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Abstract
The use of genetic algorithms (GAs) to evolve neural network (NN) weights has 
risen in popularity in recent years, particularly when used together with gradient 
descent as a mutation operator. However, crossover operators are often omitted from 
such GAs as they are seen as being highly destructive and detrimental to the per-
formance of the GA. Designing crossover operators that can effectively be applied 
to NNs has been an active area of research with success limited to specific problem 
domains. The focus of this study is to use genetic programming (GP) to automati-
cally evolve crossover operators that can be applied to NN weights and used in GAs. 
A novel GP is proposed and used to evolve both reusable and disposable crosso-
ver operators to compare their efficiency. Experiments are conducted to compare 
the performance of GAs using no crossover operator or a commonly used human 
designed crossover operator to GAs using GP evolved crossover operators. Results 
from experiments conducted show that using GP to evolve disposable crossover 
operators leads to highly effectively crossover operators that significantly improve 
the results obtained from the GA.
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1 Introduction

The crossover operator has always been a controversial topic surrounding neuro-
evolution [1], with the general consensus being that crossover is not a beneficial 
or necessary operator to include in a genetic algorithm (GA) that optimizes neu-
ral networks (NNs) by evolving their weights. The main reasoning behind this 
belief is that the crossover operator has been shown to be highly destructive in the 
past and therefore is expected to produce offspring with worse fitness than that of 
its parents [2]. One of the main explanations for the destructiveness of crossover 
when applied to NN weights is known as the permutation problem [3–5]. The 
permutation problem refers to the fact that there exists a one to many mapping 
between the NN phenotype and genotypes, meaning there exists many different 
chromosomes that represent functionally equivalent NNs [5]. This is because the 
neurons within a layer of a NN can be arbitrarily permutated or rearranged with-
out having any effect on the output of the NN. This means that it is not possible 
to determine which two weights in two different NNs are functionally equivalent 
when performing crossover.

Most works in neuroevolution choose to completely omit the crossover operator 
and use a GA that only consists of mutation and selection operators [6]. While these 
GAs perform well and on the surface appear to operate normally without a crossover 
operator, the omission of the crossover operator may have a more detrimental effect 
on the behaviour and performance of a GA than what is initially apparent. This is 
because crossover is a core operator of a GA and plays an important role in allowing 
the GA to take large steps in the search space while also promoting convergence of a 
population to promising regions of the search space [7].

However, a recent study has suggested that the permutation problem should in 
theory not be such a major problem in GAs [3]. This is due to the fact that once 
the population converges it is highly unlikely that multiple representations of the 
same phenotype will exist since the many genotypes that map to the same phe-
notype should be spread out across the search space [8]. This argument has been 
termed the convergence argument by Froese et al. [8]. If the permutation problem 
is not of concern, it may be the case that existing crossover operators that are 
commonly used for NNs have not been designed well enough or that the design of 
crossover operators for NNs is a highly complex task. Designing effective crosso-
ver operators has been seen as one of the major remaining challenges surrounding 
neuroevolution for NN weight optimization [9].

For this reason, we explore the use of genetic programming (GP) [10] to auto-
matically design crossover operators for NNs. GP is an evolutionary algorithm 
similar to GAs but are used to evolve programs or trees that can be executed or 
evaluated to produce a desired output. If we treat crossover operators as programs 
that can be applied to two weights, GP can be applied to search for crossover 
operators. Utilizing GP enables the design of highly complex crossover operators 
that might be nearly impossible for humans to design or that may seem counter 
intuitive. Furthermore, it also allows for crossover operators to be tailored to dif-
ferent problem domains by rerunning the GP on each problem domain.
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As seen later in this paper, GP can also be used to design disposable crossover 
operators instead of reusable operators. Disposable crossover operators are opti-
mized to perform crossover on two specific weight vectors and may perform poorly 
when applied to others. This seems undesirable at first since operators are produced 
for each weight pair which is more expensive, but this strategy may produce highly 
effective crossover operators that consistently outperform reusable operators. In this 
study, we compare the use of GP to design both reusable and disposable crossover 
operators.

The main contributions of this study are as follows:

• To propose a novel GP to evolve crossover operators that can be used in GAs that 
optimize NN weights;

• To use the proposed GP to evolve both reusable and disposable crossover opera-
tors and compare their performance;

• To show that GP evolved crossover operators are more effective than commonly 
used crossover operators when applied to NN weights;

• To show that including GP evolved crossover operators in GAs that optimize NN 
weights is beneficial and improves the results obtained from the GA.

Section 2 explores work related to this study, after which a high level overview of 
the GA used for NN weight optimization is provided in Sect. 3. The proposed GP 
used to evolve crossover operators is described in detail in Sect.  4, followed by a 
description of how GP is used to evolve both reusable and disposable crossover 
operators in Sect. 5. The experimental setup of this study is outlined in Sect. 6 after 
which the results are presented in Sect. 7. Finally, the paper is concluded in Sect. 8.

2  Related work

The use of GAs to evolve NN architectures has proven to be highly effective. The 
work of Real et  al. [11] used a relatively simple GA without crossover to evolve 
a high quality NN architecture named AmoebaNet-A that was competitive with 
the best image classifiers [11]. However, this approach only evolved the NN archi-
tectures and the NN model was trained using gradient descent. Real et  al. also 
employed evolutionary algorithms to simultaneously evolve NN architectures and 
weights in order produce a fully trained model [12]. The technique was able to pro-
duce models that performed competitively with human designed models on stand-
ard benchmarks. An interesting point to note is that both of these approaches com-
pletely omit the crossover operator, which is commonly seen in GAs that evolve NN 
weights [6, 12–14].

The crossover operator is seen as one of the remaining challenges surrounding 
the evolution of NN weights, especially when used on more modern NN architec-
tures that are much larger than the architectures that were used when neuroevolution 
[1] was first proposed and studied. In this section, we look at other related work that 
has focused on designing new and safe crossover operators for NN weights.
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One of the most well known neuroevolutionary technique named NeuroEvolu-
tion of Augmenting Topologies (NEAT) [15] contains a crossover operator that was 
specifically designed to overcome the permutation problem. This is accomplished 
by using historical markers that track genes throughout the lifetime of the GA, these 
markers can then be used to ensure that crossover is only performed between the 
compatible genes of the two parents leading to a less destructive crossover opera-
tor. As the name suggests, NEAT is not a fixed topology method, which means that 
the architecture or topology of the NN is evolved together with its weights. For this 
reason the crossover used was specifically designed for this use case. NEAT was 
originally designed and tested on small NNs solving relatively simple problems and 
has shown to struggle when applied to higher dimensionality problems [16]. NEAT 
was later extended to HyperNEAT [17] which uses indirect encoding to reduce the 
dimensionality of the problem of evolving NN architectures. This allowed Hyper-
NEAT to scale to evolve larger NN architectures, however the architectures evolved 
by HyperNEAT are still relatively small in comparison to larger modern architec-
tures with millions of weights [18–20].

A safe crossover operator designed by Uriot et  al. [9] attempts to functionally 
align the neurons of the two parent NNs to mitigate the negative effects of the per-
mutation problem. This crossover operator performs two steps, the first of which 
aligns the neurons within each layer of the parent NNs by measuring how well they 
correlate. After the neurons in each layer have been rearranged so that the high-
est correlating neurons align, an arithmetic crossover is performed by interpo-
lating between the weights of the two parents. In their study, performing crosso-
ver by interpolating between the weights with and without neuron alignment was 
compared, where it was found that neuron alignment reduces the destructiveness of 
crossover. However, crossover was found to still on average produce offspring with 
worse fitness than their parents.

Imitation learning has also been used to create crossover operators that do not 
perform crossover in the parameter space but rather on the phenotype of individu-
als. Such a crossover operator was designed for genetic policy optimization (GPO) 
[21]. GPO is a GA that evolves NNs for reinforcement learning (RL) problems using 
policy optimization as its mutation operators and a modified imitation learning as 
its crossover operator. When using imitation learning as a crossover operator the 
offspring is essentially trained to behave similar to both parents, in the context of RL 
this is referred to as a state space crossover since the offspring will have state visita-
tion distributions similar to both parents.

As seen above, most work done surrounding the crossover operator in neuroevolu-
tion is aimed at mitigating the effects of the permutation problem by either attempt-
ing to detect compatible neurons [15], align neurons [9] or avoid parameter space 
crossover entirely [21]. The convergence argument termed in [3] argues that the 
permutation problem should not be an issue once populations have started converg-
ing. The basis of this argument is that there is no room in a converged population 
for multiple genetic representations of the same phenotype to exist simultaneously. 
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The convergence argument was supported by a number of experiments conducted on 
standard benchmarks where it was shown that crossover is not as destructive as ini-
tially believed [3]. This study was the main inspiration for our work since it suggests 
that crossover between NN weights is not inherently destructive but likely just not 
designed well enough in previous work.

For this reason, this study aims to focus on designing crossover operators for NNs 
by leveraging GP. Using GP allows us to move away from human designed crosso-
ver and explore the use of more complex crossover operators that may not have been 
tested before.

3  GA for NN weight optimization

To provide a framework in which crossover operators for GAs can be evaluated, a 
simple GA that evolves a population of NN weights is used. During each genera-
tion this GA will apply the basic evolutionary operators such as selection, mutation 
and crossover. This allows us to compare the effectiveness of crossover operators by 
running the GA with different crossover operators and tracking the performance of 
the GA as a whole. Algorithm 1 gives a high level overview of the GA used in this 
study to evaluate crossover performance. This algorithm with fixed operator applica-
tion rates was chosen to enable fine grained control over the crossover and mutation 
rates which was found to more consistently produce good results and more easily 
facilitates the use of dynamic crossover rates as described later. The use of applica-
tion rates requires that the sum of all rates should be less than or equal to one. In the 
case where the sum of rates is less than one, the new generation is filled up to the 
required size using the selection operator. Furthermore, elitism is also used since 
NN weights are very brittle and elitism guarantees that the best weights remain in 
the population until they are successfully combined with other weights in the popu-
lation. It should also be noted that the (�, �) variants of GAs and GP are used in this 
study. In other words, the offspring generated or selected for each new generation, 
replace the previous generation. The core components of the GA are described in 
more detail next.
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Algorithm 1  GA overview

3.1  Individual representation

Each individual in the population represents a NN or more specifically the weights 
of a NN. The weight matrix of the NN is flattened to a 1D vector which is the chro-
mosome or genotype of the individual. Hence, each individual does not need to be a 
functioning NN in itself but rather a 1D vector of weight values which can be used 
to set the weights of a NN before inference or training.

3.2  Fitness function

The fitness function is used to evaluate an individual’s efficacy at solving the prob-
lem at hand. Any loss function that is typically used in the training of NNs could be 
used as a fitness function depending on the problem domain. Since this paper will 
focus on classification problems, categorical cross entropy loss is used as the fitness 
function. This loss measures how close the NNs predicted class probabilities are to 
the actual class labels for a set of input examples, where a lower value indicates a 
fitter individual. Hence, in the context of the GA, the fitness is being minimized and 
the selection operator should prefer individuals with a lower fitness.

3.3  Selection

To apply selection pressure during the evolutionary process a selection operator is 
used when selecting parent individuals that will be used to produce offspring for the 
next generation through crossover or mutation. Tournament selection is used in this 
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study as it is a simple selection operator that is commonly used in GAs. Tournament 
selection randomly selects a number of individuals from the population which forms 
the tournament, the individual with the best fitness is then returned as the selected 
individual. The number of individuals randomly selected is determined by a param-
eter called the tournament size, a larger tournament size imposes a greater selection 
pressure and promotes convergence of the population due to a reduction in diversity 
in the population.

3.4  Mutation

In older literature surrounding neuroevolution for NN weight optimization the most 
common mutation operators would make random changes to the NN weights such 
as adding gaussian noise. However, in recent work the use of gradient descent as 
a mutation operator has become more popular and has proven to be more effective 
[21–23]. This essentially means that when an individual is mutated, it is trained for a 
number of epochs using gradient descent.

3.5  Crossover

The goal of the crossover operator is to combine the genotypes or chromosomes 
of two parent individuals in such a way that the produced offspring NN is pheno-
typically similar to both parents. As discussed earlier, this operator is commonly left 
out in neuroevolution when evolving NN weights since it is seen as destructive and 
produces offspring with much worse fitness than that of its parents. This operator is 
the main focus of this study as we aim to show that crossover between two NNs is 
not as destructive as previously reported. We propose using GP to produce crossover 
operators for NN weights and compare the results to using a simple commonly used 
crossover operator.

4  GP for crossover evolution

In this study, we propose using GP to design a crossover operator for weight opti-
mization in NNs. The designed crossover operator should accept the weights of two 
NNs as input and produce the weights of the offspring as output. Using GP to evolve 
crossover operators comes with many advantages over using simple human designed 
crossover operators. Firstly, since GP is able to perform a multipoint search in the 
program space it is capable of evolving crossover operators that humans might not 
think of, either because they are highly complex or because the might be counter-
intuitive. For this to be possible, the function and terminal set of the GP should 
be designed in such a way that it is as flexible as possible while not overcompli-
cating the search space. Another major advantage is that GP can design problem 
domain specific crossover operators. Since it stands to reason that the shape of the 
NN loss landscape likely plays a role in what crossover may be effective, GP can 
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automatically discover an appropriate crossover operator for each problem it is 
applied to.

Furthermore, GP can be used to design crossover operators using two distinct 
strategies by either designing disposable or reusable crossover operators. This 
allows different crossover operators to be evolved for different use cases. Using GP 
to evolve disposable and reusable crossover operators is described in detail in the 
next section.

At a high level the GP that is used to evolve crossover operators follows the same 
algorithm as the GA shown in Algorithm 1. In the case of the GP the population as 
initialized on the first step of the algorithm are crossover operators represented by 
trees instead of NN weights.

4.1  Individual representation

Individuals within the population of the GP are crossover operators represented as 
trees. These trees essentially accept the weight vectors of the two parents as input, 
perform arithmetic on these vector and produce a single offspring weight vector as 
output. The terminal set of the GP is listed below:

• W1—weight vector of parent 1;
• W2—weight vector of parent 2;
• F1—fitness of parent 1;
• F2—fitness of parent 2;
• Constant values: 1, 2 and 0.5.

The fitness of the two parents are included to allow the GP to evolve smart trees that 
can select vectors based on logical conditions using these fitness values. The func-
tion set of the GP is as follows:

• +, -, *—Standard arithmetic operations;
• Sum(V1, V2)—sums two vectors element wise;
• Mean(V1, V2)—returns the mean of two vectors element wise;
• 1Point(V1, V2)—performs 1 point crossover between vectors V1 and V2 (selects 

a random point when the node is created which remains fixed for its lifetime);
• Select(C, V1, V2)—return V1 if C is true, else it returns V2;
• >, <—Logical operators to produce condition C for Select.

To guarantee that the tree produces valid output i.e a vector, strong typing is used. 
For example, the sub-tree that produces the condition C for the Select operator is 
generated in such a way that it produces a boolean output. In contrast, the sub-tree 
that produces V1 and V2 for the Select operator will always produce vector outputs. 
Furthermore, it should be noted that in order to be used in a tree that produces a sin-
gle offspring weight vector, the 1Point crossover used in the function set is a special-
ized version of the classic one point crossover. This 1Point crossover only produces 
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one offspring by only returning the first of the two offspring produced during one 
point crossover. In other words, the elements in the weight vector before the crosso-
ver point are used from parent 1, and the elements after the crossover point are used 
from parent 2.

An example of a tree representing a crossover operator is shown in Fig. 1. This 
simple crossover operator returns the weight vector of parent 1 if the fitness of par-
ent 1 is more than double that of parent two, otherwise it returns the element wise 
mean of the two parent vectors.

4.2  Fitness function

The fitness of a tree/individual is determined by how well the tree is able to perform 
crossover and produce offspring weights given two parent NN weights. Since the GP 
is evolving crossover operators for the GA, the GPs fitness function depends on the 
GAs fitness function. More specifically, the GPs fitness function compares the GA 
fitness of the offspring produced by the crossover operator to the GA fitness of the 
parents given as input to the crossover operator. If the offspring produced by a the 
crossover has a better GA fitness relative to its parents, the crossover operator that 
produced the offspring should have a good GP fitness.

An overview of the GP fitness function is provided in Algorithm  2. The first 
notable part of this algorithm is that it uses a dataset referred to as the crossover 
train dataset that consists of pairs of NN weights that the crossover operator will be 
evaluated on. How this dataset is created is dependent on whether or not reusable or 

Fig. 1  Example crossover operator represented as a tree
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disposable crossover operators are being evolved, more information on this is pro-
vided in Sect. 5.

Given this dataset, the fitness of a crossover operator in the GP population is 
calculated by performing crossover on each pair of NN weights in the dataset 
and using Eq. (1) to get a score for each produced offspring. Equation (1) which 
is at the core of the GP’s fitness function effectively calculates the ratio of the 
parent weights’ fitness to that of the produced offspring weight’s fitness.

where p1 is the GA fitness of the first parent, p2 is the GA fitness of the second 
parent and o is the GA fitness of the offspring produced by the crossover operator. 
Hence, a score larger than 1 indicates that the crossover operator was able to pro-
duce an offspring with a better GA fitness than that of the parent weights. The scores 
for all offspring produced when performing crossover on the NN weight pairs in the 
dataset are then averaged and returned as the GP fitness of the crossover operator. In 
contrast to the GA, since a larger fitness score is better the fitness in the GP is being 
maximized.
Algorithm 2  GP fitness function

4.3  Tree generation

Trees are generated using the grow method which randomly selects from either 
the function set or terminal set with a fixed probability each time a node is 
generated. Hence, if a node from the function set is generated the process is 
repeated and the sub-tree continues growing until either all children are selected 
from the terminal set or the maximum depth is reached where the process is 

(1)
(p1 + p2)∕2

o
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forced to only select from the terminal set. This results in trees within the popu-
lation being diverse in shape and depth.

4.4  Mutation

The mutation operator randomly selects a node called the mutation point within 
the tree being mutated. The selected node and its sub-tree is then replaced with a 
new randomly generated sub-tree using the grow method as described above. The 
sub-tree being generated is required to output the same type as the sub-tree it is 
replacing, ensuring that the tree remains valid. This mutation operator is commonly 
used for GP [10] and offers a great degree of variability in the severity of mutation 
based on which mutation point is randomly selected. If the mutation point is close 
to the root of the tree the mutation will be drastic and change a large portion of the 
tree, alternatively if the mutation point is a leaf node or at a great depth, the muta-
tion will be less severe. The maximum depth of the tree being generated using the 
grow method was set to the maximum depth allowed for trees minus the depth of 
the mutation point. This was done to keep the size of trees in the population under 
control.

4.5  Crossover

A simple one point crossover operator [10] is used where one node from each tree 
is selected as the crossover points. The two nodes at the crossover points including 
their sub-trees are swapped between the two parents to produce two new offspring 
trees. To ensure the sub-trees remain valid the two selected nodes are required to 
output the same type. Since the crossover operator used in the GP produce two off-
spring, half the number of crossover parents are selected in the GP in comparison to 
the GA (Algorithm 1 line 5).

It is worth noting that one point crossover can easily produce very large trees. In 
the extreme case the root node of one parent can be selected as the crossover point 
and a leaf node of the second parent as the other crossover point. This will produce 
one large offspring and one offspring consisting of a single node. The depth of trees 
in the population is controlled by modifying tournament selection to select the shal-
lowest tree when there were multiple potential tournament winners with the same 
fitness. Hence, there is a preference in the selection operator towards smaller trees.

5  Evolving disposable versus reusable crossover operators

In this study, two different approaches were taken in order to produce disposable 
and reusable crossover operators. Firstly, it should be pointed out that a crossover 
operator is not either reusable or disposable but that there is rather a spectrum of 
reusability for crossover operators. For example, a crossover operator that can be 
applied to different NN architectures is more reusable than a crossover operator 
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that can only be applied to a single NN architecture. However, when referring 
to disposable crossover operators in this paper, we refer to the extreme end of 
this spectrum where a crossover operator is designed to only be applied to a sin-
gle pair of parent NN weights and is not expected to perform well on any other 
weights. The value of evolving such disposable crossover operators is that they 
can be highly customized and may give us insight into the expected upper bound-
ary for how well crossover operators can be expected to perform when applied to 
NNs. The drawback of this approach is that it is expensive as the GP has to run 
for each pair of NNs weights, steps are taken to reduce the GP runtime in this 
case which are described later in this section.

Alternatively, when referring to reusable crossover operators we refer to oper-
ators that can be applied to different pairs of parent weights in a GA but that 
are evolved for a specific NN architecture and problem domain. Hence, a reus-
able crossover operator can be used throughout a GA each time crossover is per-
formed, given that the NN architecture and problem domain remains consistent. 
We choose to focus on this level of reusability for the reusable version of our 

Fig. 2  Control flow of evolving reusable crossover operators
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crossover operators since evolving highly reusable operators may not be feasible 
and this level of reusability provides a good starting point.

Figure 2 shows the approach taken to evolve reusable crossover operators which 
consists of 3 distinct stages. The first stage involves creating a diverse crossover train 
dataset to be used in the fitness function of the GP when evolving reusable crossover 
operators. This dataset is generated by running the GA with a mock crossover opera-
tor that instead of performing crossover, saves the pair of weights and returns the 
first weight matrix as the result of crossover. This means that the size of the dataset 
is the product of the GA population size, crossover rate and number of generations. 
For example, if the GA is run for 80 generations with a population size of 10 and 
crossover rate of 0.4, the generated dataset will contain 320 pairs of weights. The 
GP is then run in stage 2 using the dataset produced in stage 1 as the input dataset 
in its fitness function. The offspring with the best fitness in the last generation of the 
GP is then used as input for Stage 3. The third stage then runs the same GA as in 
Stage 1, but this time with crossover using the operator evolved in Stage 2.

The approach taken to evolve disposable crossover operators is depicted in Fig. 3. 
Using this approach the GP is effectively used as a crossover operator in the GA. 
This means that every time crossover is performed on a pair of parent weights, the 
pair of weights are given as input to the GP and the GP evolves a crossover operator 
specifically for that pair of weights. The fitness of an individual operator in the GP is 
measured by applying it to the pair of parent weights using Eq. (1). Once the GP has 
terminated, the best crossover operator in the last generation is applied to the input 
pair of weights to produce the offspring weights returned to the GA.

Fig. 3  Control flow of evolving disposable crossover operators
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To reduce the runtime of the GP when evolving disposable crossover opera-
tors, the runtime of the fitness function had to be reduced. The most expensive 
operation in the GP is calculating the loss of the NN produced by crossover oper-
ators in the population during fitness evaluation. To reduce the runtime of this 
calculation we only estimate the loss of the offspring NN (i.e loss(offspring) in 
Eq.  1) by calculating the loss on a sample of the training set used in the GA 
instead of the full training set. The sample size is 10% of the training set and is 
randomly selected. Furthermore, the GP naturally converges much faster when 
used for evolving disposable crossover operators since the search space is consid-
erable less complex, allowing fewer generations to be used to reduce the runtime 
of the GP.

6  Experimental set‑up

This section outlines the experiments conducted in this study and describes the 
experimental setup used.

6.1  Baseline crossover

As a baseline crossover operator to compare the evolved crossover operators to a 
simple crossover operator that is commonly used in literature [1, 9, 24, 25] was 
used. This crossover operator simply takes the element-wise average of the two par-
ent weight vectors to produce a single offspring weight vector. This operation is 
exactly the same as the Mean operator in the function set of our GP. We refer to this 
crossover operator as the mean crossover.

6.2  Statistical tests

In order to compare the performance of two GAs using different crossover operators, 
the GAs are run 30 times with the fitness (cross-entropy loss) of the best perform-
ing individual recorded at the end of each run to form a set of results � . To test if 
the results obtained using one crossover operator is statistically significantly better 
than the results obtained when using another crossover operator, a left one-tailed 
Mann–Whitney U test is performed. The tests will be conducted using a confidence 
level of 95%, hence only tests resulting in a p-value less than 0.05 will indicate sta-
tistical significance.

The follow strategy is used when comparing the results obtained from two GAs. 
Given two sets of results �1 and �2 produced by GA 1 and GA 2 respectively, where 
𝜇1 < 𝜇2 . The null hypothesis will be that 𝜇1 >= 𝜇2 and the alternative that 𝜇1 < 𝜇2 . 
If a p-value of 0.05 or less is obtained the null hypothesis is rejected in favour of 
the alternative hypothesis, indicating that GA 1 produced statistically significantly 
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better results than GA 2. This strategy is used to conduct all statistical tests for all 
three experiments since each experiment is designed such that it compares only two 
GAs.

6.3  Datasets

To evaluate the performance of the proposed GP, the GP will be applied to evolve 
crossover operators for five different classification problems. Each chosen dataset 
represents a classification problem that can be solved using NNs. Hence, the GA 
will be applied to each dataset in order to evolve NN weights that can classify the 
examples in the dataset. To test the ability of the GP to evolve crossover operators 
for both standard fully connected feed forward NNs and convolutional neural net-
works (CNNs), three datasets containing standard numerical inputs and two datasets 
consisting of images were chosen. The datasets were chosen such that a combination 
of benchmark, real world problems and competition datasets are included. The data-
sets used in the experiments conducted in this study are outlined below. 

1. CIFAR-10: A popular benchmark image classification dataset consisting of 60,000 
images across 10 classes [26];

2. Thumbnail: A binary image classification dataset consisting of good and bad 
examples of video thumbnails, this dataset is a small real world dataset consisting 
of 2400 images from [27];

3. Higgs: A classification dataset consisting of 250,000 examples with 30 numerical 
features each and a single label indicating if a Higgs boson was detected as part 
of the event represented by the example [28];

4. Dry Bean: A classification dataset containing 13611 dry bean examples described 
by 17 real valued features across 7 classes [29];

5. Wine: A classification dataset containing only 178 examples described by 13 real 
valued features across 3 classes from the UCI Machine Learning repository [30].

Each dataset was randomly shuffled and split into training and validation datasets 
consisting of 80% and 20% of the full dataset respectively. The training dataset is 
used during mutation and evaluation in the fitness function, while the validation 
dataset is used to evaluate the best NNs produced by the GA. Hence, the results 
used in the statistical tests are as measured on the validation set. The input data for 
each dataset was preprocessed using mean normalization to scale and zero center 
the data. This is accomplished by subtracting the mean and dividing by the standard 
deviation for each feature.

6.4  NN architectures

CNNs were used for the image classification datasets (Cifar 10 and Thumbnail). 
Specifically, MobileNetV2 [19] was used since it is a small CNN architecture 
with few parameters which would prevent overfitting on the relatively small image 
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classification datasets used in this study. Since the images in the datasets used are 
relatively small ( 32 × 32 ) in comparison to the resolution that MobileNetV2 was 
designed for ( 224 × 224 ), the stride sizes of the first 3 convolutional layers of the 
CNN were decreased from 2 to 1. A simple fully connected feed forward network 
consisting of 3 hidden layers with 128, 64 and 32 nodes was used for the other two 
datasets (Dry Bean and Wine). The fully connected feed forward neural networks 
used ReLU [31] and Sigmoid activation functions for the hidden and output layers 
respectively.

6.5  NN optimizer

For the GA mutation operator a gradient descent based optimizer is used. The exact 
optimizer used can easily be changed and can be seen as a parameter of the GA. By 
running some initial experiments it was found that using the Adam optimizer [32] 
resulted in the best results for the image classification datasets. The parameters used 
for Adam are shown in Table 1, where �1 , �2 are the exponential decay of the first 
and second moment estimates and � is the epsilon hat parameter used for numerical 
stability as defined in [32].

For the remaining two datasets (Dry Bean and Wine), RMSprop [33] produced 
the best results. The parameters used for RMSProp are shown in Table 2, where � 
and � are the discounting factor for old gradients [33] and epsilon hat parameter used 
for numerical stability as defined in [32] respectively.

6.6  Parameters

The parameters used for the GA and GP in the experiments were determined empir-
ically by starting with commonly used values in literature [21, 23, 34] that were 

Table 1  Adam parameters Parameter Value

Learning rate 0.001
�1 0.9
�2 0.999
� 1e−7

Table 2  RMSprop parameters Parameter Value

Learning rate 0.001
� 0.9
Momentum 0
� 1e−7
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reasonable given the runtime of the algorithms. In order to tune the GP parameters, 
the GA was first run once on the CIFAR-10 dataset to generate a dataset of NN 
weights that could be used to tune the GP parameters on. Given this dataset, the 
GP was then run once using the parameters from literature, with the result being 
recorded.

The fist GP parameter that was tuned was the population size, which started 
at a value of 10. The population size was gradually increased until no significant 
improvements in the performance of the GP was observed.

The next parameters tuned were the operators rates. Originally elitism was not 
included in the GP which means that the only rates that needed to be adjusted were 
the mutation and crossover rates. Since these two rates sum to 1, setting one rate also 
determines the other. Given the starting mutation rate, the direction of the search 
was determined by incrementing and decrementing the rate by 0.1 and comparing 
the GP performance using the two rates. The rate at which the GP performed best 
was then selected and either incrementally increased or decreased by 0.1, depending 
on if the larger or smaller rate was selected in the previous step. This process was 
continued until the GP performed worse than in the previous iteration. The rate at 
which it performed best during this search was then selected.

The next parameter tuned was the tournament size which was tuned similarly to 
the operator rates, using increments or decrements of 1 instead of 0.1. After this step 
it was found that a very small tournament size of 2 performed best, likely due to the 
relatively small population size. Given the small tournament size, it was decided to 
include elitism at a low rate of 0.1. This was done in order to retain the best indi-
viduals in the population since it is likely that the tournament selection may never 
consider them given the sample size of 2. This decision was validated by confirming 
that the GP performed better using elitism at a rate of 0.1 in comparison to using no 
elitism.

Lastly, the number of generations was determined by running the GP for 300 gen-
erations multiple times and observing at which point no more improvements were 
made. This was done both for the GP evolving reusable and disposable crossover 
operators separately.

The same parameter tuning process was then followed for the GA parameters, 
again using the CIFAR-10 dataset and keeping the GP parameters fixed at the values 
determined in the previous step. Since the fewest number of fitness evaluations per 
generation is performed by the GA using the baseline (mean) crossover operator, the 
number of generations used for the GA was determined by running the GA using the 
baseline crossover operator until no more improvements were made by the GA. This 
is done in an effort to make a fair comparison between GAs even if a different num-
ber of fitness evaluations are used since the GA using the fewest number of fitness 
evaluations would not produce better results if run for additional generations.

It should be noted that using automatic parameter tuning, or individually tuning 
the parameters for each dataset, may have further improved the results obtained, 
however, manual parameter tuning on a single dataset was decided to be sufficient. 
This is because the main goal of this study is not to obtain state of the art results, 
but rather to evaluate the performance of GP evolved crossover operators and com-
pare how well GAs using various crossover operators perform relative to each other. 
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Hence, suitable parameters should be sufficient for the experiments in the study, and 
near optimal parameters are not needed.

The GA parameters are shown in Table 3 with the number of generations used for 
each dataset shown in Table 4. The GP parameters are shown in Table 5. Some nota-
ble parameters that may seem unconventional are the small tournament sizes and small 
population sizes. It was found that small population sizes were sufficient and further 
increasing the population sizes did not lead to improved results, but greatly increased 
runtime of the algorithms. As a result of the small population size, the tournament size 

Table 3  GA parameters Parameter Value

Population size 10
Mutation rate 0.5
Crossover rate 0.4
Elitism rate 0.1
Tournament size 2

Table 4  Number of generations 
in GA per dataset

Dataset Number of 
generations

Thumbnail 40
CIFAR-10 45
Higgs 50
Bean 75
Wine 40

Table 5  GP parameters Parameter Value

Population size 15
Mutation rate 0.3
Crossover rate 0.6
Elitism rate 0.1
Tournament size 2
Number of generations (Reusable) 150
Number of generations (Disposable) 10
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also had to be reduced to prevent the selection pressure from being too high, which was 
found to lead to early convergence.

The mutation rate in the GA may also seem unusually high, but due to the relatively 
stable nature of gradient descent based mutation in comparison to other more stochastic 
mutation operators commonly used in GAs, a higher mutation rate can be used and was 
observed to increase the rate of improvement in the GA.

6.7  Experiments

The experiments in this study aim to evaluate the performance of GP evolved cross-
over operators and to highlight the contributions of this study. The following three 
experiments are conducted:

6.7.1  Experiment 1: evolving reusable versus disposable crossover operators

The first experiment in this study aims to compare the performance of reusable and 
disposable crossover operators evolved by the GP. This is done by comparing the 
performance of the GA when using disposable evolved crossover to the GA when 
using reusable evolved crossover. This will give us insight into whether evolving dis-
posable crossover operators is worth the increase in computational cost and results 
in a significant performance gain relative to evolving reusable crossover operators. 
The best performing approach will be used for the next experiments where GP 
crossover is compared to other approaches.

6.7.2  Experiment 2: GA without crossover versus GA with GP evolved crossover

Experiment 2 will compare the performance of the GA when using GP crossover 
with the performance of the GA when using no crossover. We perform this experi-
ment since the crossover operator is often omitted in GAs that evolve NN weights 
because it is seen as destructive or redundant. Hence, the goal of this experiment is 
to determine if including GP evolved crossover in the GA is beneficial and signifi-
cantly improves the results obtained.

Table 6  Initial experiment 1 
results—Comparing GA using 
reusable and disposable evolved 
crossover operators

Best results are indicated in bold

Dataset Crossover Mean Best SD

CIFAR-10 Reusable 0.466 0.460 0.006
Disposable 0.485 0.477 0.006

Bean Reusable 0.169 0.157 0.011
Disposable 0.186 0.179 0.011
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6.7.3  Experiment 3: GA with mean crossover versus GA with GP evolved crossover

The final experiment in this study aims to compare the performance of GP evolved 
crossover operators to a commonly used NN weight crossover operator in literature 
(referred to as the mean crossover operator in this study). The goal of this experi-
ment is to assess if the approach proposed in this study can contribute to the field of 
evolving NN weights by enabling the use of more effective crossover operators in 
comparison to what is typically used.

7  Results

This section presents and discusses the results obtained from the experiments con-
duced as part of this study. Each experiment relates to a specific contribution of this 
paper and the results are presented per experiment below.

7.1  Experiments 1

Initial results obtained on the CIFAR-10 and Bean datasets for experiment 1 are 
shown in Table 6 and Fig. 4. The results obtained were unexpected as it showed that 
reusable crossover operators outperformed disposable crossover operators. This was 
surprising since the disposable crossover operators are optimized specifically for a 
single pair of NN weights and would be expected to at worst match the performance 

Fig. 4  Initial experiment 1 results—Comparing GA using reusable and disposable evolved crossover 
operators

Table 7  Variable crossover rate Percentage of generations completed Crossover rate

< 33% 0.1
33–66% 0.2
> 66% 0.4
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of reusable crossover operators that are evolved for a set of weights. One possible 
reason for this is that evolving disposable crossover operators is highly exploitative, 
causing the GA to converge on a local optima early on. The gradient based mutation 
operator that is used is also not well suited for moving the population out of such 
optima.

To test this hypothesis, experiment 1 was reran on the CIFAR-10 and Bean data-
sets using a variable crossover rate that incrementally increased from 0.1 to the 
set crossover rate over the course of the GA. The rate of change for the variable 
crossover rate that was found to work best was starting with a crossover rate of 0.1, 
increasing the rate to 0.2 when 33% of the total number of generations has com-
pleted and then finally increasing the rate to 0.4 (the previous fixed rate) once 66% 
of the total generations have completed. The change in crossover rates used is pre-
sented in Table  7. This should enable the GA to explore the solution space first, 
after which the increase in the crossover rate starts promoting convergence. Using a 
variable crossover rate in the GA when using disposable crossover operators greatly 
improved the results obtained in comparison to using a fixed crossover rate. Using a 
variable crossover rate in the GA when using disposable crossover operators did not 
seem to make a significant difference. In order to keep the number of times crosso-
ver was performed consistent between GAs using reusable and disposable crossover 
operators, the variable crossover rate was used for both GAs.

The results for experiment 1 after running the experiment for all datasets using 
the adjusted parameters as described above are shown in Table 8 and Fig. 5. These 
results show that GAs using disposable evolved crossover operators were consist-
ently able to outperform the reusable evolved crossover operators with the GA using 
disposable crossover operators obtaining significantly better results in 4 out of 5 
datasets. The p-values obtained from the one tailed Mann–Whitney U test compar-
ing the fitness from the GA using disposable and reusable evolved crossover opera-
tors were 0.0001, 0.024, 4.003e−9 and 0.049 on the CIFAR-10, Thumbnail, Wine 
and Higgs datasets, respectively. The p-value on the Bean dataset was 0.183, which 
is outside the range to accept statistical significance with a 95% confidence. This 

Table 8  Experiment 1 
results—comparing GA using 
reusable and disposable evolved 
crossover operators with a 
dynamic crossover rate

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 Reusable 0.529 0.470 0.039
Disposable 0.464 0.387 0.049 0.0001*

Thumbnail Reusable 0.228 0.206 0.011
Disposable 0.221 0.204 0.007 0.024*

Bean Reusable 0.185 0.159 0.011
Disposable 0.181 0.162 0.013 0.183

Wine Reusable 0.016 1.325e−8 0.037
Disposable 0 0 0 4.003e−9*

Higgs Reusable 0.371 0.358 0.004
Disposable 0.369 0.361 0.003 0.049*
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suggests that the theory of disposable crossover operators causing early convergence 
may be correct, and that the early convergence can be avoided by limiting the rate of 
crossover in early generations and increasing it over time.

As part of the experiment, crossover operator created by the GP approach were 
studied. It was found that the disposable crossover operators that were evolved 
were highly diverse and complex with no clear patterns observed. An exam-
ple of a relatively simple disposable crossover operator that was evolved for a 
pair of NN weights on the Wine dataset is shown in Fig. 6. Another interesting 

Fig. 5  Experiment 1 results—comparing GA using reusable and disposable evolved crossover operators 
with a dynamic crossover rate
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Fig. 6  Example disposable 
crossover operator evolved by 
the GP approach for the Wine 
dataset

Fig. 7  Examples of reusable crossover operators evolved by the GP approach that are functionally equiv-
alent to the mean crossover operator

Table 9  Experiment 2 
results—comparing GA with 
no crossover and disposable 
evolved crossover operators

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 No 0.686 0.625 0.043
Disposable 0.464 0.387 0.049 5.235e−7*

Thumbnail No 0.225 0.216 0.006
Disposable 0.221 0.204 0.007 0.0414*

Bean No 0.191 0.166 0.012
Disposable 0.181 0.162 0.013 0.0171*

Wine No 0.039 2.737e−7 0.050
Disposable 0 0 0 4.0032e−9*

Higgs No 0.372 0.364 0.003
Disposable 0.369 0.361 0.003 0.0060*
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observation made was that the reusable crossover operators evolved by GP 
approach were consistently functionally equivalent to the mean crossover opera-
tor. In other words, when evolving reusable crossover operators the GP always 
converged to a crossover operator that simply takes the element wise average of 
the two parent NN weight vectors (referred to as the mean crossover operator 
in this thesis). This found to be true for 100% of runs were the GP was used to 
evolve reusable crossover operators and was confirmed by manually inspecting 
the best operator evolved at the end of each run for each dataset. Examples of 
evolved reusable crossover operators are shown in Fig. 7.

Fig. 8  Experiment 2 results—comparing GA with no crossover and disposable evolved crossover opera-
tors
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Given that using disposable evolved crossover operators with a dynamic cross-
over rate outperformed reusable evolved crossover operators with both a fixed 
and dynamic rate, it was decided to use disposable crossover operators with a 
dynamic crossover rate for the experiments going forward.

7.2  Experiment 2

The objective of experiment 2 was to compare the performance of GAs using no 
crossover operator to GAs that are using GP evolved crossover operators. This 
is done in order to determine if including crossover operators evolved by the GP 
approach in the GA leads to improved results.

The results obtained in experiment 2 are shown in Table  9 and Fig.  8. These 
results show that the GA using GP evolved crossover operators consistently outper-
formed the GA using no crossover operator with statistical significance on all data-
sets. The p-values obtained from the one tailed Mann–Whitney U test comparing 
the fitness from the GA when using GP evolved crossover to the fitness from the 
GA using no crossover were 5.235e−7 , 0.0414, 0.0171, 4.0032e−9 and 0.0060 on the 
CIFAR-10, Thumbnail, Bean, Wine and Higgs datasets respectively.

It can be observed that the GA using no crossover performs similarly, or in some 
cases even outperforms, the GA using evolved crossover in early generations. How-
ever, as the crossover rate increases the GA using evolved crossover operators is able 
to produce better results. The obtained results are encouraging as they suggest that 
crossover operators when applied to NN weights are not inherently destructive, but 
can be beneficial to the GA when designed and used correctly.

7.3  Experiment 3

The final contribution of this paper is to show that GP evolved crossover does indeed 
outperform the mean crossover operator that is commonly applied to NN weights in 
literature. While conducting experiment 1 it was noticed that the reusable crosso-
ver operators evolved by GP were consistently functionally equivalent to the mean 
crossover operator. In other words, when evolving reusable crossover operators the 
GP always converged to the mean crossover operator. This means that the results for 
experiment 3 would be the same as the results obtained in experiment 1 that com-
pares reusable and disposable crossover operators. This shows that the GP evolved 
crossover operators only outperforms the standard mean crossover operator when 
the GP is used to evolve disposable crossover operators using a dynamic crossover 
rate.

The fact that the GP consistently converged on the mean crossover operator when 
used to evolve crossover operator may suggest that the mean crossover operator is a 
good reusable crossover operator. However, in order to improve efficiency of crosso-
ver operators for NN weights, disposable crossover operators may need to designed 
and used as done in this study.
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To investigate the bad reputation that crossover operators have when applied to 
NN weights, the performance of a GA using no crossover operator was compared to 
a GA using the mean crossover operator. The results obtained are shown in Table 10 
and Fig.  9. The results show that the GA using no crossover operator performed 
better in the Thumbnail dataset, while the GA using the mean crossover operator 
performed better in all other datasets. Furthermore, the difference in results obtained 
was only statistically significant for the CIFAR-10 and Bean datasets. Hence, for 
three of the five datasets tested there was no significant difference in results obtained 
when using the mean crossover operator in comparison to using no crossover 
operator.

In contrast, the previous experiments showed that the GA using disposable 
evolved crossover operators outperformed the GA using no crossover operator on all 
datasets. This suggests that in order for crossover operators to consistently be effec-
tive when applied to NN weights, they may need to be specifically customized for 
each pair of NN weights as done in this study when evolving disposable crossover 
operators.

8  Conclusion

This study aimed to investigate the use of crossover operators in GAs that optimize 
NN weights. Using crossover operators to combine two NN weight matrices is com-
monly seen as being destructive and not beneficial to include in a GA. The authors 
believe that the issue with NN crossover operators in the past is not that applying 
crossover to NN weights is infeasible but rather that the crossover operators are not 
designed well enough.

For this reason, GP was used in this study to search the program space of crosso-
ver operators in order to automatically design crossover operators that can be used 
in a GA to evolve NN weights. Furthermore, the GP was applied to evolve both 
disposable crossover operators that are evolved for a single pair of NN weights and 

Table 10  Additional experiment 
results—Comparing GA using 
the mean crossover operator 
to the GA using no crossover 
operator

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 No 0.686 0.625 0.043
Mean 0.529 0.470 0.039 5.235e−7*

Thumbnail No 0.225 0.216 0.006 0.2430
Mean 0.228 0.206 0.011

Bean No 0.191 0.166 0.012
Mean 0.185 0.159 0.011 0.0398*

Wine No 0.039 2.737e−7 0.050
Mean 0.016 1.325e

−8 0.037 0.0568

Higgs No 0.372 0.364 0.003
Mean 0.371 0.358 0.004 0.0975
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reusable crossover operators that are evolved for a specific problem domain and NN 
architecture.

Experiments showed that using GP to evolve disposable crossover operators for 
a GA led to better results in comparison to using reusable evolved crossover opera-
tors. However, this was only true when using a dynamic crossover rate that slowly 
increases over time to prevent early convergence due to the exploitative nature of 
using evolved disposable crossover operators. Further experiments showed that the 
use of evolved disposable crossover operators in a GA significantly improved the 
results obtained by the GA in comparison to using no crossover operator.

Fig. 9  Additional experiment results—comparing GA using the mean crossover operator to the GA using 
no crossover operator



 Genetic Programming and Evolvable Machines            (2024) 25:7 

1 3

    7  Page 28 of 30

It was also observed that when using GP to evolve reusable crossover operators, 
the GP consistently converged on a commonly used crossover operator in literature 
that simply averages the two parent NN weights, referred to as the mean crossover. 
Using the mean crossover operator in a GA only led to an improvement in results on 
some datasets while leading to worse results in other. This may indicate that in order 
for crossover to successfully be used in GAs that evolve NN weights, the crossover 
operators may need to be specifically designed for each pair of weights as done with 
the disposable crossover operators used in this study. In cases where the produc-
ing performant NNs is the priority, using GP to evolve disposable crossover opera-
tors should be worth the increase in computational cost as it leads to a significant 
improvement in the quality of NN weights produced by the GA.

Future work of this study includes investigating the use of other evolutionary 
techniques to design crossover operators as well as extending the function set of the 
GP used in this study to evolve more complex crossover operators.
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