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Abstract
Geometric semantic genetic programming (GSGP) is a variant of genetic program-
ming (GP) that directly searches the semantic space of programs to produce can-
didate solutions. GSGP has shown considerable success in improving the perfor-
mance of GP in terms of program correctness, however this comes at the expense 
of exponential program growth. Subsequent attempts to address this growth have 
not fully-exploited the fact that GSGP searches by producing linear combinations 
of existing solutions. This paper examines this property of GSGP and frames the 
method as an ensemble learning approach by redefining mutation and crossover as 
examples of boosting and stacking, respectively. The ensemble interpretation allows 
for simple integration of regularisation techniques that significantly reduce the size 
of the resultant programs. Additionally, this paper examines the quality of parse tree 
base learners within this ensemble learning interpretation of GSGP and suggests 
that future research could substantially improve the quality of GSGP by examining 
more effective initialisation techniques. The resulting ensemble learning interpreta-
tion leads to variants of GSGP that substantially improve upon the performance of 
traditional GSGP in regression contexts, and produce a method that frequently out-
performs gradient boosting.

Keywords  Genetic programming · Boosting · Base learner · Geometric 
interpretation

1  Introduction

Genetic programming (GP) is an evolutionary computation (EC) approach to pro-
duce solutions with unbounded size and structure [1]. In its canonical form, GP 
conducts search via the syntax of solutions, and this has been shown to produce 
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potential problems with locality, where small changes in syntax often result in large 
changes in solution behaviour [2]. It is argued that focus should be put on designing 
representations for GP that strengthen the connection between search and behaviour 
[3]. Additionally, GP (and EC in general) is often inefficient in its use of available 
feedback from the problem domain, often limiting the use of such information to 
fitness evaluation and resulting in search operators that are blind and inefficient. It 
is known that disaggregating error information, for example, can provide a richer 
guidance towards determining good search directions [4]. Additionally, a broad 
class of extensions to GP have been created that examine the semantics of program 
behaviour [5]. These semantic methods attempt to provide fine-grained information 
to guide not only the selection of good parent candidates, but extend its use into the 
crossover and mutation operators.

Perhaps the most well-known variant of these semantic methods is geometric 
semantic GP (GSGP) [6]. The approach of GSGP is to evolve trees through opera-
tors that explicitly result in affine combinations of parents. In the case of crossover, 
this has provable properties of simplifying search and ensuring that offspring are 
fitter than the worst parent. A significant drawback of GSGP is its tendency towards 
exponential program growth, which limits the practicality of the approach both in 
terms of comprehension and computation. While some subsequent research into 
GSGP has focused on addressing program size [7], much work in GSGP has focused 
on other areas, particularly in the area of finding ideal linear combinations of parents 
[8–10].

This paper develops an alternate interpretation of GSGP framed in the context 
of ensemble learning. Specifically, trees in GSGP are reinterpreted as sets of base 
models acting as an additive ensemble. New models are introduced into the ensem-
ble through mutation and similarities are identified between mutation in GSGP and 
gradient boosting [11]. Crossover is positioned as a stacking operator attempting to 
find good combinations of base models. This paper shows that this interpretation 
preserves the semantic behaviour of GSGP while offering comparable solution size 
characteristics to a bloat-reducing variant of GSGP called GSGP-Red [7]. Establish-
ing a strong link between GSGP and ensemble learning offers many benefits: first, 
there is a rich literature pertaining to ensemble learning theory that can be used to 
inform improvements in GSGP design; second, the geometric interpretation used by 
GSGP can also provide insights that may feed back into traditional ensemble learn-
ing research; third, identifying analogies between GSGP operators and those from 
ensemble learning allows researchers to decouple the behaviour of GSGP from an 
underlying parse tree representation and more effectively examine the behaviour 
of novel search operators and base learner representations (as done in this paper); 
finally, ideas related to ensemble learning that have not been rigorously explored in 
GSGP, such as ensemble regularisation, can be relatively easily adopted to address 
limitations in GSGP such as the tendency towards exponential growth in model size.

With a relationship between GSGP and ensemble learning clearly defined, this 
paper extends the basic GSGP concept by introducing regularisation in the form 
of lasso regression for model coefficients [12]. Lasso regression can be viewed as 
an enhancer of the stacking function produced by standard GSGP crossover and 
allows a larger set of linear combinations of models to be explored over the affine 
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combinations that are permitted by standard GSGP. Results over several bench-
marks suggest that the incorporation of lasso to learn more effective stacking func-
tions leads to both fitter and more compact solutions. Following the exploration of 
an improved stacking function learner, the role of the base learner in GSGP (tradi-
tionally, a parse tree generator) is assessed, with alternative base model generation 
techniques proposed. Results over several benchmarks suggest that the typical parse 
tree generator used for random solutions and mutations in GSGP is not well-behaved 
and spends considerable time exploring regions of the search space with low fitness. 
Instead, more informed base learners that acknowledge the residuals of the other 
models in the ensemble are required, such as those from classical decision tree liter-
ature. With these extensions from traditional ensemble learning factored, the result-
ing parallel recombinative boosting (PRB) methods are shown to outperform tradi-
tional GSGP by a significant margin in both fitness and model size. In addition, PRB 
with an appropriate base learner and lasso regularisation is shown to be frequently 
more effective than equivalent gradient boosting approaches.

The rest of the paper is structured as follows: Sect.  2 examines existing work 
related to semantics and GSGP; Sect. 3 frames the GSGP approach as an ensemble 
learning method and demonstrates the functional equivalence of this interpretation; 
Sect. 4 examines how regularisation techniques can be introduced into an ensemble-
framed GSGP method to substantially improve performance; Sect.  5 assesses the 
suitability of existing parse tree representations in GSGP when it is interpreted as 
an ensemble learning method; Sect. 6 consolidates the work done in previous sec-
tions and examines the newly-developed methods against gradient boosting meth-
ods; finally, Sect. 7 concludes the paper and suggests areas of future work.

2 � Semantic methods in GP

A common property of genetic programming is the adoption of a solution repre-
sentation that decouples search from program behaviour. For example, the stand-
ard crossover and mutation operations on a parse tree representation operate in a 
manner that is blind to the behaviour of the corresponding program. Consider the 
mutation operator on the parse tree shown in Fig. 1: this very small mutation (of 
a constant node from a value of one to a new node with a value of zero) results in 
a complete change in behaviour of the tree. The lack of correlation between the 
size of change in syntax against the behaviour of the tree is measured in terms 
of locality [2, 13, 14]. Problems with locality of search operators in GP has been 
noted in most representations, including parse trees, grammatical evolution and 
Cartesian representations [14–16].

Locality issues in GP can be managed in several ways. An increasingly com-
mon approach is to integrate information about a program’s behaviour (i.e., its 
semantics) into search operators. These semantic methods have allowed substan-
tial improvement in GP performance [5] but often require substantial work and 
modification of GP to map between the representation and semantic spaces.
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2.1 � Geometric semantic genetic programming

Geometric semantic genetic programming was introduced to reduce the complex-
ity of integrating semantics into GP search [6]. The solution proposed by GSGP 
is elegant and simple: consider the semantics of programs as a vector space and 
allow search to work directly on this vector space. Crossover in GSGP, dubbed 
SGXE, takes two parent functions A,B ∶ ℝ

n
→ ℝ and returns a real function O 

that produces an affine combination of the parents’ semantics:

where p is a uniform random variable in [0, 1). As defined in [6], when the fitness 
measure and metric in the semantic space are both Euclidean distance, crossover in 
GSGP is weakly progressive and has the useful property of ensuring that offspring 
are as least as fit as their worst parent (see Fig. 2) [17].

Mutation in GSGP, dubbed SGM, produces a new function O ∶ ℝ
n
→ ℝ by 

generating two new random real functions, R1 and R2 , and adding their weighted 
difference to parent function A:

where ms is typically a user-defined parameter in [0,  1). SGM produces offspring 
within close proximity to parent A, however it does not guarantee that offspring will 
be fitter (see Fig. 3).

With crossover and mutation now defined in the semantic space, there needs 
to be a way for GSGP to construct a representation for offspring that will map 
to their corresponding semantics. An important feature of GSGP is that “syntax 
does not matter” [18], so the way that GSGP enables this is through templates 
that encapsulate the entire representation of each parent into the offspring. This 
simple approach requires minimal modification to existing GP (as selection and 
evaluation are largely unchanged), but has the undesirable property that offspring 

(1)O = p ⋅ A + (1 − p) ⋅ B

(2)O = A + ms ⋅
(

R1 − R2

)

Fig. 1   Example of locality effects in GP. Here the original tree has a functional behaviour of 
f (x) = x2 + x . Following a single mutation of one node, the resulting behaviour shifts to f (x) = 0
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size tends to grow exponentially under crossover. With mutation, program growth 
is linear but still results in large solutions.

Note that this work focuses on GSGP and its use in symbolic regression. As 
shown in the remainder of this section, regression appears to be a large focus of the 
use of GSGP, so a restriction to examine regression is warranted. It is likely that the 
findings of this work are not limited to regression and indeed apply to GSGP in its 
broader applications (e.g., binary function generation, classification, etc.).

2.2 � Related work in GSGP

Work in advancing GSGP has largely focused on two areas: optimisation of the coef-
ficients p and ms, and approaches to manage and/or reduce tree size. Post-process-
ing of solutions through algebraic simplification can reduce program size, as can 

s1(X)

s 2
(X
)

T

A

B

Fig. 2   Geometric semantic crossover (SGXE). Each dimension represents the span of possible behaviour 
in a single component of problem semantics. The target semantics are represented by the red point, and 
two parents (A and B) will undergo crossover to produce offspring. All potential offspring from crosso-
ver will be on the line formed by A and B. The shaded area represents the space of solutions that are fit-
ter than the worst parent (A): note that all offspring are guaranteed to be fitter than the worst parent
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Fig. 3   Geometric semantic mutation (SGM). SGM will produce offspring in a ball centred around parent 
A. The circle centred on the target semantics T represents the space of solutions fitter than parent A. The 
circle around A represents the space of solutions produced by mutating A. The shaded interval represents 
the spaces in which offspring produced by mutation will be fitter than parent A. Multiple conditions are 
presented for where ms (the mutation scale) is smaller than, equal to, or larger than the distance between 
the target semantics and parent A
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representing solutions as anonymous functions and defining calls to parent func-
tions instead of direct embedding of copies [6, 19]. In a somewhat related manner, 
offspring can be implemented as pointers to their parents and executed recursively 
[20]. Both the functional and pointer-based solutions reduce storage requirements 
of offspring to linear complexity, but the execution complexity of offspring remains 
exponential: the pointer-based approach solves this problem during training by cach-
ing the semantics of parents and using these cached results to compute the semantics 
of offspring. Later, the GSGP-Red approach used hashing of trees to identify cases 
where the same tree had been embedded into a solution multiple times, and used this 
concept to combine these instances into a single one with a shared coefficient [7]. 
This had the effect of substantially reducing tree size without compromising solu-
tion quality.

Alongside work to manage program size, several researchers have focused on 
the parameters used within mutation and crossover in GSGP. The original GSGP 
defined crossover as an affine combination of parents, and used a fixed weighting 
parameter ms in mutation. Through its geometric interpretation, researchers identi-
fied that optimal values for ms could be identified through ordinary least squares [8]. 
Others have noted that the affine crossover operator could be replaced with a linear 
combination of parents, the parameters of which could also be optimised [9, 10].

Alongside these approaches to improve the efficiency of GSGP, other research-
ers have considered alternative tree-base representations that “approximate” the 
geometric operators and permit a more considered approach to tree and population 
initialisation. The partial semantics of a solution of a given subtree can be computed 
through semantic backpropagation, and these semantics can be used to guide the 
construction or selection of a new subtree with desired semantics to replace the old 
one [21, 22]. The same researchers also demonstrated that proper convergence of the 
population in GSGP requires that the target semantics reside within the convex hull 
defined by the collective semantics of the population. They use this idea to construct 
alternative initial population construction techniques [23, 24]. Also related to popu-
lation initialisation and mutation, other work has observed that interval arithmetic 
can be used to ensure that all tree generation results in solutions with valid seman-
tics [25].

Finally, some interesting work has explored the idea that GSGP is “overkill” [26]. 
Specifically, it is recognised that GSGP produces offspring that are linear combina-
tions of parents, and rather than construct these iteratively through a stochastic pro-
cess, an optimal composition of the initial population can be determined in a single 
step. The resulting models are smaller and faster to construct than those produced by 
GSGP and offer equivalent generalisation.1

1  It is beyond the scope of this paper, but personal experience with the “overkill” approach is that it is 
sensitive to noise and heavily dependent upon the quality of the initial population construction. It will fail 
to generalise well if low noise or sufficient initialisation cannot be achieved and this limits its practical 
application. Nonetheless, the paper offers excellent insights into the behaviour of GSGP and helped to 
inform some of the work done in this paper.
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3 � Parallel recombinative boosting (PRB)

Despite the vast array of approaches and foci in the work examined in the previous 
section, they all have one theme in common: the underlying representation used is 
ultimately a monolithic tree. However, insights hinted to in many of these papers 
suggest an alternative interpretation of GSGP as an ensemble learning method. As 
shown in later sections of this paper, an ensemble interpretation of GSGP affords 
several avenues of exploration that may help to improve the performance of GSGP, 
but also provide useful insights that may help drive future directions of GSGP 
research.

Ensemble learning has a long and well-established history in machine learning, 
with many useful practical theories and applications [27]. Ensemble learning the-
ory has also been useful in advancing the capability of other fields: for example, 
the concepts of dropout and residual networks, used heavily in modern deep learn-
ing approaches, have clear connections to ensemble learning theory [28, 29]. While 
varied definitions of ensemble learning exist in both machine learning and evolu-
tionary computation literature, three fairly standard families of ensemble learning 
exist: bagging, boosting, and stacking. Bagging (bootstrap aggregation) takes mul-
tiple models learned on resampled instances from the same data set and aggregates 
them to reduce model variance without compromising bias [30]. Boosting operates 
by taking a “weak” learner and iteratively applying that learner to the same data set, 
but rather than learning the entire response function each time, it fits the residuals of 
the previously learned models [11]. Lastly stacking attempts to find a parent model 
that effectively recombines the outputs of multiple individuals models within the 
ensemble [31].

An ensemble interpretation of GSGP begins by examining the crossover opera-
tor. The authors of GSGP-Red performed a similar step in their research [7], and the 
“overkill” interpretation of GSGP raised a similar insight [26]. Consider an initial 
population containing three solutions: A, B, and C. In the next generation, two off-
spring are produced through crossover, one combining A and B and the other com-
bines A and C:

and in the generation after that, a third offspring is created by crossing O1 and O2 as 
parents:

Clearly, the expressions for O1 and O2 can be substituted into O3:

resulting in O3 being a linear combination of three parents A, B, and C. A reason-
able interpretation of crossover, therefore, is that it is searching for high-performing 

O1 = p1 ⋅ A + (1 − p1) ⋅ B

O2 = p2 ⋅ A + (1 − p2) ⋅ C

O3 = p3 ⋅ O1 + (1 − p3) ⋅ O2.

O3 = p3 ⋅
(

p1 ⋅ A + (1 − p1) ⋅ B
)

+ (1 − p3) ⋅
(

p2 ⋅ A + (1 − p2) ⋅ C
)

=
(

p3 ⋅ p1 +
(

1 − p3
)

⋅ p2
)

⋅ A + p3 ⋅
(

1 − p1
)

⋅ B +
(

1 − p3
)

⋅

(

1 − p2
)

⋅ C
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linear combinations of existing solutions created either in the initial population or 
through subsequent mutation. A reasonable interpretation of this is that crossover in 
GSGP is equivalent to learning a stacking operator in ensemble learning.

Moving now to the mutation operator, consider a squared error loss function as 
typically used in regression:

where T and Om are the semantics of the target and mutant offspring, and Ti and 
Omi represent the ith semantic case of the target and mutant. In order for a mutation 
resulting in Om to be effective, it must improve the fitness (i.e., it must reduce the 
error in L(T ,Om) ). Substituting Eq. 2 into the loss function reveals:

where 
(

Ti − Ai

)

 is defined as the residuals of A on the ith semantic. Therefore, an 
effective mutation works to minimise the residuals of the parent, acting in the same 
manner as adding a new model into the ensemble of a gradient boosting method.

Based on these observations, it is reasonable to interpret GSGP as a ensemble 
learning method performing a combination of boosting and stacking. This paper 
refers to this ensemble approach as parallel recombinative boosting (PRB) to clearly 
distinguish it from an explicit GSGP representation. To more effectively realise this 
interpretation, a new representation for solutions is required. This paper adopts a 
very simple model as follows: each individual contains a set of models, and associ-
ated with each model is a weight. The weight corresponding to a model Mj within 
the set of an individual I is denoted as wI(Mj) . Using this representation, the seman-
tics of an individual I is simply the weighted sum of the semantics of its constituent 
models:

An individual in the initial population contains a set with a single model and a cor-
responding weight of 1. Individuals in subsequent generations will contain sets with 
multiple models, some of which have been inherited from parents in previous gen-
erations. It is therefore possible for a given model Mj to be contained in the sets 
of multiple individuals, each time with a different weight wI(Mj) . Crossover is then 
performed as a weighted set union operation, as demonstrated in Algorithm 1. The 
result of this crossover operation is a new individual whose semantics are an linear 
combination of its parents inline with the behaviour defined in Eq. 1. Mutation in 
this representation is a simple weighted set insertion operation.

(3)L(T ,Om) =
1

n

n
∑

i=1

(

Ti − Omi

)2
.

(4)L(T ,Om) =
1

n

n
∑

i=1

(

Ti −
(

Ai + ms ⋅
(

R1i − R2i

)))2

(5)=
1

n

n
∑

i=1

((

Ti − Ai

)

+ ms ⋅
(

R2i − R1i

))2

(6)s(I) =
∑

Mj∈I

wI(Mj) ⋅Mj
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Algorithm 1   Set-based SGXE: perform geometric semantic crossover using a set-
based representation.

Algorithm 2   Set-based SGM: perform geometric semantic mutation using a set-
based representation.

To ensure that the PRB representation offers similar behaviour to previous meth-
ods, the two representations were examined using a set of benchmark data sets from 
previous work [7, 25].2 These problems are outlined in Table 1. Following previous 
work, each problem was run 30 times in the form of six rounds of five-fold cross 
validation [7]. Experimental parameter settings were drawn from previous work 
[25] and are outlined in Table 2. To ensure valid individuals were created through-
out a run, both GSGP and PRB used safe initialisation incorporating interval arith-
metic [25]. Finally, both standard GSGP and GSGP-Red variants were compared 
against PRB, as it was expected that PRB would demonstrate identical performance 
to GSGP-Red. Comparisons were made in terms of both fitness and size: size was 
measured as root-relative mean squared error (RRSE) of the target t against model 
predictions y3:

2  The code used to run these experiments is available online: https://​github.​com/​grant​dick/.
3  RRSE is essentially the normalised root-mean-squared error: an RRSE of 1 indicates an error that 
would be produced by a model performing no better than predicting the mean of the training data.

https://github.com/grantdick/
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while size was measured through the total number of nodes in all trees in an indi-
vidual. To ensure a fair comparison, the size results for PRB were computed as if 
the ensemble was being converted back into a tree (i.e., for an ensemble of size n 
an additional 3 ⋅ (2n − 1) nodes are added to the total node count to account for the 
required addition, multiplication, and constant nodes that would be required to turn 
the ensemble into a tree).

The fitness and size performance of GSGP and PRB are shown in Figs. 4 and 
5, respectively. All results are presented as mean performance values with 95% 

(7)RRSE(t, y) =

�

�

�

�

∑N

i=1
(ti − yi)

2

∑N

i=1
(ti − t̄)2

Table 1   Benchmark problems 
used in this paper

aPrevious work used the ‘PPB’ data set: experience with that data 
set, and its related data sets, suggests that it is not suited to regres-
sion modelling, so it was replaced with the Boston Housing data set

Problem #Inputs #Instances References

Airfoil 6 1503 [32]
Boston housinga 13 506 [33, 34]
CCN 123 1994 [7]
CCUN 125 1994 [7]
Concrete 8 1030 [35]
Energy cooling 8 768 [36]
Energy heating 8 768 [36]
Parkinsons 19 5876 [37]
Tower 25 4999 [38]
Wine quality (Red) 11 1599 [39]
Wine quality (White) 11 4898 [39]
Yacht 6 308 [40]

Table 2   Parameter settings used 
in this paper for GSGP and PRB 
variants

Parameter Setting

Population size 200
Generations 250
Initialisation Ramped Half-and-Half (height: 2–6)
Crossover prob 0.3
Mutation prob 0.7
Selection Tournament (size: 3)
Elitism 1 (best of previous generation)
Function set + , −, × , ÷ , sin , cos , log , 

√

Terminal set x1, x2,… , xp , plus ephemeral 
random constants ( ℜ ) drawn from 
U(−1, 1)
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Fig. 4   Fitness performance of PRB. Note the high similarity in general behaviour of PRB relative to 
GSGP and GSGP-Red. Note also that all three methods perform very poorly on the Airfoil problem, with 
RRSE scores consistently greater than 1
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Fig. 5   Size performance of PRB relative to GSGP and GSGP-Red. The overhead of the additional nodes 
required to convert the set-based representation of PRB into a tree-based representation (as used by 
GSGP and GSGP-Red) has been factored into PRB’s size. In plot group A, all three methods are com-
pared, while plot group B removes GSGP to allow closer comparison of GSGP-Red and PRB
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confidence intervals (computed from t-distributions). As shown, the fitness perfor-
mance for all three methods is essentially identical in both training and testing con-
texts. Interestingly, none of the methods performed well on the Airfoil data sets, 
despite GSGP presenting a cone landscape that “GP can easily optimise” [18]. Rea-
sons for this poor performance, and solutions to improving it, are explored in the 
remainder of this paper. The size performance observed for the three methods sug-
gest that PRB is practically equivalent to GSGP-Red in behaviour with only minor 
differences of no statistical significance. Both methods are able to substantially 
reduce the size of models relative to standard GSGP.

The results presented here indicate that PRB behaves in a manner akin to GSGP-
Red in terms of both size and fitness. From this base, the set-based additive ensemble 
model implemented by PRB allows several aspects of GSGP behaviour to be thor-
oughly explored. Specific to this paper, issues around identifying optimal parameter 
settings (in place of sampling p and fixed ms) can be easily examined, as can simple 
parameter regularisation to induce model shrinkage. Likewise, the efficiency of the 
base learner used in GSGP (parse trees, by default) can be easily examined.  

4 � Stacking functions, coefficient optimisation and regularisation

The implementation of PRB in the previous section used an identical setup for mod-
elling coefficients to that used in the original GSGP paper [6]. As suggested earlier, 
the effect of crossover in GSGP is to learn a stacking function for a set of underlying 
base models. In GSGP, and likewise the implementation of PRB examined thus far, 
this stacking function learning is limited to affine combinations of the base models. 
However, another approach to learning the stacking function would be to optimise 
these coefficients directly, similar to that done in previous work [9, 10]. While this 
could be done by modifying the crossover operator, the set-based approach of PRB 
allows the stochastic search operator within crossover to be preserved, while allow-
ing a new operator to be included. This new operator is straightforward: after a spec-
ified number of generations, the best individual in the population is selected, and 
lasso regression is applied to the coefficients of this model (i.e., L1-penalised regres-
sion is used to fit a linear model of individual model semantics against the target 
semantics) [12]. This serves two purposes: first, it allows all model coefficients to be 
optimised simultaneously, whereas previous work has had limited scope to achieve 
this. Second, the L1-penalty applied during regression encourages some coefficients 
towards zero: from this, any model within the set with a coefficient of zero can be 
removed from the solution. Therefore, we should reasonably expect the incorpora-
tion of lasso regression to learn the stacking function to produce solutions that are 
both fitter and more compact than those produced by GSGP-Red and PRB. Lasso 
regression requires a penalty weighting � : this is established through five-fold cross-
validation on a regularisation path estimated from the data, and does not require 
user intervention. Because the lasso regression is applied to only one individual in 
the population, it adds little overhead to the algorithm (and, in practice, this over-
head should be more than compensated for by the overall reduction in program sizes 
within the population).
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Two variants of PRB with embedded lasso regression were compared to GSGP-
Red: the first variant applied lasso regression to the best individual in the population 
at the end of each generation (referred to as PRB + Lasso(1)), while the second vari-
ant only applies lasso regression to the first and last generations of the run (referred 
to her as PRB + Lasso(250)).

The same experimental setup used in the previous section was used to examine 
the effect of including lasso regularisation into PRB. Because of the equivalence 
of PRB and GSGP-Red, comparison with anything other then PRB on its own was 
not required. As before, both fitness and size were compared. The fitness results are 
shown in Fig. 6, while the size performance is shown in Fig. 7. The results are very 
encouraging: both fitness and size are substantially improved over PRB on its own 
(and hence GSGP). There does not appear to be a consistent end-of-run difference 
in fitness between using lasso at the end of each generation versus at the end of 
the run. However, applying lasso after each generation does typically lead to faster 
fitness improvement and, although not explicitly shown here, it was observed that 
lasso regression performed in each generation lead to an overall reduction in the 
total number of nodes processed during an entire run.

5 � Effectiveness of base learner in PRB

An important requirement of boosting is that a weak learner needs to provide a fit 
that is (at least marginally) better than a null prediction (e.g., predicting the mean 
of the model residuals). In other words, to be effective in boosting, the base learner 
must produce models that exhibit an RRSE performance that is less than 1. This 
requirement of weak learning can be related back to mutation in GSGP (and there-
fore PRB) by examining Fig.  3: note that the shaded areas describe the regions 
where mutation produces an offspring that is fitter than its parent. Note also that 
it appears in all circumstances, the region of fitter offspring is outweighed by the 
region of weaker offspring: in other words, in the standard GSGP approach with 
parse trees, mutation spends more time exploring weaker solutions than promising 
regions. In the extreme case of Fig.  3, where the ratio of ms against the distance 
between the parent and target vector is 2:1, mutation leads to a weaker offspring 
75% of the time. As problem size increases, this becomes potentially worse: for n 
components in the semantics, the probability of GSGP mutation generating weaker 
offspring is 2

n−1

2n
 . For GSGP (and therefore PRB) to be truly effective, the impact on 

base learner performance on mutation must be explored.
In Sect. 6, the overall effect of incorporating different base learners into GSGP 

is demonstrated. Prior to that, however, a more direct consideration of the behav-
iour of base learners is warranted. Given that a clear relationship between boosting 
and GSGP mutation was identified in Sect. 3, a simple boosting framework (forward 
step-wise additive boosting (FSAB) [27]) can be used to evaluate the performance of 
potential base learner approaches, and thus provide insights into how they will influ-
ence mutation behaviour in GSGP. This paper considers five potential base learners: 
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Fig. 6   Impact on fitness performance through using lasso regression for optimisation of coefficients in 
PRB
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1.	 Standard parse tree generation: this is the method used by default in GSGP.
2.	 Parse tree + OLS: essentially the standard parse tree generation with an additional 

attempt to fit the resulting tree to the target semantics by optimising ms using 
ordinary least squares as done in previous work [8].

3.	 Greedy parse tree: here, standard parse trees are repeatedly generated and rejected 
until one that improves fitness is found.4

4.	 Random decision tree: a non-greedy variant of CART that picks variables for 
splitting nodes, and the splitting points within said variables, at random.

5.	 Stochastic CART​: essentially, the variant of CART that is used to generate trees in 
random forests through considering a random subset of variables at each splitting 
node [30].

Typical performance of an effective base learner (i.e., one exhibiting weak learn-
ing) would follow a given pattern: 

1.	 The initial models learned would demonstrate fairly rapid adaptation to the prob-
lem and would rapidly reduce error.

2.	 The first few models would show relatively strong individual adaptation to the 
problem, as the residuals they fit would be relatively large. So if their fitness is 
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Fig. 7   Impact of size performance of PRB when using lasso regression to encourage model regularisa-
tion

4  While different in implementation, this greedy approach to generation has some overlapping concepts 
with the initialisation techniques that use a generate and reject approach to expand the convex hull of 
program semantics in the initial population in GSGP [23, 24].
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measured individually, it would be reasonable to expect each model to have low 
error.

3.	 As the residuals get smaller and smaller, there is less useful information for indi-
vidual models to fit, so they should exhibit relatively high errors.

4.	 Over time, there should be a gradual convergence towards a stable point of low 
error for the entire ensemble.

Confirming this pattern of a base learner can be done quite easily through graph-
ing the evolution of the error of an FSAB ensemble and each individual base 
learner model over subsequent iterations on a given problem. For an effective 
base learner, the plot of training error of the ensemble should exhibit a fairly 
rapid monotonic decrease in error, while the error nth model should quickly con-
verge on an RRSE close to 1.

To test the efficacy of these base learners, FSAB was used to create ensembles 
of 50 trees. For standard and greedy parse trees, a ms of 0.1 was used (as would 
be typical in GSGP/PRB), while parse tree + OLS determined this value automati-
cally. Both CART base learner variants were permitted a maximum tree exploration 
depth of 3. As before, 30 runs were performs (six repeats of five-fold cross valida-
tion). The results of these results are shown in Fig. 8. The performance presented is 
mean RRSE with 95% confidence intervals. The results for standard parse trees as 
a base learner are particularly interesting and seem to confirm the theory that most 
of the effort of this type of base learner is spent exploring low-fitness regions of the 
solution space. The parse tree representation is unable to consistently produce mod-
els with RRSE less than one, so does not fulfill the requirement of weak learning 
needed for boosting. The application of OLS to tune the scaling parameter seems 
to do little to improve the situation, with the models produced consistently having 
RRSE scores greater than 1. However, the greedy parse tree approach, while compu-
tationally expensive, seems to show some promise and exhibits the necessary prop-
erties for a base learner under a boosting framework. Relating this to the scenario 
presented in Fig. 3, using the greedy parse tree base learner within GSGP mutation 
would ensures that offspring reside in the shaded regions. The results of the greedy 
learner suggest that the parse tree representation should not be completely rejected 
as base learners for GSGP mutation, but rather future work should explore better 
methods for parse tree generation. The two CART-based decision tree base learn-
ers demonstrate behaviour that is well-suited for boosting learning: indeed relating 
these base learners back to the scenario presented in Fig. 3, if used within SGM, 
these base learners would only produce within the shaded regions (i.e., an offspring 
would be guaranteed to be fitter than its parent).

The results presented here strongly suggest that non-greedy variants of parse tree 
base learners are unlikely to lead to effective implementation of mutation in GSGP. 
This is further examined in the next section, where different base learners are used 
within PRB to drive mutation.
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6 � Comparing PRB to contemporary boosting

Based on the results presented in Sects. 4 and 5, it seems that significant improve-
ments in GSGP performance can be obtained through relatively simple modifica-
tions. However, the extensions resulting in PRB have the effect of moving it closer 
to existing boosting frameworks, such as gradient boosting machines (GBM) [11]. 
Therefore, there is a need to examine the resulting PRB frameworks against GBM to 
ensure that they present novel and useful behaviour.

The experimental setup from previous sections was used to compare PRB to 
GBM. The GBM package from CRAN was used for comparison [41]. GBM was 
permitted to develop ensembles of 250 trees, and trees of maximum depth 3 were 
used to remain consistent with the decision tree base learners used for PRB. Two 
variants of GBM were used: GBM on its own without regularisation, and GBML, 
which is GBM followed by lasso regularisation once the ensemble was constructed 
(this emulates the regularisation process offered to PRB). Four variants of PRB were 
considered, all using lasso regularisation after each generation: 

1.	 PRBP: PRB using a standard parse tree representation for the initial population 
and the random functions generated during mutation.

2.	 PRBG: PRB using the greedy parse tree representation defined in Sect. 5 for 
generating the random functions used in mutation.

3.	 PRBD: PRB using a random decision tree base learner for initial solutions and 
within mutation.

4.	 PRBC: PRB using a stochastic CART base learner, again in both population ini-
tialisation and subsequently within GSGP mutation.

Note that the only difference between each variant of PRB is the choice of base 
learner. Therefore, the results presented in this section can also be used to assess 
the effective performance of mutation produced by using these representations. Note 
also that, due to its poor performance demonstrated in Sect. 5, the parse tree base 
learner with OLS adaptation is not explored here.

Boxplots of performance in terms of RRSE and resulting ensemble size are 
shown in Figs. 9 and 10, respectively. Average rankings of the various methods for 
prediction performance and size are shown in Table 3. For statistical analyses, pair-
wise Wilcoxon signed-rank tests were performed for each pair of methods on each 
problem, with Holm’s correction applied to correct for multiple comparisons: results 
of these tests are shown in Tables 4 and 5. It terms of prediction performance, it 
appears that PRB offers good performance, certainly on par with GBM. PRBC 
offered statistically significant performance improvements over GBML on six prob-
lems, was inferior on five and differences in performance were not significant on the 
remaining problems. Size performance of all PRB variants were consistently better 
than that offered by GBM: given the similarity of the final ensemble representation 
of both PRB and GBM, it is interesting to observe such a difference. Explaining why 
PRB was more amenable to regularisation than GBM would be a worthy area of 
future work.
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7 � Conclusion

Geometric semantic genetic programming has received considerable attention due 
to its desirable properties of searching directly in the semantic space. However, pre-
vious work exploring GSGP has been largely fixed on using a tree representation. 
This paper has presented an alternate interpretation of GSGP, one that frames GSGP 
within the concept of ensemble learning. Specifically, GSGP mutation was recast as 
a boosting operator, while crossover was examined in the guise of a stacking opera-
tor. Coupled with a set-base representation of solutions, the resulting parallel recom-
binative boosting framework offers new insights into the nature of GSGP. The PRB 
framework, when coupled with effective regularisation, coefficient optimisation and 
base learner design as able to provide effective ensemble learning that is competitive 
with class-leading methods like GBM in terms of prediction quality, but is able to 
do so with much smaller ensemble sizes.

7.1 � Future work

The PRB framework provides several insights into useful areas for future work in 
GSGP research. Although the standard parse tree base learner was shown to be 
largely ineffective, the actual representation itself, when coupled with a greedy 
strategy, was able to be more effective. This suggests that exploring more effective 
means of constructing parse trees is warranted. Given the natural interpretability of 
parse trees, finding more effective means of constructing them may provide useful 
techniques for not only GSGP, but more general genetic programming activities.

Linking with the idea of better tree construction, future work to better integrate 
GSGP and semantic backpropagation is warranted. While there has been much 
work exploring the use of coefficient optimisation within GSGP, this seems to be an 
under-explored area in the approximate geometric semantic methods.5

The approach in this paper of using lasso regularisation seems effective, but none-
theless exploring other means of regularisation and coefficient search is warranted. 
Dropout has been remarkably successful in introducing bagging-like dynamics into 
large deep learning models [28]. Pursuing dropout-like regularisation in GSGP and 

Table 3   Average rank of each 
method in the tested problems

Test RRSE performance Ensemble size

Method Mean rank SD rank Method Mean rank SD rank

PRBC 2.42 1.24 PRBP 1.08 0.29
PRBG 3.42 1.83 PRBD 2.08 0.29
PRBD 3.42 1.38 PRBC 3.42 0.67
GBM 3.67 1.44 PRBG 4.08 0.79
GBML 3.75 1.86 GBML 4.83 1.47
PRBP 4.33 2.15 GBM 5.55 0.67

5  The work of Chen et al. [10] goes someway towards exploring this concept, and could be an excellent 
launching point from which this future work could be conducted.
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PRB may help to promote similar variance-reducing behaviour and serve as a useful 
complement to the natural boosting properties of the method.

Table 4   Comparisons of mean testing RRSE performance

For each problem, the p value (adjusted for multiple comparisons) associated with a Wilcoxon signed-
rank test for difference between the two methods A and B is shown. Where relevant, each p value value is 
shown with a symbol ≻ or ≺ to indicate a significant difference in favour of method A or B, respectively

Methods (A-B) Problem

Airfoil Boston housing CCN CCUN Concrete Energy cooling

PRBP PRBG 0.000≺ 0.012 ≻ 0.395 0.000≻ 0.000≺ 0.000≺
PRBD 0.000≺ 0.714 0.395 1.000 0.000≺ 0.000≺
PRBC 0.000≺ 0.696 0.000≻ 0.000≻ 0.000≺ 0.000≺
GBM 0.000≺ 0.166 0.000≻ 0.000≻ 0.000≺ 0.000≺
GBML 0.000≺ 0.714 0.000≻ 0.000≻ 0.000≺ 0.000≺

PRBG PRBD 1.000 0.001≺ 0.027 ≻ 0.000≺ 0.173 0.005 ≻
PRBC 0.000≺ 0.000≺ 0.000≻ 0.841 0.000≺ 0.000≺
GBM 0.000≺ 0.257 0.000≻ 0.000≻ 0.001≺ 0.399
GBML 0.000≺ 0.062 0.000≻ 0.000≻ 0.000≺ 0.000≺

PRBD PRBC 0.000≺ 0.848 0.000≻ 0.000≻ 0.013 ≺ 0.000≺
GBM 0.000≺ 0.022 ≻ 0.000≻ 0.000≻ 0.173 0.004 ≺
GBML 0.000≺ 0.123 0.000≻ 0.000≻ 0.021 ≺ 0.000≺

PRBC GBM 0.467 0.008 ≻ 0.000≻ 0.000≻ 0.627 0.012 ≻
GBML 1.000 0.083 0.000≻ 0.000≻ 0.766 0.060

GBM GBML 0.165 0.714 0.906 1.000 0.766 0.001≺
GBML 0.033 ≻ 0.000≺ 0.000≻ 0.573 0.000≻ 0.000≻

GBM GBML 0.080 0.000≺ 0.522 0.643 0.376 0.000≻

Energy 
heating

Parkinsons Tower Wine red Wine white Yacht

PRBP PRBG 0.000≺ 0.000≺ 0.000≺ 0.000≻ 0.000≺ 0.000≺
PRBD 0.000≺ 0.000≺ 0.000≺ 1.000 0.000≺ 0.000≺
PRBC 0.000≺ 0.000≺ 0.000≺ 0.000≻ 0.376 0.000≺
GBM 0.000≺ 0.000≺ 0.000≺ 0.000≻ 0.001≻ 0.000≺
GBML 0.000≺ 0.000≺ 0.000≺ 0.000≻ 0.000≻ 0.128

PRBG PRBD 0.518 0.000≻ 0.000≻ 0.000≺ 0.011 ≺ 1.000
PRBC 1.000 0.000≻ 0.522 0.065 0.124 0.001≺
GBM 1.000 0.000≻ 0.000≻ 0.005≻ 0.000≺ 0.001≺
GBML 0.108 0.000≻ 0.000≻ 0.000≻ 0.000≺ 0.000≻

PRBD PRBC 0.108 0.000≺ 0.000≺ 0.000≻ 0.000≻ 0.002 ≺
GBM 0.518 0.000≺ 0.001≺ 0.000≻ 0.000≻ 0.001≺
GBML 1.000 0.000≺ 0.000≺ 0.000≻ 0.000≻ 0.001≻

PRBC GBM 1.000 0.017 ≺ 0.000≻ 1.000 0.001≻ 1.000
GBML 0.033 ≻ 0.000≺ 0.000≻ 0.573 0.000≻ 0.000≻

GBM GBML 0.080 0.000≺ 0.522 0.643 0.376 0.000≻
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Finally, it seems prudent to conduct a full and thorough examination of the hyper-
parameter space of GSGP and PRB. While there is some question about the (lack of) 
sensitivity of evolutionary computation methods towards hyperparameter settings 
[42], a new interpretation of GSGP under an ensemble learning framework may help 

Table 5   Comparisons of mean ensemble sizes

For each problem, the p value (adjusted for multiple comparisons) associated with a Wilcoxon signed-
rank test for difference between the two methods A and B is shown. Where relevant, each p value value is 
shown with a symbol ≻ or ≺ to indicate a significant difference in favour of method A or B, respectively

Methods (A-B) Problem

Airfoil Boston housing CCN CCUN Concrete Energy cooling

PRBP PRBG 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
PRBD 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
PRBC 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻

PRBG PRBD 0.000≺ 0.000≺ 0.017 ≺ 0.000≺ 0.000≺ 0.000≺
PRBC 0.000≺ 0.000≺ 0.000≻ 0.000≺ 0.000≺ 0.000≺
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≺ 0.000≻ 0.000≻
GBML 0.000≻ 0.000≻ 0.000≻ 0.000≺ 0.000≻ 0.000≻

PRBD PRBC 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻

PRBC GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻

GBM GBML 0.000≺ 0.000≺ 0.000≺ 0.000≺ 0.000≺ 0.000≺

Energy 
heating

Parkinsons Tower Wine red Wine white Yacht

PRBP PRBG 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
PRBD 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
PRBC 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≺

PRBG PRBD 0.000≺ 0.000≺ 0.000≺ 0.000≺ 0.000≺ 0.003 ≺
PRBC 0.000≺ 0.000≻ 0.000≺ 0.000≺ 0.000≺ 0.000≻
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≺ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≺

PRBD PRBC 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.043 ≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≺

PRBC GBM 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≻
GBML 0.000≺ 0.000≻ 0.000≻ 0.000≻ 0.000≻ 0.000≺

GBM GBML 0.000≺ 0.078 0.000≺ 0.000≺ 0.000≺ 0.000≺



	 Genetic Programming and Evolvable Machines            (2024) 25:9 

1 3

    9   Page 24 of 26

to uncover more effective hyperparameter settings to improve both scalability and 
application.

Author Contributions  All work in preparing the paper was done by the sole author.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Code availability  All code for final paper version will be published via http://​github.​com/​grant​dick/

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

	 2.	 E. Galván-López, J. McDermott, M. O’Neill, A. Brabazon, Towards an understanding of locality in 
genetic programming, in Proceedings of the 12th Annual Conference on Genetic and Evolutionary 
Computation. GECCO ’10 (Association for Computing Machinery, New York, 2010), pp. 901–908. 
https://​doi.​org/​10.​1145/​18304​83.​18306​46

	 3.	 P.A. Whigham, G. Dick, J. Maclaurin, On the mapping of genotype to phenotype in evolutionary 
algorithms. Genet. Progr. Evolvable Mach. 18, 353–361 (2017)

	 4.	 K. Krawiec, P. Liskowski, Automatic derivation of search objectives for test-based genetic program-
ming, in Genet. Program. ed. by P. Machado, M.I. Heywood, J. McDermott, M. Castelli, P. García-
Sánchez, P. Burelli, S. Risi, K. Sim (Springer, Cham, 2015), pp.53–65

	 5.	 L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet. 
Progr. Evolvable Mach. 15, 195–214 (2014)

	 6.	 A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in Parallel 
Problem Solving from Nature—PPSN XII. ed. by C.A.C. Coello, V. Cutello, K. Deb, S. Forrest, G. 
Nicosia, M. Pavone (Springer, Berlin, 2012), pp.21–31

	 7.	 J.F.B.S. Martins, L.O.V.B. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the exponential 
growth of symbolic regression trees in geometric semantic genetic programming, in Proceedings of 
the Genetic and Evolutionary Computation Conference. GECCO ’18 (Association for Computing 
Machinery, New York, 2018), pp. 1151–1158. https://​doi.​org/​10.​1145/​32054​55.​32055​93

	 8.	 J. McDermott, A. Agapitos, A. Brabazon, M. O’Neill, Geometric semantic genetic programming 
for financial data, in Applications of Evolutionary Computation. ed. by A.I. Esparcia-Alcázar, A.M. 
Mora (Springer, Berlin, 2014), pp.215–226

	 9.	 M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic 
programming with local search, in Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation. GECCO ’15 (Association for Computing Machinery, New York, 2015), pp. 
999–1006. https://​doi.​org/​10.​1145/​27394​80.​27547​95

http://github.com/grantdick/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1830483.1830646
https://doi.org/10.1145/3205455.3205593
https://doi.org/10.1145/2739480.2754795


1 3

Genetic Programming and Evolvable Machines            (2024) 25:9 	 Page 25 of 26      9 

	10.	 Q. Chen, B. Xue, M. Zhang, Improving generalization of genetic programming for symbolic regres-
sion with angle-driven geometric semantic operators. IEEE Trans. Evol. Comput. 23(3), 488–502 
(2019). https://​doi.​org/​10.​1109/​TEVC.​2018.​28696​21

	11.	 J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 
1189–1232 (2001). https://​doi.​org/​10.​1214/​aos/​10132​03451

	12.	 R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 
58(1), 267–288 (1996)

	13.	 E. Galván-López, J. McDermott, M. O’Neill, A. Brabazon, Defining locality as a problem difficulty 
measure in genetic programming. Genet. Progr. Evolvable Mach. 12, 365–401 (2011)

	14.	 N.Q. Uy, N.X. Hoai, M. O’Neill, R.I. McKay, D.N. Phong, On the roles of semantic locality of 
crossover in genetic programming. Inf. Sci. 235, 195–213 (2013). https://​doi.​org/​10.​1016/j.​ins.​2013.​
02.​008. (Data-based Control, Decision, Scheduling and Fault Diagnostics)

	15.	 F. Rothlauf, M. Oetzel, On the locality of grammatical evolution, in Genetic Programming. ed. by P. 
Collet, M. Tomassini, M. Ebner, S. Gustafson, A. Ekárt (Springer, Berlin, 2006), pp.320–330

	16.	 T. Seaton, J.F. Miller, T. Clarke, An ecological approach to measuring locality in linear genotype 
to phenotype maps, in Proceedings of the 15th European Conference on Genetic Programming. 
EuroGP’12 (Springer, Berlin, 2012), pp. 170–181. https://​doi.​org/​10.​1007/​978-3-​642-​29139-5_​15

	17.	 T.P. Pawlak, K. Krawiec, Progress properties and fitness bounds for geometric semantic search oper-
ators. Genet. Progr. Evolvable Mach. 17, 5–23 (2016)

	18.	 A. Moraglio, K. Krawiec, Semantic genetic programming, in Proceedings of the 2016 on Genetic 
and Evolutionary Computation Conference Companion. GECCO ’16 Companion (Association for 
Computing Machinery, New York, 2016), pp. 639–662. https://​doi.​org/​10.​1145/​29089​61.​29269​90

	19.	 A. Moraglio, An efficient implementation of gsgp using higher-order functions and memoization, in 
SMGP Workshop at PPSN (2014)

	20.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic GP 
and its application to problems in pharmacokinetics, in Genetic Programming. ed. by K. Krawiec, 
A. Moraglio, T. Hu, A.Ş. Etaner-Uyar, B. Hu (Springer, Berlin, 2013), pp.205–216

	21.	 K. Krawiec, P. Lichocki, Approximating geometric crossover in semantic space, in Proceedings of 
the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO ’09 (Association 
for Computing Machinery, New York, 2009), pp. 987–994. https://​doi.​org/​10.​1145/​15699​01.​15700​
36

	22.	 T.P. Pawlak, B. Wieloch, K. Krawiec, Semantic backpropagation for designing search operators in 
genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015). https://​doi.​org/​10.​1109/​
TEVC.​2014.​23212​59

	23.	 T.P. Pawlak, K. Krawiec, Semantic geometric initialization, in Genetic Programming. ed. by M.I. 
Heywood, J. McDermott, M. Castelli, E. Costa, K. Sim (Springer, Cham, 2016), pp.261–277

	24.	 T.P. Pawlak, K. Krawiec, Competent geometric semantic genetic programming for symbolic regres-
sion and Boolean function synthesis. Evol. Comput. 26(2), 177–212 (2018). https://​doi.​org/​10.​1162/​
evco_a_​00205

	25.	 G. Dick, Improving geometric semantic genetic programming with safe tree initialisation, in Genetic 
Programming. ed. by P. Machado, M.I. Heywood, J. McDermott, M. Castelli, P. García-Sánchez, P. 
Burelli, S. Risi, K. Sim (Springer, Cham, 2015), pp.28–40

	26.	 T.P. Pawlak, Geometric semantic genetic programming is overkill, in Genetic Programming. ed. by 
M.I. Heywood, J. McDermott, M. Castelli, E. Costa, K. Sim (Springer, Cham, 2016), pp.246–260

	27.	 T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman, The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction, vol. 2 (Springer, Berlin, 2009)

	28.	 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to 
prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

	29.	 F. Huang, J. Ash, J. Langford, R. Schapire, Learning deep ResNet blocks sequentially using boost-
ing theory, in Proceedings of the 35th International Conference on Machine Learning. Proceedings 
of Machine Learning Research, vol. 80, ed. by J. Dy, A. Krause (2018), pp. 2058–2067

	30.	 L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
	31.	 D.H. Wolpert, Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://​doi.​org/​10.​1016/​

S0893-​6080(05)​80023-1
	32.	 T. Brooks, D. Pope, M. Marcolini, Airfoil Self-Noise. UCI Machine Learning Repository (2014). 

https://​doi.​org/​10.​24432/​C5VW2C
	33.	 D. Harrison, D.L. Rubinfeld, Hedonic housing prices and the demand for clean air. J. Environ. Econ. 

Manag. 5(1), 81–102 (1978)

https://doi.org/10.1109/TEVC.2018.2869621
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.ins.2013.02.008
https://doi.org/10.1016/j.ins.2013.02.008
https://doi.org/10.1007/978-3-642-29139-5_15
https://doi.org/10.1145/2908961.2926990
https://doi.org/10.1145/1569901.1570036
https://doi.org/10.1145/1569901.1570036
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1162/evco_a_00205
https://doi.org/10.1162/evco_a_00205
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.24432/C5VW2C


	 Genetic Programming and Evolvable Machines            (2024) 25:9 

1 3

    9   Page 26 of 26

	34.	 L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression Trees (CRC Press, 
Boca Raton, 1984)

	35.	 I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks. Cem. 
Concr. Res. 28(12), 1797–1808 (1998)

	36.	 A. Tsanas, A. Xifara, Energy efficiency. UCI Machine Learning Repository (2012). https://​doi.​org/​
10.​24432/​C51307

	37.	 A. Tsanas, M. Little, Parkinsons Telemonitoring. UCI Machine Learning Repository (2009). https://​
doi.​org/​10.​24432/​C5ZS3N

	38.	 E.J. Vladislavleva, G.F. Smits, D. Hertog, Order of nonlinearity as a complexity measure for mod-
els generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 
13(2), 333–349 (2009). https://​doi.​org/​10.​1109/​TEVC.​2008.​926486

	39.	 P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Wine Quality. UCI Machine Learning Reposi-
tory (2009). https://​doi.​org/​10.​24432/​C56S3T

	40.	 J. Gerritsma, R. Onnink, A. Versluis, Yacht Hydrodynamics. UCI Machine Learning Repository 
(2013). https://​doi.​org/​10.​24432/​C5XG7R

	41.	 B. Greenwell, B. Boehmke, J. Cunningham, G. Developers, Gbm: Generalized Boosted Regression 
Models. R package version 2.1.8.1 (2022). https://​CRAN.R-​proje​ct.​org/​packa​ge=​gbm

	42.	 M. Sipper, W. Fu, K. Ahuja, J.H. Moore, Investigating the parameter space of evolutionary algo-
rithms. BioData Min. 11, 1–14 (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.24432/C51307
https://doi.org/10.24432/C51307
https://doi.org/10.24432/C5ZS3N
https://doi.org/10.24432/C5ZS3N
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C5XG7R
https://CRAN.R-project.org/package=gbm

	An ensemble learning interpretation of geometric semantic genetic programming
	Abstract
	1 Introduction
	2 Semantic methods in GP
	2.1 Geometric semantic genetic programming
	2.2 Related work in GSGP

	3 Parallel recombinative boosting (PRB)
	4 Stacking functions, coefficient optimisation and regularisation
	5 Effectiveness of base learner in PRB
	6 Comparing PRB to contemporary boosting
	7 Conclusion
	7.1 Future work

	References


