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Abstract We study the global centre symmetry set (GCS) of a smooth closed submanifold
Mm ⊂ R

n, n ≤ 2m. The GCS includes both the centre symmetry set defined by Janeczko
(Geometria Dedicata 60:9–16, 1996) and the Wigner caustic defined by Berry (Philos Trans
R Soc Lond A 287:237–271, 1977). The definition of GCS(M) uses the concept of an affine
λ-equidistant of M, Eλ(M), λ ∈ R. When M = L is a Lagrangian submanifold in the
affine symplectic space (R2m, ω = ∑m

i=1 dpi ∧ dqi ), we present generating families for
singularities of Eλ(L) and prove that the caustic of any simple stable Lagrangian singularity
in a 4m-dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant
of some L ⊂ R

2m . We characterize the criminant part of GCS(L) in terms of bitangent
hyperplanes to L . Then, after presenting the appropriate equivalence relation to be used in
this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS(L). In
particular we show that, already for a smooth closed convex curve L ⊂ R

2, many singularities
of GCS(L) which are affine stable are not affine-Lagrangian stable.
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1 Introduction

The centre of symmetry of an ellipse in R
2 can be defined as the set (in this case consisting

of a single element) of midpoints of intervals connecting pairs of points on the curve with
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parallel tangent vectors. For a generic smooth convex closed curve, this set is not a single
point, but forms a curve with an odd number of cusps, in the interior of the smooth original
curve, which has been known as the Wigner caustic of the smooth curve since the work
of Berry in the 70’s. Thus, the Wigner caustic is an affine-invariant generalization of the
centre of symmetry of an ellipse and this definition of centre of symmetry extends to higher
dimensional smooth closed submanifolds of R

n .
On the other hand, the centre of symmetry of an ellipse in R

2 can also be described as
the envelope of all straight lines connecting pairs of points on the curve with parallel tangent
vectors. For a generic smooth convex closed curve, this set is not a single point, but forms a
curve with an odd number of cusps, in the interior of the smooth original curve, which has
been known as the centre symmetry set of the smooth curve since the work of Janeczko in the
90’s. Again, this is an affine-invariant generalization of the centre of a circle, which extends
to higher dimensional smooth closed hypersurfaces of R

n [16].
The Wigner caustic and the centre symmetry set of a generic smooth convex closed curve

are not the same singular curve. Instead, the Wigner caustic is interior to the centre symmetry
set and the cusp points of the inner curve touches the outer one in its smooth part. A larger
centre symmetry set, containing the two previous ones, can be defined in an affine-invariant
way, for an arbitrary smooth closed m-dimensional submanifold M of R

n , for n/2 ≤ m < n.
We call this new set the global centre symmetry set of M and denote it by GCS(M).

Our definition is a slight modification of a definition introduced by Giblin and Zakalyukin
[10–12] to study singularities of centre symmetry sets of hypersurfaces. A key notion in this
definition is that of an affine λ-equidistant of the smooth submanifold M , denoted Eλ(M),
of which the Wigner caustic is the case λ = 1/2. The singularities of Eλ(M) are then
fundamental to characterize GCS(M) and its own singularities.

In this paper, we study singularities of Eλ(L) and GCS(L), when L is a smooth closed
Lagrangian submanifold of (R2m, ω), where ω is the canonical symplectic form. The paper
is organized as follows.

In Sect. 2 we present the definitions of an affine λ-equidistant of M and of the global
centre symmetry set of M , for a general smooth submanifold Mm ⊂ R

n, n ≤ 2m. In Sect. 3,
for M = L Lagrangian in R

2m , we obtain the generating families for the affine equidistants
Eλ(L), cf. Theorem 3.8, relating their general classification to the well known classification
by Lagrangian equivalence (chapters 18, 19, 21 in [2]). This is used in Sect. 4 to study
singularities of affine equidistants. Theorem 4.1 states that the caustic of any simple stable
Lagrangian singularity in a 4m-dimensional Lagrangian fibre bundle is realizable as the germ
of an affine equidistant Eλ(L) of some L ⊂ R

2m .
In Sect. 5 we obtain a geometric characterization for the criminant of GCS(L) in terms

of bitangent hyperplanes to the Lagrangian submanifold Lm ⊂ R
2m , cf Theorem 5.5. This

result is similar to results presented for a hypersurface Mm ⊂ R
m+1 in [10–12].

In Sect. 6 we introduce the equivalence relation (also as an equivalence of generating
families) that is used to classify the singularities of GCS(L), cf. Definitions 6.1, 6.3 and 6.7.
Then, we show that the only affine-Lagrangian stable singularities of GCS(L) are singular-
ities of the criminant, the smooth part of the Wigner caustic, or tangent union of both, cf.
Theorems 6.12 through 6.16 and Lemma 6.13.

Section 7 is devoted to the GCS of curves in the affine symplectic plane. First, in Theorem
7.1 we collect results on the GCS of convex curves in non-symplectic plane, [3,9–13,16], and
we obtain in Theorem 7.2 a new inequality on the number of cusps of the centre symmetry
set and the Wigner caustic. Pictures illustrate these results.

Then, we obtain in Theorem 7.7 and Corollary 7.8 all the affine-Lagrangian stable singu-
larities of the GCS of curves in symplectic plane. Comparison of Theorem 7.1 and Corollary
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7.8 shows that most of the singularities of the GCS which are affine-stable when no symplectic
structure is considered, are not affine-Lagrangian stable.

In other words, although any smooth curve on R
2 is Lagrangian, the singularities of their

GCS are sensitive to the presence of a symplectic form to be accounted for, that is, there is
a breakdown of their stability. Thus, we end the paper with some discussion of this result,
which is similar to some results in [4–7] showing a breakdown of the simplicity of some
singularities due to a symplectic form.

2 Definition of the global centre symmetry set

Let M be a smooth closed m-dimensional submanifold of the affine space R
n , with n ≤ 2m.

Let a, b be points of M . Let τa−b be the translation by the vector (a − b), i.e., τa−b : R
n �

x �→ x + (a − b) ∈ R
n .

Definition 2.1 A pair a, b ∈ M (a 	= b) is a weakly parallel pair if

Ta M + τa−b(Tb M) 	= TaR
n .

A weakly parallel pair a, b ∈ M is called k-parallel if

dim(Ta M ∩ τb−a(Tb M)) = k.

If k = m the pair a, b ∈ M is called strongly parallel, or just parallel. We also refer to k as
the degree of parallelism of the pair (a, b).

Definition 2.2 A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ R
n |x = λa + (1 − λ)b, λ ∈ R}.

Definition 2.3 For a given λ, an affine λ-equidistant of M, Eλ(M), is the set of all x ∈ R
n

such that x = λa + (1 − λ)b, for all weakly parallel pairs a, b ∈ M . Eλ(M) is also called a
(affine) momentary equidistant of M . Whenever M is understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) = E1(M) = M . Thus,
the case λ = 1/2 is special:

Definition 2.4 E1/2(M) is called the Wigner caustic of M [3,17].

The extended affine space is the space R
n+1
e = R × R

n with coordinate λ ∈ R (called affine
time) on the first factor and projection on the second factor denoted by π : R

n+1
e � (λ, x) �→

x ∈ R
n .

Definition 2.5 The affine extended wave front of M, E(M), is the union of all affine
equidistants each embedded into its own slice of the extended affine space: E(M) =⋃

λ∈R
{λ} × Eλ(M) ⊂ R

n+1
e .

Note that, when M is a circle in the plane, E(M) is the (double) cone, which is a smooth
manifold with nonsingular projection π everywhere, but at its singular point, which projects
to the centre of the circle. From this, we generalize the notion of centre of symmetry. Thus,
let πr be the restriction of π to the affine extended wave front of M : πr = π |E(M). A point
x ∈ E(M) is a critical point of πr if the germ of πr at x fails to be the germ of a regular
projection of a smooth submanifold. We now introduce the main definition of this paper:
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Definition 2.6 The global centre symmetry set of M, GCS(M), is the image under π of the
locus of critical points of πr .

Remark 2.7 The set GCS(M) is the bifurcation set of the family of affine equidistants (the
family of chords of weakly parallel pairs) of M .

In general, GCS(M) consists of two components: the caustic �(M) being the projection
of the singular locus of E(M) and the criminant �(M) being the (closure of) the image
under πr of the set of regular points of E(M) which are critical points of the projection π

restricted to the regular part of E(M). Thus �(M) is the envelope of the family of regular
parts of momentary equidistants, while �(M) contains all the singular points of momentary
equidistants.

The above definition (with its following remarks) is a slight modification of the definition
that has already been introduced by Giblin and Zakalyukin [10]. However, in our present
definition the whole manifold M is considered, as opposed to pairs of germs, as in [10], and
weak parallelism is also taken into account. Considering the whole manifold in the definition
leads to the following simple but important result:

Theorem 2.8 The set GCS(M) contains the Wigner caustic of M.

Proof Let x be a regular point of E 1
2
(M). Then x = 1

2 (a + b) for a weakly parallel pair

a, b ∈ M . It means that x is a intersection point of the chords l(a, b) and l(b, a). Then E(M)

contains the sets

{(λ, λa + (1 − λ)b)|λ ∈ R}, {(λ, (1 − λ)a + λb)|λ ∈ R}.
If ( 1

2 , x) is a regular point of E(M) then the above sets are included in the tangent space to
E(M) at ( 1

2 , x). Therefore the fiber {(λ, x)|λ ∈ R} is included in the tangent space of E(M).
Thus if ( 1

2 , x) is a regular point of E(M) then x is in the criminant �(M). If ( 1
2 , x) is not a

regular point of E(M) then x is in the caustic �(M). ��

If M ⊂ R
2 is a smooth curve, then E1/2(M) is the bifurcation set for the number of

chords connecting two points in M and having a given midpoint x , for any x ∈ E1/2(M) [3].
Similarly, if Rx : R

2 → R
2 denotes reflection through x ∈ R

2, then x ∈ E1/2(M) when M
and Rx (M) are not transversal [14,17]. Finally, let A(x, κ) be the area of the planar region
bounded by M and a chord, considered as a function of a point x on the chord and a variable
κ locating one of the endpoints of the chord on the curve. Then, A(x, κ) is a generating
family for E1/2(M) [3,13]. Below we generalize this notion to every λ-equidistant of any
Lagrangian submanifold.

3 Generating families

Consider the product affine space R
n × R

n with coordinates (x+, x−), the tangent bundle to
R

n, T R
n = R

n × R
n with coordinate system (x, ẋ), and standard projection pr : T R

n →
R

n, (x, ẋ) �→ x .

Definition 3.1 ∀λ ∈ R \ {0, 1}, a λ-chord transformation

	λ : R
n × R

n → T R
n, (x+, x−) �→ (x, ẋ)
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is a linear diffeomorphism defined by the λ-point equation:

x = λx+ + (1 − λ)x−, (3.1)

for the λ-point x , and a chord equation:

ẋ = λx+ − (1 − λ)x−. (3.2)

Now, let M be a smooth closed m-dimensional submanifold of the affine space R
n (2m ≥

n) and consider the product M × M ⊂ R
n × R

n . Let Mλ denote the image of M × M by a
λ-chord transformation,

Mλ = 	λ(M × M).

Theorem 3.2 The set of critical values of the standard projection pr : T R
n → R

n restricted
to Mλ is Eλ(M).

Proof If a is a critical value of pr |Mλ , then

k = dim T(a,ȧ)Mλ ∩ T(a,ȧ) pr−1(a) ≥ 2m − n.

Let v1, . . . , vk be a basis of T(a,ȧ)Mλ ∩ T(a,ȧ) pr−1(a) of the form v j = ∑n
i=1 α j i

∂
∂ ẋi

|(a,ȧ)

for j = 1, . . . , k. We have (	−1
λ )∗(v j ) = 1

2λ
v+

j − 1
2(1−λ)

v−
j , where

v+
j =

n∑

i=1

α j i
∂

∂x+
i

|a+ ∈ Ta+ M, v−
j =

n∑

i=1

α j i
∂

∂x−
i

|a− ∈ Ta− M.

It implies that v+
j ∈ Ta+ M ∩ τ(a+−a−)Ta− M for j = 1, . . . , k. Thus Ta+ M +

τ(a+−a−)Ta− M 	= Ta+R
n and consequently a+, a− is a k-parallel pair. Hence λa+ + (1 −

λ)a− = a ∈ Eλ.
Now, assume a ∈ Eλ. Then a = λa+ + (1 − λ)a− for a weakly k-parallel pair a+, a−

for k > 2m − n. Thus there exist linearly independent vectors v+
j = ∑n

i=1 α j i
∂

∂x+
i

|a+ ∈
Ta+ M ∩ τ(a+−a−)Ta− M for j = 1, . . . , k. Consider linearly independent vectors v j =
(	λ)∗((1 − λ)v+

j − λτ(a−−a+)v
+
j ) for j = 1, . . . , k. Then, v j belongs to T(a,ȧ)Mλ and

pr∗(v j ) = 0 for j = 1, . . . , k. Thus a is a critical value of pr |Mλ . ��
Let (R2m, ω) be the affine symplectic space with canonical coordinates pi , qi , so that

ω = ∑m
i=1 dpi ∧ dqi , and let L be a smooth closed Lagrangian submanifold of (R2m, ω).

For a fixed λ ∈ R \ {0, 1}, consider the product affine space R
2m × R

2m with the λ-weighted
symplectic form

δλω = 2λ2π∗
1 ω − 2(1 − λ)2π∗

2 ω, (3.3)

where πi is the projection of R
2m × R

2m on i th factor for i = 1, 2.
Now, let 	λ be the λ-chord transformation (3.1) (3.2). Then,

(
	−1

λ

)∗
(δλω) = ω̇. (3.4)

where ω̇ is the canonical symplectic form on the tangent bundle to (R2m, ω), defined by
ω̇(x, ẋ) = d{ẋ�ω}(x) or, in Darboux coordinates,

ω̇ =
m∑

i=1

d ṗi ∧ dqi + dpi ∧ dq̇i . (3.5)
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The fibers of T R
2m are Lagrangian for ω̇, so that pr : T R

2m → R
2m defines a Lagrangian

fiber bundle with respect to ω̇, that is, a fiber bundle whose fibers are Lagrangian in the total
symplectic space.

Denote the restriction of the projection pr of (T R
2m, ω̇) to the Lagrangian submanifold

Lλ = 	λ(L × L)

by pr |Lλ . According to chapter 18 in [2], pr |Lλ is a Lagrangian map. The set of critical
values of a Lagrangian map is called a caustic. Theorem 3.2 implies

Proposition 3.3 The caustic of the Lagrangian map pr |Lλ is Eλ(L).

Definition 3.4 Eλ(L) and Eλ(L̃) are Lagrangian equivalent if the Lagrangian maps pr |Lλ

and pr |L̃λ
are Lagrangian equivalent (see chapter 18 in [2]).

It follows from above definitions:

Proposition 3.5 The classification of affine equidistants Eλ(L) by Lagrangian equivalence
is affine symplectic invariant, i.e., invariant under the standard action of the affine symplectic
group on (R2m, ω).

From the above, we also use the term affine-Lagrangian equivalence for Lagrangian
equivalence (see chapter 18 in [2]) of Eλ(L).

Remark 3.6 The definition of the λ-weighted symplectic form δλω given by (3.3) is not
arbitrary. When λ = 1/2, a Lagrangian submanifold  ⊂ (R2m × R

2m, δ1/2ω) defines a
canonical relation in (R2m, ω) which can be locally described by a generating function of
the midpoints x1/2 = (x++x−)/2, for (x+, x−) ∈ , when L1/2 = 	1/2() locally projects
regularly to the zero section of (T R

2m, ω̇), cf. [8,18]. Thus, a Lagrangian submanifold
 ⊂ (R2m × R

2m, δλω) defines a λ-weighted canonical relation in (R2m, ω) which can
be locally described by a generating function of the λ-points xλ = λx+ + (1 − λ)x−, when
Lλ = 	λ() locally projects regularly to the zero section of (T R

2m, ω̇). Such generating
functions give rise to the generating families, as described below, used to study singularities
of the Lagrangian map pr |Lλ .

Let L+ and L− denote germs of L at points a+ and a−.

Proposition 3.7 If the pair a+, a− is k-parallel, then there exist canonical coordinates (p, q)

in R
2m and function germs S+ and S− such that

L+ : pi = ∂S+

∂qi
(q1, . . . , qm), i = 1, . . . , m

L− :
{

p j = ∂S−
∂q j

(q1, . . . , qk, pk+1, . . . , pm), j = 1, . . . , k,

ql = − ∂S−
∂pl

(q1, . . . , qk, pk+1, . . . , pm), l = k + 1, . . . , m
(3.6)

and d2S+(q+
a,1, . . . , q+

a,m) = 0 and d2S−(p−
a,1, . . . , p−

a,k, q−
a,k+1, . . . , p−

a,m) = 0, where
a+ = (p+

a , q+
a ) and a− = (p−

a , q−
a ).

Proof We can find a linear symplectic change of coordinates such that Ta+ L+ = {p =
p+

a }, where a+ = (p+
a , q+

a ), and Ta− L− = {p1 = p−
a,1, . . . , pk = p−

a,k, qk+1 =
q−

a,k+1, . . . , qm = q−
a,m}, where a− = (p−

a , q−
a ). Since L is a smooth Lagrangian submani-

fold, it follows from standard considerations that it can be described locally by differentials
of generating functions of the forms stated above in neighborhoods of a+ and a−, in which
case we have that d2S+|a+ = d2S−|a− = 0. ��
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Let q = (q1, . . . , qm), p = (p1, . . . , pm), q̇ = (q̇1, . . . , q̇m), ṗ = ( ṗ1, . . . , ṗm).
Also, let β = (β1, . . . , βm) and, for any k < m, let [k] = {1, . . . , k}, so that β[k] =

(β1, . . . , βk), and α[m]\[k] = (αk+1, . . . , αm).
Let L+ × L− denote the germ of L × L at the point (a+, a−) ∈ L × L so that Lλ =

	λ(L+ × L−) is the germ at (a, ȧ), where a = λa+ + (1 − λ)a−, ȧ = λa+ − (1 − λ)a−,
of a smooth Lagrangian submanifold of (T R

2m, ω̇).

Theorem 3.8 If the pair a+, a− is k-parallel and germs L+ and L− are given by (3.6) then
the germ of the generating family

Fλ(p, q, α[m]\[k], β) = 2λ2S+
(

q + β

2λ

)

−2(1 − λ)2S−
(

q[k]−β[k], p[m]\[k]−α[m]\[k]
2(1 − λ)

)

−
∑k

i=1
piβi + 1

2

∑m

j=k+1
q jα j − p jβ j − α jβ j − p j q j (3.7)

generates the germ of Lλ at (a, ȧ) as follows:

Lλ =
{

( ṗ, q̇, p, q) : ∃(α, β) ṗ = ∂ Fλ

∂q
, q̇ = −∂ Fλ

∂p
,

∂ Fλ

∂α
= ∂ Fλ

∂β
= 0

}

.

Proof The proof is a straightforward calculation. ��
Remark 3.9 It follows from (3.7) that the degree of parallelism is the corank of the singularity,
i.e. the corank of the Hessian of Fλ(pa, qa, α[m]\[k], β) as a function in (α[m]\[k], β) ∈ R

2m−k .

Theorem 3.10 ([2]) Germs of Lagrangian maps are Lagrangian equivalent iff the germs of
their generating families are stably R+-equivalent.

Corollary 3.11 Germs Eλ(L) and Eλ(L̃) are Lagrangian equivalent iff germs of generating
families for Lλ and L̃λ are stably R+-equivalent.

4 Singularities of equidistants of Lagrangian submanifolds

We have the following results on singularities of affine equidistants of closed Lagrangian
submanifolds, up to Lagrangian equivalence:

Theorem 4.1 The caustic of any simple stable Lagrangian singularity (A-D-E singularities)
in the 4m-dimensional symplectic tangent bundle (T R

2m, ω̇) is realizable as Eλ(L), for some
smooth closed Lagrangian submanifold L in (R2m, ω).

The generic Lagrangian maps for manifolds of dimension smaller than 6 have only sim-
ple stable Lagrangian singularities (chapter 21 in [2]). Therefore we obtain the following
corollary.

Corollary 4.2 Any germ of generic caustics on 2m-dimensional manifold for m = 1, 2 is
realizable as Eλ(L), for some smooth Lagrangian submanifold L in (R2m, ω).

Proof of Theorem 4.1 We use the method described in chapters 8 and 21 in [2]. For a fixed
λ, let x = (p, q) and κ = (α, β). From (3.7) we easily see that

rank(a,ȧ)

[
∂2 Fλ

∂κ2 ,
∂2 Fλ

∂κ∂x

]

= 2m − k,
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hence is equal to the dimension of κ-space. Let the arguments of the function S+ be denoted
by (q+

1 , . . . , q+
m ) and the arguments of the function S− by (q−

1 , . . . , q−
k , p−

k+1, . . . , p−
m ).

We find S+ and S− such that Fλ(x, κ) is a R+-versal deformation of A-D-E singularities.
Let

S+(q+) =
m∑

i=1

p+
a,i (q

+
i − q+

a,i ) + S+
3 (q+ − q+

a )

S−(q−
[k], p−

[m]\[k]) =
k∑

i=1

p−
a,i (q

−
i − q−

a,i ) −
m∑

i=k+1

q−
a,i (p−

i − p−
a,i )

+S−
3 (q−

[k] − q−
a,[k], p−

[m]\[k] − p−
a,[m]\[k]),

where we used Proposition 3.7 and where S±
3 ∈ m3 (m is the maximal ideal of the ring

of smooth function-germs on R
n at 0). We write the generating families in coordinates

p̃ = p − pa, q̃ = q − qa, s = α − ṗa, t = β − q̇a , where a = (pa, qa), ȧ = ( ṗa, q̇a). By
Theorem 3.8 we obtain

Fλ( p̃, q̃, s, t) = 2λ2S+
3

(
q̃ + t

2λ

)

− 2(1 − λ)2S−
3

(
q̃[k] − t[k], p̃[m]\[k] − s[m]\[k]

2(1 − λ)

)

−
∑k

i=1
p̃i ti + 1

2

∑m

j=k+1
q̃ j s j − p̃ j t j − s j t j − p̃ j q̃ j

+
∑m

l=1
ṗa,l q̃l − q̇a,l p̃l (4.1)

fλ(s, t) = Fλ(0, 0, s, t) = 2λ2S+
3

(
t

2λ

)

−2(1 − λ)2S−
3

(−t[k],−s[m]\[k]
2(1 − λ)

)

− 1

2

∑m

j=k+1
s j t j (4.2)

The following singularities are realizable by generating function-germs:

A2l : S+
3 (q̃+) = λ(q̃+

1 )3 + (q̃+
1 )2l+1 +

l∑

i=2

q̃+
i (q̃+

1 )2i−1,

S−
3 (q̃−

1 , p̃−
2 , . . . , p̃−

m ) = −(1 − λ)(q̃−
1 )3 +

l−1∑

i=2

p̃−
i (q̃−

1 )2(l−i+1).

A2l+1 : S+
3 (q̃+) = λ(q̃+

1 )3 + (q̃+
1 )2l+2 +

l∑

i=2

q̃+
i (q̃+

1 )2i−1,

S−
3 (q̃−

1 , p̃−
2 , . . . , p̃−

m ) = −(1 − λ)(q̃−
1 )3 +

l∑

i=2

p̃−
i (q̃−

1 )2(l−i+2).

D2l : S+
3 (q̃+) = λ(q̃+

1 )3 + q̃+
2 (q̃+

1 )2 ± (q̃+
2 )2l−1 + λ(q̃+

2 )3 +
l−1∑

i=2

q̃+
i+1(q̃

+
2 )2i−1,

S−
3 (q̃−

[2], p̃−
[m]\[2]) = −(1 − λ)(q̃−

1 )3 − (1 − λ)(q̃−
2 )3 +

l−2∑

i=2

p̃−
i+1(q̃

−
2 )2(l−i).
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D2l+1 : S+
3 (q̃+) = λ(q̃+

1 )3 + q̃+
2 (q̃+

1 )2 ± (q̃+
2 )2l + λ(q̃+

2 )3 +
l−1∑

i=2

q̃+
i+1(q̃

+
2 )2i−1,

S−
3 (q̃−

[2], p̃−
[m]\[2]) = −(1 − λ)(q̃−

1 )3 − (1 − λ)(q̃−
2 )3 +

l−1∑

i=2

p̃−
i+1(q̃

−
2 )2(l−i+1).

E6 : S+
3 (q̃+) = (q̃+

1 )3 ± (q̃+
2 )4 + λq̃+

1 (q̃+
2 )2 + λ(q̃+

2 )3 + q̃+
1 (q̃+

2 )2q̃+
3 ,

S−
3 (q̃−

[2], p̃−
[m]\[2]) = −(1 − λ)q̃−

1 (q̃−
2 )2 − (1 − λ)(q̃−

2 )3.

E7 : S+
3 (q̃+) = (q̃+

1 )3 + q̃+
1 (q̃+

2 )2 + λq̃+
1 (q̃+

2 )2 + λ(q̃+
2 )3 + (q̃+

2 )3q̃+
3 ,

S−
3 (q̃−

[2], p̃−
[m]\[2]) = −(1 − λ)q̃−

1 (q̃−
2 )2 − (1 − λ)(q̃−

2 )3 + (q̃−
2 )4 p̃−

3 .

E8 : S+
3 (q̃+) = (q̃+

1 )3 + (q̃+
2 )5 + λq̃+

1 (q̃+
2 )2 + λ(q̃+

2 )3 + q̃+
1 (q̃+

2 )2q̃+
3 + q̃+

1 (q̃+
2 )3q̃+

4 ,

S−
3 (q̃−

[2], p̃−
[m]\[2]) = −(1 − λ)q̃−

1 (q̃−
2 )2 − (1 − λ)(q̃−

2 )3 + (q̃−
2 )3 p̃−

3 .

By long but straightforward calculations one can show that (4.1) is a R+-versal deforma-
tion of (4.2) for the above choices of S±

3 . ��

5 The GCS of a Lagrangian submanifold: the criminant

We now begin the study of singularities of the global centre symmetry set of a smooth closed
Lagrangian submanifold L ⊂ (R2m, ω). Recall that in general the set GCS(L) consists of
the caustic and the criminant (see Remark 2.7). As part of the GCS(L) caustic, the Wigner
caustic of L has been almost entirely classified in Sect. 4. In a subsequent paper [5], we study
E1/2(L) in a neighborhood of L , considering pairs of points of the type (a, a) ∈ L × L as
strongly parallel pairs. In terms of the generating families of Sect. 4, these are odd functions
of the variables, so we consider classification in the category of odd functions. This implies
a hidden Z2-symmetry for these singularities [5].

This section is devoted to the criminant �(L). In order to study the global centre symmetry
set, the whole λ-family must be considered together. Due to the Lagrangian condition, we
resort to a classification via generating families. We know that Eλ(L) is the caustic of Lλ =
	λ(L × L). The generating family for Lλ is given by Fλ(p, q, α, β) of the form (3.7). Since
E(L) is the union of {λ} × Eλ, the germ of E(L) is described in the following way (for
κ = (α, β)):

Proposition 5.1 E(L) =
{
(λ, p, q) : ∃κ ∂ Fλ

∂κ
= 0, det

[
∂2 Fλ

∂κi ∂κ j

]
= 0

}
.

Let us consider the fiber bundle

Pr : T ∗
R × T R

2m � ((λ∗, λ), ( ṗ, q̇, p, q)) �→ (λ, (p, q)) ∈ R × R
m . (5.1)

The above bundle with the canonical symplectic structure

dλ∗ ∧ dλ + ω̇

is a Lagrangian fiber bundle. For Fλ given by (3.7) in Theorem 3.8, let

F(λ, p, q, α, β) = Fλ(p, q, α, β). (5.2)
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Proposition 5.2 The germ of E(L) is the caustic of the germ of a Lagrangian submanifold
L of (T ∗

R × T R
2m, dλ∗ ∧ dλ + ω̇) generated by the family F given by (3.7)–(5.2) in the

following way (κ = (α, β)):
{

((λ∗, λ), ( ṗ, q̇, p, q)) : ∃κ λ∗ = ∂ F

∂λ
, ṗ = ∂ F

∂q
, q̇ = −∂ F

∂p
,

∂ F

∂κ
= 0

}

. (5.3)

We find the condition for the tangency of E(L) to the fibers of the projection π :
(λ, p, q) �→ (p, q).

Proposition 5.3 If (λ, a) is a regular point of E(L), then there exists a 1-parallel pair
a+, a− such that a = λa+ + (1 − λ)a−.

Proof If (λ, a) is a regular point of E(L) then the rank of the map

κ �→
(

∂ F

∂κ
(λa, pa, qa, κ), det

[
∂2 F

∂κi∂κ j
(λa, pa, qa, κ)

])

(5.4)

is maximal 2m − k. It implies that corank
[

∂2 F
∂κi ∂κ j

(λa, pa, qa, κa)
]

is 1. By Remark 3.9 we

obtain that a+, a− is a 1-parallel pair. ��
Proposition 5.4 Let (λa, a) = (λa, pa, qa) be a regular point of E(L). The fiber of πr =
π |E(M) is tangent to E(L) at (λa, a) if and only if

rank

[
∂2 F

∂λ∂κ j
,

∂2 F

∂κi∂κ j

]

= rank

[
∂2 F

∂κi∂κ j

]

= 2m − 2 (5.5)

at (λa, pa, qa, κa) s.t. ∂ F
∂κ

(λa, pa, qa, κa) = det
[

∂2 F
∂κi ∂κ j

(λa, pa, qa, κa)
]

= 0.

Proof By Proposition 5.3 if (λa, pa, qa) is a regular point of E(L), the map (5.4) has maximal

rank 2m −1. Also, rank
[

∂2 F
∂κi ∂κ j

(λa, pa, qa, κa)
]

is 2m −2 which implies one of the columns

of this matrix is linearly dependent on the others. Assume this is the first column. Thus,

κ �→
(

∂ F
∂κ[2m−1]\[1] (λa, pa, qa, κ), det

[
∂2 F

∂κi ∂κ j
(λa, pa, qa, κ)

])
has maximal rank. By implicit

function theorem there is a smooth map germ K : R
2m+1
e → R

2m−1 at (λa, a), s.t. κ =
K(λ, p, q) iff ∂ F

∂κ[2m−1]\[1] (λ, p, q, κ) = 0, det
[

∂2 F
∂κi ∂κ j

(λ, p, q, κ)
]

= 0. Then the germ of

E(L) at(λa, a) is E(L) =
{
(λ, p, q) : ∂ F

∂κ1
(λ, p, q, K(λ, p, q)) = 0

}
. The fiber of πr is

tangent to E(L) at (λa, a) iff

∂2 F

∂λ∂κ1
(λa, pa, qa, κa) +

2m−1∑

j=1

∂2 F

∂κ j∂κ1
(λa, pa, qa, κa)

∂K j

∂λ
(λa, pa, qa) = 0. (5.6)

Differentiating ∂ F
∂κ[2m−1]\[1] (λ, p, q, K(λ, p, q)) = 0 w.r.t. λ we obtain

∂2 F

∂λ∂κi
(λa, pa, qa, κa) +

2m−1∑

j=1

∂2 F

∂κ j∂κi
(λa, pa, qa, κa)

∂K j

∂λ
(λa, pa, qa) = 0. (5.7)

Thus (5.6)–(5.7) imply (5.5). But also (5.7) and (5.5) imply (5.6). ��
Theorem 5.5 The point a = λa+ + (1 − λ)a− belongs to the criminant �(L) of GCS(L)

iff there is a bitangent hyperplane to L at a+ and a−.
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Proof If (λ, a) ∈ E(L) is regular, by Propositions 5.3-5.4, a+, a− are 1-parallel and a =
(p, q) ∈ �(L) iff (λ, a) satisfies (5.5). Thus

[
∂2 F

∂κi ∂κ j

]
=

1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2 S+
(∂q+

1 )2 − ∂2 S−
(∂q−

1 )2
∂2 S+

∂q+
1 ∂q+

2
· · · ∂2 S+

∂q+
1 ∂q+

m
− ∂2 S−

∂q−
1 ∂p−

2
· · · − ∂2 S−

∂q−
1 ∂p−

m
∂2 S+

∂q+
1 ∂q+

2

∂2 S+
(∂q+

2 )2 · · · ∂2 S+
∂q+

2 ∂q+
m

−1 · · · 0

...
...

. . .
...

...
. . .

...
∂2 S+

∂q+
1 ∂q+

m

∂2 S+
∂q+

2 ∂q+
m

· · · ∂2 S+
(∂q+

m )2 0 · · · −1

− ∂2 S−
∂q−

1 ∂p−
2

−1 · · · 0 − ∂2 S−
(∂p−

2 )2 · · · ∂2 S−
∂p−

2 ∂p−
m

...
...

. . .
...

...
. . .

...

− ∂2 S−
∂q−

1 ∂p−
m

0 · · · −1 ∂2 S−
∂p−

2 ∂p−
m

· · · − ∂2 S−
(∂p−

m )2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and ∂2 F
∂λ∂β1

= p+
1 − p−

1 − ∑n
j=1 q+

j
∂2 S+

∂q+
1 ∂q+

j
+ q−

1
∂2 S−

(∂q−
1 )2 + ∑n

j=2 p−
j

∂2 S−
∂q−

1 ∂p−
j
, ∂2 F

∂λ∂βi
= p+

i −
∑n

i=1 q+
j

∂2 S+
∂q+

i ∂q+
j
, ∂2 F

∂λ∂αi
= q−

i + q−
1

∂2 S+
∂p−

i ∂q−
1

+ ∑n
j=2 p−

j
∂2 S+

∂p−
i ∂p−

j
, for i = 2, . . . , m,, with

q+ = q+β
2λ

, p+ = ∂S+
∂q+ and q−

1 = q1−β1
2(1−λ)

, p−
[m]\[2] = p[m]\[2]−α[m]\[2]

2(1−λ)
, p−

1 = ∂S−
∂q−

1
, q−

[m]\[2] =
− ∂S−

∂p−
[m]\[2]

. Then, (5.5) is equivalent to

(a+ − a−) ∈ Ta+ L+ + Ta− L−, (5.8)

since Ta+ L+ is spanned by
∑m

j=1
∂2 S+

∂q+
i ∂q+

j

∂
∂p j

+ ∂
∂qi

for i = 1, . . . , m and Ta− L− is spanned

by ∂2 S−
(∂q−

1 )2
∂

∂p1
− ∑m

j=2
∂2 S−

∂q−
1 ∂p−

j

∂
∂q j

+ ∂
∂q1

and ∂2 S−
∂p−

i ∂q−
1

∂
∂p1

− ∑m
j=2

∂2 S−
∂p−

i ∂p−
j

∂
∂q j

+ ∂
∂pi

for i =
2, . . . , m. If a+, a− is 1-parallel, (5.8) means there is a bitangent hyperplane to L+ at a+
and to L− at a−. By continuity, a point in the closure of the set of points satisfying (5.8) also
satisfies this condition. ��
Corollary 5.6 If, for some λ, λa+ + (1 − λ)a− = a ∈ �(L) ⊂ GCS(L), then the whole
chord l(a+, a−) ⊂ GCS(L). Equivalently, if there is a bitangent hyperplane to L at a+ and
a−, then l(a+, a−) ⊂ GCS(L).

Thus, we generalize the notion of convexity of a curve on the plane.

Definition 5.7 A smooth closed Lagrangian submanifold L of (R2m, ω) is weakly convex if
there is no bitangent hyperplane to L .

Corollary 5.8 If L is a weakly convex closed Lagrangian submanifold of (R2m, ω) then the
criminant �(L) of GCS(L) is empty.

6 Affine-Lagrangian stable singularities of the GCS

We now define an equivalence relation to classify the singularities of GCS(L). Due to the
Lagrangian condition, we look for an equivalence of generating families. For the classification
of E(λ) and GCS(L), because λ is no longer fixed it has become an extra parameter that
unfolds the generating families F . The naive approach is to consider the extended parameter
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space R × R
2m � (λ, x) for unfolding the generating families f (λ, κ) = fλ(κ) and classify

their stable unfoldings in the usual way. However, such a classification of GCS(L) would not
take into account the projection π : R × R

2m → R
2m in a proper way, because it does not

distinguish the affine time λ ∈ R from x ∈ R
2m .

Now, if A = (A, a) is an element of the affine symplectic group i Sp2m
R

= Sp(2m, R) �

R
2m , with A ∈ Sp(2m, R), a ∈ R

2m , then

A : (R2m, ω) ⊃ L → L ′ ⊂ (R2m, ω), x �→ Ax = Ax + a. (6.1)

From this, we define the natural action

idT ∗R × A × A : T ∗
R × R

2m × R
2m → T ∗

R × R
2m × R

2m,

(λ, λ∗, x+, x−) �→ (λ, λ∗, Ax+, Ax−),

which, via the chord transformation 	λ, induces an action

i Sp2m
R

� idT ∗R × A	 : T ∗
R × T R

2m ⊃ L → L′ ⊂ T ∗
R × T R

2m,

idT ∗R × A	 : (λ, λ∗, x, ẋ) �→ (λ, λ∗, Ax + a, Aẋ + (2λ − 1)a), (6.2)

that commutes with projection idT ∗R × pr : T ∗
R × T R

2m → T ∗
R × R

2m , that is, defining
the obvious action idR × A on R × R

2m , we have

(idR × A) ◦ (idT ∗R × pr) = (idT ∗R × pr) ◦ (idT ∗R × A	). (6.3)

Definition 6.1 Germs of Lagrangian submanifolds L, L̃ of the fiber bundle (T ∗
R ×

T R
2m, dλ∗∧dλ+ω̇) are (1,2m)-Lagrangian equivalent if there exists a symplectomorphism-

germ ϒ of T ∗
R × T R

2m such that ϒ(L) = L̃ and the following diagram commutes:

Pr π

L ↪→ T ∗
R × T R

2m −→ R × R
2m → R

2m

↓ ϒ ↓ ↓
Pr π

L̃ ↪→ T ∗
R × T R

2m −→ R × R
2m → R

2m

The first two vertical diffeomorphism-germs (from right to left) read:

x �→ X (x), (λ, x) �→ ((λ, x), X (x)).

Moreover, germs L, L̃ at ( 1
2 , a, ȧ) are (1,2m)-Lagrangian equivalent for λ = 1

2 if, in addition,
for every x ∈ R

2m



(
1

2
, x

)

= 1

2
. (6.4)

Remark 6.2 Condition (6.4) is introduced for the classification of the Wigner caustic E1/2(L)

as a part of GCS(L).

Definition 6.3 GCS(L) and GCS(L̃) are (1,2m)-Lagrangian equivalent if L and L̃ are
(1,2m)-Lagrangian equivalent.

Remark 6.4 From (6.3), it is clear that classification of GCS(L) by (1, 2m)-Lagrangian
equivalence of L is affine symplectic invariant.
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Remark 6.5 (1, 2m)-Lagrangian equivalence of germs of Lagrangian submanifolds of
(T ∗

R×T R
2m, dλ∗ ∧dλ+ ω̇) is the equivalence of bifurcations of Lagrangian maps (chapter

22 in [2]), that is, diagrams of the form:

Pr π

D(L) : L ↪→ T ∗
R × T R

2m −→ R × R
2m → R

2m

Definition 6.6 L is (1,2m)-Lagrangian stable if the diagram of maps D(L) is stable, i.e.
every L̃ with nearby diagram D(L̃) is (1, 2m)-Lagrangian equivalent to L. GCS(L) is (1,2m)-
Lagrangian stable if L is (1,2m)-Lagrangian stable.

In view of Remark 6.4, we also use the term affine-Lagrangian stability for (1, 2m)-
Lagrangian stability.

Definition 6.7 The function-germs F, F̃ : R × R
2m × R

k → R are (1,2m)-R+-equivalent
if there exists a diffeomorphism-germ

(λ, x, κ) �→ ((λ, x), X (x), K (λ, x, κ))

and a smooth function-germ g : R × R
2m → R such that

F̃(λ, x, κ) = F((λ, x), X (x), K (λ, x, κ)) + g(λ, x).

Germs F and F̃ with the common (λ, x)-space R × R
2m of parameters, and with different

spaces of arguments, κ ∈ R
k, κ̃ ∈ R

k̃ , are stably (1,2m)-R+-equivalent if there are nonde-
generate quadratic forms Q in new arguments ξ and Q̃ in new arguments ξ̃ such that F + Q
and F̃ + Q̃ are (1, 2m)-R+-equivalent. The germ F at ( 1

2 , a, κa) and the germ F̃ at ( 1
2 , a, κ̃a)

are (stably) (1,2m)-R+-equivalent for λ = 1
2 if, in addition, for every x ∈ R

m condition (6.4)
is satisfied.

Remark 6.8 (1, 2m)-R+-equivalence is a special case of Wassermann’s (1, 2m)-equivalence
[19]. For relations between the (r, s)-classification of families of functions [19], the classifi-
cation of bifurcations of caustics [1,20] and the classification of bifurcations of Lagrangian
maps, see chapter 22 in [2].

We have the following result, whose proof is a minor modification for (1, 2m)-Lagrangian
equivalence of the proof of Theorem 3.10 in [2].

Proposition 6.9 Germs of Lagrangian submanifolds L, L̃ of (T ∗
R× T R

2m, dλ∗ ∧dλ+ ω̇)

are (1, 2m)-Lagrangian equivalent iff the germs of generating families F and F̃ are stably
(1, 2m)-R+-equivalent.

Definition 6.10 A function-germ F at z is (1,2m)-R+-stable if for any neighborhood U � z
in R×R

2m ×R
k and representative function F ′ of the germ F on U , there is a neighborhood

V of F ′ in C∞(U, R) (with weak C∞-topology) s.t. for any function G ′ ∈ V there is a point
z′ ∈ U such that the germ of G ′ at z′ is (1, 2m)-R+-equivalent to F .

Remark 6.11 L and GCS(L) are (1, 2m)-Lagrangian stable if and only if the germ of gen-
erating family F (of L) is (1, 2m)-R+-stable.

The following theorems show that the only affine-Lagrangian stable singularities of GCS
are singularities of the criminant, the smooth part of the Wigner caustic and their “tangent”
union.
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Theorem 6.12 Let λa 	= 1
2 . If F is the germ at (λa, a, κa) of a (1, 2m)-R+-stable unfolding

of f ∈ m2 then F is stably (1, 2m)-R+-equivalent to the germ of the trivial unfolding or to
one of the following germs at (0, 0, 0) of unfoldings of f (t) = t3

A
A±

k
2 : F(λ, x, t) = t3 + t

(
k∑

i=1

xiλ
i−1 ± λk+1

)

, (6.5)

for k = 0, 1, 2, . . . , 2m (the notation A
A±

k
2 is taken from [15]).

Proof If f has A1 singularity then it is obvious that F is stably (1, 2m)-R+-equivalent to
the trivial unfolding. Now we assume that f has A2 singularity. Since F is stable, then F is
stably (1, 2m)-R+-equivalent to F(λ, x, t) = t3 + tg(λ, x), where g is a smooth function-
germ vanishing at 0. If g is a versal unfolding of the function-germ λ �→ g(λ, 0) with
Ak singularity we can reduce F to the form (6.5) by a diffeomorphism-germ of the form
(λ, x, t) �→ ((λ, x), X (x), t). ��

The following lemma shows that these are the only (1, 2m)-R+-stable unfoldings.

Lemma 6.13 Unfoldings of A±
3 singularity are not (1, 2m)-R+-stable.

Proof If f has A3 singularity then F is stable (1, 2m)-R+-equivalent to F(λ, x, t) = ±t4 +
t2g2(λ, x) + tg1(λ, x), where g1, g2 are smooth function-germs vanishing at 0. Now we use
the standard arguments of the singularity theory that stability implies infinitesimal stability.
In the case of (1, 2m)-R+-equivalence, the infinitesimal stability implies

E2 = E2

〈
∂ F

∂t
|R2

〉

+ E1

〈

1,
∂ F

∂λ
|R2

〉

+ R

〈
∂ F

∂x1
|R2 , . . . ,

∂ F

∂x2m
|R2

〉

+ m2m+4
2 , (6.6)

where R
2 denotes the t, λ-plane {x = 0}, E2 is the ring of smooth function-germs in

λ and t, m2 is the maximal ideal in E2 and E1 is the ring of smooth function-germs

in λ. Now we use the method from [19]. Let V = E2

/(
E2

〈
∂ F
∂t |R2

〉 + m2m+4
2

)
and let

π : E2 → V . We have π(t3) = π(∓1/2tg2|R2 ∓ 1/4g1|R2) in V . Thus elements π(t iλ j )

for i = 0, 1, 2 and j < 2m + 4 − i form a basis of V over R. Thus, dimR V =
6m + 9. Moreover, ∂ F

∂λ
|R2 = t

(
t ∂g2

∂λ
|R2 + ∂g1

∂λ
|R2

)
. Then dimR π

(E1
〈
1, ∂ F

∂λ
|R2

〉) ≤ 4m +
7, dimR π

(
R

〈
∂ F
∂x1

|R2 , . . . , ∂ F
∂x2m

|R2

〉)
≤ 2m. So, (6.6) implies dimR V ≤ 6m + 7 < 6m + 9,

which is impossible. Thus F is not (1, 2m)-R+-stable, A3 has no (1, 2m)-R+-stable unfold-
ings. ��

For E1/2(L) ⊂ GCS(L), we consider the germ of F at (1/2, a, κa).

Theorem 6.14 If F is the germ at ( 1
2 , a, κa) of a (1, 2m)-R+-stable unfolding of f ∈ m2

then F is stably (1, 2m)-R+-equivalent (λ = 1/2) to the germ of the trivial unfolding or to
one of the following germs at ( 1

2 , 0, 0) of unfoldings of f (t) = t3

A
B±

k
2 : F(λ, x, t) = t3 + t

(
k−1∑

i=0

xi+1

(

λ − 1

2

)i

±
(

λ − 1

2

)k
)

, (6.7)

for k = 1, 2, . . . , 2m (the notation A
B±

k
2 is taken from [15]).
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Proof If f has A1 singularity then F is stably (1, 2m)-R+-equivalent to the trivial unfold-
ing. If f has A2 singularity, then (since F is stable) F is stably (1, 2m)-R+-equivalent to
F(λ, x, t) = t3 + tg(λ, x), where g is a smooth function-germ vanishing at (1/2, 0). If g
is a versal unfolding of the function-germ λ �→ g(λ, 0) with B±

k singularity on a manifold
(λ-space) with the boundary (λ = 1

2 ) (see [1]) then we can reduce F to the form (6.7) by a
diffeomorphism-germ of the form (λ, x, t) �→ (1/2 + (λ − 1/2)(λ, x), X (x), t). ��
Theorem 6.15 If F (generating L) has A

A±
k

2 singularity, for k = 0, 1, . . . , 2m, then E(L) is
a germ of a smooth hypersurface in R × R

2m.
If F has AA0

2 singularity at (λa, a, κa) then E(L) is transversal at (λa, a) to the fibers of
projection π .

If F has A
A±

k
2 singularity for k ≥ 1 at (λa, a, κa) then E(L) is k-tangent at (λa, a) to the

fibers of π, a belongs to the criminant �(L) of GSC(L) and the germ of �(L) at a is the
caustic of A±

k singularity.

Proof By Proposition 5.1 and the normal form of F for A
A±

k
2 singularity we obtain E(L) =

{(λ, x) ∈ R × R
2m : ∑k

i=1 xiλ
i−1 ± λk+1 = 0}. It is easy to see that E(L) is the germ at

(0, 0) of a smooth hypersurface and E(L) is transversal at (0, 0) to {λ = 0} for k = 0 and
E(L) is k-tangent to {λ = 0} at (0, 0) for k = 1, 2, . . . , 2m. The germ of �(L) at 0 is

{x ∈ R
2m : ∃λ

k∑

i=1

xiλ
i−1 ± λk+1 = 0,

k∑

i=2

(i − 1)xiλ
i−2 ± (k + 1)λk = 0}.

So �(L) is a caustic of A±
k singularity. ��

Theorem 6.16 If the germ at ( 1
2 , a, κa) of F has A

B±
k

2 singularity (k = 1, . . . , 2m), then
E(L) is a germ of smooth hypersurface in R × R

2m.
If F has AB1

2 singularity at ( 1
2 , a, κa), then E(L) is transversal at ( 1

2 , a) to the fibers of
projection π . The germ of GCS(L) at a is the germ of a smooth hypersurface of R

2m—the
Wigner caustic E1/2(L).

If F has A
B±

k
2 singularity for k ≥ 2 at ( 1

2 , a, κa), then E(L) is k-tangent at (1/2, a, t) to
the fibers of π . The germ of GCS(L) at a consists of two tangent components: the germ of a
smooth hypersurface—E1/2(L)—and the germ of the caustic of B±

k singularity—�(L).

Proof By Proposition 5.1 and the normal form of F for A
B±

k
2 singularity we get E(L) =

{(λ, x) ∈ R×R
2m : ∑k−1

i=0 xi+1(λ−1/2)i ±(λ−1/2)k = 0}.E1/2(L) = {x ∈ R
2m : x1 = 0}

is a germ of smooth hypersurface. Thus E(L) is the germ at (1/2, 0) of a smooth hypersurface
and E(L) is transversal at (1/2, 0) to {λ = 1/2} for k = 1. For k = 2, . . . , 2m, E(L) is k-
tangent to {λ = 1/2} at (1/2, 0). The germ of �(L) at 0 is

{x ∈ R
2m : ∃τ

k−1∑

i=0

xi+1τ
i ± τ k = 0,

k−1∑

i=1

i xi+1τ
i−1 ± kτ k−1 = 0}.

So �(L) is a caustic of B±
k and E1/2(L) is tangent to �(L) at 0. ��

Remark 6.17 Not all (1, 2m)-R+-stable singularities can be realizable as singularities of
generating families F for L which are of the special form given in Theorem 3.8. In the next
section, in Theorem 7.7, we prove that the AA2

2 singularity is not realizable for Lagrangian
curves.
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7 Classifications of the GCS of Lagrangian curves

We now classify the singularities of the global centre symmetry set of a Lagrangian curve
L ⊂ (R2, ω). To set the stage, we first state the results for the GCS of a curve on the affine
plane R

2, when no symplectic structure is considered.

Theorem 7.1 ([3,10,11,16]) Affine stable GCS of a smooth convex closed curve M ⊂ R
2

(no symplectic structure) consists of:
i) The CSS, a smooth curve with (possible) self intersections and cusp singularities, ii)

the Wigner caustic, a smooth curve with (possible) self intersections and cusp singularities
lying on the smooth part of the CSS, and iii) the medial axis, which are smooth half-lines
starting at the cusp points of the CSS.

The results stated in Theorem 7.1, originally obtained by various methods, can also be
proved using the affine-invariant method of chord equivalence, the analogous of (1, 2m)-
Lagrangian equivalence when no symplectic structure is considered, cf Definition 7.10, below.

Theorem 7.2 Let M be a generic smooth convex closed curve in R
2. The number of cusps

of the Wigner caustic of M is odd and not smaller than 3. The number of cusps of the CSS
of M is odd and not smaller than 3. The number of cusps of the Wigner caustic of M is not
greater than the number of cusps of the CSS of M.

The statement on the number of cusps of Wigner caustics was first proved by Berry [3], and
the statement on the number of cusps of CSS by Giblin and Holtom [9]. The last inequality
of the theorem is new. It follows immediately from the characterization in [9] of cusps of
E1/2(M) by the curvature ratio being 1 and cusps of CSS of M by the derivative of the
curvature ratio being 0, using Rolle’s theorem.

Figures of GCS(M) where the number of cusps of the CSS and of the Wigner caustic are
equal to three and neither curve is self intersecting can be found in [9]. We picture a case
when the number of cusps of the Wigner caustic is three and the CSS is self intersecting and
the number of its cusps is five, and another case when both the Wigner caustic and the CSS
are self intersecting and both have five cusps (Figs. 1, 2).

Fig. 1 GCS of an oval: CSS with
five cusps and the Wigner caustic
with three cusps (the medial axis
are not shown here)

123



Geom Dedicata (2014) 169:361–382 377

Fig. 2 GCS of an oval: CSS and
the Wigner caustic with five cusps

7.1 Affine-Lagrangian classification of the GCS of Lagrangian curves

Let L be a smooth closed curve in (R2, ω = dp ∧ dq). Using the (1, 2)-Lagrangian equiv-
alence introduced in Definitions 6.1 and 6.3, we classify the singularities of GCS(L).
In what follows, a+ = (p+

a , q+
a ), a− = (p−

a , q−
a ) denote a parallel pair on L and

aλ = λa+ + (1 − λ)a−, q̇λ = λq+
a − (1 − λ)q−

a . Let S± be germs of generating func-
tions of L at a± satisfying the conditions in Proposition 3.7. The germ of generating family
of L and the big wave front set are given by

F(λ, p, q, t) = 2λ2S+ ( q+t
2λ

) − 2(1 − λ)2S−
(

q−t
2(1−λ)

)
− pt.

E(L) =
{
(λ, p, q) ∈ R × R

2 : ∃t ∂ F
∂t (λ, p, q, t) = ∂2 F

∂t2 (λ, p, q, t) = 0
}

.

The following propositions present geometrical descriptions of positions of E(L) with
respect to π in terms of functions F, S+ and S−.

Proposition 7.3 The following conditions are equivalent

(i) (λ, aλ) belongs to the regular part of E(L),

(ii) ∃t ∂3 F
∂t3 (λ, aλ, t) 	= 0, ∂ F

∂t (λ, aλ, t) = ∂2 F
∂t2 (λ, aλ, t) = 0,

(iii) 1
λ

∂3 S+
∂(q+)3 (q+

a ) + 1
1−λ

∂3 S−
∂(q−)3 (q−

a ) 	= 0,

(iv) 1
λ
κ(a+) + 1

1−λ
κ(a−) 	= 0, where κ(x) is the curvature of L at x.

Proof Equivalence of (i) and (ii) follows from the definition of the regular part of E(L).
Equivalence of (ii) and (iii) is obtained by direct calculations. (iv) is obvious since κ(a±) =
∂3 S±

∂(q±)3 (q±
a ). ��

Proposition 7.4 The following conditions are equivalent

(v) the regular part of E(L) is tangent to the fiber of π at (λ, aλ),

(vi) ∃t: (ii) is satisfied and ∂2 F
∂λ∂t (λ, aλ, t) = 0.

(vii) (iii) is satisfied and p+
a = ∂S+

∂q+ (q+
a ) = ∂S−

∂q− (q−
a ) = p−

a .

(viii) (iv) is satisfied and l(a+, a−) is bitangent to a+, a− to L.

123



378 Geom Dedicata (2014) 169:361–382

Proof All statements follow from Proposition 5.4 and Theorem 5.5. ��
Proposition 7.5 The following conditions are equivalent

(ix) the regular part of E(L) is 1-tangent to the fiber of π at (λ, aλ),
(x) ∃t : (vi) is satisfied and

(
∂3 F

∂λ∂t2 (λ, aλ, t)

)2

− ∂3 F

∂t3 (λ, aλ, t)
∂3 F

∂λ2∂t
(λ, aλ, t) 	= 0. (7.1)

(xi) (vii) is satisfied and ∂3 S+
∂(q+)3 (q+

a ) ∂3 S−
∂(q−)3 (q−

a ) 	= 0.

(xii) (iv) is satisfied and l(a+, a−) is 1-tangent to L at a+ and a−

Proof (λ, aλ) ∈ E(L) is regular. By Proposition 7.3, ∂3 F
∂t3 (λ, aλ, t) 	= 0. Thus, exists

smooth function-germ T on R
3 s.t. ∂2 F

∂t2 (λ, p, q, t) = 0 iff t = T (λ, p, q). Then E(L) =
{
(λ, p, q) : ∂ F

∂t (λ, p, q, T (λ, p, q)) = 0
}
. Then

∂

∂λ

(
∂ F

∂t
(λ, p, q, T (λ, p, q))

)
∣
∣
(λ,aλ) = 0 (7.2)

∂2

∂λ2

(
∂ F

∂t
(λ, p, q, T (λ, p, q))

)
∣
∣
(λ,aλ) 	= 0 (7.3)

are equivalent to (ix). Using the formula

∂T

∂λ
(λ, p, q) = −

(
∂2 F

∂t3 (λ, p, q, T (λ, p, q)

)−1
∂2 F

∂λ∂t2 (λ, p, q, T (λ, p, q)) (7.4)

we see that (7.2)–(7.3) are equivalent to (x). Equivalence of (x) and (xi) is obtained by a
direct calculation. The last equivalence is obvious. ��
Proposition 7.6 The following conditions are equivalent

(xiii) the regular part of E(L) is 2-tangent to the fiber of π at (λ, aλ),
(xiv) ∃t: (vi) is satisfied, (7.1) is not satisfied and

{
∂4 F

∂λ3∂t

(
∂3 F

∂t3

)3

− 3
∂4 F

∂λ2∂t2

(
∂3 F

∂t3

)2
∂3 F

∂λ∂t2

+3
∂4 F

∂λ∂t3

∂3 F

∂t3

(
∂3 F

∂λ∂t2

)2

− ∂4 F

∂t4

(
∂3 F

∂λ∂t2

)3
}

(λ, aλ, t) 	= 0

(xv) (vii) is satisfied and
(

∂3 S+
∂(q+)3 (q+

a ) = 0 ∧ ∂4 S+
∂(q+)4 (q+

a ) 	= 0
)

or
(

∂3 S−
∂(q−)3 (q−

a ) = 0 ∧ ∂4 S−
∂(q−)4 (q−

a ) 	= 0
)

(xvi) (iv) is satisfied and l(a+, a−) is 1-tangent to L at one of points a+, a− and 2-tangent
to L at the other.

Proof (xiii) means that (7.2) is satisfied, (7.3) is not satisfied and ∂3

∂λ3

(
∂ F
∂t (λ, p, q,

T (λ, p, q)))
∣
∣
(λ,aλ) 	= 0. Using (7.4), we see that these conditions are equivalent to (xiv).

By direct calculation we see that (xiv) ⇐⇒ (xv). Finally, (xvi) is the geometric description
of (xv). ��
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Theorem 7.7 Let 1
λ

∂3 S+
∂(q+)3 (q+

a ) + 1
1−λ

∂3 S−
∂(q−)3 (q−

a ) 	= 0 (for (1)–(2) below, λ = 1/2). Let

l(a+, a−) denote the chord passing through (a+, a−).

(1) If l(a+, a−) is not bitangent to L at a+, a−, then the germ of F at (1/2, a1/2, q̇1/2) has

AB1
2 singularity, and the germ of GCS at a1/2 is a smooth curve (the smooth part of the

Wigner caustic).
(2) If l(a+, a−) is 1-tangent to L at a+ and at a−, then the germ of F at (1/2, a1/2, q̇1/2)

has AB2
2 singularity, and the germ of GCS at a1/2 is a union of two 1-tangent smooth

curves (the smooth part of the Wigner caustic and the smooth part of the criminant).
(3) If l(a+, a−) is 1-tangent to L at a+ and at a−, then the germ of F at (λ, aλ, q̇λ) for

λ 	= 1/2 has AA1
2 singularity and the germ of GCS at aλ is a smooth curve (the smooth

part of the criminant).
(4) If l(a+, a−) is 1-tangent to L at one of the points a+, a− and 2-tangent at the other,

then the germ of F at (λ, aλ, q̇λ) for λ 	= 1/2 is not (1, 2)-R+-stable. In particular,
AA2

2 is not realizable as stable singularity of the GCS of a Lagrangian curve.

Proof By Proposition 7.3, if 1
λ

∂3 S+
∂(q+)3 (q+

a ) + 1
1−λ

∂3 S−
∂(q−)3 (q−

a ) 	= 0 then the germ of F is a

unfolding of A2 singularity. Therefore we can reduce F to the form F ′(λ, p, q, t) = t3 +
g(λ, p, q)t , where g is a smooth function-germ vanishing at (λa, 0) (for λa = 0 or λa = 1/2).
By Proposition 7.4, if l(a+, a−) is not bitangent to L at a+, a− then ∂ F ′

∂t∂λ
(1/2, 0, 0) 	= 0

and this implies ∂g
∂λ

(1/2, 0) 	= 0. By Theorems 6.14 and 6.16 we obtain (1). If the chord
l(a+, a−) is tangent to L at a+, a− then by Proposition 7.4 we get that p+

a = p−
a and

∂ F ′
∂t∂λ

(λa, 0, 0) = 0 and this implies ∂g
∂λ

(λa, 0) = 0. But dg|(λa ,0) 	= 0 since ∂ F
∂t∂p (λa, a, q̇a) 	=

0. By Proposition 7.5 if l(a+, a−) is 1-tangent to L at a+, a− then
(

∂3 F ′
∂λ∂t2 (λa, 0, 0)

)2 −
∂3 F ′
∂t3 (λa, 0, 0) ∂3 F ′

∂λ2∂t
(λa, 0, 0) 	= 0. But this implies ∂2g

∂λ2 (λa, 0, ) 	= 0. Thus if λa = 1/2 by
Theorems 6.14 and 6.16 we obtain (2) and otherwise by Theorems 6.12 and 6.15 we obtain (2).
Finally, assume that l(a+, a−) is 1-tangent to L at a+ and 2-tangent at a−. By Proposition 7.6

we get ∂2g
∂λ2 (λa, 0, ) = 0 and

{
∂4 F

∂λ3∂t

(
∂3 F
∂t3

)3 −3 ∂4 F
∂λ2∂t2

(
∂3 F
∂t3

)2
∂3 F

∂λ∂t2 +3 ∂4 F
∂λ∂t3

∂3 F
∂t3

(
∂3 F

∂λ∂t2

)2 −
∂4 F
∂t4

(
∂3 F

∂λ∂t2

)3 }
(λa, 0, 0) 	= 0. Thus, ∂3g

∂λ3 (λa, 0, ) 	= 0. We know that ∂g
∂p (λa, 0, ) 	= 0 since

∂2 F
∂t∂p (λa, a, q̇a) 	= 0. It is easy to see that ∂2 F

∂t∂q (λa, a, q̇a) = 0. Thus F has AA2
2 singularity at

(λa, a, q̇a) iff ∂3 F
∂λ∂q∂t (λa, a, q̇a) ∂3 F

∂t3 (λa, a, q̇a) − ∂3 F
∂λ∂t2 (λa, a, q̇a) ∂3 F

∂q∂t2 (λa, a, q̇a) 	= 0. By

direct calculation, this is equivalent to (q+
a −q−

a )

λa(1−λa)
∂3 S+

∂(q+)3 (q+
a ) ∂3 S−

∂(q−)3 (q−
a ) 	= 0, which is not

satisfied, since l(a+, a−) is 2-tangent to L at a−. ��

Corollary 7.8 Let L be a smooth closed convex curve in (R2, ω). The smooth part of E1/2(L)

is (1, 2)-Lagrangian stable, but the cusps of E1/2(L), seen as part of GCS(L), are not (1, 2)-
Lagrangian stable; the medial axis and the whole CSS are not (1, 2)-Lagrangian stable.

Remark 7.9 For a convex curve L ⊂ R
2, most singularities which are affine stable are not

affine-Lagrangian stable (compare Theorem 7.1 and Corollary 7.8). Also, although the cusps
of E1/2(L) are affine-Lagrangian stable when E1/2(L) is considered by itself, they are not
affine-Lagrangian stable considering E1/2(L) ⊂ GCS(L), that is, the meeting of E1/2(L)

and CSS is not affine-Lagrangian stable.
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7.2 Discussion

Because of the large loss of stability for singularities of the GCS, when going from the
affine to the affine-Lagrangian case, one wonders if it is possible to consider a coarsen
classification of singularities of the GCS of Lagrangian submanifolds, which produces more
stable singularities. In fact, the usual Lagrangian equivalence will do.

As mentioned at the beginning of Sect. 6, classification by usual Lagrangian equivalence
amounts to considering the unfolding parameters y = (λ, x) ∈ R×R

2m on an equal footing.
In this setting, Lagrangian equivalence of E(L) and E(L̃) is defined in terms of Lagrangian
equivalence of L and L̃ in the usual way, which means that their generating families must be
stably R+-equivalent (Theorem 3.10), in other words, there is a symplectomorphism-germ
ϒ of T ∗

R × T R
2m such that ϒ(L) = L̃ and the following diagram commutes:

Pr
L ↪→ T ∗

R × T R
2m −→ R × R

2m

↓ ϒ ↓
Pr

L̃ ↪→ T ∗
R × T R

2m −→ R × R
2m

where the right-vertical arrow is a diffeomorphism-germ of general form

R × R
2m � (λ, x) �→ ((λ, x), X (λ, x)) ∈ R × R

2m .

Comparing with the classifying diagram in Definition 6.3 for (1, 2m)-Lagrangian equiv-
alence, one expects that many singularities of GCS(L) which are Lagrangian stable are not
(1, 2m)-Lagrangian stable. In fact, for convex Lagrangian curves, it is easy to see that most
of the singularities of Theorem 7.1 are Lagrangian stable in the above sense.

However, the fact that the last projection π : R
1+2m → R

2m is not taken into account is an
obvious indication that usual Lagrangian equivalence is not the correct equivalence relation
for classification of the singularities of GCS(L), because this latter is the image under π of
the locus of critical points of π restricted to E(L).

This becomes even clearer when we also analyze the non-symplectic case. In this case,
consider the following extended chord transformation

� : R × R
n × R

n → R × T R
n, (λ, x+, x−) �→ (λ, �λ(x+, x−)),

where �λ : R
n × R

n → T R
n is a simpler λ-chord transformation,

�λ(x+, x−) = (x, ẋ) =
(

λx+ + (1 − λ)x−,
x+ − x−

2

)

, (7.5)

which differs from 	λ only in the kind of linear equation for ẋ (compare (7.5) to (3.1) and
(3.2)), this latter chosen in the symplectic case so that (	−1

λ )∗(δλω) = ω̇ (no extra semi-basic
form in the r.h.s.).

Now, let M and M̃ be germs of m-dimensional smooth submanifolds of R
n, n ≤ 2m, and

let M and M̃ be the chord transformed cylinders

M = �(R × M × M), M̃ = �(R × M̃ × M̃).
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Definition 7.10 Germs of GCS(M) and GCS(M̃) are chord equivalent if there is a
diffeomorphism-germ � of R × T R

n s.t. M̃ = �(M) and the following diagram commutes:

idR × pr π

R × T R
n −→ R × R

n −→ R
n

↓ � ↓ ↓
idR × pr π

R × T R
n −→ R × R

n −→ R
n

where vertical arrows indicate diffeomorphism-germs, as follows:

� : R × T R
n � (λ, x, ẋ) �→ ((λ, x), X (x), Ẋ(λ, x, ẋ)) ∈ R × T R

n,

R × R
n � (λ, x) �→ ((λ, x), X (x)) ∈ R × R

n,

R
n � x �→ X (x) ∈ R

n .

Definition 7.11 A singularity of GCS(M) is affine stable if it is a stable singularity under
its classification by the chord equivalence.

Using classification by the chord equivalence, one proves Theorem 7.1 for the GCS of
convex curves by somewhat lengthy but straightforward computations. The classification
of the singularities of GCS(M) in the other known cases, for instance hyperplanes, can
be similarly accomplished by chord equivalence, which gives the correct affine-invariant
classification of the singularities of GCS(M) for general m-dimensional submanifolds M ⊂
R

n, n ≤ 2m.
Comparison of the classifying diagram in Definition 7.10 for chord equivalence with the

classifying diagram in Definition 6.3 for (1, 2m)-Lagrangian equivalence shows their obvious
analogy.

On the other hand, the “obvious” analog of the classifying diagram for usual Lagrangian
equivalence, when no symplectic form has to be accounted for, is

idR × pr
R × T R

n −→ R × R
n

↓ � ↓
idR × pr

R × T R
n −→ R × R

n

where vertical arrows indicate diffeomorphism-germs of the form:

� : R × T R
n � (λ, x, ẋ) �→ ((λ, x), X (λ, x), Ẋ(λ, x, ẋ)) ∈ R × T R

n,

R × R
n � (λ, x) �→ ((λ, x), X (λ, x)) ∈ R × R

n .

Of course, applying the above “obvious” and wrong equivalence relation to classify sin-
gularities of GCS(M) for general submanifolds Mm ⊂ R

n, n ≤ 2m, produces many more
stable singularities than when applying the correct classifying diagram of Definition 7.10.

Thus, choosing the correct classifying diagram in both the non-symplectic and the sym-
plectic cases shows that most singularities of the GCS which are stable when no symplectic
form has to be accounted for, cease to be stable when there is a symplectic form to be
accounted for. In other words, there is breakdown of stability due to a symplectic form. Other
similar cases, of breakdown of simplicity due to a symplectic form, can be found in [4,6]
and especially in [7].
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