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Abstract We study a natural intrinsic definition of geometric simplices in Riemannian
manifolds of arbitrary finite dimension, and exploit these simplices to obtain criteria for
triangulating compact Riemannian manifolds. These geometric simplices are defined using
Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that
minimises the weighted sum of squared distances to the vertices is the Karcher mean relative
to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from
the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the
image of this barycentric coordinate map. In this work we articulate criteria that guarantee
that the barycentric coordinatemap is a smooth embedding. If it is not, we say the Riemannian
simplex is degenerate. Quality measures for the “thickness” or “fatness” of Euclidean sim-
plices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2,
the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case.
However, when the dimension is greater than two, non-degeneracy can be guaranteed only
when the quality exceeds a positive bound that depends on the size of the simplex and local
bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the
geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that
a simplicial complex is homeomorphic to the manifold.

Keywords Riemannian centre of mass · Karcher means · Barycentric coordinates ·
Triangulation · Riemannian manifold · Sampling conditions · Riemannian simplices

Mathematics Subject Classification 57R05

B Ramsay Dyer
r.h.dyer@rug.nl

Gert Vegter
g.vegter@rug.nl

Mathijs Wintraecken
m.h.m.j.wintraecken@rug.nl

1 Johann Bernoulli Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-015-0069-5&domain=pdf


92 Geom Dedicata (2015) 179:91–138

1 Introduction

In this work we study a natural definition of geometric simplices in Riemannian manifolds of
arbitrary finite dimension. The definition is intrinsic; the simplex is defined by the positions
of its vertices in themanifold, which need not be embedded in an ambient space. The standard
definition of a Euclidean simplex as the convex hull of its vertices is not useful for defin-
ing simplices in general Riemannian manifolds. Besides the problem that convex hulls are
difficult to compute (almost nothing is known about the convex hull of three distinct points,
for example [4, section 6.1.3]), the resulting objects could not be used as building blocks for
triangulations, i.e., they cannot be used to define geoemetric simplicial complexes. This is
because if two full dimensional convex simplices share a boundary facet, that facet must itself
be convex. This constrains the facet to lie on a totally geodesic submanifold (i.e., minimising
geodesics between points on the facet must lie in the facet), and when the curvature is not
constant such submanifolds cannot be expected to exist (see [4, Thm58] or [16, Section 11]).

Given the vertices, a geometric Euclidean simplex can also be defined as the domain on
which the barycentric coordinate functions are non-negative. This definition does extend to
general Riemannian manifolds in a natural way. The construction is based on the fact that the
barycentric coordinate functions can be defined by a “centre of mass” construction. Suppose
{v0, . . . , vn} ⊂ R

n , and {λi }0≤i≤n is a set of non-negative weights that sum to 1. If u is the
point that minimises the function

y �→
n∑

i=0

λi dRn (y, vi )
2, (1)

where dRn (x, y) = |x − y| is the Euclidean distance, then u = ∑
λivi , and the {λi } are the

barycentric coordinates of u in the simplex [v0, . . . , vn].
We can view a given set of barycentric coordinates λ = (λ0, . . . , λn) as a point in R

n+1.
The set Δn of all points in R

n+1 with non-negative coefficients that sum to 1 is called the
standard Euclidean n-simplex. Thus the minimisation of the function (1) defines a map from
the standard Euclidean simplex to the Euclidean simplex [v0, . . . , vn] ⊂ R

n

If instead the points {vi } lie in a convex set W in a Riemannian manifold M , then, by
using the metric of the manifold instead of dRn in Eq. (1), we obtain a function Eλ : W → R

that has a unique minimum x ∈ W , provided W is sufficently small (see Sect. 2.1). In this
way we obtain a mapping λ �→ x from Δn to W. We call the image of this map an intrinsic
simplex, or a Riemannian simplex.

1.1 Previous work

Equation (1) defines a point with given barycentric coordinates as a weighted centre of mass.
Centres of mass were apparently introduced in this context in 1929 by Cartan [13] for a finite
number of points in a symmetric setting [4, Section 6.1]. Fréchet also studied such functions
in a more general setting, with integrals instead of sums, in 1948 [22]. However, Karcher [26]
gave an extensive treatment particular to the Riemannian setting, and averages defined in this
way are often referred to as “Karcher means”.

Karcher’s exposition [26] is the standard reference for Karcher means. However, for our
purposes a particularly good resource is the work by Buser and Karcher [11, Sections 6,
8]. This work was exploited by Peters [32], where Karcher means are used to interpolate
between locally defined diffeomorphisms between manifolds in order to construct a global
diffeomorphism in a proof of Cheeger’s finiteness theorem. Chavel [14, Ch. IX] gives a
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detailed exposition of Peters’s argument. Kendal [28] provides another important reference
for Karcher means. Riemannian simplices are not explicitly considered in any of these works.

More recently, Rustamov [33] introduced barycentric coordinates on a surface via Karcher
means. Sander [34] used the method in arbitrary dimensions to define Riemannian simplices
as described above. He called them geodesic finite elements, reflecting the application setting
in numerical solutions to partial differential equations involving functions which take values
in a manifold.

Our work is motivated by a desire to develop sampling requirements for representing
a compact smooth Riemannian manifold with a simplicial complex. By this we mean that
we seek conditions on a finite set S ⊂ M that guarantee that S can be the vertex set of an
(abstract) simplicial complexA that is homeomorphic toM . A simplicial complexA defines
a topological space, |A | called the carrier of A . We call a homeomorphism H : |A | → M
a triangulation of M . In this work we present criteria sufficient to construct a triangulation
H , given A .

We are particularly interested in manifolds of dimension greater than 2. For 2-dimensional
manifolds a triangulation is guaranteed to exist when Smeets density requirements that can be
specified either in terms of extrinsic criteria, for surfaces embedded in Euclidean space [1,10],
or in terms of intrinsic criteria [20,29]. In higher dimensions, although it is well known that a
smooth manifold admits a triangulation, to the best of our knowledge well-founded sampling
conditions sufficient to guarantee the existence of a triangulation with a given sample points
as vertices have yet to be described.

For arbitrary finite dimension, Cairns [12] first demonstrated that a smooth compact
manifold admits a triangulation by embedding Euclidean complexes into the manifold via
coordinate charts, and showing that if the complexes were sufficiently refined the embed-
ding maps could be perturbed so that they remain embeddings and the images of simplices
coincide where patches overlap, thus constructing a global embedding of a complex. White-
head [36] refined the technique into a general approximation theory which is described in
detail by Munkres [30] and is not restricted to compact manifolds. Whitney [37] used his
result that a manifold can be embedded into Euclidean space to triangulate the manifold
by intersecting it with a fine Cartesian grid in the ambient space. The problem has been
revisited more recently in the computational geometry community, where the focus is on
the algorithm used to construct a triangulation when a compact submanifold is known only
through a finite set of sample points. Cheng et al. [17] used the generic triangulation result
of Edelsbrunner and Shah [21] to argue that a weighted Delaunay complex will triangulate
a manifold, and Boissonnat and Ghosh [9] adapted Whitney’s argument to demonstrate a
triangulation by a Delaunay-based complex whose computation depends only linearly on the
ambient dimension.

In every case a metric on the manifold was employed in the computation of the triangu-
lation. A simplicial complex is constructed, some measure of simplex quality is introduced,
and a lower bound on this quality measure is an essential component of the construction. In
the computational geometry setting that motivated this work, the construction of the simpli-
cial complex starts by introducing sample points on the manifold, which will serve as the
vertices of the constructed complex. What becomes interesting in this context is the den-
sity of sample points that is required to construct a triangulation. Although density bounds
have been made that are sufficient to construct a manifold simplicial complex, there have
been no explicit estimates on sampling density sufficient to ensure the existence of a home-
omorphism between the complex and the original manifold. In all of the above-mentioned
triangulation results, there is only the unquantified assurance that if the maximum distance
between adjacent vertices is small enough, a triangulation may be obtained.
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In this work we do not address the problem of constructing a simplicial complex. We
focus on the problem of establishing sampling density criteria sufficient to ensure that a given
complex defines a natural triangulation. Thus our sampling density criteria are dependent on
the properties of the given simplicial complex. In fact, the only quantative property of the
complex that comes into play is ameasure of the quality of the simplices involved. Rather than
supplying sampling density estimates for triangulation that are implicitly tied to a specific
construction, we provide a flexible framework that allows one to determine the sampling
density sufficient to ensure a triangulation by any given construction. We express this density
by a scale parameter h which is effectively an upper bound on the geodesic distance between
adjacent vertices.

1.2 Overview

When we speak about the quality of a Euclidean simplex, we are referring to a function
that parameterises how close the simplex is to being degenerate. A common quality measure
for an n-simplex is the ratio of the volume to the nth power of the longest edge length.
Another useful quality measure is the ratio of the smallest altitude to the longest edge length.
A Euclidean simplex is degenerate if and only if its quality measure vanishes.

In this work we shed light on the relationship between the local curvature in the manifold,
and the size and quality of the simplices involved in a triangulation. We articulate explicit
criteria that are sufficient to guarantee that a simplicial complex with vertices on the manifold
is homeomorphic to the manifold. The intrinsic simplices defined by the centre of mass
construction provide a convenient tool for this purpose.

Although the idea of Riemannian simplices defined in this way has been in the mathe-
matical community for some time (see Berger [4, 6.1.5]), we are not aware of any published
work exploiting the notion (of simplices in particular) prior to that of Rustamov [33] and
Sander [34]. For our purposes we need to establish a property that Sander did not consider.
We need to ensure that the map from the Euclidean simplex to the manifold is a smooth
embedding (i.e., the map extends to a smooth map from an open neighbourhood of the
Euclidean simplex). This ensures that the barycentric coordinates mapped to the manifold
do in fact provide a local system of coordinates. If the map is not a smooth embedding, we
call the Riemannian simplex degenerate. Independently, von Deylen [19] has also treated the
question of degeneracy of Riemannian simplices. His work includes a detailed analysis of the
geometry of the barycentric coordinate map, and several applications. He does not address
the problem of sampling criteria for triangulation.

A Euclidean simplex is non-degenerate if and only if its vertices are affinely independent.
We show that a Riemannian simplex is non-degenerate if and only if for every point in
the simplex the vertices are affinely independent when they are lifted by the inverse of the
exponential map to the tangent space of that point.

In a two dimensional manifold this condition is satisfied for a triangle as long as the
vertices do not lie on a common geodesic. Similar to the Euclidean case, such a configuration
can be avoided by applying an arbitrarily small perturbation to the vertices. However, when
the dimension is greater than two, a non-trivial constraint on simplex quality is required. In
dimension 2 a sampling density for triangulation can be specified in terms of the convexity
radius [20,29] (maximal radius forwhich a geodesic ball is convex, see Sect. 2.1), and depends
only on an upper bound on the sectional curvatures (Lemma 1). In dimension higher than 2,
we require the simplex size (maximum edge length) to also be constrained by a lower bound
on the sectional curvatures (the upper bound on the edge lengths is inversely proportional to
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the square root of an upper bound on the absolute value of the sectional curvatures), so we
cannot express the sampling density requirements in terms of a convexity radius alone.

We may define a quality measure for a Riemannian simplex by considering the quality
of the Euclidean simplex obtained by lifting the vertices to the tangent space at one of the
vertices. For our purposes we require a lower bound on the smallest such quality measure
when each of the vertices is considered.

The quality of the Riemannian simplex that is required to ensure that it is non-degenerate
depends on the maximum edge length, as well as the magnitude of the sectional curvatures
in the neighbourhood. We establish this relationship with the aid of the Rauch comparison
theorem,which provides an estimate on the differences in edge lengths of Euclidean simplices
obtained by lifting the vertices of the Riemannian simplex to different tangent spaces. By
exploiting previously established bounds on the degradation of the quality of a Euclidean
simplex under perturbations of the edge lengths [7], we establish conditions that guarantee
that the Riemannian simplex is non-degenerate.

We use this result to establish conditions that guarantee that a simplicial complex is
homeomorphic to the manifold. This is the primary motivation for this work. Given an
abstract simplicial complex whose vertex set is identified with points on the manifold, we
are ensured that it triangulates the manifold if certain conditions are met, the principle one
being a relationship between the size and quality of the Riemannian simplices.

1.3 Outline and main results

In Sect. 2 we present the framework for centre of mass constructions, and introduce the
barycentric coordinate map and Riemannian simplices. Riemannian simplices are defined
(Definition 4) as the image of the barycentric coordinatemap, so they are “filled in” geometric
simplices. A Riemannian simplex σ M is defined by its vertices σ = {p0, . . . , pn} ⊂ M ,
which are constrained to lie in a convex neighbourhood Bρ ⊂ M . For any x ∈ Bρ we define
a Euclidean simplex σ (x) ⊂ TxM by σ (x) = {v0(x), . . . , vn(x)}, where vi (x) = exp−1

x (pi ).
We use a subscript indicating the ambient space when we are referring to a simplex as a set
of non-negative barycentric coordinates, otherwise we mean a finite vertex set; the convex
hull of σ (x) is σE(x).

In Sect. 2.3 we give a characterisation of non-degenerate Riemannian simplices in terms of
affine independence.We show thatσ M is non-degenerate if and only ifσ (x) is non-degenerate
for every x ∈ σ M .

In Sect. 3 we establish criteria to ensure that a Riemannian simplex is non-degenerate.
We first review properties of Euclidean simplices, including thickness, the quality measure
we employ. The thickness is essentially the ratio of the smallest altitude to the longest edge
length of the simplex. If the edge lengths in a Euclidean simplex change by a small amount,
we can quantify the change in the thickness. In particular, if F : Rn → R

n is a bi-Lipschitz
map, we can quantify a bound on the thickness, t (σ ), of a simplex σ relative to the metric
distortion (i.e., the bi-Lipschitz constant) that establishes when the Euclidean simplex F(σ )

is non-degenerate.
The Rauch theorem establishes bounds on the norm of the differential of the exponential

map, relative to the sectional curvatures. Using this we obtain a bound on themetric distortion
of the transition function

exp−1
x ◦ expp : TpM → TxM (2)

which maps σ (p) to σ (x), and so we are able to establish conditions ensuring that σ (x) is
non-degenerate, based on quality assumptions on σ (p).
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An open geodesic ball of radius r centred at x ∈ M is the set BM (x; r) of all points in M
whose geodesic distance from x is less than r. The injectivity radius at x, denoted ι(x), is the
supremum of the radii r for which expx restricts to a diffeomorphism between the Euclidean
ball of radius r centred at 0 ∈ TxM , and BM (x; r). The injectivity radius of M is the infimum
of ι(x) over all x ∈ M , and is denoted ιM .

Theorem 1 (Non-degeneracy criteria) Suppose M is a Riemannian manifold with sectional
curvatures K bounded by |K | ≤ Λ, and σ M is a Riemannian simplex, with σ M ⊂ Bρ ⊂ M,
where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min

{
ιM

2
,

π

4
√

Λ

}
. (3)

Then σ M is non-degenerate if there is a point p ∈ Bρ such that the lifted Euclidean simplex
σ (p) has thickness satisfying

t (σ (p)) > 10
√

ΛL (σ M ) , (4)

where L (σ M ) is the geodesic length of the longest edge in σ M.

If p is a vertex in an abstract simplicial complex A , we define the star of p to be the
subcomplex St(p) of A consisting of all simplices that contain p, together with the faces of
these simplices. The underlying topological space (or carrier) of a complex A is denoted
|A |. We say that St(p) is a full star if

∣∣St(p)
∣∣ is a closed topological ball of dimension n

with p in its interior, and A contains no simplices of dimension greater than n.
In Sect. 4 we develop our sampling criteria for triangulating manifolds. We establish

properties of maps whose differentials are bounded close to a fixed linear isometry, and
use these properties to reveal conditions under which a full star will be embedded into a
manifold. This allows us to express generic conditions that ensure that a simplicial complex
is homeomorphic to the manifold. We then exploit a refinement of the Rauch theorem,
and other estimates established by Buser and Karcher [11], to bound the differential of the
barycentric coordinate map as required, and thus arrive at:

Theorem 2 (Triangulation criteria) Suppose M is a compact n-dimensional Riemannian
manifold with sectional curvatures K bounded by |K | ≤ Λ, and A is an abstract simplicial
complex with finite vertex set S ⊂ M. Define a quality parameter t0 > 0, and let

h = min

{
ιM

4
,

√
nt0

6
√

Λ

}
. (5)

If

1. For every p ∈ S, the vertices of St(p) are contained in BM (p; h), and the balls
{BM (p; h)}p∈S cover M.

2. For every p ∈ S, the restriction of the inverse of the exponential map exp−1
p to the vertices

of St(p) ⊂ A defines a piecewise linear embedding of
∣∣St(p)

∣∣ into TpM, realising St(p)
as a full star such that every simplex σ (p) has thickness t (σ (p)) ≥ t0.

thenA triangulates M, and the triangulation is given by the barycentric coordinate map on
each simplex.
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The techniques employed to obtain Theorem 2 exploit stronger bounds on the differential
of the exponential map, and provide a slightly better bound for non-degeneracy than the one
stated in Theorem 1, but at the expense of a stronger constraint on the allowed diameter of
the simplex. This is the reason Eq. (4) appears as a stronger constraint on the thickness than
the curvature controlled part of Eq. (5).

We refer to the criteria of Theorem 2 as sampling criteria, even though they require
a simplicial complex for their definition. Although there is no explicit constraint on the
minimal distance between points of S, one is implicitly imposed by the quality constraint
on the Riemannian simplices. The required sampling density depends on the quality of the
Riemannian simplices, which leaves open the question of what kind of quality of simplices
can we hope to attain. Recent work [7] constructs a Delaunay complex conforming to the
requirements of Theorem 2with the thickness t0 bounded by 1/2O(n3). It would be interesting
to see this improved.

The complex A in Theorem 2 naturally admits a piecewise linear metric by assigning
edge lengths to the simplices given by the geodesic distance in M between the endpoints. In
Sect. 5 we observe that in order to ensure that this does in fact define a piecewise-flat metric,
we need to employ slightly stronger constraints on the scale parameter h. In this case, the
complexA becomes a good geometric approximation of the original manifold, and we find:

Theorem 3 (Metric distortion) If the requirements of Theorem 2, are satisfied with the scale
parameter (5) replaced by

h = min

{
ιM

4
,

t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assigning to each
edge the geodesic distance in M between its endpoints.

If H : |A | → M is the triangulation defined by the barycentric coordinate map in this
case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y)) − dA (x, y)| ≤ 50Λh2

t20
dA (x, y),

for all x, y ∈ |A |.
The criteria of these three theorems can also be formulated in terms of the thickness of

the Euclidean simplices defined by the geodesic edge lengths of the Riemannian simplices,
rather than the Euclidean simplices we find in the tangent spaces. In “Appendix 1” we briefly
mention this alternative formulation of our results. We also compare the thickness quality
measure for simplices with a commonly used volumetric quality measure which we call
fatness.

In “Appendix 1” an alternate approach to non-degenerate Riemannian simplices is pre-
sented. This approach is based on bounding angles and edge lengths in geodesic triangles
via the Toponogov comparison theorem.

2 Riemannian simplices

In this section we summarise the results of the theory of Riemannian centres of mass that
we need in order to define Riemannian simplices. We then give an explicit description of the
barycentric coordinate map that is used to define these simplices. We take the view that if the
barycentric coordinate map is well defined, then the simplex is well defined, but it may be
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degenerate. The geodesic finite elements employed by Sander [34] are Riemannian simplices
without a requirement of non-degeneracy. In Sect. 2.3 we demonstrate that non-degeneracy
of a Riemannian simplex σ M is characterised by the affine independence of the vertices when
lifted to the tangent space of any point in σ M .

2.1 Riemannian centre of mass

We work with an n-dimensional Riemannian manifold M . The centre of mass construction
developed by Karcher [26] hinges on the notion of convexity in a Riemannian manifold. A
set B ⊆ M is convex if any two points x, y ∈ B are connected by a minimising geodesic
γxy that is unique in M , and contained in B. For c ∈ M , the geodesic ball of radius r is the
set BM (c; r) of points in M whose distance from c is less than r, and we denote its closure
by BM (c; r). If r is small enough, BM (c; r) will be convex; the following lemma quantifies
“small enough”.

In order to obtain non-degeneracy criteria for Riemannian simplices we require both an
upper and a lower bound on the sectional curvatures, so it is convenient to work with a bound
Λ on the absolute value of the sectional curvatures, |K | ≤ Λ. However, the definition of
Riemannian simplices only requires an upper bound on the sectional curvatures. In order to
emphasise this we introduce distinct symbols for the upper and lower bounds on the sectional
curvatures. Thus Λ− ≤ K ≤ Λ+, and Λ = max{Λ+,−Λ−}.

We have [14, Thm. IX.6.1]:

Lemma 1 Suppose the sectional curvatures of M are bounded by K ≤ Λ+, and ιM is the
injectivity radius. If

r < min

{
ιM

2
,

π

2
√

Λ+

}
,

then BM (x; r) is convex. (If Λ+ ≤ 0, we take 1/
√

Λ+ to be infinite.)

Remark 2 Lemma 1 is stated in terms of global bounds on the injectivity radii and sectional
curvatures (on a non-compact manifold, these may be useless), but really we only need these
bounds in a neighbourhood of x. Let K (x) be an upper bound on the sectional curvatures at x,
and denote the injectivity radius at x by ι(x). Now define I (x) and Λ+(x) to be the infimum
and supremum respectively of ι(y) and K (y), where y ranges over the ball BM (x; R) of
radius

R = min

{
ι(x)

2
,

π

2
√
K (x)

}
.

Then Lemma 1 holds if ιM andΛ+ are replaced by I (x) andΛ+(x) respectively in the bound
on r. For simplicity, we will continue to refer to global bounds, but everywhere they occur a
similar remark applies.

Also, in all cases where an upper bound on the sectional curvatures is employed, this
bound is only relevant when it is positive. If M has non-positive curvature, then 1/

√
Λ+ may

be assumed to be infinite.

In our context, we are interested in finding a weighted centre of mass of a finite set
{p0, . . . , p j } ⊂ B ⊂ M , where the containing set B is open, and its closure B is convex.
The centre of mass construction is based on minimising the function Eλ : B → R defined by

Eλ(x) = 1

2

∑

i

λi dM (x, pi )
2, (6)
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where the λi ≥ 0 are non-negative weights that sum to 1, and dM is the geodesic distance
function on M . Karcher’s first simple observation is that the minima of Eλ must lie in the
interior of B, i.e., in B itself. This follows from considering the gradient of Eλ:

grad Eλ(x) = −
∑

i

λi exp
−1
x (pi ). (7)

At any point x on the boundary of B, the gradient vector lies in a cone of outward pointing
vectors. It follows that the minima of Eλ lie in B. The more difficult result that the minimum
is unique, Karcher showed by demonstrating that Eλ is convex. If B ⊆ M is a convex set, a
function f : B → R is convex if for any geodesic γ : I → B, the function f ◦ γ is convex
(here I ⊆ R is an open interval). If f has a minimum in B, it must be unique. By Eq. (7), it
is the point x where ∑

i

λi exp
−1
x (pi ) = 0.

We have the following result [26, Thm1.2]:

Lemma 3 (Unique centre of mass) If {p0, . . . , p j } ⊂ Bρ ⊂ M, and Bρ is an open ball of
radius ρ with

ρ < min

{
ιM

2
,

π

4
√

Λ+

}
,

then on any geodesic γ : I → Bρ , we have

d2

dt2
Eλ(γ (t)) ≥ C(Λ+, ρ) > 0, (8)

where C(Λ+, ρ) is a positive constant depending only on Λ+ and ρ. In particular, Eλ is
convex and has a unique minimum in Bρ .

Karcher gives an explicit expression for C(Λ+, ρ), but we will not need to refer to it here.
Also, Karcher expresses the centre of mass concept in more generality by using an integral
over a set whose measure is 1, rather than a weighted sum over a finite set as we have used.

2.2 The barycentric coordinate map

Let Δ j denote the standard Euclidean j-simplex. This can be realised as the set of points
λ ∈ R

j+1 whose components are non-negative, λi ≥ 0, and sum to one:
∑

i λi = 1. We
index the coordinates starting from zero: these are the barycentric coordinates on the standard
simplex.

Definition 4 (Riemannian simplex) If a finite set σ j = {p0, . . . , p j } ⊂ M in an n-manifold
is contained in an open geodesic ball Bρ whose radius, ρ, satisfies Eq. (3), then σ j is the set

of vertices of a geometric Riemannian simplex, denoted σ
j
M , and defined to be the image of

the map
Bσ j : Δ j → M

λ �→ argmin
x∈Bρ

Eλ(x).

We say that σ j
M is non-degenerate ifBσ j is a smooth embedding; otherwise it is degenerate.

Define an i-face of σ
j
M to be the image of an i-face of Δ j . Since an i-face of Δ j may

be identified with Δi (e.g., by an order preserving map of the vertex indices), the i-faces
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of σ
j
M are themselves Riemannian i-simplices. In particular, if τ and μ are the vertices of

Riemannian simplices τM and μM , and σ i = τ ∩ μ, then the Riemannian i-simplex σ i
M is

a face of both τM and μM . The edges of a Riemannian simplex are the Riemannian 1-faces.
We observe that these are geodesic segments. We will focus on full dimensional simplices,
i.e., unless otherwise specified, σ M will refer to a Riemannian simplex defined by a set σ of
n + 1 vertices in our n-dimensional manifold M .

Remarks The barycentric coordinatemapBσ is differentiable. This follows from the implicit
function theorem, as is shown by Buser and Karcher [11, Section 8.3.3], for example. They
work in local coordinates on the tangent bundle, and use the connection to split the deriv-
ative of grad Eλ : M → T M into horizontal and vertical components. The strict convexity
condition (8) implies that the vertical component of the derivative is full rank, and permits
the use of the implicit function theorem.

The argument of Buser and Karcher assumes that the map is defined on an open domain.
We observe that Bσ is well defined if we allow negative barycentric coordinates of small
magnitude. For a sufficiently small ε > 0, Lemma 3 holds if the barycentric coordinates λi
satisfy

∑
λi = 1 and λi > −ε for all i ∈ {0, . . . , n}, albeit with C(Λ+, ρ) replaced with

a smaller positive constant. This follows from the observation that d2

dt2
Eλ is continuous in

the barycentric coordinates, thus since it is strictly positive on the boundary of Δn , it can be
extended to an open neighbourhood. This means that Bσ is smooth on the closed domain
Δn , as defined in Sect. 4.1.

Karcher himself mentioned that his result can accommodate signed measures [26,
Remark1.8], and Sander has demonstrated this in some detail [35]. However, for our current
purposes we are only claiming that we can accommodate arbitrarily small negative barycen-
tric coordinates assuming the stated bound on ρ0 (Eq. 3).

A Riemannian simplex is not convex in general, but as Karcher observed [26], being the
image of the barycentric coordinate map, it will be contained in any convex set that contains
the vertices of the simplex. Thus the Riemannian simplex is contained in the intersection of
such sets.

Equation (3) gives an upper bound on the size of a Riemannian simplex that depends only
on the injectivity radius and an upper bound on the sectional curvature. For example, in a
non-positively curvedmanifold, the size of a well defined Riemannian simplex is constrained
only by the injectivity radius. However, if the dimension n of the manifold is greater than
2, we will require also a lower bound on the sectional curvatures in order to ensure that the
simplex is non-degenerate.

Lemma 3 demands that a Riemannian simplex be contained in a ball whose radius is
constrained by ρ0. Thus Riemannian simplices always have edge lengths less than 2ρ0. If the
longest edge length, L (σ M ), of σ M is less than ρ0, then σ M must be contained in the closed
ball of radius L (σ M ) centred at a vertex. Indeed, any open ball centred at a vertex whose
radius is larger than L (σ M ), but smaller than ρ0, must contain the vertices and have a convex
closure. The simplex is thus contained in the intersection of these balls. If L (σ M ) ≥ ρ0, then
a ball of radius L (σ M ) need not be convex. In this case we claim only that σ M is contained
in a ball of radius 2ρ0 centred at any vertex.

2.3 The affine independence criterion for non-degeneracy

In this subsection we show that a Riemannian simplex σ M is non-degenerate if, and only if,
for any x ∈ σ M , the lift of the vertices by the inverse exponential map yields a non-degenerate
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Euclidean simplex. We first introduce some notation and terminology to better articulate this
statement.

Notation AEuclidean simplexσ of dimension k is defined by a set of k+1 points in Euclidean
space σ = {v0, . . . , vk} ⊂ R

n . In general we work with abstract simplices, even though we
attribute geometric properties to the simplex, inherited from the embedding of the vertices
in the ambient space (see Sect. 3.1). When we wish to make the dimension explicit, we write
it as a superscript, thus σ k is a k-simplex. Traditional “filled in” geometric simplices are
denoted by boldface symbols; σE = conv(σ ) is the convex hull of σ . If such a simplex is
specified by a vertex list, we employ square brackets: σE = [v0, . . . , vk].

The barycentric coordinate functions {λi } associated to σ are affine functions Rn → R

that satisfy λi (v j ) = δi j and
∑n

i=0 λi = 1. It is often convenient to choose one of the vertices,
v0 say, of σ to be the origin. We let P be the n × k matrix whose i th column is vi − v0. Then
the barycentric coordinate functions {λi } are linear functions for i > 0, and they are dual to
the basis defined by the columns of P. This means that if we represent the function λi as a
row vector, then the matrix Q whose ith row is λi satisfies QP = Ik×k .

A full dimensional Euclidean simplexσ is non-degenerate, if and only if the corresponding
matrixP is non-degenerate. In particular, if σ is full dimensional (i.e., k = n), then Q = P−1.
Suppose σ ⊂ R

n is an n-simplex. If ξ ∈ R
n , let λ(ξ) = (λ1(ξ), . . . , λn(ξ))T. Then λ(ξ) is the

vector of coefficients of ξ −v0 in the basis defined by the columns of P. I.e., ξ −v0 = Pλ(ξ).
We will be interested in Euclidean simplices that are defined by the vertices of a Rie-

mannian simplex: If σ = {p0, . . . , pn} ⊂ Bρ ⊂ M is the set of vertices of σ M , it is
convenient to introduce the notation vi (x) = exp−1

x (pi ), and σ (x) = exp−1
x (σ ). Thus

σ (x) = {v0(x), . . . , vn(x)} is a Euclidean simplex in TxM .
The norm of a vector v in a Euclidean space is denoted |v|. For example, if v ∈ TpM ,

then |v| = 〈v, v〉 1
2 , where 〈·, ·〉 is inner product defined by the Riemannian metric tensor on

M . The differential of a map F : M → M̄ is denoted by dF ; so dFx : TxM → TF(x)M̄ is a
linear map whose operator norm is ‖dFx‖. All differentiable maps, operators, and manifolds
are assumed to be C∞.

An expression for the differential The expression for the differential obtained in Equation (10)
below is obtained as a particular case of an argument presented by Buser and Karcher [11,
Section 8.3]. The argument was later exploited by Peters [32] to sharpen bounds on Cheeger’s
finiteness theorem [15]. A thorough exposition appears also in Chavel [14, IX.8].

We work in a domain U ⊂ R
n defined by a chart φ : M ⊃ W → U such that Bρ ⊂ W .

Let σ̃ = φ(σ ) be the image of the vertices of a Riemannian n-simplex σ M ⊂ Bρ . Label the
vertices of σ̃ = {ṽ0, . . . , ṽn} such that ṽi = φ(pi ), and assume ṽ0 is at the origin. The affine
functions λi : u �→ λi (u) are the barycentric coordinate functions of σ̃ . We consider grad Eλ,
introduced in Eq. (7), now to be a vector field that depends on both u ∈ U and x ∈ Bρ .
Specifically, we consider the vector field ν : U × Bρ → TM defined by

ν(u, x) = −
n∑

i=0

λi (u)vi (x). (9)

Letb : σ̃E → σ M be defined by b = Bσ ◦L , whereL is the canonical linear isomorphism
that takes the vertices of σ̃ to those ofΔn , andBσ is the barycentric coordinatemap introduced
in Definition 4. This map is differentiable, by the arguments presented by Buser and Karcher,
and ν(u, b(u)) = 0 for all u ∈ σ̃E. Regarding ν as a vector field along b, its derivative may
be expanded as
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∂uν + (∇ν) db = 0,

where ∂uν denotes the differential of ν(u, x) with x fixed, i.e.,

∂uν(u,x) : TuRn → TxM
(
∂uν(u,x)

)
u̇(0) = d

dt
ν(u(t), x)

∣∣
t=0,

with u̇(0) denoting the tangent vector at 0 to some curve t �→ u(t) inU ⊂ R
n . Similarly ∇ν

is the covariant differential when u is fixed:

∇ν(u,x) : TxM → TxM(∇ν(u,x)
)
ẋ(0) = Dtν(u, x(t))

∣∣
t=0,

where Dtν is the covariant derivative along the curve x(t). Finally db : TuRn → TxM is the
differential of b, our barycentric coordinate map onto the Riemannian simplex σ M .

Our objective is to exhibit conditions that ensure that db is non-degenerate. It follows from
the strict convexity conditon (8) of Lemma 3 that the map∇ν : w �→ ∇wν is non-degenerate.
Indeed, if w ∈ TxM for some x ∈ Bρ , there is a geodesic γ : I → Bρ with γ ′(0) = w, and
d2

dt2
Eλ(γ (t))

∣∣
t=0 = 〈∇wν,w〉 > 0. Therefore, we have that

db = − (∇ν)−1 ∂uν, (10)

and thus db has full rank if and only if ∂uν has full rank.

The differential as a matrix Recalling Eq. (9), notice that when x is fixed, ν is an affine map
R
n ⊃ U → TxM , and so (∂uν)v = (∂uν)w for all v,w ∈ U . We see that

∂uν = −
n∑

i=0

vi (x) dλi .

Since
∑n

i=0 λi = 1, we have that
∑n

i=0 dλi = 0. We may thus write dλ0 = −∑n
i=1 dλi ,

and so for ξ ∈ TuU , we have

(∂uν) ξ = −
n∑

i=1

(
vi (x) − v0(x)

)
dλi (ξ) . (11)

Now, since the domain of the barycentric coordinates is U , and the origin of U ⊂ R
n

coincides with ṽ0, the functions λi for i ∈ {1, . . . , n} are linear functions, and we use the
canonical identification of tangent spaces in R

n to conclude that dλi (ξ) = λi (ξ), where
in the right hand side we view ξ as an element of Rn , rather than an element of TuRn . As
discussed above, we have λ(ξ) = P̃−1ξ , where λ(ξ) = (λ1(ξ), . . . , λn(ξ))T, and P̃ is the
matrix whose i th column is ṽi . Thus, using an arbitrary linear isometry to get a coordinate
system for TxM , and letting P be the matrix whose i th column is (vi (x) − v0(x)), we may
rewrite Eq. (11) as

(∂uν) ξ = −Pλ(ξ) = −P P̃−1ξ. (12)

From Eq. (12) we conclude that ∂uν is full rank if and only if P is of full rank, and this is
the case if and only if σ (x) is a non-degenerate Euclidean simplex, i.e., its vertices {vi (x)}
are affinely independent.

We observe that if db is non-degenerate on σ M , then b must be injective. Indeed, if
x = b(u), then {λi (u)}, the barycentric coordinates of u with respect to σ̃ , are also the
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barycentric coordinates of the origin in TxM , with respect to the simplex σ (x). Thus if
b(u) = x = b(ũ), then λi (u) = λi (ũ), and we must have ũ = u by the uniqueness of the
barycentric coordinates.

In summary, we have

Proposition 5 ARiemannian simplexσ M ⊂ M is non-degenerate if and only ifσ (x) ⊂ TxM
is non-degenerate for every x ∈ σ M.

3 Non-degeneracy criteria

In this section we exploit Proposition 5 to establish geometric criteria that ensure that a
Riemannian simplex is non-degenerate. In Sect. 2.3 we worked in an arbitrary coordinate
chart φ : M ⊃ W → R

n , where the convex ball Bρ containing σ M is contained in W . Now
we will choose φ to be the inverse of the exponential map at some fixed point p ∈ Bρ .
Specifically, we set φ = u ◦ exp−1

p : W → R
m , where u : TpM → R

n is an arbitrary linear
isometry that defines the u-coordinate functions in U = φ(W ). The Euclidean simplex σ̃ in
the coordinate domain can now be identified with σ (p), and we observe that exp−1

x ◦ expp
maps σ (p) to σ (x).

In Sect. 3.1 we review some properties of Euclidean simplices, including thickness, the
quality measure that we use, and recall a lemma that bounds the difference in thickness
between two simplices whose corresponding edge lengths are almost the same. Thus given
an assumed thickness of σ (p), the question of whether or not σ M is degenerate becomes
a question of how much the exponential transition function (2) distorts distances. In order
to address this question, we exploit the Rauch comparison theorem, which we discuss in
Sect. 3.2. We put these observations together in Sect. 3.3 to obtain explicit bounds on the
required quality of σ (p), relative to its size (longest edge length) and the sectional curvatures
in Bρ .

3.1 The stability of Euclidean simplex quality

AEuclidean simplex σ = {v0, . . . , vk} ⊂ R
n has a number of geometric attributes. An i-face

of σ is a subset of i + 1 vertices, and a (k − 1) face of a k-simplex is a facet. The facet of σ

that does not have vi as a vertex is denoted σ vi . The altitude of vi ∈ σ is the distance from vi
to the affine hull of σ vi , denoted avi (σ ), and the longest edge length is denoted L (σ ). When
there is no risk of confusion, we will omit explicit reference to the simplex, and ignore the
distinction between the vertices and their labels. Thus we write L , and ai instead of L (σ )

and avi (σ ).
The simplex quality measure that we will use is the thickness of a k-simplex σ , defined as

t (σ ) =
⎧
⎨

⎩
1 if k = 0

minv∈σ
av

kL
otherwise.

(13)

If t (σ ) = 0, then σ is degenerate. We say that σ is t0-thick, if t (σ ) ≥ t0. If σ is t0-thick,
then so are all of its faces. We write t for the thickness if the simplex in question is clear.

As discussed in Sect. 2.3, we can associate a matrix P to a Euclidean simplex. The quality
of a simplex σ is closely related to the quality of P, which can be quantified by means of
its singular values. In fact, we are only interested in the smallest and largest singular values.
The smallest singular value, sk(P) = inf |x |=1 |Px |, vanishes if and only if the matrix P
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does not have full rank. The largest singular value is the same as the operator norm of P,
i.e., s1(P) = ‖P‖ = sup|x |=1 |Px |. We have the following result [8, Lem.2.4] relating the
thickness of σ to the smallest singular value of P:

Lemma 6 (Thickness and singular value) Let σ = {v0, . . . , vk} be a non-degenerate k-
simplex inRn, with k > 0, and let P be the n×k matrix whose i th column is vi −v0. Then the
i th row of the pseudo-inverse P−1

left = (PTP)−1PT is given by wT
i , where wi is orthogonal

to a f f (σ vi ), and
|wi | = a−1

i .

We have the following bound on the smallest singular value of P:

sk(P) ≥ √
kt L .

The appearance of the dimension k in the denominator in the definition of thickness is a
convention introduced so that t provides a dimension-independent bound on the condition
number of P: Since the columns of P have norm bounded by L , we have that s1(P) ≤ √

kL ,
and thus Lemma 6 implies s1(P)

sk (P)
≤ t−1. Although we adhere to definition (13) in this work,

we acknowledge that this normalisation convention may obscure the relationship between
simplex quality and dimension. We frequently make use of the fact that for a k-simplex σ ,
we have kt (σ ) ≤ 1.

The crucial property of thickness for our purposes is its stability. If two Euclidean sim-
plicies with corresponding vertices have edge lengths that are almost the same, then their
thicknesses will be almost the same. This allows us to quantify a bound on the smallest sin-
gular value of the matrix associated with one of the simplices, given a bound on the other. To
be precise, we have the following consequence of the more general Lemma 25 demonstrated
in Sect. 5.1:

Lemma 7 (Thickness under distortion) Suppose that σ = {v0, . . . , vk} and σ̃ =
{ṽ0, . . . , ṽk} are two k-simplices in R

n such that
∣∣∣∣vi − v j

∣∣ − ∣∣ṽi − ṽ j
∣∣∣∣ ≤ C0L (σ )

for all 0 ≤ i < j ≤ k. Let P be the matrix whose i th column is vi −v0, and define P̃ similarly.
If

C0 = ηt (σ )2

4
with 0 ≤ η ≤ 1,

then
sk(P̃) ≥ (1 − η)sk(P).

and

t (σ̃ ) ≥ 4

5
√
k
(1 − η)t (σ ) .

3.2 The Rauch comparison theorem

The Rauch comparison theorem gives us bounds on the norm of the differential of the expo-
nential map. This in turn implies a bound on how much the exponential map can distort
distances. It is called a comparison theorem because it is implicitly comparing the exponen-
tial map on the given manifold to that on a space of constant sectional curvatures. In this
context we encounter the functions
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Sκ (r) =

⎧
⎪⎨

⎪⎩

(1/
√

κ) sin
√

κr κ > 0

r κ = 0

(1/
√−κ) sinh

√−κr κ < 0,

parameterised by κ , which can be thought of as representing a constant sectional curvature.
The Rauch theorem can be found in Buser and Karcher [11, Section 6.4] or in Chavel [14,

Thm. IX.2.3], for example. In the statement of the theoremwe implicitly use the identification
between the tangent spaces of a tangent space and the tangent space itself.

Lemma 8 (Rauch theorem) Radially the exponential map expp : TpM → M is an isometry:
∣∣(d expp)vv

∣∣ = |v| .
Assume the sectional curvatures, K , are bounded by Λ− ≤ K ≤ Λ+. Taking |v| = 1,

one has for any w perpendicular to v

SΛ+(r)

r
|w| ≤ ∣∣(d expp)rvw

∣∣ ≤ SΛ−(r)

r
|w| .

The inequalities hold when r < 2ρ0 (defined in Eq. (3)). Also, if Λ− < 0, then the right
inequality is valid for all r, and if Λ+ > 0, then the left inequality is valid for all r.

For convenience, we will use a bound on the absolute value of the sectional curvatures,
rather than separate upper and lower bounds. Thus |K | ≤ Λ, where Λ = max{Λ+,−Λ−}.
We use Taylor’s theorem to obtain

S−Λ(r) ≤ r + Λr3

2
when 0 ≤ r <

π

2
√

Λ

SΛ(r) ≥ r − Λr3

6
for all r ≥ 0.

Since d expp preserves the lengths of any radial vector v, the bound on the distortion of the
length of a vector orthogonal to v implies a bound for all vectors. We can restate the Rauch
theorem in a weaker, but more convenient form:

Lemma 9 Suppose the sectional curvatures in M are bounded by |K | ≤ Λ. If v ∈ TpM
satisfies |v| = r < π

2
√

Λ
, then for any vector w ∈ Tv(TpM) ∼= TpM, we have

(
1 − Λr2

6

)
|w| ≤ ∣∣(d expp)vw

∣∣ ≤
(
1 + Λr2

2

)
|w| .

3.3 Non-degenerate Riemannian simplices

Our goal now is to estimate the metric distortion incurred when we map a simplex from one
tangent space to another via the exponential maps

exp−1
x ◦ expp : TpM → TxM,

and this is accomplished by the bounds on the differential. Specifically, if F : Rn → R
n

satisfies ‖dF‖ ≤ η, then the length of the image of the line segment between x and y
provides an upper bound on the distance between F(x) and F(y):

|F(y) − F(x)| ≤
∫ 1

0

∣∣dFx+s(y−x)(y − x)
∣∣ ds ≤ η |y − x | . (14)

123



106 Geom Dedicata (2015) 179:91–138

If x, p, y ∈ Bρ , with y = expp(v), then |v| < 2ρ, and
∣∣exp−1

x (y)
∣∣ < 2ρ. Then, if ρ < ρ0

given in Eq. (3), Lemma 9 tells us that

∥∥∥d
(
exp−1

x ◦ expp
)
v

∥∥∥ ≤
∥∥∥
(
d exp−1

x

)
y

∥∥∥
∥∥∥
(
d expp

)
v

∥∥∥ ≤
(
1 + Λ(2ρ)2

3

) (
1 + Λ(2ρ)2

2

)

≤ 1 + 5Λρ2.

Therefore (14) yields
∣∣vi (x) − v j (x)

∣∣ ≤ (1 + 5Λρ2)
∣∣vi (p) − v j (p)

∣∣ .

We can do the same argument the other way, so
∣∣vi (p) − v j (p)

∣∣ ≤ (1 + 5Λρ2)
∣∣vi (x) − v j (x)

∣∣ ,

and we find
∣∣ ∣∣vi (x) − v j (x)

∣∣ − ∣∣vi (p) − v j (p)
∣∣ ∣∣ ≤ 5Λρ2(1 + 5Λρ2)

∣∣vi (p) − v j (p)
∣∣

≤ 21Λρ2
∣∣vi (p) − v j (p)

∣∣ when ρ < ρ0.
(15)

Letting P be the matrix associated with σ (p), and using C0 = 21Λρ2, in Lemma 7,
we find that the matrix P̃ associated with σ (x) in Proposition 5 is non-degenerate if σ (p)
satisfies a thickness bound of t0 > 10

√
Λρ, and we have

Theorem 1 (Non-degeneracy criteria) Suppose M is a Riemannian manifold with sectional
curvatures K bounded by |K | ≤ Λ, and σ M is a Riemannian simplex, with σ M ⊂ Bρ ⊂ M,
where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min

{
ιM

2
,

π

4
√

Λ

}
.

Then σ M is non-degenerate if there is a point p ∈ Bρ such that the lifted Euclidean simplex
σ (p) has thickness satisfying

t (σ (p)) > 10
√

Λρ.

The ball Bρ may be chosen so that this inequality is necessarily satisfied if

t (σ (p)) > 10
√

ΛL (σ M ) ,

where L (σ M ) is the geodesic length of the longest edge in σ M.

The last assertion follows from the remark at the end of Sect. 2.2: If L (σ M ) < ρ0, then
σ M is contained in a closed ball of radius L (σ M ) centred at one of the vertices.

Remark 10 Using Proposition 17 and Lemma 11 of Sect. 4, we can replace Eq. (15) with

∣∣ ∣∣vi (x) − v j (x)
∣∣ − ∣∣vi (p) − v j (p)

∣∣ ∣∣ ≤ 6Λρ2
∣∣vi (p) − v j (p)

∣∣ when ρ <
1

2
ρ0,

and we find, that the Riemannian simplex σ M of Theorem 1 is non-degenerate if

t (σ (p)) > 5
√

Λρ,

but with the caveat that ρ must now satisfy ρ ≤ 1
2ρ0.

Orientation In Euclidean space E
n we can define an orientation as an equivalence class of

frames, two frames being equivalent if the linear transformation between them has positive
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determinant. We can likewise associate an orientation to a (non-degenerate) Euclidean n-
simplex σ = {v0, . . . , vn}: it is the orientation associated with the basis {(vi − v0)}i∈{1,...,n}.
The orientation depends on how we have indexed the points. Any even permutation of the
indices yields the same orientation.

In a manifold, we can assign an orientation locally, in a neighbourhoodU ⊂ M on which
the tangent bundle admits a local trivialisation, for example. Thenwe can define an orientation
by defining an orientation on TpM for some p ∈ U . If σ = {p0, . . . , pn} ⊂ U defines a
non-degenerate Riemannian simplex, then we can associate an orientation to that simplex: it
is the orientation of σ (p0) ⊂ Tp0M . Again, we will get agreement on the orientation if we
perform any even permutation of the vertex indices. The reason is that our non-degeneracy
assumption implies that the orientation of σ (pi ) will agree with the orientation of σ (p j ) for
any i, j ∈ {0, . . . , n}.

In the particular case discussed in this section, where φ = u ◦ exp−1
p , for p ∈ Bρ , the

barycentricmap b : σE(p) → σ M is orientation preserving. Since exp−1
x ◦ expy is orientation

preserving for any x, y ∈ Bρ , it is enough to consider the case where p = p0 ∈ σ . Consider
Eq. (10):

(db)v0(p0) = − (∇ν)−1 ∂uνv0(p0).

By Eq. (12), we have (∂uν)v0(p0) = − Id. Also, it follows from Lemma 3 that∇ν has positive
determinant. (Buser and Karcher [11, p. 132] show that ∇ν is bounded near the identity),
and thus so must db everywhere, since it does not vanish on its domain.

4 Triangulation criteria

We are interested in the following scenario. Suppose we have a finite set of points S ⊂ M in a
compact Riemannianmanifold, and an (abstract) simplicial complexA whose vertex set is S,
and such that every simplex in A defines a non-degenerate Riemannian simplex. When can
we be sure that A triangulates M? Consider a convex ball Bρ centred at p ∈ S. We require
that, when lifted to TpM , the simplices near p triangulate a neighbourhood of the origin. If
we require that the simplices be small relative to ρ, and triangulate a region extending to near
the boundary of the lifted ball, then Riemannian simplices outside of Bρ cannot have points
in common with the simplices near the centre of the ball, and it is relatively easy to establish
a triangulation.

Instead, we aim for finer local control of the geometry. We establish geometric conditions
(Lemma 14) that ensure that the complex consisting of simplices incident to p, (i.e., the star
of p) is embedded by a given map into the manifold. In order to achieve this result we require
a strong constraint on the differential of the map in question. Since we work locally, in a
coordinate chart, we consider maps F : Rn ⊇ U → R

n . We demand that for some linear
isometry T : Rn → R

n we have

‖dFu − T ‖ ≤ η, (16)

for some 0 ≤ η ≤ 1, and all u ∈ U . This is stronger than the kind of bounds found, for
example, in the Rauch theorem (Lemma 9), which have the form

(1 − η) |w| ≤ |dFuw| ≤ (1 + η) |w| . (17)

Whereas (17) implies that dFu is close to a linear isometry at every u ∈ U , Eq. (16) means
that dFu is close to the same linear isometry for all u ∈ U .
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Using a local constraint of the form (16) to establish the embedding of vertex stars, we
demonstrate, in Sect. 4.1, generic criteria which ensure that a map from a simplicial complex
to a Riemannian manifold is a homeomorphism. We then turn our attention to the specific
case where the map in question is the barycentric coordinate map on each simplex.

Using a refinement of the Rauch theorem established by Buser and Karcher [11] we show,
in Sect. 4.2, that transition functions arising from the exponential map (Eq. (2)) are subject
to bounds of the form (16). Then in Sect. 4.3 we observe that the barycentric coordinate map
is also subjected to such bounds, and thus yield Theorem 2 as a particular case of the generic
triangulation criteria.

4.1 Generic triangulation criteria

We say that a map F : Rm → R
n is smooth if it is of class C∞. If A ⊂ R

m , then F : A → R
n

is smooth on A if F can be extended to a function that is smooth in an open neighbourhood of
A, i.e., there exists an open neighbourhoodU ∈ R

m and a smooth map F̃ : U → R
n such that

A ⊆ U , and F̃ |A = F . This definition is independent of the ambient space R
m containing

A. In particular, if A ⊆ R
k ⊆ R

m , then the smoothness of F does not depend on whether
we consider A to be a subset of Rk or of Rm . In the case that A is the closure of a non-empty
open set, continuity of the partial derivatives implies that they are well defined on all of A
and independent of the chosen extension. See Munkres [30, Section 1] for more details.

For our purposes, we are interested in smoothmaps from non-degenerate closed Euclidean
simplices of dimension n into an n-dimensional manifold M . We will work within coordinate
charts, so our primary focus will be on maps of the form

F : σ n
E

→ R
n,

such that Eq. (16) is satisfied for all u ∈ σ n
E
. As an example of howwe can exploit this bound,

we observe that a map satisfying Eq. (16) is necessarily an embedding with bounded metric
distortion if its domain is convex:

Lemma 11 Suppose A ⊂ R
n is convex, and F : A → R

n is a smooth map such that, for
some non-negative η < 1,

‖dFu − T ‖ ≤ η,

for all u ∈ A, and some linear isometry T : Rn → R
n. Then

| |F(u) − F(v)| − |u − v| | ≤ η |u − v| for all u, v ∈ A.

Proof We observe that it is sufficient to consider the case T = Id, because if F̃ = T−1 ◦ F ,

then
∥∥∥d F̃ − Id

∥∥∥ = ‖dF − T ‖, and
∣∣∣F̃(u) − F̃(v)

∣∣∣ = |F(u) − F(v)|.
Assume u �= v. For the lower bound we consider the unit vector û = u−v

|u−v| , and observe
that

dF(u − v) · û ≥ (1 − η) |u − v| > 0,

so, by integrating along the segment [u, v], we find
|F(u) − F(v)| ≥ (

F(u) − F(v)
) · û ≥ (1 − η) |u − v| .

For the upper bound we employ the unit vector ŵ = F(u)−F(v)
|F(u)−F(v)| :

(
F(u) − F(v)

) · ŵ = |F(u) − F(v)| ≤ (1 + η)(u − v) · ŵ ≤ (1 + η) |u − v| .
��
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For our purposes we will be free to choose a coordinate system so that F keeps a vertex
fixed. We will have use for the following observation, which can be demonstrated with an
argument similar to the proof of Lemma 11.

Lemma 12 If A ⊆ R
n is a convex set and F : A → R

n is a smooth map with a fixed point
p ∈ A and

‖dFu − Id‖ ≤ η, for all u ∈ A,

then
|F(u) − u| ≤ η|u − p| for all u ∈ A.

Embedding complexes In preparation for considering triangulations we first consider the
problem of mappings of complexes into R

n .
A simplicial complex C is a set of abstract simplices such that if σ ∈ C , then τ ∈ C for

every face τ ⊂ σ . We will only consider finite simplicial complexes. A subcomplex of C
is a subset that is also a simplicial complex. The star of a simplex σ ∈ C is the smallest
subcomplex of C consisting of all simplices that have σ as a face, and is denoted St(σ ). In
particular, if p is a vertex of C , then St(p) is the set of simplices that contain p, together with
the faces of these simplices.

The carrier (“geometric realisation”) of C is denoted |C |. We are interested in complexes
endowed with a piecewise flat metric. This is a metric on |C | that can be realised by assigning
lengths to the edges inC such that each simplex σ ∈ C is associatedwith a Euclidean simplex
σE ⊂ |C | that has the prescribed edge lengths. Certain constraints on the edge lengths must
be met in order to define a valid piecewise flat metric, but for our current purposes we will
have a metric inherited from an embedding in Euclidean space.

We say that C is embedded in R
n if the vertices lie in R

n and the convex hulls of any two
simplices in C either do not interesect, or their intersection is the convex hull of a simplex
in C . In other words, to each σ , τ ∈ C we associate σE = conv(σ ), τE = conv(τ ), and we
have σE ∩ τE = conv(σ ∩ τ). The topological boundary of a set B ⊂ R

n is denoted by ∂B,
and its topological interior by int(B). If C is embedded in R

n , and p is a vertex of C , we say
that St(p) is a full star if p ∈ int(

∣∣St(p)
∣∣).

The scale of C is an upper bound on the length of the longest edge in C , and is denoted by
h. We say that C is t0-thick if each simplex in C has thickness greater than t0. The dimension
of C is the largest dimension of the simplices in C . We call a complex of dimension n an
n-complex. If every simplex in C is the face of an n-simplex, then C is a pure n-complex.

A map F : |C | → R
n is smooth on C if for each σ ∈ C the restriction F

∣∣
σE

is smooth.

This means that d(F
∣∣
σE

) is well defined, and even though dF is not well defined, we will

use this symbol when the particular restriction employed is either evident or unimportant.
When the underlying complex on which F is smooth is unimportant, we simply say that F
is piecewise smooth.

F is piecewise linear if its restriction to each simplex is an affine map. The secant map of
F is the piecewise linear map defined by the restriction of F to the vertices of C .

We are interested in conditions that ensure that F : |C | → R
n is a topological embedding.

Our primary concern is with the behaviour of the boundary. The reason for this is captured
by the following variation of a lemma by Whitney [37, LemAII.15a]:

Lemma 13 (Whitney) Let C be a (finite) simplicial complex embedded in R
n such that

int(|C |) is non-empty and connected, and ∂|C | is a compact (n − 1)-manifold. Suppose
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F : |C | → R
n is smooth on C and such that det d(F

∣∣
σE

) > 0 for each n-simplex σ ∈ C . If
the restriction of F to ∂|C | is an embedding, then F is a topological embedding.

Proof The assumptions on int(|C |) and ∂|C | imply that C is a pure n-complex, and that each
(n−1) simplex is either a boundary simplex, or the face of exactly two n-simplices. Whitney
showed [37, LemAII.15a] that any x ∈ int(|C |) admits an open neighbourhoodU ⊂ int(|C |)
such that the restriction of F to U is a homeomorphism. In particular, F(int(|C |)) is open.

By the Jordan-Brouwer separation theorem [31, Section IV.7], Rn \ F(∂|C |) consists of
two open components, one of which is bounded. Since F(|C |) is compact, F(int(|C |)) must
coincide with the bounded component, and in particular F(int(|C |)) ∩ F(∂|C |) = ∅, so
F(int(|C |)) is a single connected component.

We need to show that F is injective. First we observe that the set of points in F(int(|C |))
that have exaclty one point in the preimage is non-empty. It suffices to look in a neigbhourhood
of a point y ∈ F(∂|C |). Choose y = F(x), where x is in the relative interior of σ n−1

E
⊂ ∂|C |.

Then there is a neighbourhood V of y such that V does not intersect the image of any other
simplex of dimension less than or equal to n − 1. Let σ n be the unique n-simplex that has
σ n−1 as a face. Then F−1(V ∩ F(|C |) ⊂ σ n

E
, and it follows that every point in V ∩ int(|C |)

has a unique point in its image.
Now the injectivity of F follows from the fact that the number of points in the preimage is

locally constant on F(int(|C |)) \ F(∂|C |), which in our case is connected. This is a standard
argument in degree theory [31, Prop. IV.1.2]: A point a ∈ F(int(|C |))\ F(∂|C |) has k points
{x1, . . . , xk} in its preimage. There is a neighbourood V of a and disjoint neighbourhoods
Ui of xi such that F |Ui : Ui → V is a homeomorphism for each i ∈ {1, . . . , k}. It follows
that the number of points in the preimage is k for every point in the open neighbourhood of
a defined as

W = V \ F

(
|C | \

⋃

i

Ui

)
.

��
Lemma 14 (Embedding a star) Suppose C = St(p) is a t0-thick, pure n-complex embedded
in R

n such that all of the n-simplices are incident to a single vertex, p, and p ∈ int(|C |) (i.e.,
St(p) is a full star). If F : |C | → R

n is smooth on C , and satisfies

‖dF − Id‖ < nt0 (18)

on each n-simplex of C , then F is an embedding.

Proof If |C | is convex, then the claim follows immediately from Lemma 11.
From the definition of thickness, we observe that nt0 ≤ 1, and therefore ‖dF‖ > 0. By

Lemma 13, it suffices to consider points x, y ∈ ∂|C |. Rather than integrating the differential
of a direction, as we did implicitly in the proof of Lemma 11, we will integrate the differential
of an angle.

Let Q be the 2-dimensional plane defined by p, x , and y. We define the angle function
φ : Rn → R as follows: For z ∈ R

n , let ž be the orthogonal projection of z into Q. Then φ(z)
is the angle that ž− pmakeswith x− p, where the orientation is chosen so that φ(y) < π (We
can assume that x and y are not colinear with p, since in that case [x, y] must be contained
in |C |, and the arguments of Lemma 11 ensure that we would not have F(x) = F(y)).

Let α be the piecewise linear curve obtained by projecting the segment [x, y] ⊂ Q onto
∂|C | via the radial rays emanating from p. Parameterise α by the angle φ, i.e., by the arc
between x−p

|x−p| and
y−p

|y−p| on the unit circle in Q. Then dφ(α′) = 1, and we have
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φ(F(y)) − φ(F(x)) =
∫

F(α)

dφ =
∫ φ(y)

0
dφ(dFα′(s)) ds.

Wewill show that dφ(dFα′(s)) > 0; it follows that φ(F(y)) > φ(F(x)) and hence F(y) �=
F(x).

We need an observation about thick simplices: Suppose that p is a vertex of a t0-thick
n-simplex σE, and τE is the facet opposite p. Then a line r through p and τE makes an angle
θ with τE that is bounded by

sin θ ≥ nt0.

Indeed, the altitude of p satisfies ap ≥ nt0L by the definition of thickness, and the distance
between p and the point of intersection of r with τE is less than L .

If α(s) is the point of intersection of r with τE, we observe that dφ(α′(s)) = ∣∣α′(s)
∣∣ sin θ ,

i.e., the magnitude of the component of α′(s) orthogonal to r. By the hypothesis (18), the
angle β between dFα′(s) and α′(s) satisfies sin β < nt0. Therefore

dφ(dFα′(s)) ≥ ∣∣dFα′(s)
∣∣ (sin θ − sin β)

> 0.

��
Triangulations For our purposes a manifold is always compact and without boundary. A
simplicial complex A is a manifold simplicial complex if |A | is a topological manifold. A
triangulation of a manifold M is a homeomorphism H : |A | → M , whereA is a simplicial
complex. If M is a differentiable manifold, then H is a smooth triangulation if it is smooth
onA , i.e., the restriction of H to any simplex inA is smooth.We are concerned with smooth
triangulations of compact Riemannian manifolds.

Our homeomorphism argument is based on the following observation:

Lemma 15 Let A be a manifold simplicial complex of dimension n with finite vertex set
S, and let M be a compact n-manifold. Suppose H : |A | → M is such that for each
p ∈ S, H

∣∣|St(p)| :
∣∣St(p)

∣∣ → M is an embedding. If for each connected component Mi of

M there is a point y ∈ Mi such that h−1(y) contains exactly one point in |A |, then H is a
homeomorphism.

Proof The requirement that the star of each vertex be embedded means that H is locally a
homeomorphism, so it suffices to observe that it is bijective. It is surjective by Brouwer’s
invariance of domain; thus H is a covering map. The requirement that each component of M
has a point with a single point in its pre-image implies that H : |A | → M is a single-sheeted
covering, and therefore a homeomorphism. ��

The following proposition generically models the situation we will work with when we
describe a triangulation by Riemannian simplices:

Proposition 16 (Triangulation) LetA be a manifold simplicial n-complex with finite vertex
set S, and M a compact Riemannian manifold with an atlas {(Wp, φp)}p∈S indexed by S.
Suppose

H : |A | → M

satisfies:
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1. For each p ∈ S the secant map of φp ◦ H restricted to
∣∣St(p)

∣∣ is a piecewise linear
embeddingLp : ∣∣St(p)

∣∣ → R
n such that each simplex σ ∈ Cp = Lp(St(p)) is t0-thick,

and
∣∣Cp

∣∣ ⊂ BRn (Lp(p); h), withLp(p) ∈ int(
∣∣Cp

∣∣). The scale parameter h must satisfy
h < ιM

4 , where ιM is the injectivity radius of M.

2. For each p ∈ S, φp : Wp
∼=−→ Up ⊂ R

n is such that B = BRn (Lp(p); 3
2h) ⊆ Up, and∥∥∥(dφ−1

p )u

∥∥∥ ≤ 4
3 , for every u ∈ B.

3. The map
Fp = φp ◦ H ◦ L −1

p : ∣∣Cp
∣∣ → R

n

satisfies
∥∥(dFp)u − Id

∥∥ ≤ nt0
2

on each n-simplex σ ∈ Cp, and every u ∈ σE.

Then H is a smooth triangulation of M.

Proof By Lemma 14, Fp is a homeomorphism onto its image. It follows then that H
∣∣|St(p)|

is an embedding for every p ∈ S. Therefore, since |A | is compact, H : |A | → M is a
covering map.

Given x ∈ |A |, with x ∈ σE, and p a vertex of σE, let x̃ = Lp(x) ∈ ∣∣Cp
∣∣. Then the

bound on dF implies that
∣∣Fp(x̃) − Lp(p)

∣∣ ≤ (
1 + nt0

2

)
h ≤ 3

2h, so Fp(x̃) ∈ B. Since
φ−1
p ◦ Fp(x̃) = H(x), and

∣∣∣∣
(
dφ−1

p

)

F(u)
(dFp)u

∣∣∣∣ ≤ 4

3

(
1 + nt0

2

)
≤ 2

for any u ∈ σE ⊂ ∣∣Cp
∣∣, we have that dM (H(p), H(x)) ≤ 2h.

Suppose y ∈ |A | with H(y) = H(x). Let τ ∈ A with y ∈ τE, and q ∈ τ a vertex.
Then dM (H(p), H(q)) ≤ 4h < ιM . Thus there is a path γ from H(x) to H(p) to H(q)

to H(y) = H(x) that is contained in the topological ball BM (H(p); ιM ), and is therefore
null-homotopic. Since H is a covering map, this implies that x = y. Thus H is injective, and
therefore defines a smooth triangulation. ��
4.2 The differential of exponential transitions

If there is a unique minimising geodesic from x to y, we denote the parallel translation along
this geodesic by Tyx . As a preliminary step towards exploiting Proposition 16 in the context
of Riemannian simplices, we show here that the estimates of Buser and Karcher [11, Section
6] imply

Proposition 17 (Strong exponential transition bound) Suppose the sectional curvatures on
M satisfy |K | ≤ Λ. Let v ∈ TpM, with y = expp(v). If x, y ∈ BM (p; ρ), with

ρ <
1

2
ρ0 = 1

2
min

{
ιM

2
,

π

4
√

Λ

}
,

then ∥∥∥d
(
exp−1

x ◦ expp
)
v

− Txp
∥∥∥ ≤ 6Λρ2.

The primary technical result that we use in the demonstration of Proposition 17 is a
refinement of the Rauch theorem demonstrated by Buser and Karcher [11, Section 6.4]. We
make use of a simplified particular case of their general result:
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Lemma 18 (StrongRauch theorem) Assume the sectional curvatures on M satisfy |K | ≤ Λ,
and suppose there is a unique minimising geodesic between x and p. If v = exp−1

p (x), and

|v| = dM (p, x) = r ≤ π

2
√

Λ
,

then
∥∥(d expp)v − Txp

∥∥ ≤ Λr2

2
.

Proof Given distinct upper and lower bounds on the sectional curvatures, Λ− ≤ K ≤ Λ+,
the result of Buser and Karcher [11, Section 6.4.2] is stated as

∣∣∣∣(d expp)vw − Txp

(
Sκ (r)w

r

)∣∣∣∣ ≤ |w|
(
Sκ−λ(r) − Sκ (r)

r

)
,

for any vector w perpendicular to v, and as long as Sκ is nonnegative. Here κ is arbitrary, and
λ = max{Λ+ − κ, κ − Λ−}.

We take Λ = max{Λ+,−Λ−}, and κ = 0. The stated bound results since now Sκ (r) =
S0(r) = r , and the constraint r ≤ π

2
√

Λ
ensures that

S−Λ(r) − r

r
≤ Λr2

2
,

as observed in Sect. 3.2. The result applies to all vectors since the exponential preserves
lengths in the radial direction. ��

Weobtain a bound on the differential of the inverse of the exponentialmap fromLemma 18
and the following observation:

Lemma 19 Suppose A : Rn → R
n is a linear operator that satisfies

‖A − T ‖ ≤ η,

for some linear isometry T : Rn → R
n. If η ≤ 1

2 , then
∥∥A−1 − T−1

∥∥ ≤ 2η.

Proof We first bound
∥∥A−1

∥∥ = sn(A)−1, the inverse of the smallest singular value. Since
sn(A) = sn(T−1A), and

∥∥T−1A − Id
∥∥ ≤ η, we have |sn(A) − 1| ≤ η. Thus sn(A)−1 ≤

(1 − η)−1 ≤ 1 + 2η.
Now write A = T + ηE , where ‖E‖ ≤ 1. The trick [24, p. 50] is to observe that

A−1 = T−1 − A−1(A − T )T−1

= T−1 − ηA−1ET−1,

and the stated bound follows. ��
Lemma 20 Suppose the sectional curvatures on M satisfy |K | ≤ Λ. Let v ∈ TpM, with
y = expp(v). If x, y ∈ BM (p; ρ), with

ρ ≤ min

{
ιM

2
,

1

2
√

Λ

}
,

then ∥∥d(exp−1
x ◦ expp)v − TxyTyp

∥∥ ≤ 5Λρ2.
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Proof By Lemma 1, BM (p; ρ) is convex. Since dM (x, y) < 2ρ, Lemma 18 yields∥∥(d expx )w − Tyx
∥∥ < 2Λρ2 ≤ 1

2 , where w = exp−1
x (y). Since Txy = T−1

yx , we may
use Lemma 19 to write

(d exp−1
x )y = Txy + (

4Λρ2) E,

where E satisfies ‖E‖ ≤ 1. We obtain the result by composing this with

(d expp)v = Typ +
(

Λρ2

2

)
Ẽ,

where
∥∥∥Ẽ

∥∥∥ ≤ 1. ��

In order to compare Txp with TxyTyp we exploit further estimates demonstrated by Buser
and Karcher. If α : [0, 1] → M is a curve, let Tα(t) : Tα(0)M → Tα(t)M denote the par-
allel translation operator (we do not require that α be a minimising geodesic). Buser and
Karcher [11, Sections 6.1, 6.2] bound the difference in the parallel translation operators
between two homotopic curves:

Lemma 21 (Parallel translation comparison) Let ci : [0, 1] → M be piecewise smooth
curves from p to q, and let

c : [1, 2] × [0, 1] → M

be a piecewise smooth homotopy between c1 and c2, i.e., c(1, t) = c1(t), and c(2, t) = c2(t).
Let a = ∫

det dc(s,t) dsdt be the area of the homotopy. If the sectional curvatures are bounded
by |K | ≤ Λ, then

∥∥Tc2(1) − Tc1(1)
∥∥ ≤ 4

3
Λa.

In our case the two curves of interest form the edges of a geodesic triangle. A geodesic
triangle in M is a set of three points (vertices) such that each pair is connected by a unique
minimising geodesic, together with these three minimising geodesics (edges). Any three
points in a convex set are the vertices of a geodesic triangle. Buser and Karcher [11, Section
6.7] demonstrate an estimate ofA.D.Aleksandrow that says that the edges of a small geodesic
triangle are the boundary of a topological disk whose area admits a natural bound:

Lemma 22 (Small triangle area) Let p, x, y ∈ M be the edges of a geodesic triangle whose
edge lengths, �px , �xy, �yp satisfy

�px + �xy + �yp ≤ min

{
ιM ,

2π√
Λ+

}
,

where Λ+ is an upper bound on the sectional curvatures of M, and ιM is the injectivity

radius (if Λ+ ≤ 0, then Λ
− 1

2+ is considered infinite). Then the edges of triangle pxy form the
boundary of an immersed topological disk whose area a satisfies

a ≤ aΛ+ ,

where aΛ+ is the area of a triangle with the same edge lengths in the sphere of radius 1√
Λ+

.

Consider x, y ∈ BM (p; ρ), where ρ < 1
2ρ0 and as usual Λ is a bound on the absolute

values of the sectional curvatures. In this case, Buser and Karcher [11, Section 6.7.1] observe

123



Geom Dedicata (2015) 179:91–138 115

that the area of the triangle in the sphere of radius 1√
Λ
that has the same edge lengths as pxy

satisfies

aΛ ≤ 5

8
ρ2.

It follows then, from Lemma 21, that

∥∥Txp − TxyTyp
∥∥ ≤ 5

6
Λρ2.

This, together with Lemma 20, yields

∥∥d(exp−1
x ◦ expp)v − Txp

∥∥ ≤ 5Λρ2 + 5

6
Λρ2 ≤ 6Λρ2,

and we obtain Proposition 17.

4.3 Triangulations with Riemannian simplices

We now exploit Proposition 17 to demonstrate that a bound of the form (16) is satisfied by
the differential (10) of the barycentric coordinate map defining a Riemannian simplex σ M

db = − (∇ν)−1 ∂uν,

and find a bound on the scale that allows us to exploit Proposition 16.
Choose a vertex p0 of σ M , and an arbitrary linear isometry u : Tp0M → R

n to establish
a coordinate system on Tp0M , i.e., v0(p0) remains the origin. Let P be the matrix whose ith
column is vi (p0). For x ∈ Bρ , rather than placing an arbitrary coordinate system on TxM ,
we identify Tp0M and TxM by the parallel translation operator Tp0x , i.e., use u ◦ Tp0x for
coordinates. Let P̃ be the matrix whose i th column is vi (x) − v0(x).

Now the map
F : v �→ exp−1

x ◦ expp0(v) − v0(x)

can be considered as a map R
n ⊃ U → R

n , and the matrix whose i th column is F(vi (p0))
is P̃ . It follows from Proposition 17 that if h < 1

2ρ0, then for any u ∈ BRn (0; h), we have
‖(dF)u − Id‖ ≤ η, with η = 6Λh2.

Lemma 12 implies a bound on the difference of the column vectors of P and P̃:

|vi (p0) − (vi (x) − v0(x))| ≤ η |vi (p0)| ≤ ηL (σ (p0)) .

It follows that
∥∥∥P − P̃

∥∥∥ ≤ √
nηL (σ (p0)). Assume also that t (σ (p0)) ≥ t0. Then, recalling

Eq. (12), and recognising that Txp0 is represented by the identity matrix in our coordinate
systems, we have

∥∥− (∂uν) − Txp0
∥∥ =

∥∥∥P̃P−1 − PP−1
∥∥∥

=
∥∥∥
(
P̃ − P

)
P−1

∥∥∥

≤ √
n6Λh2L (σ (p0))

∥∥P−1
∥∥

≤
√
n6Λh2L (σ (p0))√
nt0L (σ (p0))

by Lemma 6

≤ 6Λh2

t0
.

123



116 Geom Dedicata (2015) 179:91–138

Buser and Karcher show [11, Section 8.1.3] that for any x ∈ BM (p; h), with h < ρ0, we
have

‖(∇ν)x − Id‖ ≤ 2Λh2.

When h < 1
2ρ0, we have 2Λh2 < 1

2 , and Lemma 19 yields
∥∥(∇ν)−1 − Id

∥∥ ≤ 4Λh2.

Therefore we have, when b(u) = x
∥∥dbu − Txp0

∥∥ = ∥∥− (∇ν)−1 ∂uν − Txp0
∥∥

≤ 4Λh2 + 6Λh2

t0
+ 4Λh2

(
6Λh2

t0

)

≤ 14Λh2

t0
,

(19)

using h < π

8
√

Λ
.

Finally, in order to employ Proposition 16 we consider the composition exp−1
p0 ◦b. From

Lemmas 18 and 19 we have that
∥∥∥(d exp−1

p0 )x − Tp0x

∥∥∥ ≤ Λh2.

Therefore, since Tp0x = T−1
xp0 we have

∥∥∥d(exp−1
p0 ◦b)u − Id

∥∥∥ ≤ Λh2 + 14Λh2

t0
+ Λh2

(
14Λh2

t0

)

≤ 18Λh2

t0
.

In order to meet the conditions of Proposition 16, we require

18Λh2

t0
≤ 1

2
nt0,

or

h ≤
√
nt0

6
√

Λ
.

We obtain

Theorem 2 (Triangulation criteria) Suppose M is a compact n-dimensional Riemannian
manifold with sectional curvatures K bounded by |K | ≤ Λ, and A is an abstract simplicial
complex with finite vertex set S ⊂ M. Define a quality parameter t0 > 0, and let

h = min

{
ιM

4
,

√
nt0

6
√

Λ

}
.

If

1. For every p ∈ S, the vertices of St(p) are contained in BM (p; h), and the balls
{BM (p; h)}p∈S cover M.
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2. For every p ∈ S, the restriction of the inverse of the exponential map exp−1
p to the vertices

of St(p) ⊂ A defines a piecewise linear embedding of
∣∣St(p)

∣∣ into TpM, realising St(p)
as a full star such that every simplex σ (p) has thickness t (σ (p)) ≥ t0.

thenA triangulates M, and the triangulation is given by the barycentric coordinate map on
each simplex.

5 The piecewise flat metric

The complex A described in Theorem 2 naturally inherits a piecewise flat metric from the
construction. The length assigned to an edge {p, q} ∈ A is the geodesic distance in M
between its endpoints: �pq = dM (p, q). We first examine, in Sect. 5.1, conditions which
ensure that this assignment of edge lengths does indeed make each σ ∈ A isometric to a
Euclidean simplex. With this piecewise flat metric onA , the barycentric coordinate map is a
bi-Lipschitz map between metric spaces H : |A | → M . In Sect. 5.2 we estimate the metric
distortion of this map.

Several of the lemmas in this section are generalisations of lemmas that appeared in [7,
Section A.1]. The arguments are essentially the same, but we have included the proofs here
for convenience.

5.1 Euclidean simplices defined by edge lengths

If G is a symmetric positive definite n × n matrix, then it can be written as a Gram matrix,
G = PTP for some n×n matrix P. Then P describes a Euclidean simplex with one vertex at
the origin, and the other vertices defined by the column vectors. The matrix P is not unique,
but if G = QTQ, then Q = OP for some linear isometry O. Thus a symmetric positive
definite matrix defines a Euclidean simplex, up to isometry.

If σ = {p0, . . . , pn} ⊂ Bρ , is the vertex set of a Riemannian simplex σ M , we define the
numbers �i j = dM (pi , p j ). These are the edge lengths of a Euclidean simplex σE if and
only if the matrix G defined by

Gi j = 1

2

(
�20i + �20 j − �2i j

)
(20)

is positive definite.
Wewould like to use the smallest eigenvalue ofG to estimate the thickness of σE, however,

an unfortunate choice of vertex labels can prevent us from doing this easily. We make use of
the following observation:

Lemma 23 Suppose σ = {v0, . . . , vk} ⊂ R
n is a Euclidean k-simplex, and let P be the n×k

matrix whose ith column is vi − v0. If for some i �= 0, an altitude at least as small as a0 is
realised, i.e, ai ≤ a0, then

t (σ ) ≥ sk(P)

kL (σ )
.

Proof We assume that σ is non-degenerate, since otherwise the bound is trivial. If vi is a
vertex of minimal altitude, then by Lemma 6, the i th row of the pseudo-inverse P−1

left is given
by wi

T, where
|wi | = a−1

i = (kt L)−1.

It follows then that s1(P
−1
left ) ≥ (kt L)−1, and therefore sk(P) ≤ kt L , yielding the stated

bound. ��
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If G is positive definite, then we may write G = PTP , where P is a matrix describing
σE = [v0, . . . , vk], with the edge lengths {�i j } dictating the vertex labelling. If μk(G) =
sk(P)2 is the smallest eigenvalue of G, then provided some vertex other than v0 realises the
smallest altitude in σE, Lemma 23 yields

t (σE) ≥
√

μk(G)

kL (σ )
. (21)

For our current purposes, we can ensure the existence, and bound the thickness of σE

by comparing it with a related simplex such as σ (p0). To this end we employ the following
observation (where σ̃ plays the role of σ (p0)):

Lemma 24 Suppose σ̃ = {ṽ0, . . . , ṽk} is a Euclidean k-simplex, and {�i j } is a set of positive
numbers defined for all 0 ≤ i �= j ≤ k such that �i j = � j i , and

∣∣∣∣ṽi − ṽ j
∣∣ − �i j

∣∣ ≤ C0L (σ̃ ) .

Let P̃ be the matrix whose ith column is ṽi − ṽ0, and define the matrix G by

Gi j = 1

2

(
�20i + �20 j − �2i j

)
.

Let E be the matrix that records the difference between G and the Gram matrix P̃T P̃:

G = P̃T P̃ + E .

If C0 ≤ 2
3 , then the entries of E are bounded by

∣∣Ei j
∣∣ ≤ 4C0L (σ̃ )2, and in particular

‖E‖ ≤ 4kC0L (σ̃ )2 . (22)

Proof Let �̃i j = ∣∣ṽi − ṽ j
∣∣. By the cosine rule we have

[
P̃T P̃

]

i j
= 1

2

(
�̃20i + �̃20 j − �̃2i j

)
,

and we obtain a bound on the magnitude of the coefficients of E :
∣∣∣∣Gi j −

[
P̃T P̃

]

i j

∣∣∣∣ ≤ 1

2

(∣∣∣�20i − �̃20i

∣∣∣ +
∣∣∣�20 j − �̃20 j

∣∣∣ +
∣∣∣�2i j − �̃2i j

∣∣∣
)

≤ 3

2
(2 + C0)C0L (σ̃ )2

≤ 4C0L (σ̃ )2 .

This leads us to a bound on s1(E) = |E |. Indeed, the magnitude of the column vectors of
E is bounded by

√
k times a bound on the magnitude of their coefficients, and the magnitude

of s1(E) is bounded by
√
k times a bound on the magnitude of the column vectors. We obtain

Eq. (22). ��
Wehave the following extension of the “Thickness under distortion” Lemma 7 ([7, Section

4.2]):

Lemma 25 (Abstract Euclidean simplex) Suppose σ̃ = {ṽ0, . . . , ṽk} ⊂ R
n, and {�i j }0≤i, j≤k

is a set of positive numbers defined for all 0 ≤ i �= j ≤ k such that �i j = � j i , and such that
∣∣∣∣ṽi − ṽ j

∣∣ − �i j
∣∣ ≤ C0L (σ̃ )
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for all 0 ≤ i < j ≤ k.
If

C0 = ηt (σ̃ )2

4
with 0 ≤ η ≤ 1, (23)

then there exists a Euclidean simplex σ = {v0, . . . , vk} whose edge lengths are described by
the numbers �i j . Let P̃ and P be matrices whose i th column is given by ṽi − ṽ0, and vi − v0
respectively. Then

sk(P) ≥ (1 − η)sk(P̃),

and the thickness of σ satisfies

t (σ ) ≥ 4

5
√
k
(1 − η)t (σ̃ ) .

Proof If σ̃ is degenerate, then by (23), {�i j } is the set of edge lengths of σ̃ and there is nothing
to prove. Therefore, assume t (σ̃ ) > 0.

Let G be the matrix defined by Eq. (20), and define the matrix E by G = P̃T P̃ + E , and
let x be a unit eigenvector of G associated with the smallest eigenvalue μk . Then

μk = xTGx = xT P̃T P̃x + xTEx

≥ sk(P̃)2 − s1(E)

=
(
1 − s1(E)

sk(P̃)2

)
sk(P̃)2.

From Lemma 6 we have sk(P̃)2 ≥ kt (σ̃ )2 L (σ̃ )2, and by Lemma 24 s1(E) ≤ 4kC0L (σ̃ )2,
so by the definition (23) of C0, we have that

μk ≥ (1 − η)sk(P̃)2,

and thus G is positive semi-definite, and the first inequality is satisfied because μk = sk(P)2

and
√
1 − η ≥ 1 − η.

In order to obtain the thickness bound, we employ Lemma 23. Since thickness is inde-
pendent of the vertex labelling, we may assume that some vertex other than v0 realises the
minimal altitude in σ (if necessary, we relabel the vertices of σ̃ and σ , maintaining the
correspondence). Then using Lemma 23 and Lemma 6 we have

kt (σ ) L (σ ) ≥ sk(P) ≥ (1 − η)sk(P̃) ≥ (1 − η)
√
kt (σ̃ ) L (σ̃ ) .

The stated thickness bound follows since L(σ̃ )
L(σ )

≥ 1
1+C0

≥ 4
5 . ��

Nowwe examine whether the simplices of the complexA of Theorem 2meet the require-
ments of Lemma 25. If σ ∈ A , with p ∈ σ , then we can use the Rauch theorem 9 to compare
σ with the Euclidean simplex σ (p) ∈ TpM . Under the assumptions of Theorem 2, we have
∥∥d expp

∥∥ ≤ 1 + Λh2
2 , and

∥∥∥d exp−1
p

∥∥∥ ≤ 1 + Λh2
3 . Thus

�i j − ∣∣vi (p) − v j (p)
∣∣ ≤ Λh2

2

∣∣vi (p) − v j (p)
∣∣ ,

and

∣∣vi (p) − v j (p)
∣∣ − �i j ≤ Λh2

3
�i j ≤ Λh2

3

(
1 + Λh2

2

) ∣∣vi (p) − v j (p)
∣∣
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≤ Λh2

2

∣∣vi (p) − v j (p)
∣∣ ,

and we can use

C0 = Λh2

2
(24)

in Lemma 25. Thus in order to guarantee that the �i j describe a non-degenerate Euclidean
simplex, we require that

Λh2 = ηt20
2

,

for some non-negative η < 1.

Under the conditions of Theorem 2 we may have h2Λ = nt20
36 , which gives us η = n

18 .
Thus when n ≥ 18 we require stronger bounds on the scale than those imposed by Theorem 2
if we wish to ensure the existence of a piecewise flat metric on A . Reducing the curvature
controlled constraint on h in Theorem 2 by a factor of 1/

√
n gives us η = 1

18 , and Lemma 25
yields:

Proposition 26 If the requirements of Theorem 2, are satisfied when the scale parameter (5)
is replaced with

h = min

{
ιM

4
,

t0

6
√

Λ

}
,

then the geodesic distances between the endpoints of the edges in A defines a piecewise flat
metric on A such that each simplex σ ∈ A satisfies

t (σ ) >
3

4
√
n
t0.

5.2 Metric distortion of the barycentric coordinate map

In the context of Theorem 2 the barycentric coordinate map on each simplex defines a
piecewise smooth homeomorphism H : |A | → M . If the condition of Proposition 26 is
also met, then A is naturally endowed with a piecewise flat metric. We wish to compare
this metric with the Riemannian metric on M . It suffices to consider an n-simplex σ ∈ A ,
and establish bounds on the singular values of the differential dH . If p ∈ σ , then we can
write H

∣∣
σE

= b ◦ Lp , where Lp : σE → σE(p) is the linear map that sends σ ∈ A to
σ (p) ∈ TpM .

A bound on the metric distortion of a linear map that sends one Euclidean simplex to
another is a consequence of the following (reformulation of [7, LemA.4]):

Lemma 27 (Linear distortion bound) Suppose that P and P̃ are non-degenerate k × k
matrices such that

P̃T P̃ = PTP + E . (25)

Then there exists a linear isometry Φ : Rk → R
k such that

∥∥∥P̃P−1 − Φ

∥∥∥ ≤ s1(E)

sk(P)2
.

Proof Multiplying by P−T := (PT)
−1

on the left, and by P−1 on the right, we rewrite
Eq. (25) as

ATA = I + F, (26)
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where A = P̃ P−1, and F = P−T E P−1. Using the singular value decomposition A =
UAΣAV T

A , we let Φ = UAV T
A so that

(A − Φ) = UA(ΣA − I )V T
A . (27)

From Eq. (26) we deduce that s1(A)2 ≤ 1+ s1(F), and also that sk(A)2 ≥ 1− s1(F). Using
these two inequalities we find

max
i

|si (A) − 1| ≤ s1(F)

1 + si (A)
≤ s1(F),

and thus
‖ΣA − I‖ ≤ s1(F) ≤ s1(P

−1)2s1(E) = sk(P)−2s1(E).

The result now follows from Eq. (27). ��
Lemma 27 implies:

Lemma 28 Suppose σ = {v0, . . . , vn} and σ̃ = {ṽ0, . . . , ṽn} are two Euclidean simplices
in R

n such that
∣∣ ∣∣ṽi − ṽ j

∣∣ − ∣∣vi − v j
∣∣ ∣∣ ≤ C0L (σ ) .

If A : Rn → R
n is the affine map such that A(vi ) = ṽi for all i, and C0 ≤ 2

3 , then for all
x, y ∈ R

n,

| |A(x) − A(y)| − |x − y| | ≤ η |x − y| ,
where

η = 4C0

t (σ )2
.

Proof Let P be the matrix whose ith column is vi − v0, and let P̃ be the matrix whose i th

column is ṽi − ṽ0. Then we have the matrix form A(x) = P̃ P−1x + (ṽ0 − P̃ P−1v0). It
follows then from Lemma 27 that η ≤ sn(P)−2s1(E), where E = P̃T P̃ − PTP .

By Lemma 24, s1(E) ≤ 4nC0L (σ )2, and by Lemma 6, sn(P)2 ≥ nt (σ )2 L (σ )2, and
the result follows. ��

Observe that if A in Lemma 28 is a linear map, then the lemma states that s1(A) ≤ 1+ η

and sn(A) ≥ 1−η. We use this to estimate the metric distortion of H |σE
= b◦Lp . Under the

assumption of Proposition 26, specifically, given that h ≤ t0
6
√

Λ
, we again exploit Eq. (24),

so ∥∥∥L −1
p

∥∥∥ ≤ 1 + 2Λh2

t20

and, since
∥∥Lp

∥∥−1 = sn(L −1
p ) ≥ 1 − 2Λh2

t20
, and the second term is less than 1

2 , we also

have
∥∥Lp

∥∥ ≤ 1 + 4Λh2

t20
.

Using Eq. (19) we have

‖db‖ ≤ 1 + 14Λh2

t0
,
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and
∥∥db−1

∥∥ ≤ 1 + 28Λh2

t0
.

Recalling that dH
∣∣
σE

= (db)Lp , and h2 ≤ t20
36Λ , we obtain

‖dH‖ ≤ 1 + 20Λh2

t20
,

and
∥∥dH−1

∥∥ ≤ 1 + 32Λh2

t20
.

The bound on the differential of H and its inverse enables us to estimate the Riemannian
metric on M using the piecewise flat metric onA . The metric distortion bound on H is found
with the same kind of calculation as exhibited in Eq. (15), for example. We find:

Theorem 3 (Metric distortion) If the requirements of Theorem 2, are satisfied with the scale
parameter (5) replaced by

h = min

{
ιM

4
,

t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assigning to each
edge the geodesic distance in M between its endpoints.

If H : |A | → M is the triangulation defined by the barycentric coordinate map in this
case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y)) − dA (x, y)| ≤ 50Λh2

t20
dA (x, y),

for all x, y ∈ |A |.
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Appendix 1: Alternate criteria

We discuss alternative formulations of our results. In Sect. 1, we consider defining the quality
ofRiemannian simplices in terms of Euclidean simplices defined by the geodesic edge lengths
of the Riemannian simplices. In Sect. 1 we compare thickness with a volume-based quality
measure for simplices that we call fatness.

In terms of the intrinsic metric

We imposed a quality bound on a Riemannian simplex σ M by imposing a quality bound on
the Euclidean simplex σ (p) that is the lift of the vertices of σ M to TpM . This was convenient
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for our purposes, but the quality of σ M could also be characterised directly by its geodesic
edge lengths.

As discussed in Sect. 5.1, we can use the smallest eigenvalue of the matrix (20) G to
characterise the quality of σ M : When μn(G) ≥ 0, there is a Euclidean simplex σE with the
same edge lengths as σ M , however we have the inconvenience that the lower bound (21) on
t (σE) with respect to μk(G) is not valid for all choices of vertex labels.

This inconvenience can be avoided if a volumetric quality measure is used, such as the
fatness discussed in Sect. 1. Determinant-based criteria for Euclidean simplex realisability
are discussed by Berger [2, Section 9.7], for example.

In any event, we will express the alternate non-degeneracy criteria for σ M in terms of
the thickness of the associated Euclidean simplex σE. Using Proposition 5, and the Rauch
theorem 9, we have the following reformulation of the non-degeneracy criteria of Theorem 1.

Proposition 29 (Non-degeneracy criteria) If ρ < ρ0 defined in Eq. (3), and the geodesic
edge lengths of σ M ⊂ Bρ ⊂ M define a Euclidean simplex σE with

t (σE) ≥ 3
√

ΛL (σE) (28)

then σ M is non-degenerate. As in Theorem 1, the assertion holds if ρ replaces L (σE) in the
lower bound (28).

Proof By Lemma 9 we have for any x ∈ Bρ

∣∣vi (x) − v j (x)
∣∣ ≤

(
1 + Λ(2ρ)2

3

)
�i j ,

and

�i j ≤
(
1 + Λ(2ρ)2

2

) ∣∣vi (x) − v j (x)
∣∣ .

Therefore
∣∣ ∣∣vi (x) − v j (x)

∣∣ − �i j
∣∣ ≤ Λ2ρ2

(
1 + Λ4ρ2

3

)
�i j

≤ 4Λρ2�i j .

Then usingC0 = 4Λρ2 inLemma7,we see thatσ (x) is non-degenerate if t (σE) >
√
8
√

Λρ,
and the result follows from Proposition 5, and the remarks at the end of Sect. 2.2. ��

The scale parameter h in Theorem 2 is in fact a strict upper bound on the geodesic edge
lengths �i j in A . A similar argument to the proof of Proposition 29 allows us to restate
Theorem 2 by employing a thickness bound on the Euclidean simplices with edge lengths
�i j :

Proposition 30 (Triangulation criteria) Suppose M is a compact n-dimensional Riemannian
manifold with sectional curvatures K bounded by |K | ≤ Λ, and A is an abstract simplicial
complex with finite vertex set S ⊂ M.

Define a quality parameter t0 > 0, and let

h = min

{
ιM

4
,

t0

8
√

Λ

}
.

If
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1. For every simplex σ = {p0, . . . , pn} ∈ A , the edge lengths �i j = dM (pi , p j ) satisfy
�i j < h, and they define a Euclidean simplex σE with t (σE) ≥ t0.

2. The balls {BM (p; h)}p∈S cover M, and for each p ∈ S the secant map of exp−1
p realises

St(p) as a full star.

thenA triangulates M, and the triangulation is given by the barycentric coordinate map on
each simplex.

Proof By the argument in the proof of Proposition 29, using h instead of 2ρ, we see that for
any x, y ∈ BM (p; h) we have

∣∣∣
∣∣∣exp−1

p (x) − exp−1
p (y)

∣∣∣ − dM (x, y)
∣∣∣ ≤ Λh2dM (x, y).

Then using C0 = Λh2 = ηt20
4 in Lemma 7, we get

η = 4Λh2

t20
≤ 1

16
.

It follows that if σ ∈ A , with p ∈ σ , then

t (σ (p)) ≥ 4

5
√
n

(1 − η)t0 ≥ 3

4
√
n
t0.

The bound on h then implies that h ≤
√
nt(σ (p))
6
√

Λ
, and so the result of Theorem 2 applies. ��

In terms of fatness

Many alternative quality measures for simplices have been employed in the literature. Thick-
ness is employed by Munkres [30], using a slightly different normalisation than ours. It is
also very popular to use a volume-based quality measure such as that employed by Whit-
ney [37]. In this section we introduce Whitney’s quality measure, which we call fatness, and
we compare it with thickness.

If σ is a j-simplex, then its volume, may be defined for j > 0 as

vol j (σ ) = 1

j !
j∏

i=1

si (P),

where P is the m × j matrix whose i th column is pi − p0 for σ = {p0, · · · , p j } ⊂ R
m . If

j = 0 we define vol0(σ ) = 1. Alternatively, the volume may be defined inductively from
the formula

vol j (σ ) = ap(σ ) vol j−1(σ p)

j
. (29)

The fatness of a j-simplex σ is the dimensionless quantity

Θ (σ ) =
{
1 if j = 0
vol j (σ )

L(σ ) j
otherwise.

Lemma 31 (Fatness and thickness) For any j-simplex σ

t (σ ) j ≤ Θ (σ ) ≤
j∏

k=1

t
(
σ k

)
≤ t (σ )

( j − 1)! ,
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where σ = σ j ⊃ σ j−1 ⊃ · · · ⊃ σ 1 is any chain of faces of σ such that for each i < j, σ i

has maximal volume amongst all the facets of σ i+1.

Proof It follows directly from the volume formula (29) that if σ k−1 is a face with maximal
volume in σ k = {pk} ∪ σ k−1, then pk is a vertex with minimal altitude in σ k . Order the
vertices of σ = {p0, . . . , p j } so that σ k = {p0, . . . , pk} for each k ≤ j . Then, inductively
expanding the volume formula (29), we get

vol
(
σ j

)
=

j∏

k=1

apk (σ
k)

k
.

The inequality Θ (σ ) ≤ ∏ j
k=1 t

(
σ k

)
then follows from the definitions of thickness and

fatness, and the observation that L (σ ) ≥ L
(
σ k

)
for all k ≤ j . Also from the definition of

thickness we have the trivial bound t
(
σ k

) ≤ 1
k , from which the rightmost inequality follows.

The lower bound also follows from induction on Eq. (29). Using the same chain of faces
and vertex labelling we get

Θ (σ ) = ap j (σ )

j L (σ )

vol
(
σ j−1

)

L (σ ) j−1

= t (σ ) Θ
(
σ j−1

) L
(
σ j−1

) j−1

L (σ ) j−1

≥ t (σ ) t
(
σ j−1

) j−1 L
(
σ j−1

) j−1

L (σ ) j−1 inducive hypothesis

= t (σ )

(
ap j−1(σ

j−1)

( j − 1)L (σ )

) j−1

≥ t (σ ) j .

��
Although Lemma 31 gives the impression that fatness corresponds roughly to a power of

thickness, we observe that thickness and fatness coincide for triangles, as well as edges, and
vertices.

Lemma 31, provides a way to express our results in terms of fatness instead of thickness.
For example, the quality bound for non-degeneracy in Theorem 1

t (σ (p)) > 10
√

Λρ,

is attained if

Θ (σ (p)) >
10

√
Λρ

(n − 1)! .

Appendix 2: The Toponogov point of view

Introduction

In this appendix we discuss a different approach to finding conditions that guarantee that a
Riemannian simplex is non-degenerate, that is diffeomorphic to the standard simplex. It is
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based on the Toponogov comparison theorem, instead of Rauch’s theorem. This comparison
theorem says that if the sectional curvatures of a manifold M are bounded from above by
Λ+ and below by Λ− and there is a geodesic triangle in M of which we know the lengths of
the three geodesics, then the angles of the triangle are bounded by the angles for a geodesic
triangle in a space of constant curvature Λ− or Λ+ whose geodesics have the same lengths.
Similarly if we are given lengths of two geodesics and the enclosed angle in a geodesic
triangle in M , the length of the third geodesic is bounded by the lengths of the third geodesic
in a geodesic triangle with the same lengths for two geodesics and enclosed angle in a space
of constant curvature Λ− or Λ+. The dimension of the manifold shall be denoted by n.

Our non-degeneracy conditions are established in two steps: First we note that if for any
point x in a neighbourhood of the vertices in the manifold there are n tangents to geodesics
connecting this point x to some subset of the vertices (the choice of subset does depend
on x) that are linearly independent, then the Riemannian simplex is non-degenerate. This
condition is equivalent with the tangent vectors being affinely independent, because for a
point x in a Riemannian simplex with barycentric coordinates λi we have

∑
λivi (x) = 0,

with
∑

λi = 1, remember that we write vi (x) = exp−1
x (vi ). Secondly one has to find

conditions on the vertex set in combination with geometric properties of the manifold, to be
precise bounds on the sectional curvature, such that we can guarantee linear independence.
We do so by looking at the angles between the tangent vectors discussed above. Using the
Toponogov comparison theoremwe can give estimates on the difference between these angles
and the angles one would expect in a space of constant curvature Λ+ and Λ− respectively.
These small neighbourhoods in spaces of constant curvature are in turn well approximated
by small subsets in Euclidean space. To be precise we compare to the simplex we find by
lifting the vertices to the tangent space at one of these vertices via the exponential map.
Using these estimates we can prove that if the simplex is small enough compared to the
quality of the Euclidean simplex, there is a linearly independent set of tangent vectors so that
we have non-degeneracy. This approach puts the emphasis on the geodesics as apposed to
barycentric coordinate functions, which provides us with a very concrete geometric picture,
see for example Fig. 1.

The result to which this method leads to the following result:

Theorem 38 Let v0, . . . , vn be a set of vertices lying in a Riemannian manifold M, whose
sectional curvatures are bounded in absolute value by Λ, within a convex geodesic ball of
radius D centred at one of the vertices (vr ) and such that

√
ΛD < 1/2. If σE(vr ), the convex

hull of (exp−1
vr

(vi ))
n
i=0 = (vi (vr ))

n
i=0, satisfies

(
n!vol (σE(vr )

)

(n + 1)(2D)n

)2

> 160n
√

ΛD, (44)

then the Riemannian simplexwith vertices v0, . . . , vn is non-degenerate, that is diffeomorphic
to the standard n-simplex.

5.3 Preliminaries

The second step described in the introduction will use the Toponogov Comparison Theorem
33. In particular, we use this result to provide bounds on the angles between the vectors
tangent to geodesics emanating from a point x ∈ σM to n (that is all but one) of the vertices
of σM . These angle bounds are then used to show that the reduced Gram matrix associated
with these vectors is non-singular. Here we discuss the observations relating to (reduced)
Gram matrices and bounds on determinants that we will use.
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Fig. 1 Pictorial overview of our approach: Given any point (red) and some vertices (black) we can first
compare the angles between the geodesics at the red point on a surface of arbitrary bounded curvature (the
ellipsoid in the middle) to the angles in the space of constant curvature. In these spaces of constant curvature,
study the simplex by lifting to the tangent space at one of the vertices by the exponential map (bottom figure)
Gram matrices Gram matrices can be applied to general finite dimensional inner product
spaces (Rn

G , if the innerproduct G = δi j , where δi j denotes the Kronecker delta, we shall
write R

n
δi j

= E
n), such as the tangent spaces (TxM) of Riemannian manifolds with inner

product g(x). In this setting we have

det(〈wi , w j 〉G) = det(G) det(w1, . . . , wn)
2,

wherew1, . . . , wn ∈ R
n
G , and (w1, . . . , wn) denotes the matrix with wi as columns. One can

already think of the vectors wi as the tangent vectors wi = vi (x) = exp−1
x (vi ) discussed in

the introduction. This can be seen by taking the determinant of

(〈wi , w j 〉G) = (w1, . . . , wn)
t (G)(w1, . . . , wn).

This is an expression of the fact that the choise of the metric does not influence linear
independence. Because we will be interested in the angles (as these feature in the Toponogov
Comparison Theorem), we consider instead the Gram matrix associated with the normalized
(we assume that wi �= 0) vectors wi/|wi |G :
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det(cos θi, j ) = det

( 〈wi , w j 〉G
|wi |G |w j |G

)

=det((w1, . . . , wn)(G)(w1, . . . , wn))

|w1|2G |w2|2G . . . |wn |2G
, (30)

where θi, j denotes the angle between wi and w j . The determinant of (cos θi, j ) is zero if and
only if the determinant of (w1, . . . , wn) is zero, i.e., if and only if w1, . . . , wn are linearly
dependent. We shall refer to the matrix of cosines of angles as the reduced Gram matrix.

Bounds ondeterminants The following result byFriedland [23], see alsoBhatia andFriedland
[6], Ipsen and Rehman [25] and Bhatia [5] problem I.1.6, will be essential to some estimates
below:

|det(A + E) − det(A)| ≤ nmax{‖A‖p, ‖A + E‖p}n−1‖E‖p (31)

where A and E are n × n-matrices and ‖ · ‖p is the p-norm, with 1 ≤ p ≤ ∞, for linear
operators:

‖A‖p = max
x∈Rn

|Ax |p
|x |p ,

with | · |p the p-norm on R
n . In our context A will be the reduced Gram matrix for the

Euclidean case and E the matrix with the small angle deviations from the Euclidean case
(or rather the deviations of their cosines) due to the local geometry, of which each entry is
bounded by some ε.
From (31) we see that in this particular context

| det(A + E)| ≥ | det A| − n(max{‖A‖∞, ‖A + E‖∞})n−1‖E‖∞
≥ | det(A)| − nε, (32)

where we use that every entry of A and A + E is bounded in absolute value by 1 because it
they are reduced Gram matrices, a matrices of cosines.

Toponogov comparison theorems and spaces of constant curvature We shall now first give
the Toponogov Comparison Theorem and the definitions which go with it. Here we follow
Karcher [27]. Then we give some results comparing the cosine rules in small neighbourhoods
in spaces of constant curvature to those of Euclidean space. As mentioned in the introduc-
tion we assume that we work in neighbourhoods that lie within the convexity radius unless
mentioned otherwise.

We shall use the notation H
n(Λ−) for the space simply connected of dimension n with

constant sectional curvature Λ−.

Definition 32 A geodesic triangle T in a Riemannian manifold consists of three minimizing
geodesics connecting three points, sometimes also referred to as vertices. We stress that a
geodesic triangle does not include an interior. Assume lower curvature bounds Λ− ≤ K (or
upper bounds K ≤ Λ+). A triangle with the same edge lengths as T inHn(Λ−) (orHn(Λ+)),
is called an Alexandrov triangle TΛ− (or TΛ+ ) associated with T, named after Alexandrov
who used these in his study of convex surfaces [27]. See Fig. 2 for an illustration. Note that
any two choices of TΛ− (or TΛ+ ) are equivalent due to the constant curvature of the space.
Two edges of a geodesic triangle and the enclosed angle form a hinge; a Rauch hinge in
H
n(Λ−) (or Hn(Λ+)) of a given hinge, consists of two geodesics emanating from a single

point with the same lengths and enclosed angles as the original hinge. The edge closing the
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Fig. 2 An ellipsoid with a geodesic triangle and the Alexandrov triangles in the spaces of constant curvatures,
in this case both elliptic spheres

Rauch hinge in H
n(Λ−) (or Hn(Λ+)), that is the minimizing geodesic connecting the two

endpoint of the geodesics emanating from a single point with the same lengths and enclosed
angles as the hinge in a space of arbitrary curvature, will be called the Rauch edge.

The Toponogov Comparison Theorem or Triangle Comparison Theorem reads

Theorem 33 (Toponogov Comparison Theorem) Let T be a geodesic triangle in M and
assume that the sectional curvatures K of M satisfy the bounds Λ− ≤ K ≤ Λ+. If Λ+ > 0,
assume also that the triangle perimeter is less then 2πΛ

−1/2
+ . Then Alexandrov triangles

TΛ− and TΛ+ exist. Moreover, any angle α of T satisfies

αΛ− ≤ α ≤ αΛ+ ,

where αΛ− and αΛ+ are the corresponding angles in TΛ− and TΛ+ respectively. The length
c of the third edge closing a hinge is bounded in length by the lengths of the Rauch edges,
cΛ− and cΛ+ , closing the Rauch hinges:

cΛ− ≥ c ≥ cΛ+ .

We also give the cosine rule which is of use in explicit calculations involving the Topono-
gov comparison theorem. The cosine rule for elliptic spaces, that is positive curved spaces
of constant curvature, is given in Section 18.6 of Berger [3] and Section 12.7 of Coxeter [18]
and reads

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα, (33)

where we assume that the Gaussian (in two dimensions) or sectional curvature K satisfies
K = 1/k2 (Fig. 3). The cosine rule for hyperbolic spaces, that is negatively curved spaces
of constant curvature, is given in Section 19.3 of Berger [3] and Section 12.9 of Coxeter [18]
to be

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα, (34)

where we assume that the Gaussian or sectional curvature is K = −1/k2.
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Fig. 3 Triangle with the standard
symbols for angles and lengths

We now prove two lemmas for geodesic triangles in a space of constant curvature. In the
following we use the notation (cE)2 = a2 + b2 − 2ab cos γ , to denote the length of the
(Rauch) edge closing a hinge with lengths a and b and enclosed angle γ in Euclidean space.
In general we shall always use the index E to indicate (comparisons to) Euclidean space.

Lemma 34 If M is a space of constant curvature and two of the edge-lengths (a, b) of a
hinge in M satisfy

a, b ≤ dmax/2 dmax/k < 1/2,

here dmax is some distance bound on the geodesics in the space of constant curvature, then
we have that the length of the (Rauch) edge of the hinge c, where c2 = (cE)2 + E ′, and
|E ′| ≤ 5d4max/k

2 a measure for the deviation from the Euclidean case.

Proof Taylor’s theorem implies that we have that

sin(y) = y(1 + Ẽs(y)) cos(y) = 1 − 1

2
y2 + Ec(y)

sinh(y) = y(1 + Ẽsh(y)) cosh(y) = 1 + 1

2
y2 + Ech(y),

here E stands for the error. These errors are bounded; if we assume that y ≤ φm < 1 we
have that

|Ẽs(y)| ≤ 1

3!φ
2
m ≤ 1

3!eφ
2
m |Ec(y)| ≤ 1

4!φ
4
m ≤ 1

4!eφ
4
m

|Ẽsh(y)| ≤ 1

3!eφ
2
m |Ech(y)| ≤ 1

4!eφ
4
m,

where e is Euler’s number. It is convenient to use only the weaker bounds found from the
hyperbolic functions as this affords a universal approach. We therefore drop the subscript
and write E and Ẽ .

We define

φ1 = a/k φ2 = b/k φ3 = c/k φm = dmax/k.

Using these the cosine rules read

cosφ3 = cosφ1 cosφ2 + sin φ1 sin φ2 cos γ (elliptic)

cosh φ3 = cosh φ1 cosh φ2 − sinh φ1 sinh φ2 cos γ (hyperbolic).
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We shall now bound φ3, assuming φ1, φ2 and γ given. Because φ1, φ2 ≤ φm/2 < 1/4 we
have that implies that φ3 ≤ φm by the triangle inequality. We find

1

2
φ2
3 + E(φ3) = 1

2
φ2
1 + 1

2
φ2
2 + 1

4
φ2
1φ

2
2 + E(φ1) + E(φ2) + 1

2
E(φ1)φ

2
2 + 1

2
E(φ2)φ

2
1

+ E(φ1)E(φ2) − φ1φ2 cos γ − φ1φ2 cos γ (Ẽ(φ1)

+ Ẽ(φ2) + Ẽ(φ1)Ẽ(φ2))

and thus

φ2
3 = φ2

1 + φ2
2 − 2φ1φ2 cos γ + 1

2
φ2
1φ

2
2 + 2E(φ1) + 2E(φ2) + E(φ1)φ

2
2 + E(φ2)φ

2
1

+ 2E(φ1)E(φ2) − 2φ1φ2 cos γ (Ẽ(φ1) + Ẽ(φ2) + Ẽ(φ1)Ẽ(φ2)) − E(φ3)

= φ2
1 + φ2

2 − 2φ1φ2 cos γ + E ′(φ1, φ2, φ3) (35)

with

|E ′(φ1, φ2, φ3)| ≤
∣∣∣∣
1

2
φ2
1φ

2
2 + 2E(φ1) + 2E(φ2) + E(φ1)φ

2
2 + E(φ2)φ

2
1

+ 2E(φ1)E(φ2) − 2φ1φ2 cos γ (Ẽ(φ1) + Ẽ(φ2) + Ẽ(φ1)Ẽ(φ2))

− E(φ3)

∣∣∣∣

≤
∣∣∣∣
1

2
φ2
1φ

2
2

∣∣∣∣ + 2|E(φ1)| + 2|E(φ2)| + |E(φ1)| + |E(φ2)|
+ |E(φ1)| + 2|φ1φ2||Ẽ(φ1)| + 2|φ1φ2||Ẽ(φ2)| + 2|φ1φ2||Ẽ(φ2)|
+ |E(φ3)|

=
∣∣∣∣
1

2
φ2
1φ

2
2

∣∣∣∣ + 4|E(φ1)| + 3|E(φ2)|
+ 2|φ1φ2||Ẽ(φ1)| + 2|φ1φ2||Ẽ(φ2)| + 2|φ1φ2||Ẽ(φ2)| + |E(φ3)|

≤ 1

2
φ4
m + 7

4!eφ
4
m + 6

3!eφ
4
m + 1

4!eφ
4
m

≤ 5φ4
m . (36)

��

We study a geodesic triangle in a space of constant curvature for which we have some
estimates on the edge-lengths. To be precise we assume that the edges of the geodesic triangle
are themselves the closing (Rauch) edges of some hinges. Moreover, we assume that the
conditions of the previous lemma are satisfied so that have the estimates on the deviation
of the lengths of these closing edges compared to the value expected in Euclidean space.
We provide to have similar bounds on the angles of the geodesic triangle for which we have
estimates on the edge-lengths, that is we give bounds on the deviation of the angles of the
geodesic triangle compared to the value expected in Euclidean space. To this end we define
for some lengths aE, bE and cE the angle αE by

cosαE =
(
bE

)2 + (
cE

)2 − (
aE

)2

2bEcE
.
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Lemma 35 If M is a space of constant sectional curvature and the edge-lengths (a, b, c) of
a geodesic triangle in M satisfy1

(a/k)2 =
(
aE/k

)2 + E1, (b/k)2 =
(
bE/k

)2 + E2, (c/k)2 =
(
cE/k

)2 + E3, (37)

with that E1, E2, E3 ≤ 5d4max/k
4, and

(dmax/k)
3/2 < aE/k, bE/k, cE/k < dmax/k < 1/2, (38)

then
∣∣∣cosα − cosαE

∣∣∣ ≤ 80dmax/k. (39)

Proof To avoid having to drag along the 1/k we shall write ψ1 = a/k, ψE

1 = aE/k et
cetera. Using the previous lemma we see that ψ1, ψ2, ψ3 satisfy

(ψ1)
2 = (ψ2)

2 + (ψ3)
2 − ψ2ψ3 cosα + E4,

PErforming a calculation similar to the one in the previous lemma we find that

| cosα − cosαE| =

∣∣∣∣∣∣∣∣

(ψE

2 )2 + (ψE

3 )2 − (ψE

1 )2 + E2 + E3 + E4 − E1

2ψE

2 ψE

3

√
1 + E2

(ψE
2 )2

√
1 + E3

(ψE
3 )2

− (ψE

2 )2 + (ψE

3 )2 − (ψE

1 )2

2ψE

2 ψE

3

∣∣∣∣∣

≤
∣∣∣∣∣
(ψE

2 )2 + (ψE

3 )2 − (ψE

1 )2

2ψE

2 ψE

3

4E2

(ψE

2 )2

∣∣∣∣∣

+
∣∣∣∣∣
(ψE

2 )2 + (ψE

3 )2 − (ψE

1 )2

2ψE

2 ψE

3

4E3

(ψE

3 )2

∣∣∣∣∣

+
∣∣∣∣∣
E2 + E3 + E4 − E1

2ψE

2 ψE

3

∣∣∣∣∣

∣∣∣∣∣

(
1 + 2E2

(ψE

2 )2

) (
1 + E3

(ψE

3 )2

)∣∣∣∣∣

≤ 4E2

(ψE

2 )2
+ 4E3

(ψE

3 )2
+ 40φm

≤80φm .

��
5.4 Relation with linear independence

In Euclidean simplex is non-degenerate if and only if for any point x in Euclidean space
we can find n vertices such that the vectors from x to the vertices are linearly independent.
Linear independence likewise plays an important role in the definition of a non-degenerate
Riemannian simplex. We remind ourselves, see Sect. 2.2, that a Riemannian simplex σM is
non-degenerate if the barycentric coordinate map Δn → σM is a smooth embedding.

1 We have included the factor 1/k to shorten the calculation below.
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Lemma 36 If for any x in the image of themap given inDefinition 4 (σM ) there are n tangents
to geodesics connecting this point x to some subset of the vertices v0, . . . , v j−1, v j+1, . . . , vn
(this choice does depend on x) that are linearly independent then

• The map Δn → σM is bijective
• The inverse of Δn → σM is smooth

In the proof we shall need the following observation: Within any ball smaller than the
injectivity radius containing vi , the vector field vi (x) = exp−1

x (vi ) depends smoothly on the
point x for all x �= vi . This is obvious if we consider Riemannian normal coordinates at vi .
The geodesic between x and origin (vi ) is a straight line, that depends smoothly on x. The
same holds for the tangent to the geodesic at x, this is precisely vi (x) = exp−1

x (vi ).

Proof We now prove the first of our claims by contradiction. Let us assume that
∑

λivi (x) =
∑

λ̃ivi (x) = 0

for some λ, λ̃ ∈ Δn, λ �= λ̃. Because v0(x), . . . , v j−1(x), v j+1(x), . . . , vn(x) are assumed
to be linearly independent we have λ j �= 0, λ̃ j �= 0. This mean that we can solve for v j in
both cases, so

λ0

λ j
v0(x) + · · · + λ j−1

λ j
v j−1(x) + λ j+1

λ j
v j+1(x) + · · · + λn

λ j
vn(x) =

λ̃0

λ̃ j
v0(x) + · · · + λ̃ j−1

λ̃ j
v j−1(x) + λ̃ j+1

λ̃ j
v j+1(x) + · · · + λ̃n

λ̃ j
vn(x).

This contradicts the assumption of linear independence. This establishes injectivity.
We can use a similar argument to show that the inverse of Δn → σM is smooth. As we

have seen linear independence implies that λ j �= 0, which means that we have

λ0v0(x) + · · · + λ j−1v j−1(x) + λ j+1v j+1(x) + · · · + λnvn(x) = −λ jv j (x).

We can now regard the left hand side as the product of the matrix with columns (vi (x))i �= j

with the vector (λi )i �= j . We can divide by −λ j and bring the matrix to the right hand side by
inverting, because {vi (x)}i �= j is a linear independent set this is possible. We now find

(v0(x), . . . , v j−1(x), v j+1(x), . . . vn(x))
−1v j (x) = 1

λ j
(λ0, . . . , λ j−1, λ j+1, . . . , λn)

t ,

which is smooth because vi (x) is smooth and {vi (x)}i �= j are linear independent by assump-
tion. ��

In Lemma 36 we refer to points lying in σM , because σM is not so easy to determine a
priori, we will need to determine a neighbourhood that contains σM where we can determine
linear independence. To this end we observe the following:

Remark 37 σM lies within a ball centred at any of the vertices vr of radius D, where D =
max dM (vi , vr ), provided D is smaller than the injectivity radius and the ball is convex.

Karcher [26] noted that the centre of mass of anymass distribution is contained in any convex
set that contains the support of the mass distribution, so in particular this ball.
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5.5 Determining linear independence

In the previous subsection we established that if for any point x ∈ σM there are n tangents
to geodesics connecting this point to some subset of the vertices v0, . . . , v j−1, v j+1, . . . , vn
(depending on x) are linearly independent, then the simplex σM is well defined. In this sub-
section we shall formulate conditions on the vertex set v0, . . . , vn such that we can guarantee
linear independence. These conditions are simple for surfaces. For higher dimensional man-
ifolds we shall need bounds on the quality of the simplex found by taking the convex hull of
the image of the inverse exponential map at one of the vertices. The quality of the simplex
is considered good if the ratio between the volume of the simplex and the nth power of the
largest edge length is large, which we shall make precise in Theorem 38, see also [7,37].

As mentioned, linear dependence for surfaces is easy to determine. Let us suppose
v0(x) = exp−1

x (v0), v1(x), v2(x) do not span TxM . Because M is a surface it follows that
v0(x), v1(x), v2(x) are co-linear. This is in turn equivalent to v0, v1 and v2 lying on a geo-
desic. Using Lemma 36 we find that σM is diffeomorphic to the standard simplex if all three
vertices do not lie on a geodesic. In the two dimensional setting bijection has been argued
previously by Rustamov [33].

Returning to manifolds of arbitraty dimension, we discuss conditions such that for any
point x in a ball of radius D centred at the vertex vr , the vectors vi (x) in the tangent space
at x form an affinely independent set. Because of Remark 37 this is the neighbourhood of
interest, because it suffices to show independence here. Assume that the sectional curvatures
K of M are bounded in absolute value: |K | ≤ Λ. Define σE(vr ) to be the convex hull
of (vi (vr ))

n
i=0 in Tvr M . It will be on σE(vr ) that we impose condition to ensure that the

Riemannian simplex σM in non-degenerate. Note that given σE(vr ) we in particular have the
lengths of all geodesics from vr to vi and the angles between their tangents (Fig. 4). Using
the Toponogov comparison theorem, we bound dM (x, vi ) for each i by means of Rauch
hinges in H

n(Λ) and H
n(−Λ) the lengths of the closing edges of the hinges are denoted by

dHn(Λ)(x, vi ) and dHn(−Λ)(x, vi ). Lemma 34 implies that

(dHn(±Λ)(x, vi ))
2 = |x(vr ) − vi (vr )|2 + E(x,vi ),±Λ,

with exp−1
vr

(x) = x(vr ) as usual, E(x,vi ),±Λ an error term satisfying the bound |E(x,vi ),±Λ| <

5Λ(2D)4, provided

|vi (vr )|, |x(vr )| ≤ D and
√

ΛD <
1

2
.

Fig. 4 A schematic depiction of
σE(vr ), where we use red dotted
lines to indicate that these lengths
of these edges are not equal to the
lengths of the corresponding
edges in σM

123



Geom Dedicata (2015) 179:91–138 135

Here the radius of the geodesic ball D is the maximum distance dmax in the spaces of constant
curvature Hn(±Λ), introduced in Lemmas 34 and 35. Because |E(x,vi ),±Λ| < 5Λ(2D)4 we
conclude that

dM (x, vi )
2 = |x(vr ) − vi (vr )|2 + E(x,vi ).

dM (vl , vk)
2 = |vl(vr ) − vk(vr )|2 + E(vl ,vk ), (40)

with |E(vl ,vk )|, |E(0,vi )| < 5Λ(2D)4.
At this point we know all the lengths of the geodesics between the points x, v0, . . . , vn

in the manifold up to a small and explicit deviation term, where the deviation is from the
Euclidean space or Tvr M in which x(vr ) and σE(vr ) lie (Fig. 5). Any three points from
the set {x, v0, . . . , vn} together with the geodesics connecting them can be regarded as a
geodesic triangle. For a geodesic triangle of which we know all edge lengths the Toponogov
comparison theorem gives bounds on the angles in terms of the Alexandrov triangles in the
spaces Hn(Λ) and H

n(−Λ). Let us denote by θH
n

il the angle � vi xvl between the geodesics
in H

n(±Λ) and let θEil denote the angle � vi (vr )x(vr )vl(vr ) in Tvr M , which we may regard
as Euclidean space. If we have a lower bound on the geodesic edge lengths in the simplex
as well as on the distance between x and the vertices under consideration, Lemma 34 in turn
gives us bounds on the angles in H

n(Λ) and H
n(−Λ) compared to the corresponding angle

in Euclidean space. To be precise

dE(p, q) > Λ1/4(dmax)
3/2, (41)

with p, q ∈ {x(vr ), vi (vr ), vl(vr ) | i �= j, l �= j}, p �= q , then the distance bounds (40) in
H
d(Λ) imply

∣∣∣cos θH
n

il − cos θEil

∣∣∣ ≤ 80
√

Λdmax. (42)

Formula (42) holds for the upper and lower bounds that appear in the Toponogov com-
parison theorem. Thus

∣∣∣cos θil − cos θEil

∣∣∣ ≤ 160
√

ΛD,

where θil denotes the angle � vi xvl between the geodesics in the manifold, assuming that the
conditions above are satisfied. A sufficient condition on the simplex σE(vr ) for (41) to be
satisfied (for some choice of j) is that for all j the altitude Alt j

Alt j
(
σE(vr )

)
> nΛ1/4(D)3/2,

which can be weakened2 to

Alt j
(
σE(vr )

)

L
(
σE(vr )

) > nΛ1/4(D)1/2, (43)

with L(σE(vr )) the longest edge length of σE(vr ).
Using reduced Gram matrices and the estimates by Friedland we now see:

| det(cos θil) j | ≥
∣∣∣∣det

(
cos θEil

)

j

∣∣∣∣ − 160n
√

ΛD,

2 By which we mean that following inequality implies the previous.
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Fig. 5 A symbolic sketch of the procedure: the lengths of edges and angles between geodesics in a manifold
of arbitrary curvature (symbolized by the ellipsiod in the centre) are approximated by those in the spaces of
constant curvature (the two spheres). Here in turn the triangles are approximated by the Euclidean simplex in
‘the tangent space’

with (cos θil) j and (cos θEil ) j the matrix cosines of angles between the tangents of geodesics
emanating from x to v0, . . . , v j−1, v j+1, . . . , vn and corresponding cosines forσE(vr ), which
is equivalent to, using (30),

| det(cos θil) j |

≥ det(v0(vr ) − x(vr ), . . . , v j−1(vr ) − x(vr ), v j+1(vr ) − x(vr ), . . . , vn(vr ) − x(vr ))2

|v0(vr ) − x(vr )|2 · . . . · |v j−1(vr ) − x(vr )|2 · |v j+1(vr ) − x(vr )|2 · . . . · |vn(vr ) − x(vr )|2
− 160n

√
ΛD,

Lemma 36 states that we have non-degeneracy of the simplex if for any x in B(vr , D) we
have that | det(cos θil) j | > 0 for some j, this means that if

min
x∈B(vr ,D)

max
j∈{0,...,n}

det(v0(vr ) − x(vr ), . . . , v j−1(vr ) − x(vr ), v j+1(vr ) − x(vr ), . . . , vn(vr ) − x(vr ))2

|v0(vr ) − x(vr )|2 · . . . · |v j−1(vr ) − x(vr )|2 · |v j+1(vr ) − x(vr )|2 · . . . · |vn(vr ) − x(vr )|2
> 160n

√
ΛD,

non-degeneracy is established. This can be simplified using that |v j+1(vr ) − x(vr )| ≤ 2D
and remarking that the mimimum of

max
j∈{0,...,n} det(v0(vr ) − x(vr ), . . . , v j−1(vr ) − x(vr ), v j+1(vr ) − x(vr ), . . . , vn(vr ) − x(vr ))

is attained in the barycenter and equals n!
n+1vol(σ

E(vr )).
This means that we now have the condition for non-degeneracy

(
n!vol(σE(vr ))

(n + 1)(2D)n

)2

> 160n
√

ΛD, (44)
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assuming that also (43) is satisfied. Using lemma 29 we can prove that Equation (44) cannot
be satisfied when (43) is violated. Firstly note that

vol
(
σE(vr )

)

(2D)n
≤ vol

(
σE(vr )

)
(
L

(
σE(vr )

))n = Θ
(
σE(vr )

)
≤ t

(n − 1)! = min j Alt j
(
σE(vr )

)

n!L (
σE(vr )

) ,

so that (44) yields

min j Alt j
(
σE(vr )

)

L
(
σE(vr )

) >
√
160n1/2(n + 1)Λ1/4D1/2,

which implies (43).
We can now summarize

Theorem 38 Let v0, . . . , vn be a set of vertices lying in a Riemannian manifold M, whose
sectional curvatures are bounded in absolute value by Λ, within a convex geodesic ball of
radius D centred at one of the vertices (vr ) and such that

√
ΛD < 1/2. If σE(vr ), the convex

hull of (exp−1
vr

(vi ))
n
i=0 = (vi (vr ))

n
i=0, satisfies

(
n!vol (σE(vr )

)

(n + 1)(2D)n

)2

> 160n
√

ΛD, (44)

then the Riemannian simplexwith vertices v0, . . . , vn is non-degenerate, that is diffeomorphic
to the standard n-simplex.

Remark 39 Equation (44) can be weakened to
(
n!Θ (

σE(vr )
)

(n + 1)2n

)2

=
(

n!vol (σE(vr )
)

(n + 1)
(
2L

(
σE(vr )

))n

)2

> 160n
√

ΛD,

or
(

n!vol (σE(vr )
)

(n + 1)
(
2L

(
σ M

))n

)2

> 160n
√

ΛD,

with L(σE(vr )) = maxi, j dE(vi (vr ), v j (vr )), L(σ M ) = maxi j dM (vi , v j ) andΘ the fatness.
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