defines a real form on the quotient W\T. Let q : T → W\T be the quotient map. The
real points of W\T are the points q(t) such that t and t̄ are in the same W -orbit so that

q(t) ∈ (W\T)(R) ⇐⇒ w · t = t̄ for some w ∈ W.

We will prove in Proposition 7.6 that we can assume that w is an involution in W . Every
involution in W defines a real form on T by composing with complex conjugation. The real
points of such a real form are given by

Tu(R) = {
t ∈ T; u · t = t̄

}
.

The following proposition is a slight modification of a result due to Tits ([11, Proposition
2.2]) to the present situation. The proof is similar to the one given there.
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Proposition 7.6 (Tits)

q−1(W\T)(R) =
⋃

u∈W ;u2=1
Tu(R)

Proof Let t ∈ T be such that w · t = t̄ for some w ∈ W . We will prove that there is a w′
in the reflection part StabrW (t) of the stabilizer StabW (t) such that u = ww′ is an involution
in StabW (t). The reflection part of the stabilizer is a finite reflection group which acts on the
tangent space TtT through its complexified reflection representation. Since StabW (t) is also
the stabilizer of t̄ we see that

w StabW (t)w−1 = StabW (w · t) = StabW (t̄) = StabW (t).

This implies that w permutes the chambers of StabrW (t) so that we can find a w′ ∈ StabrW (t)
such that u = ww′ leaves a chamber invariant. Since StabrW (t) acts simply transitively on its
chambers it follows that u2 = 1. ��

The group W permutes the real tori Tu according to

w · Tu = Twuw−1

so W -equivalent real tori correspond to conjugate involutions. Furthermore the stabilizer of
a real torus Tu(R) in W is precisely the centralizer CW (u) of u in W . We want to study the
real tori Tu and especially their connected components in more detail. The involution u acts
naturally on the weight lattice P and there exists a so called normal basis for P such that

u = In1 ⊕
(−In2

)⊕
(
0 1
1 0

)n3

P = P1,u ⊕ P2,u ⊕ P3,u .

(19)

This is described in detail in [3]. The decomposition of Eq. 19 is not unique but the triple
(n1, n2, n3) which we call the type of the involution u ∈ W is an invariant of the involution.
A choice of normal basis determines an isomorphism

Tu(R) ∼= (R∗)n1 × (S1)n2 × (C∗)n3 (20)

with n1, n2, n3 ∈ N and n1 + n2 + 2n3 = n. This product consists of factors of split (R∗),
compact (S1) and complex (C∗) type. To determine the numbers ni we have the following
lemma from [3].

Lemma 7.7 There are isomorphisms of abelian groups

ker(u − 1)

im(u + 1)
∼= (Z/2Z)n1 ,

ker(u + 1)

im(u − 1)
∼= (Z/2Z)n2

where the first of these can be identified with the component group π0(Tu(R)).

Proof We construct the first of these isomorphisms. After choosing a normal basis for P
we can use the lattice decomposition (19) to see that the lattice ker(u − 1) is isomorphic to
P1,u ⊕ P3,u . Similarly the lattice im(u + 1) is isomorphic to 2P1,u ⊕ P3,u and the quotient
of these lattices is P1,u/2P1,u .

To determine the number of connected components ofCW (u)\Tu(R)we need to compute
the number of orbits under the action of CW (u) on the connected components of Tu(R). The
following lemma shows that in fact only W+

u acts non-trivially on the components.
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Lemma 7.8 The group W−
u � Gu is contained in the kernel of the action of CW (u) on

ker(u − 1)/ im(u + 1).

Proof Suppose x ∈ ker(u− 1). In particular x ∈ V+u so that w · x = x for all w ∈ W−
u . The

group Gu is generated by products of commuting reflections sαsu·α where α ∈ R1. Such an
element acts trivially on the class of x in ker(u − 1)/ im(u + 1) since

sαsu·α · x − x = (u + 1) ((α, x)α) ∈ im(u + 1).

��
7.6 Connected components of W\T1

For the trivial involution u = 1 and the real torus T1 we have

T1(R) ∼= (R∗)n, ker u − 1

im u + 1
∼= P

2P
, CW (u) = W.

The decomposition of this real torus into connected components is described by

T1(R) =
⊔

[
 ]∈P/2P

T


1 where T



1 = exp

(
1

2

 + iV

)
.

We can use the basis of fundamental weights {
1, . . . , 
n} of P to identify T with (C∗)n
through the isomorphism

C
∗ ⊗ P → (C∗)n

n∑

i=1
ti ⊗
i �→ (t1, . . . , tn).

In this way we can also identify the component group P/2P of T1 with the subgroup
{−1, 1}n ⊂ (R∗)n .

Remark 7.9 An element of P/2P can be represented by a colouring of the Coxeter diagram
of W where the i th node is coloured white if the corresponding coefficient of 
i is 1 and
coloured black if it is −1. To determine the action of W on two-coloured Coxeter diagrams
first observe that a simple reflection for W acts on the fundamental weights as

si ·
 j =
{


i i �= j

−
i +∑
k∈I j 
 j i = j

(21)

where the sum runs over the set I j of neighbouring vertices of the j th vertex of the Coxeter
diagram. Now the generator si only acts nontrivially if the i th node vi is black. In this case
the action of si changes the colour of all neighbouring vertices of vi but leaves vi unchanged.

It is often convenient to use the group 1
2 P/P for representing the connected components

of Tu(R) instead of the group P/2P . The reason for this is that there are bijections of orbit
spaces

W
∖ (

1

2
P/P

)
∼= (P � W )

∖1

2
P ∼= (P/Q)

∖ (
1

2
P ∩ Ā

)
. (22)

We can count the points in the intersection 1
2 P ∩ Ā and the group P/Q is typically small.

Its action is easily determined for Weyl groups of type ADE . We do this for root systems of
type An in Example 7.10.
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Example 7.10 (An) We will use the above method to describe the orbit space W\ (P/2P)

for type An . This will be used frequently in the next section. Representatives for the orbits
are given by

{
{0,
1, . . . , 
n/2} n even

{0,
1, . . . , 
(n+1)/2} n odd.

Proof For a root system of type An all the roots have coefficient 1 in the highest root so the
fundamental alcove is the convex hull of the fundamental weights. From this we determine

Ā ∩ 1

2
P =

{
0,


i

2
,

i +
 j

2

}

1≤i �= j≤n
.

The group P/Q is cyclic of order n+1 and is generated by γ1 which acts as the permutation
(01 . . . n) on the indices of the fundamental weights {
i }. A small calculation shows that

γ1

(
i

2

)
= 
i+1 +
1

2

where we use the notation 
0 = 0 and the indices are considered mod n + 1. A typical
γ1-orbit (for which n + 1 �= 2i) is of the form


i

2
�→ 
i+1 +
1

2
�→ · · · �→ 
n +
n−i

2
�→ 
n−i+1

2

�→ 
n−i+2 +
1

2
�→ · · · �→ 
n +
i−1

2
�→ 
i

2
.

A representative is given by 
i/2. If n is even then all orbits are of this form and there are
n/2 orbits. If n is odd then there is one additional orbit with n + 1 = 2i given by


(n+1)/2
2

�→ 
i+1 +
1

2
�→ · · · �→ 
n +
n−i

2
�→ 
(n+1)/2

2
.

A representative is given by 
(n+1)/2. ��

For non-trivial involutionsu it ismore complicated to determine the connected components
of

CW (u)\Tu(R).

After choosing a normal basis for P in which u takes a normal form we can identify the
component group π0(Tu(R)) with P1,u/2P1,u . However since there is no canonical choice
for P1,u we have to compute

W+
u \

(
P1,u/2P1,u

)

case by case. The real torus Tu(R) can be written as the disjoint union of its connected
components in the following way

Tu(R) =
⊔

[
 ]∈ 1
2 P1,u/P1,u

T


u where T



u = exp

(
1

2

 + iV+u + V−u

)
. (23)
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Table 4 The components of
CW (u)\Tu(R) for all conjugacy
classes of involutions u ∈ W with
their corresponding
representatives in
W+
u \

(
P1,u/2P1,u

)

We also list the corresponding
representatives in
W+
u \

(
P1,u/2P1,u

)

u ∈ W n1 n2 n3 #components Representatives

1 7 0 0 4 {0,
5,
6,
7}
E7 0 7 0 1 {0}
A1 5 0 1 3 {0,
3,
4}
D6 0 5 1 1 {0}
A21 3 0 2 3 {0,
4, 
5}
D4A1 0 3 2 1 {0}
A31 1 0 3 2 {0,
6}
A41 0 1 3 1 {0}
D4 1 2 2 2 {0,
6}
A3′1 2 1 2 2 {0,
1}

Fig. 5 The labelling of the nodes
of the Coxeter diagram of type
E7

1 2 3 4

7

5 6

7.7 Connected components of real tori of type E7

In this section we determine all connected components of the space

CW (u)
∖

Tu(R)

where u ∈ W is an involution in theWeyl groupW of type E7 andTu is the corresponding real
torus. The results are listed in Table 4. In the first column are the pairs of conjugacy classes
of involutionsW we determined in Example 2.4. The total number of connected components
equals 20. Recall that the nodes of the Coxeter diagram of type E7 are numbered as in
Fig. 5.

If u is an involution with n1 = 0 then the real torus Tu(R) is connected. Consequently the
quotient CW (u)\Tu(R) is also connected. Now suppose that n1 = 1 so that P1,u/2P1,u ∼=
Z/2Z. Since {0} is a single W+

u -orbit, so is {
 } with 
 ∈ P a generator for P1,u/2P1,u
and there are two connected components. From Table 4 we see that this is the case for A3

1
and D4 which we represent by I = {s2, s4, s7} and I = {s2, s3, s4, s7} respectively. In both
cases the fundamental weight 
6 is a generator for P1,u/2P1,u . For n1 > 2 the situation
becomes more complicated and we have to determine the action of W+

u on the generators of
P1,u/2P1,u . These cases are u = 1, A1, A2

1 or A
3′
1 and we treat them below.

1 The involution u = 1 is of type (7, 0, 0) so that we can use Formula 22. The closure of
the fundamental alcove A intersected with lattice of half weights

Ā ∩ 1

2
P = Conv

(
0,


1

2
,

2

3
,

3

4
,

4

3
,

5

2
,
6,


7

2

)
∩ 1

2
P

consists of the six elements {0,
1/2,
5/2,
6,
6/2,
7/2}. The group P/Q is of
order two and acts on this set by γ6 which interchanges 0 ↔ 
6 and 
1/2 ↔ 
5/2.
We conclude that there are four orbits in W\ (P/2P) represented by {0,
5,
6,
7}.
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A1 The involution A1 is of type (5, 0, 1). As a representative we pick I = {s1}. Let Su be
the matrix of u with respect to the basis of fundamental weights for P and let Bu be a
matrix whose columns represent a normal basis in the sense of Eq. 19. The normal basis
for P is not uniquely determined but we fix the choice below.

Su =
(−1 0

1 1

)
⊕ I5, Bu =

(
1 −1
0 1

)
⊕ I5.

A basis for P1,u and system of simple roots for W+
u are then given by respectively

P1,u = Z{
7,
3,
4,
5,
6}, �(D6) = {α7, α3, α4, α5, α6, αI }
where αI = e0 − e3 − e4 − e5. The lattice P1,u is a weight lattice of type A5 and the
group W+

u which acts on P1,u is of type D6. All of this is shown in Fig. 6. The black
nodes represent the set I of W−

u , the crossed nodes the root system of W+
u and the grey

nodes the fundamental weights of P1,u .
We need to determine the action of W+

u on P1,u . First we observe that the parabolic
subgroup W (A5) of W+

u generated by the reflections represented by grey nodes in the
diagram is of type A5 and acts on P1,u in the usual way. We see from Example 7.10
that there are four orbits for W (A5)\

(
P1,u/2P1,u

)
represented by {0,
7,
3,
4}. The

remaining generating reflection sI acts on the basis for P1,u as

sαI (
7,
3,
4,
5,
6) = (
7 +
5,
3 + 2
5,
4 +
5,
5,
6).

A small calculation using Eq. 21 shows that

s4s3s7sI (
7) = s4s3s7(
7 +
5)

= s4s3(
7 +
3 +
5)

= s4(
3 +
4 +
5)

= 
4

so that the reflection sI exchanges the orbits 
7 ↔ 
4. This leaves three orbits for
W (D6)\

(
P1,u/2P1,u

)
represented by {0,
3,
4}.

A2
1 The involution A2

1 is of type (3, 0, 2). As a representative we choose I = {s1, s6}. As a
basis for the lattice P1,u we can choose Z{
3,
4,
7} which is of type A3. The group
W+

u is of type D4A1 with simple system

�(D4A1) = {α3, α4, α7, αI , αI I }
where αI = e0−e3−e6−e7 and αI I = −e0+e3+e4+e5. The corresponding diagram
is shown in Fig. 7.
The parabolic subgroupW (A3) ofW+

u of type A3 generated by the reflection represented
by the grey nodes of the diagram acts on P1,u in the usual way. We can represent the
orbits ofW (A3)\

(
P1,u/2P1,u

)
by {0,
3,
4}. The reflection sαI I acts trivially on these

orbits. The reflection sαI acts as

sαI (
7,
3,
4) = (
7 +
3,
3,
4).

This action is identical to that of s7 ∈ W (A3) so the number of orbits of
W (D4A1)\

(
P1,u/2P1,u

)
remains three with representatives {0,
3,
4}.

A3′
1 The involution A3′

1 is of type (2, 1, 2) and is represented by the elements I = {s4, s6, s7}.
The group W+

u is of type D4 with simple system

�(D4) = {α1, α2, αI , αI I }
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Fig. 6 Constuction of the simple
roots for W+

u with u of type A1
α7

α3 α4 α5 α6

αI

Fig. 7 Constuction of the simple
roots for W+

u with u of type A21

α3 α4

α7

αI

αII

Fig. 8 Constuction of the simple
roots for W+

u with u of type A31
αI

αII α2α1

where αI = e0 − e1 − e4 − e5 and αI I = e0 − e1 − e6 − e7. As a basis for P1,u we can
choose Z{
1,
2}. This is shown in Fig. 8.
The parabolic subgroup W (A2) of W+

u generated by the reflections represented by the
grey nodes in the diagram acts on P1,u in the usual way. The spaceW (A2)\

(
P1,u/2P1,u

)

consists of a single orbit represented by the element {
1}. The reflections sαI and sαI I

both act as s2 on P1,u . So there are two W+
u orbits in W (D4)\

(
P1,u/2P1,u

)
represented

by the elements {0,
1}.

7.8 The complement of the mirrors

In this section we prove that for a root system of type ADE satisfying certain assumptions
the connected components of the space (W\T◦)(R) are of the form

StabW (T

u )\(T


u )◦ where [
 ] ∈ P1,u/2P1,u . (24)

This implies that removing the mirrors from Tu(R) does not add new components to the
quotientCW (u)\Tu(R). In particular the number of connected components ofCW (u)\T◦u(R)

for involutions u in W (E7) are the same as the numbers in Table 4.

Definition 7.11 Let q : T → W\T be the quotient map. The discriminant DT is the set of
critical values of q . It consists of union of the q-images of the toric mirrors and the q-image
of the set

TP/Q =
⋃

i

exp
(
V γi

C

)

where we denote by V γi
C

the fixed points in VC of the generator γi for P/Q.

Lemma 7.12 The q-images of the real tori Tu(R) are disjoint in

(W\T)(R)− DT(R).

123



196 Geom Dedicata (2016) 185:171–203

Proof Suppose that t ∈ Tu1 ∩ Tu2 for involutions u1, u2 ∈ W . This implies that u1 · t =
u2 · t = t̄ so that in particular u1u2 · t = t . But then q(t) ∈ DT(R). ��

Since we are interested in connected components it suffices to consider the part of DT(R)

of codimension one in (W\T)(R). This motivates the following definition.

Definition 7.13 The real discriminant DT,R of (W\T)(R) is the closure of the nonsingular
part of DT(R). The difference is a DT(R)− DT,R has codimension ≥ 2 in (W\T)(R).

Proposition 7.14 If we assume that TP/Q ∩ Tu has codimension ≥ 2 for all involutions
u ∈ W then

q−1DT,R =
⋃

(Tu ∩ Hs)

where the union runs over all involutions u ∈ W and reflections s ∈ W that commute with u.

Proof Under the assumption of the proposition the set TP/Q does not contribute to the real
discriminant. In this case an element t ∈ Tu is mapped to a nonsingular point of DT(R) by
q if and only if there is a unique reflection s ∈ W that fixes t . Since the reflection usu also
fixes t , we must have that s commutes with u. ��

The assumption is satisfied for type E7. In that case P/Q is generated by the involution γ6.
The locus of fixed points V γ6 has dimension four so that the codimension of TP/Q ∩Tu ≥ 3.
In order to prove that the space of Equation (24) is connected it is sufficient to prove that the
space

StabW (T

u )\T


u − DT

u ,R

is connected. We prove the slightly stronger result that the quotient

StabWu (T


u )\T


u − DT

u ,R

by the smaller group StabWu (T


u ) is connected. We start with a lemma on the decomposition

V = V+u ⊕ V−u into ±1-eigenspaces for u on the weight lattice P . Denote by P+u and P−u
the orthogonal projections of P into V+u and V−u respectively.

Lemma 7.15 The lattice P−u is equal to the weight lattice P(W−
u ) of W−

u . If we also assume
that −1 ∈ W then P+u = P(W+

u ) and R+u spans V+u .

Proof The simple system {αi }i∈I for the root system R−u is a basis for V−u . The dual basis is
given by {
−

i }i∈I where 
−
i = ProjV−u (
i ). We have

P(W−
u ) = {Z ∈ V−u ; (Z, αi ) ∈ Z ∀i ∈ I }
= Z

{

−

i

}
i∈I

= P−u .

If −1 ∈ W then for every involution u ∈ W its opposite −u is also an involution in W .
Furthermore V±u = V∓−u and W±

u = W∓−u so that we have equalities

P(W+
u ) = P(W−−u) = ProjV−−u (P) = ProjV+u (P).

Similarly we have RR+u = RR−−u = V−−u = V+u so that R+u spans V+u . ��
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Theorem 7.16 Assume that −1 ∈ W and that TP/Q ∩ Tu has codimension ≥ 2 for all
involutions u ∈ W. LetA−u be the fundamental alcove for the action of the affine Weyl group
Q−u � W−

u on V−u and let C
+
u be the fundamental chamber of the action of the Weyl group

StabW+
u

( 1
2


)
on the affine space 1

2
 + iV+u . Then there is an isomorphism of orbifolds

StabWu (T


u )

∖
T



u − DT


u ,R
∼= StabP+u /Q+u

(
1

2



)
∖C
+

u × (
P−u /Q−u

) ∖A−u .

Proof Similar to the decomposition V = V+u ⊕ V−u there is a decomposition

T


u = exp

(
1

2

 + iV+u + V−u

)

∼= exp

(
1

2

 + iV+u

)
× exp

(
V−u

)

where [
 ] ∈ P1,u/2P1,u (so that in particular 
 ∈ V+u ). The stabilizer of T


u in Wu also

splits into a product

StabWu

(
T



u

) ∼= StabW+
u
exp

(
1

2

 + iV+u

)
× StabW−

u
exp

(
V−u

)

∼= StabP+u �W+
u

(
1

2



)
× StabP−u �W−

u

(
V−u

)
.

The result now follows from applying Lemma 7.1 to these factors and taking the quotient. ��
Remark 7.17 While the roots of the Weyl group W+

u span the vector space V+u the same
need not be true for the Weyl group StabW+

u
( 12
), even if the group W contains −1. An

example is given by the Weyl group of type E7 and the trivial involution u = 1. In that
case the Weyl group StabW ( 12
6) is of type E6 and has rank six while V is of dimension
seven. A fundamental domain for this action is the product of a Weyl chamber of type E6

and its orthogonal complement in V which is a copy of R. From this discussion we see that
the chamber C
+

u is not a Weyl chamber in the traditional sense but the product of a Weyl
chamber and an affine space. In particular it is connected, as is the alcoveA−u , which implies
the following corollary.

Corollary 7.18 Under the assumptions of Theorem 7.16, the space

StabWu (T


u )

∖
T



u − DT


u ,R

is connected.

8 The geometry of the 20 components

In this section we complete the correspondence between the 20 connected components of
the space (W\T◦)(R) for a root system of type E7 and the components of the moduli space
(Q◦1)R. For each of these components we find a representative pair (C, p) with p ∈ C(R).
The results are listed in the tables of Sect. 9.

Theorem 8.1 The curves in the tables of Sect. 9 represent the 20 different components of
(Q◦1)R.
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Fig. 9 The triangle forms an
obstruction to deforming these
two curves into each other by
Bezout’s Theorem

�6 �7

Proof It is clear that for the curves in the left columns the associated del Pezzo pair (Y, Z)

satisfies Zns(R) ∼= R
∗ so that they belong to the space StabW (Tu)\T◦u for u of type

1, A1, A2
1, A

3
1 or D4. Similarly the curves in the right column satisfy Zns(R) ∼= S1 and

belong to StabW (T−u)\T◦−u (so −u is of type E7, D6, D4A1, A4
1 or A3′

1 ). Just check from
the pictures whether Zns(R) has one or two components. With the exception of the two
M-curves labeled 
6 and 
7 for all of the curves in the table the topological types of the
pairs

(
C(R), TpC(R)

)
are distinct. It is not possible to deform one of them into the other

without passing through one of the strata (Qflex
1 )R, (Qbit

1 )R or (Qhflex
1 )R so that they lie indeed

in different components of (Q◦1)R. We need to prove that the M-curves labeled 
6 and 
7

are not in the same component. For this consider the affine quartics obtained by placing the
tangent line TpC at infinity for these two curves. They are shown in Fig. 9.

The triangle drawn in the picture forms an obstruction to deforming one into the other: it is
not possible to move the central oval of the curve
6 out of the triangle without contradicting
Bezout’s theorem (a line intersects C in four points). This is in agreement with Table 15 in
Appendix 1 of [4] where certain affine M-quartics are classified. ��

To determine which of the curves in Sect. 9 corresponds to which component of (Q◦1)R it
is convenient to have an alternative description of the components of (W\T◦) (R). For this
we explicitly use the construction from the proof of Theorem 6.1 to associate to χ ∈ T



u (R)

seven points in general position on the nonsingular locus of an irreducible real plane nodal
cubic Z ⊆ P

2. As before we identify Zns(C) ∼= C
∗ so that the points are defined by the

formula

χ �→ (P1, . . . , P7) with Pi = χ
(
ei − e0

3

)

up to addition of an inflection point of Z . We start with the components corresponding to
M-quartics.

If χ is an element of the compact torus T−1 ∼= Hom(Q, S1) then this construction deter-
mines seven points on the real point set Z(R) of a real plane nodal cubic with Zns(R) ∼= S1.

If χ is an element of the split torus T1 ∼= Hom(Q, R
∗) then the construction determines

seven points on the real point set of a real plane nodal cubic with Zns(R) ∼= R
∗. If we choose

the unique real inflection point of Z as the unit element for the group law on Zns then these
seven points are real. The Weyl group W acts on (R∗)7 by permuting the coordinates and by
triangular Cremona transformations in triples of points. For a seven-tuple t = (t1, . . . , t7) ∈
(R∗)7 let m+ denote the number of positive coordinates and m− the number of negative
coordinates. The permutation orbit of t is uniquely determined by the pair (m+,m−). From
Formula 12 we see that if we perform a triangular Cremona transformation in ti , t j , tk the
sign of these points remains unchanged and the remaining points change sign if and only
if one or three of the three points are negative. This describes the action of W on the pairs
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Table 5 Connected components
for W\T1(R) with their
representatives in W\ (P/2P)

The first column lists the
representatives in W\ (P/2P)

Representative StabW (T

1 ) W · (m+,m−)

[0] W (E7) {(7, 0)}
[
6] W (E6) � Z/2Z {(6, 1), (2, 5)}
[
5] W (D6A1) {(5, 2), (3, 4), (1, 6)}
[
7] W (A7) � Z/2Z {(4, 3), (0, 7)}

(a) 

(b) 

Fig. 10 The twoways of passing through a codimension one stratum in themoduli space (Q◦1)R. aDeforming
through a flex. b Deforming through a bitangent

(m+,m−) and there are four orbits. These correspond to the four components of

W\T◦1 =
⊔

[
 ]∈W\(P/2P)

StabW (T

1 )

∖ (
T



1

)◦

where
 ∈ {0,
5,
6,
7}. The precise correspondence is shown in Table 5. The stabilizers
for the components in the table are calculated using Formula 14 and Lemma 7.1.

To determine which picture from the tables in Sect. 9 for u = 1 belongs to which of the
components from Table 5 we determine the adjacency relations between the five components
corresponding to pointed M-quartics in (Q◦1)R. Two components are adjacent if their corre-
sponding pointed quartics (C, p) can be deformed into each other by moving through the
stata (Qbit

1 )R or (Qflex
1 )R of codimension one. The effect of these two deformations is shown

in Fig. 10.

Proposition 8.2 The adjacency graph for the five components of real pointed M-curves in
(Q◦1)R is given by:

(7) (7, 0) (6, 1) (5, 2) (4, 3)

123



200 Geom Dedicata (2016) 185:171–203

Table 6 Connected components
for CW (u)\Tu(R) for u of type
Ai1 with i = 1, 2, 3

The second column shows the
representatives for
CW (u)\ (

P1,u/2P1,u
)
from

Table 4

u Representative CW (u) · (m+,m−)

A1 [0] {(5, 0)}
[
4] {(4, 1), (2, 3), (0, 5)}
[
3] {(3, 2), (1, 4)}

A21 [0] {(3, 0)}
[
4] {(2, 1), (0, 3)}
[
3] {(1, 2)}

A31 [0] {(1, 0)}
[
6] {(0, 1)}

where we label components of W\T◦1 by a representative for the corresponding orbit W ·
(m+,m−) and the component W\T◦−1 by (7).

Proof A curve in the component coresponding to W\T◦1 can only be deformed to one in the
component of W\T◦−1 by deforming through a flex point. This is a transition from (7) to
(7, 0). By repeatedly deforming through a bitangent one moves through the components

(7, 0) ↔ (6, 1) ↔ (5, 2) ↔ (4, 3).

This proves the proposition and shows that the pictures corresponding to the components are
indeed the ones shown in the table for u = 1. ��

For χ ∈ Tu(R)with u of type Ai
1 with i = 1, 2, 3 we can do a similar analysis. In this case

the construction associates to χ : 7− 2i real points and i pairs of complex conjugate points
for a suitable representative u (not involving the reflection s7). For example the involution
u = s6s4 of type A2

1 acts as

s6s4 · (P1, P2, P3, P4, P5, P6, P7) = (P1, P2, P3, P5, P4, P7, P6)

on the Pi so that χ ∈ Ts6s4 produces seven points in Zns(C) ∼= C
∗ with P1, P2, P3 real

points and (P4, P5) and (P6, P7) complex conjugate pairs. The centralizer CW (u) is more
complicated in this case. It acts on the points by permutations preserving the real points and
conjugate pairs and triangular Cremona transformations centered in a triples of real points or
a real point and a pair of conjugate points. The orbits are calculated in Table 6 and confirm
the numbers we computed earlier in Table 4.

For χ ∈ Tu with u of type D4 or A′3 the situation is different. In this case u acts as a
nonstandardCremona transformation on the points. In fact it acts as a de Jonquiéres involution
of order three centered in 5 of the points (for the definition we refer to [17]). The curve C(R)

consists of two nested ovals and only the outer oval can contain an inflection point, otherwise
we would again get a contradiction with Bezout’s theorem. This implies that the component
with p on the outer oval is the unit component of Tu(R) for u of type D4 and A′3.
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9 Tables

1 E7

(a) 0 (b) �6
(c) 0

(d) �5 (e) �7

A1 D6

(f) 0 (g) �4 (h) 0

(i) �3
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A2
1 D4A1

(j) 0 (k) �4
(l) 0

(m) �3

A3
1 A4

1

(n) 0 (o) �6 (p) 0

D4 A3′
1

(q) 0 (r) �6
(s) 0

(t) �1
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