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Abstract We prove that a sufficient condition ensuring that the mean curvature flow com-
mutes with a Riemannian submersion is that the submersion has minimal fibers. We then lift
some results taken from the literature (i.e., Andrews and Baker in J Differ Geom 85:357–395,
2010; Baker in Themean curvature flowof submanifolds of high codimension, 2011;Huisken
in J Differ Geom 20:237–266, 1984; Math Z 195:205–219, 1987; Pipoli and Sinestrari in
Mean curvature flow of pinched submanifolds of CPn) to create new examples of evolution
by mean curvature flow. In particular we consider the evolution of pinched submanifolds
of the sphere, of the complex projective space, of the Heisenberg group and of the tangent
sphere bundle equipped with the Sasaki metric.

Keywords Mean curvature flow · Riemannian submersions · Pinched submanifolds

Mathematics Subject Classification 53C40 · 53C44

1 Introduction

Let F0 : M → (
M, ḡ

)
be a smooth immersion of an m-dimensional manifold into a

Riemannian manifold M of dimension m + k, called ambient space. We denote by A the
second fundamental form and by H themean curvature vector associatedwith the immersion.
The evolution of M0 = F0(M) by mean curvature flow is the one-parameter family of
immersions F : M × [0, Tmax [→ M satisfying

{
∂

∂t
F(p, t) = H, p ∈ M, t ≥ 0,

F(·, 0) = F0.
(1.1)
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It is well known that if M0 is closed, then this problem has a uniquely defined smooth
solution up to some maximal time Tmax ≤ ∞. We frequently identify the immersion F(., t)
with the immersed submanifold Mt = F(M, t).

Let (M, gM) and (B, gB) be two Riemannian manifolds of dimension m and b respec-
tively. A Riemannian submersion is a smooth map π : M → B satisfying the following
axioms S1 and S2.

S1) π has maximal rank;

For every p ∈ M, π−1(p) is a submanifold of M called the fiber over p. A vector field on
M is called vertical if it is always tangent to fibers, horizontal if always orthogonal to fibers.
The second axiom is

S2) for every X , Y horizontal vectors we have

gM(X, Y ) = gB(π∗X, π∗Y ) ◦ π.

M is called the total space of the submersion and B is called the base. Axiom S1 implies
thatm ≥ b and so the dimension of the fibers is m̂ = m − b. Axiom S2 says that π preserves
lengths of horizontal vectors.

The first theorem proved in this paper explores the symmetries of the mean curvature
flow and gives a sufficient condition ensuring that this flow commutes with a submersion.
We consider submersions defined by the action of a group of isometries. Let G be a Lie
group acting as isometries of a Riemannian manifold (M, gM). Suppose that the quotient
space, obtained by identifying the points of an orbit of the action of G, is a smooth manifold
B = M/G, and consider the inducedmetric gB on it. The natural projectionπ : M → B is a
Riemannian submersion with fibers the orbits ofG. If the action ofG is free we have the well-
known principal bundles. In this case the fibers of π are isometric to the group G. The best
known examples of such submersions are probably the Hopf fibrations: π1 : S2n+1 → CP

n

and π2 : S4n+3 → HP
n .

Lifting a submanifold ofBwehave aG-invariant submanifold ofM; vice versa, projecting
a G-invariant submanifold ofMwe get a submanifold of B. We want to study how the mean
curvature flow is related to a submersion.

Theorem 1.1 Let π : M → B = M/G be a Riemannian submersion. If π has closed and
minimal fibers then the mean curvature flow of any closed submanifold commutes with the
submersion. More precisely, letM0 be a G-invariant submanifold ofM and B0 = π(M0);
therefore the mean curvature flow of M0 and B0 are defined up to the same maximal time
Tmax and π(Mt ) = Bt for any time 0 ≤ t < Tmax .

Note that closedness of fibers and of the initial immersions guarantees the uniqueness of the
solution of mean curvature flow of the submanifold B0 and its lift. The mean curvature flow
in manifolds with symmetries has been studied by several authors, for example Pacini in [14]
considered the evolution of the orbits of a group of isometries. The proof of Theorem 1.1 is
based on the fundamental equations for submersions which are derived in the classical paper
by O’Neill [13]. Although similar computations already appear in the previous literature on
geometric flows, see in particular the paper [16], it seems to us that this result has never
been explicitly observed before. The main part of this paper is devoted to the applications to
specific examples, where we obtain new convergence results for the mean curvature flow by
lifting the known theorems for the base manifold to the ambient space.

For example consider the main theorem of [15]: it concerns evolution by mean curvature
flow of pinched submanifolds of CPn . Lifting this result with Theorem 1.1 applied to the
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Hopf fibration π : S
2n+1 → CP

n , we have the following new examples of evolution of
pinched hypersurfaces of the sphere.

Proposition 1.2 Let M0 be a closed S
1-invariant hypersurface of S2n+1(c), the sphere of

constant sectional curvature c > 0 with n ≥ 3. IfM0 satisfies

|A|2 <
1

2n − 2
|H |2 + 4c, (1.2)

then the mean curvature flow ofM0 develops a singularity in finite time and converges to a
S
1, therefore such an M0 is diffeomorphic to a S

1 × S
2n−1.

It is interesting to compare this statement with the classical result by Huisken in [9]. The
pinching inequality (1.2) is weaker than the one required in [9], but we have the further
assumption about the S1-invariance. In fact, we find neither of the two possibilities described
by Huisken, i.e. the convergence to a round point in finite time or the convergence to a
totally geodesic submanifold in infinite time. Let us also recall the paper [12] by Nguyen,
who considered the same pinching condition (1.2) together with positive mean curvature,
and proved that the flow develops a cylindrical singularity. Our results is similar, but our
assumption of S1-invariance allows to give a more complete description by describing the
global behavior of the evolution and not only around a singularity.

Another result of [15] regards the evolution of pinched hypersurfaces of HP
n . Applying

Theorem 1.1 to the Hopf fibration π : S4n+3 → HP
n we get

Proposition 1.3 Let M0 be a closed S
3-invariant hypersurface of S4n+3(c), with n ≥ 3. If

M0 satisfies

|A|2 <
1

4n − 2
|H |2 + 8c,

then the mean curvature flow of M0 develops a singularity in finite time and converges to
an S

3, then such anM0 is diffeomorphic to an S
3 × S

4n−1.

Note that S1 is a subgroup of S3, then if a submanifold of S4n+3 is S3-invariant, we can
project it both to CP

2n+1 and HP
n . Putting together Propositions 1.2 and 1.3 we obtain a

negative result.

Corollary 1.4 There are no closed S
3-invariant hypersurfaces of S4n+3(c) such that

|A|2 <
1

4n
|H |2 + 4c.

Propositions 1.2 and 1.3 just discussed are proved in a more general setting: we deform
the metric of the sphere using the canonical variations of the Hopf fibrations. After that some
other examples are described. Lifting themain result of [15] in the case of higher codimension,
we get Proposition 4.2. It concerns S1-invariant pinched submanifolds of higher codimension
of the sphere. We find the alternative between the convergence in finite time to an S

1 and the
convergence in infinite time to a totally geodesic submanifold, which is an S

m for some m.
In particular the second case can occur only if the dimension of the evolving submanifold
is even. This result generalizes the one of Baker [2]. Starting again from [15] we can prove
Proposition 4.4. It is about pinched hypersurfaces of the complex projective space and extends
[15] itself. The ambient space is the Heisenberg group in Propositions 4.5 and 4.6, which
are derived from the results of mean curvature flow in the Euclidean space, i.e. [1,8]. Finally
in Proposition 4.8 we study submanifolds of the tangent sphere bundle of the round sphere
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equipped with the Sasaki metric and prove the alternative between the convergence in finite
time to an orbit and the convergence in infinite time to a minimal, but not totally geodesic,
limit. This result is obtained by lifting the classical result of Huisken [9] regarding pinched
hypersurfaces of the sphere and its generalization [2] to arbitrary codimension.

The paper is organized as follows. In Sect. 2 we recall some notation and preliminary
results, in particular we compute the relationships between the second fundamental forms of
a submanifold and its lift through a Riemannian submersion. In Sect. 3 first we show that the
invariance of a submanifold with respect to a group of isometries of the ambient manifold is
preserved by the mean curvature flow, then Theorem 1.1 is proved. In Sect. 4 we have the
applications of Theorem 1.1, i.e. Propositions 1.2, 1.3, 4.2, 4.4, 4.5, 4.6 and 4.8 are proved.

2 Preliminaries

In this sectionwe recall some basic notions and fix some notations used throughout this paper.
Consider F : M → (M, ḡ) a smooth immersion of anm-dimensional differential manifold
M into a Riemannian manifoldM of dimension m + k. Unless stated otherwise, geometric
quantities of the submanifolds are indicated in the usual way, while for the ambient manifold
we use a line over the common symbol.Moreover, Latin letters i, j, k, . . . are related to TxM,
the tangent space to M at x , and Greek letters α, β, γ, . . . to the normal space NxM. Fix
(x1, . . . , xn) a local coordinate system around a point x ∈ M. The local expression of g is

gi j (x) = ḡF(x)

(
∂F

∂xi
,

∂F

∂x j

)

Let ∇ be the Levi–Civita connection of (M, ḡ). The second fundamental form A of the
immersion F is defined for every X , Y tangent vectors ofM by

A(X, Y ) = (∇XY
)⊥

,

where ⊥ denotes the component normal toM.
Let (ξ1, . . . , ξk) be an orthonormal frame of NxM: the second fundamental form can be

written

A = hα ⊗ ξα,

where the hα =
(
hα
i j

)
are symmetric (0, 2)-tensors. Here and in the following, if there are

no explicit signs of sum, we use Einstein notation, that is we sum over repeated indices. The
metric induces a natural isomorphism between tangent and cotangent space. In coordinates,
this is expressed in terms of raising/lowering indices by means of the matrices gi j and gi j ,
where gi j is the inverse of gi j . The scalar product on the tangent space extends to any tensor
bundle, by contracting any pair of lower and upper indices with gi j and gi j respectively. This
also allows us to define the norm of any tensor T . A function that we use very often is the
norm of the second fundamental form

|A|2 =
∑

α

∣∣hα
∣∣2

The trace with respect to the metric g of the second fundamental form is the mean curvature
vector H :

H = tr A = trhαeα = gi j hα
i j eα.
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It is independent of the orientation and it is well defined globally even ifM is non-orientable.
Note that some authors define the mean curvature as the trace of A over m; of course this
makes no substantial difference in the analysis.

What follows is taken from the classical O’Neill’s paper [13]; many other interesting
results about Riemannian submersions can be found in chapter 9 of [3] and in the extensive
monograph [6]. Let π : (M, gM) → (B, gB) be a Riemannian submersion. If not specified
otherwise, we use the same symbols for geometric quantities ofM andB. It will be clear from
the context which manifold we are in. The same quantities of the fibers are distinguished by
the superscript ˆ . The vertical distribution V is the distribution of vertical vector fields, that
is, V = ker π∗. Its orthogonal complement with respect to gM is the horizontal distribution
H . We denote with the same symbols H and V the projections of the tangent space ofM
to the subspaces of horizontal and vertical vectors, respectively. Then every X tangent toM
can be decomposed in a unique way into the sum of a horizontal and a vertical vector:

X = H X + V X.

Ahorizontal vector field X ′ is calledbasic if there exists a vector field X onB such thatπ∗X ′ =
X : in this case X and X ′ are said to be π -related. There is a one-to-one correspondence
between basic vector fields on M and arbitrary vector fields on B: every basic vector field
gives a vector field onB by definition, while every X tangent toB has a unique horizontal lift
XH to M characterized by π∗XH = X . Submersions are ruled by two tensors. For every
X and Y tangent to M we define

TXY = H ∇V X (V Y ) + V ∇V X (H Y );
AXY = V ∇H X (H Y ) + H ∇H X (V Y ).

Note that if X and Y are tangent to fibers, i.e. vertical, then TXY = Â(X, Y ), where Â is the
second fundamental form of the fibers as submanifolds of M. We have that T ≡ 0 if and
only if each fiber is totally geodesic, while A ≡ 0 if and only if H is integrable.

Since we deal with the mean curvature flow we want to understand how a submanifold of
B is related to its lift toM: let π : (M, gM) → (B, gB) be a Riemannian submersion, and
F : B → B an immersion. π−1(F(B)) is a submanifold of M of the same codimension of
F(B). Formally there is a manifoldM, an immersion F ′ : M → M and a submersion that
we indicate again with π , such that the following diagrams commute:

M π−→ B
F ′ ↑ ↑ F

M π−→ B

We want to understand the link between A, the second fundamental form of F , and A′,
the second fundamental form of F ′. Our main tool are the following formulas by O’Neill.

Lemma 2.1 [13] For any tangent vector fields on B X and Y we have

1) [X, Y ]H = H
[
XH , YH

] ;
2)

(∇XY
)H = H

(∇XH YH
)
.

Lemma 2.2 [13] Let X and Y be horizontal vector fields and V and W vertical vector fields.
Then

1) ∇VW = TVW + ∇̂VW ;
2) ∇V X = H ∇V X + TV X;
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3) ∇XV = AXV + V ∇XV ;
4) ∇XY = H ∇XY + AXY.

Note that, by construction, M ≡ F ′(M) is tangent to the fibers, then any vector normal
to M is necessarily horizontal. From Lemma 2.1 and Gauss equation we have that for any
X and Y tangent to M

∇XH YH = H
(∇XH YH

) + V
(∇XH YH

)

= (∇XY
)H + V

(∇XH YH
)

= (∇XY )H + (A(X, Y ))H + V
(∇XH YH

)
.

(2.1)

By definition A′(XH , YH ) = (∇XH YH
)⊥

(the component normal toM), thus it is a
horizontal vector field. By (2.1) we have

A′(XH , YH ) =
(
(∇XY )H

)⊥ +
(
(A(X, Y ))H

)⊥
.

The vector field (∇XY )H is the lift of a vector field tangent to B, and so it is tangent toM.
In the same way (A(X, Y ))H is normal to M. Hence we have

A′(XH , YH ) = (A(X, Y ))H . (2.2)

Now consider two vertical vector fields V andW . They are tangent toM by construction.
A′(V,W ) is normal to M and so it is a horizontal vector field. By Lemma 2.2 we have

A′(V,W ) = (∇VW
)⊥ = (

H ∇VW
)⊥ = (TVW )⊥ = ( Â(V,W ))⊥. (2.3)

Lemma 2.2 does not say anything about the mixed terms A′(X, V ) with X horizontal and
V vertical: they strongly depend on the specific submersion considered as we will see in the
examples of Sect. 4.

Notation 2.3 For any submersion π considered below (X1, . . . , Xm) denotes a local ortho-
normal frame tangent to a submanifold of the base space around a point p and (V1, . . . , Vm̂)

is a local orthonormal set of vertical vector fields. Then around any point q of the fiber
π−1(p) we use the orthonormal basis (XH

1 , . . . , XH
m , V1, . . . Vm̂) tangent to the lift of the

submanifold. Moreover (ξ1, . . . , ξk) is a local orthonormal frame normal to a submanifold
of the base, hence (ξH1 , . . . , ξHk ) is a local orthonormal frame normal to the lift of the
submanifold considered.

Summarizing what we have found, we have

A′ =
(

hHi j mixed terms

mixed terms ĥ⊥
i j

)

(2.4)

where hi j = A(Xi , X j ) and ĥi j = Â(Vi , Vj ).
Starting fromafixedRiemannian submersionπ : (M, gM) → (B, gB) there is a standard

way to deform the metric gM to obtain another Riemannian submersion. The canonical
variation of gM is the family of metrics {gλ}λ>0 onM such that

gλ(U, V ) = λgM(U, V ) if U, V ∈ V ,

gλ(X, Y ) = gM(U, V ) if X, Y ∈ H ,

gλ(U, X) = 0 if U ∈ V , X ∈ H .
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Obviously g1 = gM. For any λ > 0, gλ makes π a Riemannian submersion with the same
horizontal and vertical distributions and the samefibers. Let∇λ be theLevi–Civita connection
of the metric gλ. A straightforward computation gives:

V
(∇λ

UV
) = V

(∇1
UV

)
, H

(∇λ
UV

) = λH
(∇1

UV
)
,

∇λ
XU = ∇1

XU, ∇λ
U X = ∇1

U X, ∇λ
XY = ∇1

XY, (2.5)

for every U, V ∈ V and X, Y ∈ H . It follows that π : (M, gM = g1) → (B, gB)

has minimal (resp. totally geodesic) fibers if and only if π : (M, gλ) → (B, gB) has
minimal (resp. totally geodesic) fibers for every λ > 0. Moreover let (V1, . . . Vm̂) be a

local gM-orthonormal set of vertical vectors: then for any λ > 0 (λ− 1
2 V1, . . . λ− 1

2 Vm̂) is
gλ-orthonormal. Using (2.5), it is easy to see that, with respect to this basis, the Eq. (2.4)
becomes

A′
λ =

(
hHi j λ− 1

2 mixed terms

λ− 1
2 mixed terms ĥ⊥

i j

)

. (2.6)

3 Symmetries of the mean curvature flow

In this section we prove Theorem 1.1.

Lemma 3.1 Let F0 : M → M be a closed immersion and ϕ an isometry of M: then ϕ

commutes with the mean curvature flow. Formally if G0 = ϕ ◦ F0 and Ft and Gt are the
evolutions of F0 and G0 respectively, we have that Gt = ϕ ◦ Ft for any time t for which the
flow is defined.

Proof Since ϕ is an isometry we have

∂

∂t
(ϕ ◦ Ft )(p, t) = ϕ∗HF (p, t) = Hϕ◦F (p, t),

where Hψ is the mean curvature vector of ψ for any immersion ψ . Then ϕ ◦ Ft is a solution
of the mean curvature flow of initial data ϕ ◦ F0 = G0. Due to the uniqueness of the solution
we have the thesis. ��

It follows immediately that

Corollary 3.2 Let F0 and ϕ be defined as in Lemma 3.1 and let G be a group of isometries
ofM. We have

1) if F0 is ϕ-invariant, then Ft is ϕ-invariant for any t,
2) if F0 is G-invariant then Ft is G-invariant for every time t.

Proof of Theorem 1.1. Let F0 : B → B and F ′
0 : M → M two immersions for B0 and

M0 respectively. By hypothesis we have that F ′
0 is G-invariant and π ◦ F ′

0 = F0 ◦ π . The
crucial point is that, since the fibers are minimal, we have that H ′ is basic and is π-related
to H , where H is the mean curvature vector of any submanifold of B, and H ′ is the mean
curvature vector of its lift to M. In fact H ′ is horizontal because it is normal to M. Using
the notation of (2.4) we have
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H ′ = tr A′ =
∑

i

A′ (XH
i , XH

i

)
+

∑

i

A′(Vi , Vi )

=
∑

i

A(Xi , Xi )
H +

∑

i

Â(Vi , Vi )
⊥

=
(

∑

i

A(Xi , Xi )

)H

+
(

∑

i

Â(Vi , Vi )

)⊥

= HH + Ĥ⊥.

If the fibers are minimal we get H ′ = HH , that is, H ′ and H are π-related. In particular
π∗H ′ = H holds. Now let Ft be the evolution of F0, F ′

t the lift of Ft , F̃
′
t the evolution of

F ′
0 and F̃t the projection of F̃ ′

t , and let H , H ′, H̃ ′ and H̃ be the respective mean curvature
vectors. By construction we have that for any t

π ◦ F ′
t = Ft ◦ π, (3.1)

and F ′
t is G-invariant. Then in particular H ′ is horizontal. Differentiating (3.1) we have

π∗
∂

∂t
F ′
t = ∂

∂t
(Ft ◦ π) = H = π∗H ′.

Then
∂

∂t
F ′
t = H ′+V ′ for some vertical vector field V ′. Since F ′

t isG-invariant, V ′ is tangent
to F ′

t (M′). Therefore
(

∂

∂t
F ′
t

)⊥
= H ′.

This means that, up to a tangential diffeomorphism, F ′
t is the solution of the mean curvature

flow of initial data F ′
0. Then F ′

t (M) = F̃ ′
t (M) for every time t . Vice versa,

∂

∂t

(
F̃t ◦ π

) = ∂

∂t

(
π ◦ F̃ ′

t

) = π∗
∂

∂t
F̃ ′
t = π∗ H̃ ′.

Corollary 3.2 says that F̃ ′
t is G-invariant, like its initial data F ′

0, therefore π∗ H̃ ′ = H̃ . Then
F̃t is the evolution of initial data F0, that is, F̃t (B) = Ft (B) for any time t . ��
Remark 3.3 If the fibers are not closed we do not know if the solution of the mean curvature
flow of the lift is unique, but if they are minimal, the same proof given for Theorem 1.1 shows
that the lift of the mean curvature flow is, in any case, a G-invariant solution of the mean
curvature flow. In the same way the projection of a G-invariant solution is again an evolution
by mean curvature. Therefore if the projection of the initial dataM0 is a closed submanifold
B0 then there exists only one G-invariant solution of initial dataM0.

4 Examples and applications

One of the best known examples of submersions is the family of the Hopf fibrations. LetK be
one either the fieldC or the associative algebraH and a be the real dimension ofK. We denote
with S

n(c) the n-dimensional sphere with the canonical metric of constant curvature c > 0.
The action T : Sa−1(1)×S

na+a−1(c) → S
na+a−1(c), (λ, z) �→ λz is by isometries which act

transitively on the fiber. The Hopf fibrations are π : Sna+a−1(c) → KP
n ≡ S

na+a−1/Sa−1,
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z �→ [z], where [z] is the class of z under the action T . The Riemannian metric that we
consider on KP

n is the one induced by the metric of Sna+a−1(c) such that π becomes a
Riemannian submersion. For K = C it is the well-known Fubini-Study metric.

Let us consider first the Hopf fibration π : S2n+1 → CP
n . In this case V = Jν is the

vertical unit vector field, where J is the complex structure of Cn+1 and ν is the outward
normal unit vector field of the sphere as a submanifold of R2n+2 ≡ C

n+1. Let B0 be a
submanifold of CPn of dimension m and codimension k andM0 its lift to S

2n+1. The fibers
S
1 are geodesics, hence of course minimal. For every i , J (ξi )

H is tangent to the sphere and
horizontal. Define J (ξi )

H = −Ui + Ni where Ui is the component tangent to M0, while
Ni is normal. We want to compute the mixed terms in (2.4) for this submersion. As shown
in [13], for every horizontal lift we have

AXH V = J (X)H .

If X is tangent to B0 then A′(XH , V ) is a horizontal vector field and, by Lemma 2.2 and
some trivial computation

A′(XH , V ) =
∑

i

ḡ(XH ,Ui )ξ
H
i .

Moreover since the fibers are geodesic curves, A′(V, V ) = 0; together with (2.2), which
holds in general, we have

∣∣A′∣∣2 = |A|2 + 2
∑

i

|Ui |2 .

The canonical variation of the Hopf fibration gives a family {ḡλ}λ>0 of metrics on S
2n+1.

With respect to this metric, a unit vertical vector field is Vλ = λ− 1
2 Jν. With the same

computation seen above we have that

∣∣A′∣∣2 = |A|2 + 2λ− 1
2
∑

i

|Ui |2 .

Then, for any λ > 0

|A|2 ≤ ∣∣A′∣∣2 ≤ |A|2 + 2λ− 1
2 codM0 = |A|2 + 2λ− 1

2 codB0

holds. Obviously since H ′ and H are π -related we have that
∣∣H ′∣∣2 = |H |2 in any case.

In the same way we can study the Hopf fibration π : S4n+3 → HP
n . The fibers are S

3

which are totally geodesic. Let J1, J2 and J3 be the complex structures of Hn+1 given by the
multiplication of the quaternionic imaginary units. Then (V1 = J1ν, V2 = J2ν, V3 = J3ν)

is an orthonormal basis of V . Following the same notations and the same computations of
the previous case, we define for every i and α JαξHi = −Uiα + Niα where Uiα is tangent
to M0, while Niα is normal. Moreover

AXH Vα = Jα (X)H ,

and for every α and β

A′ (XH , Vα

)
=

∑

i

ḡ
(
XH ,UH

iα

)
ξHi ,

A′(Vα, Vβ) = 0.
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Then we get

∣
∣A′∣∣2 = |A|2 + 2

∑

i,α

∣
∣
∣UH

iα

∣
∣
∣
2 = |A|2 + 2

∑

i,α

|Uiα|2 .

The canonical variation of this Hopf fibration gives a second family {g̃λ}λ>0 of metric on
S
4n+3. Similarly to the previous case we have

∣
∣A′∣∣2 = |A|2 + 2λ− 1

2
∑

i,α

|Uiα|2 .

Then for every λ > 0

|A|2 ≤ ∣
∣A′∣∣2 ≤ |A|2 + 6λ− 1

2 codM0 = |A|2 + 6λ− 1
2 codB0.

From the application of Theorem 1.1 we obtain the following results:

Proposition 4.1 Let M0 be a closed S
1-invariant hypersurface of (S2n+1, ḡλ), with n ≥ 3.

If M0 satisfies
∣∣A′∣∣2 <

1

2n − 2

∣∣H ′∣∣2 + 2 + 2λ− 1
2 , (4.1)

then the mean curvature flow of M0 develops a singularity in finite time and converges to
an S

1, hence such anM0 is diffeomorphic to a S
1 × S

2n−1.

Proof Since M0 is S1 invariant we can project it with the Hopf fibration to a hypersurface

B0 of CPn . For hypersurfaces we have necessarily
∣∣A′∣∣2 = |A|2 + 2λ− 1

2 . Then B0 satisfies

|A|2 <
1

2n − 2
|H |2 + 2.

By Theorem 1.1 of [15] the evolution of B0 converges in finite time to a round point p. By
Theorem 1.1 we have that the evolution of M0 converges in finite time to the lift of this
point, which is a fiber. ��

Note that Proposition 1.2 is a particular case of Proposition 4.1 obtained with λ = 1.
For higher codimension we have the following result.

Proposition 4.2 Consider M0 a closed S
1-invariant submanifold of (S2n+1, ḡλ) of dimen-

sion m and codimension 2 ≤ k < 2n−3
5 satisfying the pinching condition

|A|2 <
1

m − 2
|H |2 + m − 4 − 4k

m − 1
. (4.2)

Then either

1) the evolution ofM0 converges in finite time to an S
1,

or

2) the evolution of M0 is defined for any time 0 ≤ t < ∞ and converges to a smooth
totally geodesic submanifold, which is an S

2n−k+1.

If k is odd only case 1) can occur.
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Proof Theproof is the same as that of the previousProposition: it follows again fromTheorem
1.1 of [15] and Theorem 1.1: using the inequality |A|2 ≤ ∣

∣A′∣∣2 we have that B0 = π(M0)

satisfies the same pinching inequality (4.2) and the thesis follows since

π−1
(
CP

n− k
2

)
= S

2n−k+1.

��

This time let us consider the canonical deformation of theHopffibrationπ : S4n+3 → HP
n

(for λ = 1 we have Proposition 1.3).

Proposition 4.3 Let M0 be a closed S
3-invariant hypersurface of (S4n+3, g̃λ), with n ≥ 3.

If M0 satisfies

∣
∣A′∣∣2 <

1

4n − 2

∣
∣H ′∣∣2 + 2 + 6λ− 1

2 ,

then the mean curvature flow of M0 develops a singularity in finite time and converges to
an S

3. It follows that such anM0 is diffeomorphic to a S
3 × S

4n−1.

Proof For hypersurfaces we have
∣∣A′∣∣2 = |A|2 + 6λ− 1

2 , hence B0 = π(M0) satisfies
|A|2 < 1

4n−2 |H |2 + 2, then by Theorem 7.1 of [15] the evolution of B0 shrinks to a round
point in finite time. The thesis follows as in the previous propositions. ��

A further example is given by the submersion ρ : CP2n+1 → HP
n described in [5]: it is

the submersion that makes the following diagrams commutative

S
4n+3 π1−→ CP

2n+1

π2 ↘ ↙ ρ

HP
n

(4.3)

where π1 and π2 are the usual Hopf fibrations. The fibers of ρ are CP
1 ≡ S

2(4) and hence
they are totally geodesic. Lifting a hypersurface of HP

n to a hypersurface of CP2n+1 via ρ

we have that
∣∣A′∣∣2 = |A|2 + 4. In the same way as the previous propositions we can prove

the following result.

Proposition 4.4 LetM0 be a closedCP1-invariant hypersurface ofCP2n+1. IfM0 satisfies

|A|2 <
1

4n − 2
|H |2 + 6,

then the mean curvature flow ofM0 develops a singularity in finite time and converges to a
fiber CP1, and therefore such anM0 is diffeomorphic to a S

2 × S
4n−1.

The examples seen before are all principal bundles with compact fibers. An interesting
case with non-compact fibers comes from the Heisenberg groupH

n (not to be confused with
the algebra of quaternions!). The Heisenberg group is the Lie group R

2n × R endowed with
the following product:

(x, y, z)(x ′, y′, z′) =
(
x + x ′, y + y′, z + z′ + 1

2

(〈
x, y′〉 − 〈

y, x ′〉)
)

,
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where x, x ′, y, y′ ∈ R
n , z, z′ ∈ R and 〈·, ·〉 is the Euclidean scalar product of Rn . With

respect to the coordinates (x, y, z) = (x1, . . . , xn, y1, . . . , yn, z)we define the following left
invariant vector fields on H

n :

X j = ∂

∂x j
− 1

2
y j

∂

∂z
, Y j = ∂

∂y j
+ 1

2
x j

∂

∂z
, V = ∂

∂z
.

Declaring as orthonormal the basis
(
X j , Y j , V

)
j we have a left-invariant metric ḡ onHn . On

C
n consider the Euclidean metric: then

π : (x, y, z) ∈ H
n �→ (x + iy) ∈ C

n

is a Riemannian submersion. The fibers are the vertical lines:

π−1(x0 + iy0) = { (x0, y0, t)| t ∈ R} .

Moreover V = span 〈V 〉 andH = span
〈
X j , Y j

〉
j=1,...,n . The structural group is the group

of vertical translations, that is the multiplication by a point of the type (0, 0, t). It is a group
of isometries and it is isomorphic to (R,+). The Levi–Civita connection associated to ḡ′ is
determined by

∇X j Y j = −∇Y j X j = 1

2
V,

∇X j V = ∇V X j = −1

2
Y j

∇Y j V = ∇V Y j = 1

2
X j

and is zero for all others pairs of vector of the basis
(
X j , Y j , V

)
j=1,...,n . A proof can be found

in [11]. In particular ∇V V vanishes, hence the fibers of π are geodesics. On the horizontal
distributionH we have a complex structure J defined on the vector of the basis by J X j = Y j

and JY j = −X j for all j . Then, more succinctly, for any horizontal vector field Z onH
n we

have
∇Z V = ∇V Z = −J Z . (4.4)

Now consider B0 a submanifold of the Euclidean space Cn of dimensionm and codimension
k. Its lift via π is a submanifold M0 invariant with respect to vertical translations. Using
notation 2.3, by (4.4) and some trivial computations we have:

A′(XH
j , V ) = 1

2

k∑

α=1

ḡ
(
XH

j , JξHα

)
ξHα = 1

2

k∑

α=1

ḡ
(
X j , Jξα

)
ξHα ,

where the J in the last term is the usual complex structure of Cn . This result is very similar
to what we have for Hopf fibration. It follows that

∣∣A′∣∣2 = |A|2 + 1

2

k∑

α=1

∣∣∣Jξ�
α

∣∣∣
2
,

therefore

|A|2 ≤ ∣∣A′∣∣2 ≤ |A|2 + k

2
, (4.5)

with
∣∣A′∣∣2 = |A|2 if and only if for every α Jξα is normal to B0 (in this case B0 is a complex

submanifold of Cn), while
∣∣A′∣∣2 = |A|2 + k

2 if and only if for every α Jξn+α is tangent
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to B0 (that is, B0 is CR-submanifold of Cn of CR-dimension m − k). In the first case, in
particular,B0 is aminimal submanifold. The classical Huisken’s result [8] about the evolution
of convex hypersurfaces of the Euclidean space gives the following result for hypersurfaces
of the Heisenberg group.

Proposition 4.5 Let M0 be a hypersurface of Hn. If M0 is a cylinder with vertical axis,
without boundary and its projection via π is a convex hypersurface of R2n, then there is a
unique solution of the mean curvature flow ofM0 invariant with respect to vertical transla-
tions. Moreover this solution develops a singularity in finite time and converges to a vertical
line. Therefore such anM0 is diffeomorphic to a cylinder S2n−1 × R.

Proof Such an M0 is invariant with respect to vertical translations. The fiber of π are not
closed so we can apply Theorem 1.1 as we did in Remark 3.3. Let B0 = π(M0). By the
main result of [8], B0 shrinks to a round point in finite time. The thesis follows lifting this
result to M0. ��

Using the main theorem of [1], we have the following result for submanifolds of arbitrary
codimension in the Heisenberg group.

Proposition 4.6 LetM0 be a cylinder with vertical axis ofHn of dimension m ≥ 3, without
boundary andwhosehorizontal section is a closed submanifold. IfM0 has H �= 0 everywhere
and satisfies |A|2 ≤ c |H |2 with

c ≤
{

4
3(m−1) if 3 ≤ m ≤ 5,
1

m−2 if m > 5,

then the mean curvature flow of initial data M0 has a unique R-invariant solution and this
solution converges in finite time to a vertical line. Hence such an M0 is diffeomorphic to a
cylinder Sm−1 × R.

Proof We have that B0 = π(M0) is a closed submanifold of R2n of dimension m − 1. By
(4.5), B0 satisfies

|A|2 ≤ ∣∣A′∣∣2 ≤ c
∣∣H ′∣∣2 = c |H |2 .

The main result of [1] says that the evolution by mean curvature of B0 shrinks to a point
in finite time. We can apply Theorem 1.1 to the unique R-invariant solution obtaining the
convergence ofM0 to a fiber of π , which is a vertical line of Hn . ��

Another interesting submersion is the one that arises with the tangent sphere bundle of a
Riemannianmanifold equipped with the Sasaki metric. For any Riemannianmanifold (B, ḡ),
let TB be its tangent bundle and for any r > 0 let T rB = {

(p, u) ∈ TB
∣∣|u|ḡ = r

}
be the

tangent sphere bundle of radius r . The natural projection

π : (p, u) ∈ T rB �→ p ∈ B

is a submersion. In this special case, for any vector field X on B we can also define a lift
XT ∈ V called tangent lift: see [10] for an exhaustive description. The Sasaki metric is a
natural metric ḡ on TB, which, when restricted to T rB, has the following form:

ḡ(p,u)(X
H , YH ) = ḡp(X, Y ),

ḡ(p,u)(X
T , YT ) = ḡp(X, Y ) − 1

r2
ḡp(X, u)ḡp(Y, u),

ḡ(p,u)(X
H , YT ) = 0, (4.6)
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for any X and Y tangent to B. With this metric the projection π : T rB → B is a Riemannian
submersion with fibers π−1(p) = T r

pB, i.e. the sphere of radius r tangent to B in p. The
horizontal distribution of π is generated by the horizontal lifts and the vertical distribution
is generated by the tangential lifts. The group of isometries that we are considering acts
only on the vectorial part as an isometry of T r

pB and is isomorphic to O(n), where n is the

dimension of B. Note that in this case the action of the group is not free – in fact the orbits
are not isometric to the group – but the quotient manifold T rB/O(n) ≡ B is a well defined
manifold. The Levi–Civita connection of the Sasaki metric on T rB is

Lemma 4.7 [10] Let X and Y be vector fields tangent to B, then we have:

1)
(∇XH YH

)
(p,u)

= (∇XY
)H
(p,u)

− 1
2

(
R̄p(X, Y )u

)
T ,

2)
(∇XH YT

)
(p,u)

= (∇XY
)
T

(p,u) + 1
2

(
R̄p(u, Y )X

)H
,

3)
(∇XT YH

)
(p,u)

= 1
2

(
R̄p(u, X)Y

)H
,

4)
(
∇XT YT

)

(p,u)
= − 1

r2
ḡp(u, Y )XT ,

where R̄ is the Riemann curvature tensor of B.
The fibers are closed and the last equation shows that they are also totally geodesic:

Â(XT , YT ) is the horizontal part of ∇XT YT . From now on let us consider a submanifold
B0 of dimension n and codimension k and M0 its O(n + k)-invariant lift to T rB. Since,
in this case, we have a way to lift vector fields on B to vector fields tangent to the fibers,
we modify notation 2.3. For any p ∈ B0 and any (p, u) ∈ π−1 {p}, let (X1, . . . , Xn) be an
orthonormal basis tangent to B0 in p and (ξ1, . . . , ξk) an orthonormal basis normal to B0 in
p such that

u = r cos(ϑ)X1 + r sin(ϑ)ξ1,

for some ϑ . Let Z = sin(ϑ)X1−cos(ϑ)ξ1: then (u, Z , X2, . . . , Xn, ξ2, . . . , ξk) is an orthog-
onal basis of TpB. By (4.6) we have that

(
XH
1 , . . . , XH

n , ZT , X2
T , . . . , Xn

T , ξ2
T , . . . , ξk

T
)

is an orthonormal basis tangent to M0 in (p, u), while
(
ξH1 , . . . , ξHk

)
is an orthonormal

basis normal to M0 in (p, u). As a concrete example, consider B = S
n+k(c), the sphere of

constant curvature c > 0. By Lemma 4.7 we have

A′ (XH
i , ZT

)
(p, u) = 1

2

k∑

α=1

R̄p(u, Z , Xi , ξα)ξHα = −cr

2
δi1ξ

H
1 .

Similarly

A′ (XH
i , X j

T
)

(p, u) = −cr

2
sin(ϑ)δi j ξ

H
1 ,

A′ (XH
i , ξ j

T
)

(p, u) = cr

2
cos(ϑ)δi1ξ

H
j .

Then

∣∣A′∣∣2 (p, u) = |A|2 (p) + c2r2

2

(
1 + (n − 1) sin2(ϑ) + (k − 1) cos2(ϑ)

)

= |A|2 (p) + c2

2

(
r2 + (n − 1)

∣∣∣u⊥
∣∣∣
2 + (k − 1)

∣∣∣u�
∣∣∣
2
)

,
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where ⊥ (respectively �) indicates the normal (respectively the tangent) component with
respect to B0. In particular we have

|A|2 (p) + c2r2

2
min {k, n} ≤ ∣

∣A′∣∣2 (p, u) ≤ |A|2 (p) + c2r2

2
max {k, n} .

Lifting the submanifolds of the sphere considered by Huisken [9] and Baker [2] we have
the following result as a consequence of Theorem 1.1.

Proposition 4.8 For any r > 0, n ≥ 3 and k ≥ 1, let M0 be an O(n + k)-invariant
submanifold of T r

S
n+k(c) of dimension 2n + k − 1. Suppose thatM0 satisfies the pinching

condition

|A|2 <
1

n − 1
|H |2 + 2c + c2

2
min {k, n} ,

then themean curvature flowwith initial dataM0 converges in finite time to a fiberπ−1(p) =
T r
pS

n+k(c)or the flow is defined for any timeand converges toπ−1(Sn(c)), which is aminimal,

but not totally geodesic, submanifold of T r
S
n+k(c).
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