
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2024) 25:7
https://doi.org/10.1007/s10710-024-09481-7

1 3

Neural network crossover in genetic algorithms using
genetic programming

Kyle Pretorius1 · Nelishia Pillay1

Received: 23 April 2023 / Revised: 20 December 2023 / Accepted: 19 January 2024
© The Author(s) 2024

Abstract
The use of genetic algorithms (GAs) to evolve neural network (NN) weights has
risen in popularity in recent years, particularly when used together with gradient
descent as a mutation operator. However, crossover operators are often omitted from
such GAs as they are seen as being highly destructive and detrimental to the per-
formance of the GA. Designing crossover operators that can effectively be applied
to NNs has been an active area of research with success limited to specific problem
domains. The focus of this study is to use genetic programming (GP) to automati-
cally evolve crossover operators that can be applied to NN weights and used in GAs.
A novel GP is proposed and used to evolve both reusable and disposable crosso-
ver operators to compare their efficiency. Experiments are conducted to compare
the performance of GAs using no crossover operator or a commonly used human
designed crossover operator to GAs using GP evolved crossover operators. Results
from experiments conducted show that using GP to evolve disposable crossover
operators leads to highly effectively crossover operators that significantly improve
the results obtained from the GA.

Keywords Genetic programming · Genetic algorithms · Neural networks ·
Evolutionary algorithms · Crossover operator

Area Editor: Sebastian Risi.

This work was funded as part of the Multichoice Research Chair in Machine Learning at the
University of Pretoria, South Africa. This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Number 138,150). Opinions expressed and
conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

 * Kyle Pretorius
 u16234805@tuks.co.za

 Nelishia Pillay
 nelishia.pillay@up.ac.za

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-024-09481-7&domain=pdf

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 2 of 30

1 Introduction

The crossover operator has always been a controversial topic surrounding neuro-
evolution [1], with the general consensus being that crossover is not a beneficial
or necessary operator to include in a genetic algorithm (GA) that optimizes neu-
ral networks (NNs) by evolving their weights. The main reasoning behind this
belief is that the crossover operator has been shown to be highly destructive in the
past and therefore is expected to produce offspring with worse fitness than that of
its parents [2]. One of the main explanations for the destructiveness of crossover
when applied to NN weights is known as the permutation problem [3–5]. The
permutation problem refers to the fact that there exists a one to many mapping
between the NN phenotype and genotypes, meaning there exists many different
chromosomes that represent functionally equivalent NNs [5]. This is because the
neurons within a layer of a NN can be arbitrarily permutated or rearranged with-
out having any effect on the output of the NN. This means that it is not possible
to determine which two weights in two different NNs are functionally equivalent
when performing crossover.

Most works in neuroevolution choose to completely omit the crossover operator
and use a GA that only consists of mutation and selection operators [6]. While these
GAs perform well and on the surface appear to operate normally without a crossover
operator, the omission of the crossover operator may have a more detrimental effect
on the behaviour and performance of a GA than what is initially apparent. This is
because crossover is a core operator of a GA and plays an important role in allowing
the GA to take large steps in the search space while also promoting convergence of a
population to promising regions of the search space [7].

However, a recent study has suggested that the permutation problem should in
theory not be such a major problem in GAs [3]. This is due to the fact that once
the population converges it is highly unlikely that multiple representations of the
same phenotype will exist since the many genotypes that map to the same phe-
notype should be spread out across the search space [8]. This argument has been
termed the convergence argument by Froese et al. [8]. If the permutation problem
is not of concern, it may be the case that existing crossover operators that are
commonly used for NNs have not been designed well enough or that the design of
crossover operators for NNs is a highly complex task. Designing effective crosso-
ver operators has been seen as one of the major remaining challenges surrounding
neuroevolution for NN weight optimization [9].

For this reason, we explore the use of genetic programming (GP) [10] to auto-
matically design crossover operators for NNs. GP is an evolutionary algorithm
similar to GAs but are used to evolve programs or trees that can be executed or
evaluated to produce a desired output. If we treat crossover operators as programs
that can be applied to two weights, GP can be applied to search for crossover
operators. Utilizing GP enables the design of highly complex crossover operators
that might be nearly impossible for humans to design or that may seem counter
intuitive. Furthermore, it also allows for crossover operators to be tailored to dif-
ferent problem domains by rerunning the GP on each problem domain.

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 3 of 30 7

As seen later in this paper, GP can also be used to design disposable crossover
operators instead of reusable operators. Disposable crossover operators are opti-
mized to perform crossover on two specific weight vectors and may perform poorly
when applied to others. This seems undesirable at first since operators are produced
for each weight pair which is more expensive, but this strategy may produce highly
effective crossover operators that consistently outperform reusable operators. In this
study, we compare the use of GP to design both reusable and disposable crossover
operators.

The main contributions of this study are as follows:

• To propose a novel GP to evolve crossover operators that can be used in GAs that
optimize NN weights;

• To use the proposed GP to evolve both reusable and disposable crossover opera-
tors and compare their performance;

• To show that GP evolved crossover operators are more effective than commonly
used crossover operators when applied to NN weights;

• To show that including GP evolved crossover operators in GAs that optimize NN
weights is beneficial and improves the results obtained from the GA.

Section 2 explores work related to this study, after which a high level overview of
the GA used for NN weight optimization is provided in Sect. 3. The proposed GP
used to evolve crossover operators is described in detail in Sect. 4, followed by a
description of how GP is used to evolve both reusable and disposable crossover
operators in Sect. 5. The experimental setup of this study is outlined in Sect. 6 after
which the results are presented in Sect. 7. Finally, the paper is concluded in Sect. 8.

2 Related work

The use of GAs to evolve NN architectures has proven to be highly effective. The
work of Real et al. [11] used a relatively simple GA without crossover to evolve
a high quality NN architecture named AmoebaNet-A that was competitive with
the best image classifiers [11]. However, this approach only evolved the NN archi-
tectures and the NN model was trained using gradient descent. Real et al. also
employed evolutionary algorithms to simultaneously evolve NN architectures and
weights in order produce a fully trained model [12]. The technique was able to pro-
duce models that performed competitively with human designed models on stand-
ard benchmarks. An interesting point to note is that both of these approaches com-
pletely omit the crossover operator, which is commonly seen in GAs that evolve NN
weights [6, 12–14].

The crossover operator is seen as one of the remaining challenges surrounding
the evolution of NN weights, especially when used on more modern NN architec-
tures that are much larger than the architectures that were used when neuroevolution
[1] was first proposed and studied. In this section, we look at other related work that
has focused on designing new and safe crossover operators for NN weights.

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 4 of 30

One of the most well known neuroevolutionary technique named NeuroEvolu-
tion of Augmenting Topologies (NEAT) [15] contains a crossover operator that was
specifically designed to overcome the permutation problem. This is accomplished
by using historical markers that track genes throughout the lifetime of the GA, these
markers can then be used to ensure that crossover is only performed between the
compatible genes of the two parents leading to a less destructive crossover opera-
tor. As the name suggests, NEAT is not a fixed topology method, which means that
the architecture or topology of the NN is evolved together with its weights. For this
reason the crossover used was specifically designed for this use case. NEAT was
originally designed and tested on small NNs solving relatively simple problems and
has shown to struggle when applied to higher dimensionality problems [16]. NEAT
was later extended to HyperNEAT [17] which uses indirect encoding to reduce the
dimensionality of the problem of evolving NN architectures. This allowed Hyper-
NEAT to scale to evolve larger NN architectures, however the architectures evolved
by HyperNEAT are still relatively small in comparison to larger modern architec-
tures with millions of weights [18–20].

A safe crossover operator designed by Uriot et al. [9] attempts to functionally
align the neurons of the two parent NNs to mitigate the negative effects of the per-
mutation problem. This crossover operator performs two steps, the first of which
aligns the neurons within each layer of the parent NNs by measuring how well they
correlate. After the neurons in each layer have been rearranged so that the high-
est correlating neurons align, an arithmetic crossover is performed by interpo-
lating between the weights of the two parents. In their study, performing crosso-
ver by interpolating between the weights with and without neuron alignment was
compared, where it was found that neuron alignment reduces the destructiveness of
crossover. However, crossover was found to still on average produce offspring with
worse fitness than their parents.

Imitation learning has also been used to create crossover operators that do not
perform crossover in the parameter space but rather on the phenotype of individu-
als. Such a crossover operator was designed for genetic policy optimization (GPO)
[21]. GPO is a GA that evolves NNs for reinforcement learning (RL) problems using
policy optimization as its mutation operators and a modified imitation learning as
its crossover operator. When using imitation learning as a crossover operator the
offspring is essentially trained to behave similar to both parents, in the context of RL
this is referred to as a state space crossover since the offspring will have state visita-
tion distributions similar to both parents.

As seen above, most work done surrounding the crossover operator in neuroevolu-
tion is aimed at mitigating the effects of the permutation problem by either attempt-
ing to detect compatible neurons [15], align neurons [9] or avoid parameter space
crossover entirely [21]. The convergence argument termed in [3] argues that the
permutation problem should not be an issue once populations have started converg-
ing. The basis of this argument is that there is no room in a converged population
for multiple genetic representations of the same phenotype to exist simultaneously.

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 5 of 30 7

The convergence argument was supported by a number of experiments conducted on
standard benchmarks where it was shown that crossover is not as destructive as ini-
tially believed [3]. This study was the main inspiration for our work since it suggests
that crossover between NN weights is not inherently destructive but likely just not
designed well enough in previous work.

For this reason, this study aims to focus on designing crossover operators for NNs
by leveraging GP. Using GP allows us to move away from human designed crosso-
ver and explore the use of more complex crossover operators that may not have been
tested before.

3 GA for NN weight optimization

To provide a framework in which crossover operators for GAs can be evaluated, a
simple GA that evolves a population of NN weights is used. During each genera-
tion this GA will apply the basic evolutionary operators such as selection, mutation
and crossover. This allows us to compare the effectiveness of crossover operators by
running the GA with different crossover operators and tracking the performance of
the GA as a whole. Algorithm 1 gives a high level overview of the GA used in this
study to evaluate crossover performance. This algorithm with fixed operator applica-
tion rates was chosen to enable fine grained control over the crossover and mutation
rates which was found to more consistently produce good results and more easily
facilitates the use of dynamic crossover rates as described later. The use of applica-
tion rates requires that the sum of all rates should be less than or equal to one. In the
case where the sum of rates is less than one, the new generation is filled up to the
required size using the selection operator. Furthermore, elitism is also used since
NN weights are very brittle and elitism guarantees that the best weights remain in
the population until they are successfully combined with other weights in the popu-
lation. It should also be noted that the (�, �) variants of GAs and GP are used in this
study. In other words, the offspring generated or selected for each new generation,
replace the previous generation. The core components of the GA are described in
more detail next.

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 6 of 30

Algorithm 1 GA overview

3.1 Individual representation

Each individual in the population represents a NN or more specifically the weights
of a NN. The weight matrix of the NN is flattened to a 1D vector which is the chro-
mosome or genotype of the individual. Hence, each individual does not need to be a
functioning NN in itself but rather a 1D vector of weight values which can be used
to set the weights of a NN before inference or training.

3.2 Fitness function

The fitness function is used to evaluate an individual’s efficacy at solving the prob-
lem at hand. Any loss function that is typically used in the training of NNs could be
used as a fitness function depending on the problem domain. Since this paper will
focus on classification problems, categorical cross entropy loss is used as the fitness
function. This loss measures how close the NNs predicted class probabilities are to
the actual class labels for a set of input examples, where a lower value indicates a
fitter individual. Hence, in the context of the GA, the fitness is being minimized and
the selection operator should prefer individuals with a lower fitness.

3.3 Selection

To apply selection pressure during the evolutionary process a selection operator is
used when selecting parent individuals that will be used to produce offspring for the
next generation through crossover or mutation. Tournament selection is used in this

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 7 of 30 7

study as it is a simple selection operator that is commonly used in GAs. Tournament
selection randomly selects a number of individuals from the population which forms
the tournament, the individual with the best fitness is then returned as the selected
individual. The number of individuals randomly selected is determined by a param-
eter called the tournament size, a larger tournament size imposes a greater selection
pressure and promotes convergence of the population due to a reduction in diversity
in the population.

3.4 Mutation

In older literature surrounding neuroevolution for NN weight optimization the most
common mutation operators would make random changes to the NN weights such
as adding gaussian noise. However, in recent work the use of gradient descent as
a mutation operator has become more popular and has proven to be more effective
[21–23]. This essentially means that when an individual is mutated, it is trained for a
number of epochs using gradient descent.

3.5 Crossover

The goal of the crossover operator is to combine the genotypes or chromosomes
of two parent individuals in such a way that the produced offspring NN is pheno-
typically similar to both parents. As discussed earlier, this operator is commonly left
out in neuroevolution when evolving NN weights since it is seen as destructive and
produces offspring with much worse fitness than that of its parents. This operator is
the main focus of this study as we aim to show that crossover between two NNs is
not as destructive as previously reported. We propose using GP to produce crossover
operators for NN weights and compare the results to using a simple commonly used
crossover operator.

4 GP for crossover evolution

In this study, we propose using GP to design a crossover operator for weight opti-
mization in NNs. The designed crossover operator should accept the weights of two
NNs as input and produce the weights of the offspring as output. Using GP to evolve
crossover operators comes with many advantages over using simple human designed
crossover operators. Firstly, since GP is able to perform a multipoint search in the
program space it is capable of evolving crossover operators that humans might not
think of, either because they are highly complex or because the might be counter-
intuitive. For this to be possible, the function and terminal set of the GP should
be designed in such a way that it is as flexible as possible while not overcompli-
cating the search space. Another major advantage is that GP can design problem
domain specific crossover operators. Since it stands to reason that the shape of the
NN loss landscape likely plays a role in what crossover may be effective, GP can

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 8 of 30

automatically discover an appropriate crossover operator for each problem it is
applied to.

Furthermore, GP can be used to design crossover operators using two distinct
strategies by either designing disposable or reusable crossover operators. This
allows different crossover operators to be evolved for different use cases. Using GP
to evolve disposable and reusable crossover operators is described in detail in the
next section.

At a high level the GP that is used to evolve crossover operators follows the same
algorithm as the GA shown in Algorithm 1. In the case of the GP the population as
initialized on the first step of the algorithm are crossover operators represented by
trees instead of NN weights.

4.1 Individual representation

Individuals within the population of the GP are crossover operators represented as
trees. These trees essentially accept the weight vectors of the two parents as input,
perform arithmetic on these vector and produce a single offspring weight vector as
output. The terminal set of the GP is listed below:

• W1—weight vector of parent 1;
• W2—weight vector of parent 2;
• F1—fitness of parent 1;
• F2—fitness of parent 2;
• Constant values: 1, 2 and 0.5.

The fitness of the two parents are included to allow the GP to evolve smart trees that
can select vectors based on logical conditions using these fitness values. The func-
tion set of the GP is as follows:

• +, -, *—Standard arithmetic operations;
• Sum(V1, V2)—sums two vectors element wise;
• Mean(V1, V2)—returns the mean of two vectors element wise;
• 1Point(V1, V2)—performs 1 point crossover between vectors V1 and V2 (selects

a random point when the node is created which remains fixed for its lifetime);
• Select(C, V1, V2)—return V1 if C is true, else it returns V2;
• >, <—Logical operators to produce condition C for Select.

To guarantee that the tree produces valid output i.e a vector, strong typing is used.
For example, the sub-tree that produces the condition C for the Select operator is
generated in such a way that it produces a boolean output. In contrast, the sub-tree
that produces V1 and V2 for the Select operator will always produce vector outputs.
Furthermore, it should be noted that in order to be used in a tree that produces a sin-
gle offspring weight vector, the 1Point crossover used in the function set is a special-
ized version of the classic one point crossover. This 1Point crossover only produces

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 9 of 30 7

one offspring by only returning the first of the two offspring produced during one
point crossover. In other words, the elements in the weight vector before the crosso-
ver point are used from parent 1, and the elements after the crossover point are used
from parent 2.

An example of a tree representing a crossover operator is shown in Fig. 1. This
simple crossover operator returns the weight vector of parent 1 if the fitness of par-
ent 1 is more than double that of parent two, otherwise it returns the element wise
mean of the two parent vectors.

4.2 Fitness function

The fitness of a tree/individual is determined by how well the tree is able to perform
crossover and produce offspring weights given two parent NN weights. Since the GP
is evolving crossover operators for the GA, the GPs fitness function depends on the
GAs fitness function. More specifically, the GPs fitness function compares the GA
fitness of the offspring produced by the crossover operator to the GA fitness of the
parents given as input to the crossover operator. If the offspring produced by a the
crossover has a better GA fitness relative to its parents, the crossover operator that
produced the offspring should have a good GP fitness.

An overview of the GP fitness function is provided in Algorithm 2. The first
notable part of this algorithm is that it uses a dataset referred to as the crossover
train dataset that consists of pairs of NN weights that the crossover operator will be
evaluated on. How this dataset is created is dependent on whether or not reusable or

Fig. 1 Example crossover operator represented as a tree

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 10 of 30

disposable crossover operators are being evolved, more information on this is pro-
vided in Sect. 5.

Given this dataset, the fitness of a crossover operator in the GP population is
calculated by performing crossover on each pair of NN weights in the dataset
and using Eq. (1) to get a score for each produced offspring. Equation (1) which
is at the core of the GP’s fitness function effectively calculates the ratio of the
parent weights’ fitness to that of the produced offspring weight’s fitness.

where p1 is the GA fitness of the first parent, p2 is the GA fitness of the second
parent and o is the GA fitness of the offspring produced by the crossover operator.
Hence, a score larger than 1 indicates that the crossover operator was able to pro-
duce an offspring with a better GA fitness than that of the parent weights. The scores
for all offspring produced when performing crossover on the NN weight pairs in the
dataset are then averaged and returned as the GP fitness of the crossover operator. In
contrast to the GA, since a larger fitness score is better the fitness in the GP is being
maximized.
Algorithm 2 GP fitness function

4.3 Tree generation

Trees are generated using the grow method which randomly selects from either
the function set or terminal set with a fixed probability each time a node is
generated. Hence, if a node from the function set is generated the process is
repeated and the sub-tree continues growing until either all children are selected
from the terminal set or the maximum depth is reached where the process is

(1)
(p1 + p2)∕2

o

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 11 of 30 7

forced to only select from the terminal set. This results in trees within the popu-
lation being diverse in shape and depth.

4.4 Mutation

The mutation operator randomly selects a node called the mutation point within
the tree being mutated. The selected node and its sub-tree is then replaced with a
new randomly generated sub-tree using the grow method as described above. The
sub-tree being generated is required to output the same type as the sub-tree it is
replacing, ensuring that the tree remains valid. This mutation operator is commonly
used for GP [10] and offers a great degree of variability in the severity of mutation
based on which mutation point is randomly selected. If the mutation point is close
to the root of the tree the mutation will be drastic and change a large portion of the
tree, alternatively if the mutation point is a leaf node or at a great depth, the muta-
tion will be less severe. The maximum depth of the tree being generated using the
grow method was set to the maximum depth allowed for trees minus the depth of
the mutation point. This was done to keep the size of trees in the population under
control.

4.5 Crossover

A simple one point crossover operator [10] is used where one node from each tree
is selected as the crossover points. The two nodes at the crossover points including
their sub-trees are swapped between the two parents to produce two new offspring
trees. To ensure the sub-trees remain valid the two selected nodes are required to
output the same type. Since the crossover operator used in the GP produce two off-
spring, half the number of crossover parents are selected in the GP in comparison to
the GA (Algorithm 1 line 5).

It is worth noting that one point crossover can easily produce very large trees. In
the extreme case the root node of one parent can be selected as the crossover point
and a leaf node of the second parent as the other crossover point. This will produce
one large offspring and one offspring consisting of a single node. The depth of trees
in the population is controlled by modifying tournament selection to select the shal-
lowest tree when there were multiple potential tournament winners with the same
fitness. Hence, there is a preference in the selection operator towards smaller trees.

5 Evolving disposable versus reusable crossover operators

In this study, two different approaches were taken in order to produce disposable
and reusable crossover operators. Firstly, it should be pointed out that a crossover
operator is not either reusable or disposable but that there is rather a spectrum of
reusability for crossover operators. For example, a crossover operator that can be
applied to different NN architectures is more reusable than a crossover operator

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 12 of 30

that can only be applied to a single NN architecture. However, when referring
to disposable crossover operators in this paper, we refer to the extreme end of
this spectrum where a crossover operator is designed to only be applied to a sin-
gle pair of parent NN weights and is not expected to perform well on any other
weights. The value of evolving such disposable crossover operators is that they
can be highly customized and may give us insight into the expected upper bound-
ary for how well crossover operators can be expected to perform when applied to
NNs. The drawback of this approach is that it is expensive as the GP has to run
for each pair of NNs weights, steps are taken to reduce the GP runtime in this
case which are described later in this section.

Alternatively, when referring to reusable crossover operators we refer to oper-
ators that can be applied to different pairs of parent weights in a GA but that
are evolved for a specific NN architecture and problem domain. Hence, a reus-
able crossover operator can be used throughout a GA each time crossover is per-
formed, given that the NN architecture and problem domain remains consistent.
We choose to focus on this level of reusability for the reusable version of our

Fig. 2 Control flow of evolving reusable crossover operators

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 13 of 30 7

crossover operators since evolving highly reusable operators may not be feasible
and this level of reusability provides a good starting point.

Figure 2 shows the approach taken to evolve reusable crossover operators which
consists of 3 distinct stages. The first stage involves creating a diverse crossover train
dataset to be used in the fitness function of the GP when evolving reusable crossover
operators. This dataset is generated by running the GA with a mock crossover opera-
tor that instead of performing crossover, saves the pair of weights and returns the
first weight matrix as the result of crossover. This means that the size of the dataset
is the product of the GA population size, crossover rate and number of generations.
For example, if the GA is run for 80 generations with a population size of 10 and
crossover rate of 0.4, the generated dataset will contain 320 pairs of weights. The
GP is then run in stage 2 using the dataset produced in stage 1 as the input dataset
in its fitness function. The offspring with the best fitness in the last generation of the
GP is then used as input for Stage 3. The third stage then runs the same GA as in
Stage 1, but this time with crossover using the operator evolved in Stage 2.

The approach taken to evolve disposable crossover operators is depicted in Fig. 3.
Using this approach the GP is effectively used as a crossover operator in the GA.
This means that every time crossover is performed on a pair of parent weights, the
pair of weights are given as input to the GP and the GP evolves a crossover operator
specifically for that pair of weights. The fitness of an individual operator in the GP is
measured by applying it to the pair of parent weights using Eq. (1). Once the GP has
terminated, the best crossover operator in the last generation is applied to the input
pair of weights to produce the offspring weights returned to the GA.

Fig. 3 Control flow of evolving disposable crossover operators

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 14 of 30

To reduce the runtime of the GP when evolving disposable crossover opera-
tors, the runtime of the fitness function had to be reduced. The most expensive
operation in the GP is calculating the loss of the NN produced by crossover oper-
ators in the population during fitness evaluation. To reduce the runtime of this
calculation we only estimate the loss of the offspring NN (i.e loss(offspring) in
Eq. 1) by calculating the loss on a sample of the training set used in the GA
instead of the full training set. The sample size is 10% of the training set and is
randomly selected. Furthermore, the GP naturally converges much faster when
used for evolving disposable crossover operators since the search space is consid-
erable less complex, allowing fewer generations to be used to reduce the runtime
of the GP.

6 Experimental set‑up

This section outlines the experiments conducted in this study and describes the
experimental setup used.

6.1 Baseline crossover

As a baseline crossover operator to compare the evolved crossover operators to a
simple crossover operator that is commonly used in literature [1, 9, 24, 25] was
used. This crossover operator simply takes the element-wise average of the two par-
ent weight vectors to produce a single offspring weight vector. This operation is
exactly the same as the Mean operator in the function set of our GP. We refer to this
crossover operator as the mean crossover.

6.2 Statistical tests

In order to compare the performance of two GAs using different crossover operators,
the GAs are run 30 times with the fitness (cross-entropy loss) of the best perform-
ing individual recorded at the end of each run to form a set of results � . To test if
the results obtained using one crossover operator is statistically significantly better
than the results obtained when using another crossover operator, a left one-tailed
Mann–Whitney U test is performed. The tests will be conducted using a confidence
level of 95%, hence only tests resulting in a p-value less than 0.05 will indicate sta-
tistical significance.

The follow strategy is used when comparing the results obtained from two GAs.
Given two sets of results �1 and �2 produced by GA 1 and GA 2 respectively, where
𝜇1 < 𝜇2 . The null hypothesis will be that 𝜇1 >= 𝜇2 and the alternative that 𝜇1 < 𝜇2 .
If a p-value of 0.05 or less is obtained the null hypothesis is rejected in favour of
the alternative hypothesis, indicating that GA 1 produced statistically significantly

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 15 of 30 7

better results than GA 2. This strategy is used to conduct all statistical tests for all
three experiments since each experiment is designed such that it compares only two
GAs.

6.3 Datasets

To evaluate the performance of the proposed GP, the GP will be applied to evolve
crossover operators for five different classification problems. Each chosen dataset
represents a classification problem that can be solved using NNs. Hence, the GA
will be applied to each dataset in order to evolve NN weights that can classify the
examples in the dataset. To test the ability of the GP to evolve crossover operators
for both standard fully connected feed forward NNs and convolutional neural net-
works (CNNs), three datasets containing standard numerical inputs and two datasets
consisting of images were chosen. The datasets were chosen such that a combination
of benchmark, real world problems and competition datasets are included. The data-
sets used in the experiments conducted in this study are outlined below.

1. CIFAR-10: A popular benchmark image classification dataset consisting of 60,000
images across 10 classes [26];

2. Thumbnail: A binary image classification dataset consisting of good and bad
examples of video thumbnails, this dataset is a small real world dataset consisting
of 2400 images from [27];

3. Higgs: A classification dataset consisting of 250,000 examples with 30 numerical
features each and a single label indicating if a Higgs boson was detected as part
of the event represented by the example [28];

4. Dry Bean: A classification dataset containing 13611 dry bean examples described
by 17 real valued features across 7 classes [29];

5. Wine: A classification dataset containing only 178 examples described by 13 real
valued features across 3 classes from the UCI Machine Learning repository [30].

Each dataset was randomly shuffled and split into training and validation datasets
consisting of 80% and 20% of the full dataset respectively. The training dataset is
used during mutation and evaluation in the fitness function, while the validation
dataset is used to evaluate the best NNs produced by the GA. Hence, the results
used in the statistical tests are as measured on the validation set. The input data for
each dataset was preprocessed using mean normalization to scale and zero center
the data. This is accomplished by subtracting the mean and dividing by the standard
deviation for each feature.

6.4 NN architectures

CNNs were used for the image classification datasets (Cifar 10 and Thumbnail).
Specifically, MobileNetV2 [19] was used since it is a small CNN architecture
with few parameters which would prevent overfitting on the relatively small image

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 16 of 30

classification datasets used in this study. Since the images in the datasets used are
relatively small (32 × 32) in comparison to the resolution that MobileNetV2 was
designed for (224 × 224), the stride sizes of the first 3 convolutional layers of the
CNN were decreased from 2 to 1. A simple fully connected feed forward network
consisting of 3 hidden layers with 128, 64 and 32 nodes was used for the other two
datasets (Dry Bean and Wine). The fully connected feed forward neural networks
used ReLU [31] and Sigmoid activation functions for the hidden and output layers
respectively.

6.5 NN optimizer

For the GA mutation operator a gradient descent based optimizer is used. The exact
optimizer used can easily be changed and can be seen as a parameter of the GA. By
running some initial experiments it was found that using the Adam optimizer [32]
resulted in the best results for the image classification datasets. The parameters used
for Adam are shown in Table 1, where �1 , �2 are the exponential decay of the first
and second moment estimates and � is the epsilon hat parameter used for numerical
stability as defined in [32].

For the remaining two datasets (Dry Bean and Wine), RMSprop [33] produced
the best results. The parameters used for RMSProp are shown in Table 2, where �
and � are the discounting factor for old gradients [33] and epsilon hat parameter used
for numerical stability as defined in [32] respectively.

6.6 Parameters

The parameters used for the GA and GP in the experiments were determined empir-
ically by starting with commonly used values in literature [21, 23, 34] that were

Table 1 Adam parameters Parameter Value

Learning rate 0.001
�1 0.9
�2 0.999
� 1e−7

Table 2 RMSprop parameters Parameter Value

Learning rate 0.001
� 0.9
Momentum 0
� 1e−7

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 17 of 30 7

reasonable given the runtime of the algorithms. In order to tune the GP parameters,
the GA was first run once on the CIFAR-10 dataset to generate a dataset of NN
weights that could be used to tune the GP parameters on. Given this dataset, the
GP was then run once using the parameters from literature, with the result being
recorded.

The fist GP parameter that was tuned was the population size, which started
at a value of 10. The population size was gradually increased until no significant
improvements in the performance of the GP was observed.

The next parameters tuned were the operators rates. Originally elitism was not
included in the GP which means that the only rates that needed to be adjusted were
the mutation and crossover rates. Since these two rates sum to 1, setting one rate also
determines the other. Given the starting mutation rate, the direction of the search
was determined by incrementing and decrementing the rate by 0.1 and comparing
the GP performance using the two rates. The rate at which the GP performed best
was then selected and either incrementally increased or decreased by 0.1, depending
on if the larger or smaller rate was selected in the previous step. This process was
continued until the GP performed worse than in the previous iteration. The rate at
which it performed best during this search was then selected.

The next parameter tuned was the tournament size which was tuned similarly to
the operator rates, using increments or decrements of 1 instead of 0.1. After this step
it was found that a very small tournament size of 2 performed best, likely due to the
relatively small population size. Given the small tournament size, it was decided to
include elitism at a low rate of 0.1. This was done in order to retain the best indi-
viduals in the population since it is likely that the tournament selection may never
consider them given the sample size of 2. This decision was validated by confirming
that the GP performed better using elitism at a rate of 0.1 in comparison to using no
elitism.

Lastly, the number of generations was determined by running the GP for 300 gen-
erations multiple times and observing at which point no more improvements were
made. This was done both for the GP evolving reusable and disposable crossover
operators separately.

The same parameter tuning process was then followed for the GA parameters,
again using the CIFAR-10 dataset and keeping the GP parameters fixed at the values
determined in the previous step. Since the fewest number of fitness evaluations per
generation is performed by the GA using the baseline (mean) crossover operator, the
number of generations used for the GA was determined by running the GA using the
baseline crossover operator until no more improvements were made by the GA. This
is done in an effort to make a fair comparison between GAs even if a different num-
ber of fitness evaluations are used since the GA using the fewest number of fitness
evaluations would not produce better results if run for additional generations.

It should be noted that using automatic parameter tuning, or individually tuning
the parameters for each dataset, may have further improved the results obtained,
however, manual parameter tuning on a single dataset was decided to be sufficient.
This is because the main goal of this study is not to obtain state of the art results,
but rather to evaluate the performance of GP evolved crossover operators and com-
pare how well GAs using various crossover operators perform relative to each other.

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 18 of 30

Hence, suitable parameters should be sufficient for the experiments in the study, and
near optimal parameters are not needed.

The GA parameters are shown in Table 3 with the number of generations used for
each dataset shown in Table 4. The GP parameters are shown in Table 5. Some nota-
ble parameters that may seem unconventional are the small tournament sizes and small
population sizes. It was found that small population sizes were sufficient and further
increasing the population sizes did not lead to improved results, but greatly increased
runtime of the algorithms. As a result of the small population size, the tournament size

Table 3 GA parameters Parameter Value

Population size 10
Mutation rate 0.5
Crossover rate 0.4
Elitism rate 0.1
Tournament size 2

Table 4 Number of generations
in GA per dataset

Dataset Number of
generations

Thumbnail 40
CIFAR-10 45
Higgs 50
Bean 75
Wine 40

Table 5 GP parameters Parameter Value

Population size 15
Mutation rate 0.3
Crossover rate 0.6
Elitism rate 0.1
Tournament size 2
Number of generations (Reusable) 150
Number of generations (Disposable) 10

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 19 of 30 7

also had to be reduced to prevent the selection pressure from being too high, which was
found to lead to early convergence.

The mutation rate in the GA may also seem unusually high, but due to the relatively
stable nature of gradient descent based mutation in comparison to other more stochastic
mutation operators commonly used in GAs, a higher mutation rate can be used and was
observed to increase the rate of improvement in the GA.

6.7 Experiments

The experiments in this study aim to evaluate the performance of GP evolved cross-
over operators and to highlight the contributions of this study. The following three
experiments are conducted:

6.7.1 Experiment 1: evolving reusable versus disposable crossover operators

The first experiment in this study aims to compare the performance of reusable and
disposable crossover operators evolved by the GP. This is done by comparing the
performance of the GA when using disposable evolved crossover to the GA when
using reusable evolved crossover. This will give us insight into whether evolving dis-
posable crossover operators is worth the increase in computational cost and results
in a significant performance gain relative to evolving reusable crossover operators.
The best performing approach will be used for the next experiments where GP
crossover is compared to other approaches.

6.7.2 Experiment 2: GA without crossover versus GA with GP evolved crossover

Experiment 2 will compare the performance of the GA when using GP crossover
with the performance of the GA when using no crossover. We perform this experi-
ment since the crossover operator is often omitted in GAs that evolve NN weights
because it is seen as destructive or redundant. Hence, the goal of this experiment is
to determine if including GP evolved crossover in the GA is beneficial and signifi-
cantly improves the results obtained.

Table 6 Initial experiment 1
results—Comparing GA using
reusable and disposable evolved
crossover operators

Best results are indicated in bold

Dataset Crossover Mean Best SD

CIFAR-10 Reusable 0.466 0.460 0.006
Disposable 0.485 0.477 0.006

Bean Reusable 0.169 0.157 0.011
Disposable 0.186 0.179 0.011

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 20 of 30

6.7.3 Experiment 3: GA with mean crossover versus GA with GP evolved crossover

The final experiment in this study aims to compare the performance of GP evolved
crossover operators to a commonly used NN weight crossover operator in literature
(referred to as the mean crossover operator in this study). The goal of this experi-
ment is to assess if the approach proposed in this study can contribute to the field of
evolving NN weights by enabling the use of more effective crossover operators in
comparison to what is typically used.

7 Results

This section presents and discusses the results obtained from the experiments con-
duced as part of this study. Each experiment relates to a specific contribution of this
paper and the results are presented per experiment below.

7.1 Experiments 1

Initial results obtained on the CIFAR-10 and Bean datasets for experiment 1 are
shown in Table 6 and Fig. 4. The results obtained were unexpected as it showed that
reusable crossover operators outperformed disposable crossover operators. This was
surprising since the disposable crossover operators are optimized specifically for a
single pair of NN weights and would be expected to at worst match the performance

Fig. 4 Initial experiment 1 results—Comparing GA using reusable and disposable evolved crossover
operators

Table 7 Variable crossover rate Percentage of generations completed Crossover rate

< 33% 0.1
33–66% 0.2
> 66% 0.4

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 21 of 30 7

of reusable crossover operators that are evolved for a set of weights. One possible
reason for this is that evolving disposable crossover operators is highly exploitative,
causing the GA to converge on a local optima early on. The gradient based mutation
operator that is used is also not well suited for moving the population out of such
optima.

To test this hypothesis, experiment 1 was reran on the CIFAR-10 and Bean data-
sets using a variable crossover rate that incrementally increased from 0.1 to the
set crossover rate over the course of the GA. The rate of change for the variable
crossover rate that was found to work best was starting with a crossover rate of 0.1,
increasing the rate to 0.2 when 33% of the total number of generations has com-
pleted and then finally increasing the rate to 0.4 (the previous fixed rate) once 66%
of the total generations have completed. The change in crossover rates used is pre-
sented in Table 7. This should enable the GA to explore the solution space first,
after which the increase in the crossover rate starts promoting convergence. Using a
variable crossover rate in the GA when using disposable crossover operators greatly
improved the results obtained in comparison to using a fixed crossover rate. Using a
variable crossover rate in the GA when using disposable crossover operators did not
seem to make a significant difference. In order to keep the number of times crosso-
ver was performed consistent between GAs using reusable and disposable crossover
operators, the variable crossover rate was used for both GAs.

The results for experiment 1 after running the experiment for all datasets using
the adjusted parameters as described above are shown in Table 8 and Fig. 5. These
results show that GAs using disposable evolved crossover operators were consist-
ently able to outperform the reusable evolved crossover operators with the GA using
disposable crossover operators obtaining significantly better results in 4 out of 5
datasets. The p-values obtained from the one tailed Mann–Whitney U test compar-
ing the fitness from the GA using disposable and reusable evolved crossover opera-
tors were 0.0001, 0.024, 4.003e−9 and 0.049 on the CIFAR-10, Thumbnail, Wine
and Higgs datasets, respectively. The p-value on the Bean dataset was 0.183, which
is outside the range to accept statistical significance with a 95% confidence. This

Table 8 Experiment 1
results—comparing GA using
reusable and disposable evolved
crossover operators with a
dynamic crossover rate

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 Reusable 0.529 0.470 0.039
Disposable 0.464 0.387 0.049 0.0001*

Thumbnail Reusable 0.228 0.206 0.011
Disposable 0.221 0.204 0.007 0.024*

Bean Reusable 0.185 0.159 0.011
Disposable 0.181 0.162 0.013 0.183

Wine Reusable 0.016 1.325e−8 0.037
Disposable 0 0 0 4.003e−9*

Higgs Reusable 0.371 0.358 0.004
Disposable 0.369 0.361 0.003 0.049*

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 22 of 30

suggests that the theory of disposable crossover operators causing early convergence
may be correct, and that the early convergence can be avoided by limiting the rate of
crossover in early generations and increasing it over time.

As part of the experiment, crossover operator created by the GP approach were
studied. It was found that the disposable crossover operators that were evolved
were highly diverse and complex with no clear patterns observed. An exam-
ple of a relatively simple disposable crossover operator that was evolved for a
pair of NN weights on the Wine dataset is shown in Fig. 6. Another interesting

Fig. 5 Experiment 1 results—comparing GA using reusable and disposable evolved crossover operators
with a dynamic crossover rate

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 23 of 30 7

Fig. 6 Example disposable
crossover operator evolved by
the GP approach for the Wine
dataset

Fig. 7 Examples of reusable crossover operators evolved by the GP approach that are functionally equiv-
alent to the mean crossover operator

Table 9 Experiment 2
results—comparing GA with
no crossover and disposable
evolved crossover operators

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 No 0.686 0.625 0.043
Disposable 0.464 0.387 0.049 5.235e−7*

Thumbnail No 0.225 0.216 0.006
Disposable 0.221 0.204 0.007 0.0414*

Bean No 0.191 0.166 0.012
Disposable 0.181 0.162 0.013 0.0171*

Wine No 0.039 2.737e−7 0.050
Disposable 0 0 0 4.0032e−9*

Higgs No 0.372 0.364 0.003
Disposable 0.369 0.361 0.003 0.0060*

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 24 of 30

observation made was that the reusable crossover operators evolved by GP
approach were consistently functionally equivalent to the mean crossover opera-
tor. In other words, when evolving reusable crossover operators the GP always
converged to a crossover operator that simply takes the element wise average of
the two parent NN weight vectors (referred to as the mean crossover operator
in this thesis). This found to be true for 100% of runs were the GP was used to
evolve reusable crossover operators and was confirmed by manually inspecting
the best operator evolved at the end of each run for each dataset. Examples of
evolved reusable crossover operators are shown in Fig. 7.

Fig. 8 Experiment 2 results—comparing GA with no crossover and disposable evolved crossover opera-
tors

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 25 of 30 7

Given that using disposable evolved crossover operators with a dynamic cross-
over rate outperformed reusable evolved crossover operators with both a fixed
and dynamic rate, it was decided to use disposable crossover operators with a
dynamic crossover rate for the experiments going forward.

7.2 Experiment 2

The objective of experiment 2 was to compare the performance of GAs using no
crossover operator to GAs that are using GP evolved crossover operators. This
is done in order to determine if including crossover operators evolved by the GP
approach in the GA leads to improved results.

The results obtained in experiment 2 are shown in Table 9 and Fig. 8. These
results show that the GA using GP evolved crossover operators consistently outper-
formed the GA using no crossover operator with statistical significance on all data-
sets. The p-values obtained from the one tailed Mann–Whitney U test comparing
the fitness from the GA when using GP evolved crossover to the fitness from the
GA using no crossover were 5.235e−7 , 0.0414, 0.0171, 4.0032e−9 and 0.0060 on the
CIFAR-10, Thumbnail, Bean, Wine and Higgs datasets respectively.

It can be observed that the GA using no crossover performs similarly, or in some
cases even outperforms, the GA using evolved crossover in early generations. How-
ever, as the crossover rate increases the GA using evolved crossover operators is able
to produce better results. The obtained results are encouraging as they suggest that
crossover operators when applied to NN weights are not inherently destructive, but
can be beneficial to the GA when designed and used correctly.

7.3 Experiment 3

The final contribution of this paper is to show that GP evolved crossover does indeed
outperform the mean crossover operator that is commonly applied to NN weights in
literature. While conducting experiment 1 it was noticed that the reusable crosso-
ver operators evolved by GP were consistently functionally equivalent to the mean
crossover operator. In other words, when evolving reusable crossover operators the
GP always converged to the mean crossover operator. This means that the results for
experiment 3 would be the same as the results obtained in experiment 1 that com-
pares reusable and disposable crossover operators. This shows that the GP evolved
crossover operators only outperforms the standard mean crossover operator when
the GP is used to evolve disposable crossover operators using a dynamic crossover
rate.

The fact that the GP consistently converged on the mean crossover operator when
used to evolve crossover operator may suggest that the mean crossover operator is a
good reusable crossover operator. However, in order to improve efficiency of crosso-
ver operators for NN weights, disposable crossover operators may need to designed
and used as done in this study.

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 26 of 30

To investigate the bad reputation that crossover operators have when applied to
NN weights, the performance of a GA using no crossover operator was compared to
a GA using the mean crossover operator. The results obtained are shown in Table 10
and Fig. 9. The results show that the GA using no crossover operator performed
better in the Thumbnail dataset, while the GA using the mean crossover operator
performed better in all other datasets. Furthermore, the difference in results obtained
was only statistically significant for the CIFAR-10 and Bean datasets. Hence, for
three of the five datasets tested there was no significant difference in results obtained
when using the mean crossover operator in comparison to using no crossover
operator.

In contrast, the previous experiments showed that the GA using disposable
evolved crossover operators outperformed the GA using no crossover operator on all
datasets. This suggests that in order for crossover operators to consistently be effec-
tive when applied to NN weights, they may need to be specifically customized for
each pair of NN weights as done in this study when evolving disposable crossover
operators.

8 Conclusion

This study aimed to investigate the use of crossover operators in GAs that optimize
NN weights. Using crossover operators to combine two NN weight matrices is com-
monly seen as being destructive and not beneficial to include in a GA. The authors
believe that the issue with NN crossover operators in the past is not that applying
crossover to NN weights is infeasible but rather that the crossover operators are not
designed well enough.

For this reason, GP was used in this study to search the program space of crosso-
ver operators in order to automatically design crossover operators that can be used
in a GA to evolve NN weights. Furthermore, the GP was applied to evolve both
disposable crossover operators that are evolved for a single pair of NN weights and

Table 10 Additional experiment
results—Comparing GA using
the mean crossover operator
to the GA using no crossover
operator

Best results are indicated in bold

Dataset Crossover Mean Best SD P-value

CIFAR-10 No 0.686 0.625 0.043
Mean 0.529 0.470 0.039 5.235e−7*

Thumbnail No 0.225 0.216 0.006 0.2430
Mean 0.228 0.206 0.011

Bean No 0.191 0.166 0.012
Mean 0.185 0.159 0.011 0.0398*

Wine No 0.039 2.737e−7 0.050
Mean 0.016 1.325e

−8 0.037 0.0568

Higgs No 0.372 0.364 0.003
Mean 0.371 0.358 0.004 0.0975

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 27 of 30 7

reusable crossover operators that are evolved for a specific problem domain and NN
architecture.

Experiments showed that using GP to evolve disposable crossover operators for
a GA led to better results in comparison to using reusable evolved crossover opera-
tors. However, this was only true when using a dynamic crossover rate that slowly
increases over time to prevent early convergence due to the exploitative nature of
using evolved disposable crossover operators. Further experiments showed that the
use of evolved disposable crossover operators in a GA significantly improved the
results obtained by the GA in comparison to using no crossover operator.

Fig. 9 Additional experiment results—comparing GA using the mean crossover operator to the GA using
no crossover operator

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 28 of 30

It was also observed that when using GP to evolve reusable crossover operators,
the GP consistently converged on a commonly used crossover operator in literature
that simply averages the two parent NN weights, referred to as the mean crossover.
Using the mean crossover operator in a GA only led to an improvement in results on
some datasets while leading to worse results in other. This may indicate that in order
for crossover to successfully be used in GAs that evolve NN weights, the crossover
operators may need to be specifically designed for each pair of weights as done with
the disposable crossover operators used in this study. In cases where the produc-
ing performant NNs is the priority, using GP to evolve disposable crossover opera-
tors should be worth the increase in computational cost as it leads to a significant
improvement in the quality of NN weights produced by the GA.

Future work of this study includes investigating the use of other evolutionary
techniques to design crossover operators as well as extending the function set of the
GP used in this study to evolve more complex crossover operators.

Acknowledgements The authors would like to thank the Multichoice Group for funding this research as
part of the Multichoice Machine Learning Chair.

Author Contributions KP and NP conceived of the presented idea. KP carried out the experiments and
wrote the main manuscript text. NP provided KP with guidance as his research supervisor and helped to
refine the presented idea. Both authors reviewed the manuscript.

Funding Open access funding provided by University of Pretoria. This work was funded as part of the
Multichoice Research Chair in Machine Learning at the University of Pretoria, South Africa. This work
is based on the research supported in part by the National Research Foundation of South Africa (Grant
Number 138150). Opinions expressed and conclusions arrived at, are those of the author and are not nec-
essarily to be attributed to the NRF.

Declarations

Conflict of interest Other than the above mentioned funding, the authors have no other competing interests
to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
 2. P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recurrent neural

networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994). https:// doi. org/ 10. 1109/ 72. 265960
 3. S. Haflidason, R. Neville, On the significance of the permutation problem in neuroevolution. In: Proceed-

ings of the 11th annual conference on genetic and evolutionary computation. GECCO ’09. (Association
for Computing Machinery, New York, NY, 2009) pp. 787–794. https:// doi. org/ 10. 1145/ 15699 01. 15700
10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/72.265960
https://doi.org/10.1145/1569901.1570010
https://doi.org/10.1145/1569901.1570010

1 3

Genetic Programming and Evolvable Machines (2024) 25:7 Page 29 of 30 7

 4. P.J.B. Hancock, Genetic algorithms and permutation problems: a comparison of recombination operators
for neural net structure specification. In: [Proceedings] COGANN-92: International workshop on com-
binations of genetic algorithms and neural networks, (1992) pp. 108–122

 5. R. Zhou, C. Muise, T. Hu, Permutation-invariant representation of neural networks with neuron embed-
dings, in Genetic programming. ed. by E. Medvet, G. Pappa, B. Xue (Springer, Cham, 2022),
pp.294–308

 6. X. Yao, Y. Liu, Towards designing artificial neural networks by evolution. Appl. Math. Comput. 91(1),
83–90 (1998). https:// doi. org/ 10. 1016/ S0096- 3003(97) 10005-4

 7. J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
 8. T. Froese, E. Spier, T. Froese, E. Spier, Convergence and crossover: the permutation problem revisited

(2008)
 9. T. Uriot, D. Izzo, Safe crossover of neural networks through neuron alignment (2020)
 10. J.R. Koza, Genetic programming as a means for programming computers by natural selection. Stat.

Comput. 4(2), 87–112 (1994). https:// doi. org/ 10. 1007/ BF001 75355
 11. E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier architecture

search, in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp 4780–4789 (2019).
https:// doi. org/ 10. 1609/ aaai. v33i01. 33014 780

 12. E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, J. Tan, Q.V. Le, A. Kurakin, Large-scale evolu-
tion of image classifiers, in Proceedings of the 34th international conference on machine learning, Vol.
70. (ICML’17, 2017), pp. 2902–2911

 13. P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recurrent neural
networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

 14. F.P. Such, V. Madhavan, E. Conti, J. Lehman, K.O. Stanley, J. Clune, Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning
(2017). arXiv: 1712. 06567

 15. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Com-
put. 10(2), 99–127 (2002). https:// doi. org/ 10. 1162/ 10636 56023 20169 811

 16. T. McDonnell, S. Andoni, E. Bonab, S. Cheng, J.-H. Choi, J. Goode, K. Moore, G. Sellers, J. Schrum,
Divide and conquer: neuroevolution for multiclass classification, in Proceedings of the genetic and evo-
lutionary computation conference (2018)

 17. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-scale neural
networks. Artif. Life 15(2), 185–212 (2009). https:// doi. org/ 10. 1162/ artl. 2009. 15.2. 15202

 18. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition
(2015), arXiv: 1409. 1556

 19. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen, Mobilenetv2: Inverted residuals and linear
bottlenecks, in 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR), (IEEE
Computer Society, Los Alamitos, CA, 2018), pp. 4510–4520. https:// doi. org/ 10. 1109/ CVPR. 2018.
00474 . https:// doi. ieeec omput ersoc iety. org/ 10. 1109/ CVPR. 2018. 00474

 20. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE confer-
ence on computer vision and pattern recognition (CVPR) (2016), pp. 770–778 . https:// doi. org/ 10. 1109/
CVPR. 2016. 90

 21. T. Gangwani, J. Peng, Genetic policy optimization, in International conference on learning representa-
tions (2018). https:// openr eview. net/ forum? id= ByOnm lWC-

 22. X. Cui, W. Zhang, Z. Tüske, M. Picheny, Evolutionary stochastic gradient descent for optimization of
deep neural networks, in Proceedings of the 32nd international conference on neural information pro-
cessing systems. (NIPS’18, Curran Associates Inc., Red Hook, NY, 2018), pp. 6051–6061

 23. M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green, I.
Dunning, K. Simonyan, C. Fernando, K. Kavukcuoglu, Population based training of neural networks.
arXiv: 1711. 09846 (2017)

 24. N. Hansen, The cma evolution strategy: a tutorial. arXiv: 1604. 00772 (2016)
 25. K. Lee, B.-U. Lee, U. Shin, I.S. Kweon, An efficient asynchronous method for integrating evolutionary

and gradient-based policy search, in Proceedings of the 34th international conference on neural infor-
mation processing systems. NIPS’20. (Curran Associates Inc., Red Hook, 2020)

 26. A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images. Technical Report 0,
University of Toronto, Toronto, Ontario (2009)

 27. K. Pretorius, N. Pillay, A comparative study of classifiers for thumbnail selection. In: 2020 international
joint conference on neural networks (IJCNN), (2020), pp. 1–7 . https:// doi. org/ 10. 1109/ IJCNN 48605.
2020. 92069 51

https://doi.org/10.1016/S0096-3003(97)10005-4
https://doi.org/10.1007/BF00175355
https://doi.org/10.1609/aaai.v33i01.33014780
http://arxiv.org/abs/1712.06567
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/artl.2009.15.2.15202
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=ByOnmlWC-
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1604.00772
https://doi.org/10.1109/IJCNN48605.2020.9206951
https://doi.org/10.1109/IJCNN48605.2020.9206951

 Genetic Programming and Evolvable Machines (2024) 25:7

1 3

 7 Page 30 of 30

 28. C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau, The Higgs boson
machine learning challenge. In: G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau, (eds.) Pro-
ceedings of the NIPS 2014 workshop on high-energy physics and machine learning, in Proceedings of
machine learning research, vol. 42. (PMLR, Montreal, Canada, 2015), pp. 19–55. https:// proce edings.
mlr. press/ v42/ cowa14. html

 29. M. Koklu, I.A. Ozkan, Multiclass classification of dry beans using computer vision and machine learn-
ing techniques. Comput. Electron. Agric. 174, 105507 (2020). https:// doi. org/ 10. 1016/j. compag. 2020.
105507

 30. D. Dua, C. Graff, UCI machine learning repository (2017). http:// archi ve. ics. uci. edu/ ml
 31. V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines. In: Proceedings of

the 27th international conference on international conference on machine learning. ICML’10. (Omni-
press, Madison, WI, 2010, pp. 807–814

 32. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. In: Y. Bengio, Y. LeCun, (eds.) 3rd
International conference on learning representations, (ICLR 2015, San Diego, CA, USA, May 7-9,
2015, conference track proceedings, 2015). arXiv: 1412. 6980

 33. G. Hinton, N. Srivastava, K. Swersky, rmsprop: divide the gradient by a running average of its recent
magnitude. Accessed: 10 April 2023. https:// www. cs. toron to. edu/

 34. S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, K. Tumer, Collaborative evo-
lutionary reinforcement learning. In: International conference on machine learning. (PMLR, 2019), pp.
3341–3350

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://proceedings.mlr.press/v42/cowa14.html
https://proceedings.mlr.press/v42/cowa14.html
https://doi.org/10.1016/j.compag.2020.105507
https://doi.org/10.1016/j.compag.2020.105507
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/

	Neural network crossover in genetic algorithms using genetic programming
	Abstract
	1 Introduction
	2 Related work
	3 GA for NN weight optimization
	3.1 Individual representation
	3.2 Fitness function
	3.3 Selection
	3.4 Mutation
	3.5 Crossover

	4 GP for crossover evolution
	4.1 Individual representation
	4.2 Fitness function
	4.3 Tree generation
	4.4 Mutation
	4.5 Crossover

	5 Evolving disposable versus reusable crossover operators
	6 Experimental set-up
	6.1 Baseline crossover
	6.2 Statistical tests
	6.3 Datasets
	6.4 NN architectures
	6.5 NN optimizer
	6.6 Parameters
	6.7 Experiments
	6.7.1 Experiment 1: evolving reusable versus disposable crossover operators
	6.7.2 Experiment 2: GA without crossover versus GA with GP evolved crossover
	6.7.3 Experiment 3: GA with mean crossover versus GA with GP evolved crossover

	7 Results
	7.1 Experiments 1
	7.2 Experiment 2
	7.3 Experiment 3

	8 Conclusion
	Acknowledgements
	References

