
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2024) 25:8
https://doi.org/10.1007/s10710-024-09480-8

1 3

Cellular geometric semantic genetic programming

Lorenzo Bonin1 · Luigi Rovito1 · Andrea De Lorenzo2 · Luca Manzoni1

Received: 31 May 2023 / Revised: 6 December 2023 / Accepted: 3 January 2024
© The Author(s) 2024

Abstract
Among the different variants of Genetic Programming (GP), Geometric Semantic
GP (GSGP) has proved to be both efficient and effective in finding good solutions.
The fact that the operators of GSGP operate on the semantics of the individuals in
a clear way provides guarantees on the way the search is performed. GSGP is not,
however, free from limitations like the premature convergence of the population to a
small–and possibly sub-optimal–area of the search space. One reason for this issue
could be the fact that good individuals can quickly “spread” in the population sup-
pressing the emergence of competition. To mitigate this problem, we impose a cellu-
lar automata (CA) inspired communication topology over GSGP. In CAs a collection
of agents (as finite state automata) are positioned in a n-dimensional periodic grid
and communicates only locally with the automata in their neighbourhoods. Simi-
larly, we assign a location to each individual on an n-dimensional grid and the entire
evolution for an individual will happen locally by considering, for each individual,
only the individuals in its neighbourhood. Specifically, we present an algorithm
in which, for each generation, a subset of the neighbourhood of each individual is
sampled and the selection for the given cell in the grid is performed by extracting
the two best individuals of this subset, which are employed as parents for the Geo-
metric Semantic Crossover. We compare this cellular GSGP (cGSGP) approach
with standard GSGP on eight regression problems, showing that it can provide bet-
ter solutions than GSGP. Moreover, by analyzing convergence rates, we show that
the improvement is observable regardless of the number of executed generations.
As a side effect, we additionally show that combining a small-neighbourhood-based
cellular spatial structure with GSGP helps in producing smaller solutions. Finally,
we measure the spatial autocorrelation of the population by adopting the Moran’s I
coefficient to provide an overview of the diversity, showing that our cellular spatial
structure helps in providing better diversity during the early stages of the evolution.

Keywords  Geometric semantic genetic programming · Genetic programming ·
Cellular genetic programming

Lorenzo Bonin and Luigi Rovito have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-024-09480-8&domain=pdf

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 2 of 32

1  Introduction

Genetic Programming (GP) [1] is a prominent technique in Evolutionary Com-
putation (EC). It consists of evolving programs, typically represented as trees,
to solve specific supervised learning problems. Among the many variants of GP,
Geometric Semantic GP (GSGP) [2] has received widespread interest since its
introduction in 2012, showing its ability to outperform standard GP [3–5].

Unlike traditional GP, where the functions space is explored with search operators
that act on the syntactic representations of individuals without taking into account
the effects on the semantics, GSGP considers the space of the semantic representa-
tion of programs and each syntactic manipulation derives from the need to obtain a
specific effect on the semantics. In this case, semantics can be generally defined as
the behaviour of a program when it is executed, which can be approximated as the
vector having as elements all outputs generated on the training data [2].

Despite its advantages over standard GP, GSGP still suffers from some limita-
tions, as mentioned by Moraglio et al [6]. In particular, while the fitness land-
scape induced by GSGP is unimodal, the fact that not all points (programs) in that
landscape can be represented leads to the emergence of local optima or “holes” in
the landscape, where the evolution might get stuck. Another effect is that GSGP
might promote convergence towards individuals that dominate others in the early
generations. In other words, the number of generations needed for one individual
to fully propagate, i.e., the takeover time, is small. This can lead to being able
to move in the fitness landscape only via mutation, due to the convex hull of the
population—the only area of the space that can be explored via crossover—hav-
ing shrunk too much and not around the global optimum.

In this work, we propose a new form of GSGP, which takes inspiration from
one of the oldest natural computing models, cellular automata (CA) [7–9], to
force the interactions among individuals of a population to be local according to
a given topology.

Recall that CA is a formal model comprising a grid of identical cells, or
automata, each updating its internal state based on a local rule dependent solely
on a fixed number of neighboring automata. In a similar fashion, all individuals
of a population are positioned into a grid (and n-dimensional torus). To update
the position i in the grid, there is a selection phase happening only among indi-
viduals in the neighbourhood of i, i.e., in a ball of a fixed radius; if crossover hap-
pens, it will also be only between two individuals selected in the same neighbour-
hood. Hence, all interactions are local according to the topology imposed on the
population. One effect of this is that even a good individual is limited in “propa-
gation speed” by this topology, allowing more time for other—possibly better—
individuals to be generated. This should help the optimization process to keep a
higher rate of diversity in the population during the early generations, allowing
for a more complete and global exploration of the search space at the beginning
of the evolution before it starts to converge to dominant individuals.

The resulting cellular GSGP (cGSGP) is compared, in this paper, with standard
GSGP in multiple regression problems. A two-dimensional torus-based topology

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 3 of 32  8

and multiple neighbourhood sizes are tested, together with multiple ways of per-
forming only local selections. The results show that, in fact, cGSGP provides an
improvement compared to GSGP in terms of the quality of the solutions.

The paper is structured as follows: Section 2 provides an overview of previous
CA-inspired evolutionary methods. Section 3 provides a formalisation and explana-
tion of the proposed method. The experimental settings and the datasets used in the
experiments are described in Sect. 4, while in Sects. 5 and 6 the results obtained are
presented and discussed. Finally, Sect. 7 summarizes the main contributions of this
work and draws some possible directions for future research.

2 � Related works

The idea of imposing a certain spatial structure to the population of evolutionary
algorithms was already explored in the literature [10–12], allowing each individual
to interact only with a small subset of the population, i.e., its neighbourhood, usually
specified by imposing a grid structure on the population, leading to the formation of
semi-isolated groups of individuals having similar features.

In the case of classical genetic algorithm (GA) [13], the concept was introduced
in the form of cellular Genetic Algorithm (cGA) [10–12]. cGA was used to improve
optimisation performance for a well-known problem such as the Travelling Sales-
man Problem (TSP) [14], where it was combined with the Simulated Annealing
algorithm. Extensive research on the impact of different neighbourhoods and topolo-
gies on the performance of cGA in various problem domains was performed in [10]
and [12]. Alba et al. [10] also proposed a dynamic version of cGA, which adaptively
adjusts the exploration/exploitation trade-off ratio during evolution.

Murata et al. [15] proposed a variation of GA for multiobjective optimisation
with a cellular structure (C-MOGA) that was an extension of multiobjective GA
(MOGA). In C-MOGA, the selection operator is applied in the neighbourhood of
each cell. Nebro and coauthors [16] came up with another approach for multiobjec-
tive optimisation which takes inspiration from canonical cGA and results in an algo-
rithm called MOCell.

Folino et al. [17] presented a cellular parallel implementation of GP endowed
with a load-balancing mechanism that distributes the computational load among the
processors equally, showing that the cellular approach can outperform both stand-
ard GP and the island model [18], where fully separate evolutions are carried out
on four different subsets of the population. Authors in [19] and [20] showed how a
spatial population structure in combination with a local elitist replacement scheme
can effectively reduce the bloat phenomenon (i.e., the increase in average tree size
without a corresponding increase in fitness) for GP, without compromising the
performance.

In addition to GA and GP, several other evolutionary algorithms employed
the cellular model to control the diffusion of solutions throughout the population
[21–23], demonstrating how the idea of imposing a cellular structure is a concept
applicable in general to populations of solutions independently from the algorithm
working on them.

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 4 of 32

However, to the best of our knowledge, the use of a cellular structure has not been
explored in the context of GSGP, an area that we plan to start tackling in this work.

Promoting diversity within a population can also be achieved through a process
known as speciation. This concept is rooted in the observation that natural ecosystems
consist of distinct physical spaces, or niches, each characterized by specific features.
This diversity of niches facilitates the emergence of various species, with individuals
of a species sharing common attributes. Within each niche, resources are constrained,
leading individuals to compete for them.

Likewise, the population of an Evolutionary Algorithm can be strategically parti-
tioned into separate niches comprising individuals with similar structural characteris-
tics. This arrangement ensures that only individuals belonging to the same species can
interact through crossovers.

Della Cioppa et al. [24] proposed an adaptive species discovery strategy which
addresses some limitations of nitching methods which rely on a priori knowledge about
the fitness landscape. Authors in [25] took inspiration from the design principles of the
NEAT algorithm [26] to leverage speciation to limit programs growth in GP. Through
their algorithm, named neat-GP, complexity is built only when the problem requires it
and the population is progressively divided into species containing individuals with sim-
ilar size and shape. Juárez-Smith et al. [27] integrated neat-GP with a local search opera-
tor to improve the quality of solutions. Authors in [28] define a network distance metric
to speciate a population of artificial gene regulatory networks, showing how speciation
tends to facilitate diversity and keep small-sized individuals. Martins et al. [29] com-
bined GA and speciation with a grid pattern recognition approach to reduce investment
risk and increase profits. Additionally, they made an analysis of the differences between
the speciated and the non-speciated approach. Wickman et al. [30] leveraged speciation
to evolve a diverse population of policies in the context of Reinforcement Learning.

Even though there are several works about cellular EAs, it is not trivial to assess
whether the cellular structure in EA is state-of-the-art or not. Several works in the lit-
erature have attempted to study the effect of selection pressure and sampling strategy in
both standard EA [31, 32] and cellular-based EA [33, 34].

The cellular structure in EA can also have a significant impact on the takeover time,
i.e., the number of generations required for a single best individual to fully propagate to
the population with copies of itself. Clearly, a small takeover time implies a fast loss in
the diversity of the population. In cellular-based EA the spatial structure itself provides a
way of controlling takeover time and selection pressure, as shown, for example, in [34].

Therefore, considering that premature convergence to local sub-optimal solutions is
one of the major limitations of GSGP, our intuition is that imposing a cellular structure
may be beneficial in the context of GSGP. Such an approach may help increase the
takeover time and avoid a fast loss in diversity.

3 � Methods

In this section, we recall the basics of GSGP and then we will introduce cGSGP,
focusing on how the evolution process must be changed to take into account the
topology imposed on the population.

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 5 of 32  8

3.1 � Geometric semantic genetic programming

Traditionally, Genetic Programming (GP) explores the space of solutions by means
of operators acting on the syntax of programs, i.e., their formal representation, with-
out any regard to the semantic effect of the operators on the individuals. In recent
years, the integration of semantic awareness in GP has been shown to improve its
performance in different scenarios, attracting the interest of the scientific commu-
nity [35]. Although several definitions are possible, here the semantics of an indi-
vidual is the vector of output values of a program on a set of inputs. Hence, we can
map each individual into a point on the semantic space, a finite-dimensional vector
space, usually ℝn.

GSGP, introduced for the first time by Moraglio et al. [2], defines operators that
act directly on the semantics of individuals, the Geometric Semantic Operators
(GSOs).

Specifically, the Geometric Semantic Crossover (GSC) takes the following form:

where T1, T2 ∶ ℝ
n
→ ℝ are the two parents, and R is a random real function with

outputs in the interval [0, 1], usually represented by a random tree. Since, for each
input x ∈ ℝ

n , TXO(x) is a linear combination of the two parents’ outputs, the GSC
ensures that the offspring has semantics belonging to the segment joining the seman-
tics of the two parents on the semantic space.

Similarly, the Geometric Semantic Mutation (GSM) is defined as follows:

where T ∶ ℝ
n
→ ℝ is the function being mutated, R1,R2 are two random real func-

tions with outputs in the interval [0, 1] and m is a parameter called mutation step.
GSM can be considered as a “weak” perturbation of the individual since the new
individual is contained in the hyper-sphere of radius m centred in the semantics of
the parent in the semantic space.

Notice that the same geometric semantic operators of crossover and mutation that
induce an unimodal fitness landscape, however, also increase the size of the individ-
uals. For crossover, in particular, this increase is exponential in the number of gen-
erations, as already highlighted when GSGP was introduced [2]. Practical solutions
to this problem have been proposed over the years [2, 36–40], to make this approach
usable in real-world scenarios. The combination of the formal properties of GSGP
and the presence of efficient implementations [41] allowed it to outperform standard
GP on many symbolic regression tasks and real-world problems [5, 37].

3.2 � Cellular GSGP

Standard GSGP does not impose any spatial structure on the population, allowing
selection to be performed across the entire population and the crossover to happen
between any two individuals.

(1)TXO = R ⋅ T1 + (1 − R) ⋅ T2

(2)TM = T + m ⋅ (R1 − R2)

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 6 of 32

In cGSGP a neighbourhood structure is imposed in a way inspired by CA [7–9].
Recall that CA is a formal model where finite automata are distributed according to
a certain topology and each cell updates its own internal state following a local rule
depending only on a certain number of neighbour automata.

Similarly, we distribute the individuals of a population on a toroidal grid. In this
scenario, each individual belongs to a specific cell of this grid, hence to a spatial
location, which is chosen randomly at the beginning. At this point, it is possible to
introduce the concept of neighbourhood within our population. Specifically, we con-
sider an individual to be in the neighbourhood of radius r of a given cell if it is con-
tained in the hypercube with side 2r + 1 corresponding to the Moore neighbourhood
of radius r. In the following the n-dimensional toroidal grid with neighbourhood
of radius r ∈ ℕ will be denoted by Tn

r
 . We choose to impose a toroidal configura-

tion to the grid in order to have a complete neighbourhood for all cells: a hypercube
has incomplete neighbourhoods for cells near the faces of the hypercube. Further-
more, notice that there are no “disconnected” neighbourhoods in Tn

r
 when r > 0 ; this

means that information can travel between any two points of the grid, thus there are
no isolated or independent sub-populations.

Once a neighbourhood structure has been defined, it is necessary to define how
this structure is going to influence the selection process and the crossover operator1.

Let us now consider a position i in an n-dimensional toroidal grid with neigh-
bourhood Ni . For example, in two dimensions i = (i1, i2) and a neighbourhood of
radius r it is Ni = {j = (j1, j2) such that ||i − j||∞ ≤ r} , where ||x||∞ is the maximum
norm ||x|| = max1≤i≤n |xi| . Moreover, each individual is contained in its own neigh-
bourhood (Fig. 1).

For any given population each position i has an associated tree Ti , so we expect
that when we need to replace a tree in position i that it will be derived from the trees
in positions part of Ni (its neighbourhood).

If crossover is not performed, it is sufficient to replace (and possibly mutate) the
individual in position i with one selected locally (maybe itself). Furthermore, as
long as each selection is performed in a local way, forcing crossover to be local is
trivial: it is sufficient to perform crossover between two locally selected individuals.
Hence, we will focus on how we can define local selection (Figs. 2, 3).

3.2.1 � Selection strategies

As a first strategy, we employ a rank-based selection method within local neighbour-
hoods ( ��� ), where the entire neighbourhood Ni of position i is considered. In this
case, the selection procedure returns the elements of Ni ordered by fitness, from the
best one to the worst one without any repetition. As a consequence, if no crossover
is performed then the new tree in position i will be the best one in Ni . If, instead,
crossover is performed, then it will be between the two best individuals in Ni.

The selection given by ��� is deterministic and, without the presence of only
local interactions, would be too strict and would force premature convergence in a
few generations. Local interactions avoid this problem (different neighbourhoods can

1  Mutation, involving only one individual, is inherently local and needs no modifications.

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 7 of 32  8

have different best individuals), but we might still want to have a less “draconian”
selection. To this end, as a second strategy, we employ a tournament-based selection
method within local neighbourhoods ( ���p ), where the tournament size is defined
w.r.t. a real value p ∈ (0, 1] representing a proportion of the given neighbourhood.

The idea of ���p is that ��� is not applied on the entire neighbourhood of an indi-
vidual i, but on a subset S ⊆ Ni . This subset S is selected by iterating across the elements
of Ni and inserting them into S with probability p. In other words, S is a sampled subset
of Ni with probability p. Notice that now p can be used as a parameter to tune the selec-
tion pressure, with p = 1 resulting in the most pressure as in the ��� selection strategy.

Fig. 1   Example of a population with 100 individuals distributed according to T2
1
 . In the figure, two posi-

tions with the corresponding neighbourhoods are highlighted, following the toroidal structure when the
position is close to the borders. Each cell contains the individual in that position, whose row index and
column index are indicated as a subscript

Initialisation

Cellular-based
Selection

Crossover

Mutation

Which data structure to
represent the population?

Define, for instance, an n-dimensional toroidal grid with r as neighbourhood
radius

How to leverage the cellular
structure to select the parents?

Define selection pressure and selections number: tournament selection, roulette
selection, cellular selection (pressure may be given by a sampling probability)

Cellular-based Variant

Standard EA

How to generate the offspring
from the parents?

Define a crossover operator to be executed with some probability: sub-tree one-
point crossover, geometric semantic crossover

How to mutate the offspring? Define a mutation operator to be executed with some probability: sub-tree
uniform mutation, geometric semantic mutation (with some mutation step)

Fig. 2   Diagram describing a baseline cellular-based evolutionary algorithm. For each activity, the main
design choice is highlighted, and an overview of the main hyper-parameters and variants is presented.
Especially, we highlight in bold the hyper-parameters and the main building blocks that compose the
design choices

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 8 of 32

In Algorithm 1 we provide a pseudo-code for the ���p selection strategy, which
is equivalent to ��� when p = 1.

Algorithm 1   Selection strategy adopted within cGSGP
(CellularSelectionGSGP)

Initialisation

Selection

Geometric Semantic
Crossover

Geometric Semantic
Mutation

Standard EA

GSGP

Initialisation with a
Toroidal Grid

Neighbourhood-based
Selection

Geometric Semantic
Crossover

Geometric Semantic
Mutation

Cellular GSGP

GSGP

Fig. 3   Diagram comparing a vanilla GSGP and our proposed cGSGP method. The figure highlights
which are the components that differ between the two techniques

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 9 of 32  8

4 � Experimental study

In the experimental phase, we try to provide answers to the following questions:

RQ1	� Is it possible to overcome the issue of converging too fast to small and pos-
sibly sub-optimal areas of the search space?

RQ1	� Can cGSGP exploit the presence of local communication to produce better
solutions than GSGP?

To this end, we compare standard GSGP with cGSGP by using a specific grid
topology with different neighbourhood sizes. In particular, we consider a two-
dimensional toroidal grid with neighbourhood of radius 1, 2, and 3, denoted by T2

1
 ,

T
2
2
 , and T2

3
 , respectively.

Each method is tested on eight regression datasets that have already been used in
GP-related problems [5, 37, 42, 43]. Table 1 summarizes the number of samples and
the number of variables for each dataset. References are added to provide a link to
the complete description of these datasets.

Each dataset has been partitioned in 100 train-test splits. Specifically, 70 % of the
observations, selected at random with uniform probability, has been used to build
the training set, while the remaining 30 % has been used to build the test set. We
run for each method and for each dataset 100 repetitions with different seeds, one
for each split (the KJ6 dataset is unique in that it is defined for a single split; there-
fore, we use the same split for all repetitions, with the seed influencing only the
evolution).

The optimisation problem we aim to address is a single-objective minimisation
problem in which the fitness is the Root Mean Squared Error (RMSE) [51] com-
puted between the target and the predictions obtained by applying the discovered
symbolic models on the training set. We check the performance on the test set to
obtain information on the way the model behaves on unseen data.

Table 1   The number of
observations and the number of
variables of tested datasets

Dataset # Observations # Variables

Vladislavleva14 (V14) [44] 6024 5
Keijzer6 (KJ6) [45, 46] 170 1
Airfoil (ARF) [47] 1502 5
Concrete (CNC) [3] 1029 8
Slump (SLM) [48] 102 9
Toxicity (TXC) [49] 234 626
Yacht (YCH) [50] 307 6
Parkinson (PRK) [4] 5875 18

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 10 of 32

The evolution parameters are fixed for all runs and described in Table 2. We test
different pairs of population size and number of generations. The chosen combina-
tions are described in Table 3.

We choose the different types of population sizes in order to obtain three different
perfectly squared bi-dimensional toroidal grids whose dimensions are evenly distrib-
uted. Moreover, we set the number of generations in order to always obtain, approxi-
mately, the same number of fitness evaluations, and thus encourage a fairer compari-
son (since the total number of fitness evaluations is not a multiple of 900, we set the
corresponding number of generations to the nearest rounded integer available).

We test each method by using: crossover and mutation together sequentially
( Ecx+mut ), only crossover ( Ecx ), and only mutation ( Emut ). For the sake of simplicity,
we define this variant as exploration pipeline.

Each method is compared with the others methods by using a Wilcoxon signed-
rank test [52], and the corresponding p-values are collected and adjusted by using
a Holm-Bonferroni correction [53] with � = 0.05 (this test is carried out only if a
Kruskal-Wallis test [54] with � = 0.05 is passed for the involved methods and the
given dataset).

To guarantee that the results obtained are due to the presence of a communication
topology in cGSGP, GSGP was tested with tournament selection with different tour-
nament sizes up to 12. When the results were statistically compared, no significant
difference was found in the results. As a consequence, we present the results com-
paring cGSGP with GSGP with tournament selection of size 4.

All the code implementing GSGP and cGSGP used in the experiments is avail-
able in the following repository: https://​github.​com/​lurovi/​CA-​GSGP.

5 � Results

In this section, we present the results from our experimental phase and discuss the
outcomes.

Table 2   Parameters adopted
during the experimental phase

Parameter Value

Max depth 6
Tree generation Ramped half-and-half [1]
Crossover probability 0.90
Mutation probability 0.50
Mutation step U(0, 1) for each mutation event
Operators +, −, ∗, ÷ (protected)

Constants 100 ∼ U(−100, 100) fixed for each run

https://github.com/lurovi/CA-GSGP

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 11 of 32  8

5.1 � Statistical comparison with the baseline

We showcase the experimental results comparing GSGP and cGSGP, utilizing the
combinations of topology and neighbourhood radius introduced earlier, and employ-
ing two distinct selection methods: ��� and ���0.6.

The comparisons for all the proposed combinations of parameters are shown in
the following tables, in which the median RMSE values on the test sets are pre-
sented. Each table describes the outcome for a specific combination of population
size and number of generations. Within the same table, for each dataset, all topolo-
gies, selection strategies, and variants of exploration pipeline are presented.

For a given dataset, cGSGP methods that exhibit statistically better perfor-
mance than the methods in the table with the same selection strategy and explora-
tion pipeline, including the corresponding GSGP, are marked with an asterisk (*).
Moreover, we highlight in bold the cGSGP methods that, taken individually, are
meaningfully better, according to a Wilcoxon signed-rank test, than the GSGP
baseline with the same exploration pipeline (Tables 4, 5, 6).

As a general observation for Ecx+mut , in all datasets, cGSGP is able to perform
better than GSGP, with the specific selection method ( ��� or ���0.6 ) not provid-
ing a significant difference. The only exception seems to be KJ6 for 100 as popu-
lation size.

In case the population size is small, what influences the results tends to be the
topology: at least a minimum size of the neighbourhood is needed, in fact, T2

1
 is

the topology with the smallest neighbourhood (9 positions including the central
one) and is usually unable to provide results which are better than GSGP in a sta-
tistically significant way.

Larger neighbourhoods instead tend to provide more consistent results. Notice
that, while the best results are obtained with T2

3
 , a quite large neighbourhood, a

smaller one, with radius 2, is sufficient to consistently perform better than GSGP.
This could be useful to obtain good results while limiting the amount of local
interaction between the individuals in the population. Moreover, it seems that
by increasing the size of the population it becomes more likely that the cGSGP
method can perform better than the baseline. This occasionally seems to hap-
pen even within a small neighbourhood radius. This result suggests that a large
enough population size is probably necessary to take advantage of the cellular-
based selection performed on the toroidal grid.

Table 3   Combinations of population size and number of generations that are tested. For each combina-
tion, the side length of the squared toroidal grid is shown, along with the corresponding total number of
fitness evaluations

Population size Generations Side length Fitness evaluations

100 1000 10 100000
400 250 20 100000
900 111 30 99900

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 12 of 32

By inspecting the results for Ecx and Emut , the general observation that we can
formulate is that the mutation operator alone is more beneficial than the crosso-
ver operator alone as regards our proposed approach. As a matter of fact, we
can see that when Emut is employed, it seems to be more likely that our method
performs better than the baseline, while there is less significant difference when

Table 4   Table of the median best fitness for cGSGP on the test set and all considered topologies

100 as population size 1000 generations

Method V14 KJ6 ARF CNC SLM TXC YCH PRK

Ecx+mut

GSGP 1.47 1.72 2.6 6.5 4.38 2262.13 3.69 8.35

T
2
1
 w/��� 1.23 1.88 2.53 6.47 4.29 2274.38 3.88 8.4

T
2
2
 w/��� 1.47 3.08 2.36 6.13 4.11 2194.0 3.32 8.16

T
2
3
 w/��� 1.47 3.84 2.34 * 5.89 * 4.13 2174.52 * 3.22 * 8.05 *

T
2
1
 w/���0.6 1.06 1.75 2.64 6.61 4.5 2317.46 4.09 8.5

T
2
2
 w/���0.6 1.31 2.48 2.43 6.29 4.05 2243.8 3.44 8.22

T
2
3
 w/���0.6 1.57 3.13 2.34 * 6.01 * 4.35 2201.03 * 3.3 * 8.11 *

Ecx

GSGP 0.75 2.77 38.76 16.14 9.62 2407.62 13.63 10.58

T
2
1
 w/��� 0.41 2.56 39.45 17.24 10.65 2421.11 13.67 10.93

T
2
2
 w/��� 0.29 2.83 38.76 20.79 11.5 2401.69 13.86 10.97

T
2
3
 w/��� 0.26 * 2.84 38.74 27.19 12.09 2421.87 14.09 11.09

T
2
1
 w/���0.6 1.06 2.88 38.77 16.25 9.42 2384.49 13.4 10.51

T
2
2
 w/���0.6 0.37 2.57 38.65 17.61 11.25 2404.46 13.89 10.93

T
2
3
 w/���0.6 0.28 2.82 39.01 21.95 10.84 2415.91 13.95 10.89

Emut

GSGP 1.48 2.08 2.66 6.53 3.8 2278.42 4.11 8.68

T
2
1
 w/��� 2.17 2.48 2.58 6.37 3.69 2244.66 3.93 8.62

T
2
2
 w/��� 2.44 3.57 2.48 6.1 3.66 2195.85 3.42 8.33

T
2
3
 w/��� 2.78 4.62 2.4 * 6.02 * 3.81 2172.03 * 3.26 * 8.27 *

T
2
1
 w/���0.6 1.63 1.93 2.69 6.54 3.79 2273.45 4.15 8.7

T
2
2
 w/���0.6 2.54 2.83 2.5 6.23 3.72 2214.63 3.59 8.39

T
2
3
 w/���0.6 2.75 3.58 2.44 * 6.06 * 3.7 2186.87 3.41 * 8.33 *

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 13 of 32  8

Ecx is used. This could suggest that the mutation operator is the one that benefits
more from our proposed selection procedure.

The cGSGP with the Ecx combination performs better than the baseline only
for the synthetic datasets (V14 and KJ6) and for TXC. On the other hand, the
cGSGP with the Emut combination performs better than the baseline for all the

Table 5   Table of the median best fitness for cGSGP on the test set and all considered topologies

400 as population size 250 generations

Method V14 KJ6 ARF CNC SLM TXC YCH PRK

Ecx+mut

GSGP 3.88 1.46 3.83 7.53 4.16 2375.11 5.85 9.07

T
2
1
 w/��� 2.16 0.94 3.98 7.83 3.92 2244.14 6.44 9.26

T
2
2
 w/��� 0.93 0.89 3.28 7.12 3.83 2188.79 5.32 8.9

T
2
3
 w/��� 0.89 1.24 2.9 * 6.87 * 3.87 2201.99 4.45 * 8.71 *

T
2
1
 w/���0.6 9.43 1.3 4.53 8.05 4.11 2302.64 6.93 9.3

T
2
2
 w/���0.6 1.02 1.04 3.38 7.23 3.75 2274.06 5.45 8.99

T
2
3
 w/���0.6 0.73 * 1.04 3.03 * 7.0 * 3.77 2228.65 * 4.85 * 8.77 *

Ecx

GSGP 6.17 1.4 16.62 11.66 6.24 2372.28 11.42 10.04

T
2
1
 w/��� 1.84 0.85 17.31 12.57 6.27 2279.96 11.71 10.3

T
2
2
 w/��� 0.31 0.99 17.41 13.45 6.87 2231.01 12.0 10.35

T
2
3
 w/��� 0.28 1.12 16.93 13.62 7.19 2229.27 12.1 10.33

T
2
1
 w/���0.6 4.19 1.32 17.24 11.7 6.5 2290.9 11.54 10.04

T
2
2
 w/���0.6 0.37 0.97 16.48 12.59 6.54 2291.52 11.84 10.3

T
2
3
 w/���0.6 0.28 * 1.16 16.77 13.22 6.83 2258.57 11.99 10.35

Emut

GSGP 0.83 0.92 4.55 8.68 3.96 2232.81 6.65 9.44

T
2
1
 w/��� 0.86 0.98 4.46 8.6 3.82 2228.39 6.86 9.47

T
2
2
 w/��� 1.02 1.19 3.47 7.6 3.8 2215.58 5.61 9.2

T
2
3
 w/��� 1.26 1.44 3.12 * 7.1 * 3.73 2207.89 5.09 * 9.01 *

T
2
1
 w/���0.6 0.82 0.92 5.02 8.96 3.88 2231.76 7.04 9.58

T
2
2
 w/���0.6 0.88 1.18 3.67 7.77 3.71 2221.74 5.94 9.23

T
2
3
 w/���0.6 1.08 1.35 3.24 * 7.3 * 3.68 2212.48 5.14 * 9.12 *

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 14 of 32

datasets except for the synthetic ones. In general, the vanilla combination Ecx+mut
still seems to be the one that provides more consistent results.

5.2 � Best RMSE distribution

The detailed results for each dataset are presented as box-plots of the RMSE on
the test set of the best individuals in the last generation. Especially, we present

Table 6   Table of the median best fitness for cGSGP on the test set and all considered topologies

900 as population size 111 generations

Method V14 KJ6 ARF CNC SLM TXC YCH PRK

Ecx+mut

GSGP 97.29 1.46 4.77 8.52 4.42 2431.04 7.01 9.41

T
2
1
 w/��� 8.07 1.01 5.5 9.18 4.3 2298.56 7.88 9.6

T
2
2
 w/��� 0.78 0.69 4.32 8.41 4.11 2223.62 6.75 9.35

T
2
3
 w/��� 0.63 * 0.7 3.86 * 8.05 * 3.94 * 2184.18 * 6.11 * 9.19 *

T
2
1
 w/���0.6 204.42 1.94 6.07 9.28 4.47 2304.14 8.11 9.64

T
2
2
 w/���0.6 1.46 0.87 4.58 8.49 4.24 2206.71 6.95 9.41

T
2
3
 w/���0.6 0.8 * 0.84 4.03 * 8.11 * 3.91* 2191.4 * 6.41 * 9.28 *

GSGP 25.91 1.49 8.06 10.56 5.44 2344.68 9.94 9.92

T
2
1
 w/��� 1.8 0.86 10.26 11.14 5.9 2258.13 10.67 10.05

T
2
2
 w/��� 0.37 0.84 10.08 12.04 6.04 2198.97 10.86 10.11

T
2
3
 w/��� 0.28 * 0.71 9.77 12.4 5.96 2205.84 10.97 10.15

T
2
1
 w/���0.6 132.09 1.43 9.25 10.57 5.61 2317.25 10.14 9.98

T
2
2
 w/���0.6 0.96 0.78 9.28 11.19 5.86 2253.37 10.63 10.07

T
2
3
 w/���0.6 0.34 * 0.73 9.36 11.93 5.85 2200.64 10.58 10.1

Emut

GSGP 0.58 0.83 8.56 11.35 4.38 2195.01 7.78 9.78

T
2
1
 w/��� 0.64 0.84 8.83 11.26 4.3 2193.37 7.95 9.81

T
2
2
 w/��� 0.8 0.76 6.5 9.7 3.97 2190.31 7.15 9.62

T
2
3
 w/��� 0.89 0.75 5.25 * 8.94 * 3.71 * 2188.36 6.5 * 9.48 *

T
2
1
 w/���0.6 0.6 0.78 9.68 11.81 4.52 2195.13 8.1 9.89

T
2
2
 w/���0.6 0.68 0.78 7.01 10.13 3.89 2192.04 7.26 9.68

T
2
3
 w/���0.6 0.66 0.85 5.72 * 9.29 * 3.69 * 2189.93 6.73 * 9.55 *

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 15 of 32  8

the results for 100 as population size and 1000 generations, with Ecx+mut as explo-
ration pipeline.

Figure 4 presents the results for the Vladislavleva14 (V14) synthetic dataset.
The plot shows that cGSGP method is able to provide better results than the base-
line for this specific dataset, which benefits from an exploration based on local
interactions of neighbourhoods. Particularly, the ��� strategy seems the one that
consistently performs better than the baseline.

Figure 5 presents the results for the Keijzer6 (KJ6) synthetic dataset. In this
case, the cGSGP fails to outperform the baseline, meaning that the proposed
selection strategies are not beneficial for this specific type of problem when the
population size is small. Moreover, it seems that results from cGSGP tend to even
become worse if we set a larger radius with the ��� strategy.

GSGP T 2
1 T 2

2 T 2
3

0

5

10

15

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 4   Test results on the V14 dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

GSGP T 2
1 T 2

2 T 2
3

0

2

4

6

8

10

12

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 5   Test results on the KJ6 dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 16 of 32

Figure 6 illustrates the results for the Airfoil (ARF) dataset. As it is possi-
ble to observe, all variants of cGSGP perform better than GSGP, with the two-
dimensional torus T2

1
 being not statistically better than GSGP independently from

the selection method used. It is also possible to observe that the use of ���0.6
produces lower errors, but the difference is only a slight one. The largest neigh-
bourhood, i.e., T2

3
 , is able to produce results that are better than all other cGSGP

methods independently from the selection procedure employed.
The results for the Concrete (CNC) dataset presented in Figure 7 show a pat-

tern where different topologies influence the quality of the results. While for T2
1

the results remain not statistically better than GSGP, it is possible to observe that
an increase in the size of neighbourhood corresponds to an improvement in the
quality of the solutions independently from the selection method employed.

GSGP T 2
1 T 2

2 T 2
3

1

2

3

4

5

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 6   Test results on the ARF dataset. The boxplot shows the distribution of RMSE in the last genera-
tions

GSGP T 2
1 T 2

2 T 2
3

5

6

7

8

9

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 7   Test results on the CNC dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 17 of 32  8

Similarly to the CNC dataset, also for the Slump (SLM) dataset, whose results
are presented in Figure 8, the performances of GSGP and cGSGP are comparable.
In fact, for two different topologies, the performances are not better than GSGP in a
statistically significant way.

Figure 9 presents the results for the Toxicity (TXC) dataset. As it is possible to
observe, there is still a slight increase in the quality of the solution with the increase
in the size of the neighbourhood, with the T2

3
 providing the best results also com-

pared to other cGSGP configurations.
The results for the Yacht (YCH) dataset are presented in Figure 10 confirming

the trend observed in the other datasets. A local-only interaction helps and is able to
produce better results than GSGP, with an additional increase in the solutions’ qual-
ity for larger neighbourhoods.

GSGP T 2
1 T 2

2 T 2
3

2

4

6

8

10

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 8   Test results on the SLM dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

GSGP T 2
1 T 2

2 T 2
3

1,500

2,000

2,500

3,000

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 9   Test results on the TXC dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 18 of 32

Similarly to many of the other datasets, also for the Parkinson (PRK) dataset,
whose results are presented in Figure 11, we can observe that, regardless of the
selection strategy employed, a cGSGP-based method with a sufficiently large radius
is necessary to perform better than GSGP.

5.3 � Convergence rate analysis

In this section, we analyze the convergence rate of our proposed techniques. For
illustrative purposes, the convergence rates of GSGP and cGSGP are depicted in
Figure 12. In these plots, both Ecx+mut and ��� are employed for a population size
of 100 spanning 1000 generations. Specifically, for every generation, we illustrate
the fitness evaluated on the test set of the best individual of the corresponding

GSGP T 2
1 T 2

2 T 2
3

2

4

6

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 10   Test results on the YCH dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

GSGP T 2
1 T 2

2 T 2
3

7

8

9

10

Method

R
M
SE

GSGP w/TRS0.6 w/RKS

Fig. 11   Test results on the PRK dataset. The boxplot shows the distribution of RMSE at the last genera-
tions

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 19 of 32  8

100

101
F
it
ne

ss
V14

100

101
KJ6

101

F
it
ne

ss

ARF

101

CNC

100.5

101

F
it
ne

ss

SLM

103.3

103.35

103.4

TXC

0 500 1,000

100.5

101

Generation

F
it
ne

ss

YCH

0 500 1,000

101

Generation

PRK

GSGP T 2
1 T 2

2 T 2
3

Fig. 12   Trend of test RMSE of the best individual. The plot is based on Ecx+mut and ��� strategy, with
100 as population size and 1000 generations

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 20 of 32

generation; the shaded area denotes the inter-quartile range. It is evident that, due to
the enforcement of elitism, this individual is also the best one discovered during the
course of the evolution up to that point.

Line-plots indicate a negative trend for the two synthetic datasets for both base-
line and cGSGP, particularly prominent for KJ6. In both scenarios, the test fitness
seems to grow with the increasing number of generations. This is especially notice-
able for T2

2
 and T2

3
 in KJ6. In contrast, within the V14 dataset, the proposed approach

consistently outperforms the baseline. However, it appears to plateau after the final
generation, suggesting potential over-fitting across all the methods and both syn-
thetic datasets.

For all other datasets, we consistently observe, for all involved methods, either a
constantly decreasing trend (TXC, YCH, and PRK) or an abrupt drop in fitness dur-
ing the initial generations, leading to a plateau in the subsequent ones (ARF, CNC,
and SLM). In these situations, GSGP and T2

1
 display similar behaviors. Yet, cGSGP

methods with an extended radius tend to exhibit a more pronounced downward trend.
The insights gained from this analysis reinforce our findings from Sect. 5.1. Here,

it seems that the evolutionary process gains from a cellular-inspired selection pro-
cedure, especially with a sizeable radius. This approach enables the optimization to
derive superior results compared to the standard GSGP. Moreover, based on the con-
vergence rates, this benefit appears to hold true regardless of the number of executed
generations.

5.4 � Population fitness distribution

After assessing the performance of the proposed methods across the generations as
regards the best-discovered solutions, we analyze the fitness distribution on the train
set of the entire population. To this end, we show the median train fitness in Fig-
ure 13, where Ecx+mut and ��� are employed for a population size of 100 and 1000
generations. Specifically, for each generation, we plot the median of all the fitness
values evaluated on the train set by the individuals in the population of the genera-
tion at hand (the shaded area represents the inter-quartile range).

For almost all the tested datasets, the median RMSE consistently decreases. This
is also true for the two synthetic datasets, which, according to the convergence rates
analysis, suffer from over-fitting-related issues. As regards the real-world datasets,
the median RMSE on the train set confirms the trend observed in the line-plots of
the previous section, with TXC that exhibits a decreasing trend with a negative con-
cavity for T2

2
 and T2

3
 . Finally, similarly to what we have already seen in the previous

section, we can observe a plateau after a few generations in ARF and CNC.
An analysis based on the train fitness distribution of the population should reveal

some insights into the diversity preservation mechanisms that play along with the
proposed techniques. However, as we can see, except for the synthetic datasets and
occasionally for SLM, there is little or no variability in the train fitness values. Hence,
this type of analysis does not reveal useful information on the diversity of the popula-
tion, which is what we are going to try analyzing in deeper detail in the next section.

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 21 of 32  8

10−1

10−0.5

M
ed

ia
n
R
M
SE

V14

10−2

10−1

KJ6

100

101

M
ed

ia
n
R
M
SE

ARF

101

CNC

100

101

M
ed

ia
n
R
M
SE

SLM

103.34

103.36

103.38

TXC

0 500 1,000
100

100.5

101

Generation

M
ed

ia
n
R
M
SE

YCH

0 500 1,000

100.9

101

101.1

Generation

PRK

GSGP T 2
1 T 2

2 T 2
3

Fig. 13   Trend of median train RMSE of the population. The plot is based on Ecx+mut and ��� strategy,
with 100 as population size and 1000 generations

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 22 of 32

5.5 � Semantic diversity analysis

Evaluating the diversity of the population across the generations is a challenging
task, especially in the context of GSGP, where the analysis of the syntactical struc-
ture of trees may not be feasible for multiple reasons: (1) if two individuals are syn-
tactically different, then any geometric crossover and mutation resulting from them
will always be different, (2) more importantly, a tree-representation of a GSGP indi-
vidual is exponential in size. Hence, in this context, we try to analyze the diversity
of the population by introducing a measure that accounts for the semantic distance
of individuals.

Each individual evaluated on the train set produces a semantic vector, which con-
tains all the train predictions of the individual. It is then possible to compute the
Global Moran’s I (denoted as I ) [55, 56] on the semantic vectors of a given popula-
tion and use it to measure diversity. I is a measure of spatial autocorrelation [57],
assessing similarity or dissimilarity of values located in neighbouring locations and
formally defined as

where N is the population size, wij ∈ ℝ is the value located at the i-th row and the
j-th column of the matrix w ∈ ℝ

N×N , wii = 0 for 1 ≤ i ≤ N , W =
∑N

i=1

∑N

j=1
wij , xi is

a representation of the i-th individual in the population as a semantic vector, and x̄ is
the mean of the representations of all the individuals in the population. In our case,
wij = 1 if i ≠ j and the j-th individual belongs to the neighbourhood of the i-th indi-
vidual (in vanilla GSGP the entire population is a single neighbourhood), otherwise
wij = 0.

I ranges in the interval [−1, 1] , where values close to 1 indicate positive spatial
autocorrelation, while values close to -1 suggest the presence of negative autocor-
relation. Values near 0 highlight a spatial pattern not different from a random phe-
nomenon. A high value means that similar semantic content is spatially clustered in
the population, hence preserving diversity between different clusters, while a value
near 0 suggests a spatial arrangement of semantic vectors which is not different from
a random one.

We show the trend of I in the following line-plots, where both Ecx+mut and ��� are
employed; the shaded area denotes the inter-quartile range. In this type of analysis,
we test all three combinations of population size and number of generations to better
show the relationship between population size and diversity of cGSGP. We remark
that considering I is one possible diversity measure and necessarily represents only
a partial view on the topic of semantic diversity for GSGP.

Figure 14 shows the I trend for 100 as population size. For V14 and KJ6 datasets
we observe a flattening towards 0 after the very first generations for the different
cGSGP methods, while the baseline is always near 0. In all the other cases, it is
evident how the cGSGP methods exhibit higher diversity than the baseline, which
consistently shows I values always close to 0, for a high number of generations. The

I =
N

W

∑N

i=1

∑N

j=1
wij(x

i − x̄)(xj − x̄)

∑N

i=1
(xi − x̄)2

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 23 of 32  8

0

0.5

1
I

V14

0

0.5

1

KJ6

0

0.5

1

I

ARF

0

0.5

1

CNC

0

0.5

1

I

SLM

0

0.5

1

TXC

0 500 1,000

0

0.5

1

Generation

I

YCH

0 500 1,000

0

0.5

1

Generation

PRK

GSGP T 2
1 T 2

2 T 2
3

Fig. 14   Trend of I . The plot is based on Ecx+mut and ��� strategy, with 100 as population size and 1000
generations

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 24 of 32

0

0.5

1
I

V14

0

0.5

1

KJ6

0

0.5

1

I

ARF

0

0.5

1

CNC

0

0.5

1

I

SLM

0

0.5

1

TXC

0 100 200

0

0.5

1

Generation

I

YCH

0 100 200

0

0.5

1

Generation

PRK

GSGP T 2
1 T 2

2 T 2
3

Fig. 15   Trend of I . The plot is based on Ecx+mut and ��� strategy, with 400 as population size and 250
generations

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 25 of 32  8

0

0.5

1
I

V14

0

0.5

1

KJ6

0

0.5

1

I

ARF

0

0.5

1

CNC

0

0.5

1

I

SLM

0

0.5

1

TXC

0 50 100

0

0.5

1

Generation

I

YCH

0 50 100

0

0.5

1

Generation

PRK

GSGP T 2
1 T 2

2 T 2
3

Fig. 16   Trend of I . The plot is based on Ecx+mut and ��� strategy, with 900 as population size and 111
generations

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 26 of 32

diversity decreases as the size of the neighborhood radius increases, with T2
1
 always

showing the highest I . For all the different cGSGP methods, diversity decreases as
generations progress, except for TXC, where it remains almost constant after an ini-
tial transitory phase.

Figure 15 shows the I trend for 400 as population size. As before, for V14 and
KJ6, we can observe a fast convergence towards 0 for all cGSGP methods, while
standard GSGP exhibits null I for the entire evolution, just as it happens for all the
other datasets. T2

1
 is still the method with the highest diversity for all the different

cases and the trend of diversity over generations is consistent with what was seen
above, with TXC maintaining I values that are almost constant for all methods.

Figure 16 shows I trend for 900 as population size. Even here, V14 and KJ6 show
trajectories which quickly flatten towards 0 for all cGSGP methods. Diversity is
always null for the baseline for all datasets. Also, the rest of the analysis is entirely
analogous to the previous cases. TXC shows nearly constant trends for all methods,
while all the other datasets exhibit a decrease in diversity over generations for all
methods. Once again, we can observe a clear increase in diversity as the neighbor-
hood radius decreases.

Notice that T2
1
 shows the highest diversity in all the cases: local interactions are

forced to happen only within a small neighbourhood. This means that the spread
of good individuals across the generations will be slower than that obtained with a
larger radius, resulting in a higher I.

In conclusion, the population size does not seem to affect the trend of diversity
for the different methods, since we can observe analogous results for all the different
sizes. On the contrary, the size of the neighbourhood seems to have a central role in
the formation of spatial clusters preserving semantic diversity of individuals.

GSGP T 2
1 T 2

2 T 2
3

250

260

270

280

290

Method

M
ed
ia
n
lo
g 1

0
(�
)

GSGP w/TRS0.6 w/RKS

Fig. 17   Distribution of the median log10(�) computed on the population of the last generation (100 as
population size for 1000 generations) for all the tested datasets and repetitions

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 27 of 32  8

5.6 � Solution size analysis

Finally, we provide an analysis on the size of the solutions. As we have already
stated in Sect. 3.1, the solution size always increases at every generation, because of
the way the GSGP operators are defined. In this section, we try to analyze whether
imposing a CA-inspired communication topology over GSGP leads to smaller solu-
tions. This type of analysis is mainly justified by previous research works in which
it was demonstrated that a spatial structure may help to reduce program growth [19,
20].

In a tree-based GP context, a common property that measures the solution size
is the number of nodes (denoted as � ). In GSGP, this value can easily become
extremely large, increasing exponentially with the number of generations. For this
reason, in the following, we report the base-10 logarithm in the number of nodes
with a focus on its median value in the population.

As expected, the number of nodes increases exponentially w.r.t. the number of
generations. In Figure 17 we show the distribution of the median log10(�) in the last
generation for all tested problems and for all repetitions.

Based on the plot, T2
1
 tends to discover smaller solutions than GSGP, while T2

2
 and

T
2
3
 tend to discover larger solutions than GSGP (except for T2

2
 with ���0.6 ). This sug-

gests that imposing a cellular spatial structure characterized by a small neighbour-
hood actually helps in limiting the program growth by some orders of magnitude.
However, differently from other methods, when a cellular structure is imposed on
GSGP, there is no clear reduction in the solution sizes for all neighbourhoods. Addi-
tionally, by comparing this outcome with the previous analysis on the convergence
rates (Sec. 5.3), the increase in median individual size is not hindering the quality of
the solutions generated.

6 � Discussion

Finally, based on the outcome of the experimental session, we try to summarize the
main findings to provide proper answers to our research questions:

RQ1	� Is it possible to overcome the issue of converging too fast to small and pos-
sibly sub-optimal areas of the search space?

	� The issue of premature convergence is probably related to the lack of any
inherent mechanism of diversity preservation in GSGP. To reduce this
problem we imposed a spatial structure to the population, thus allowing
local-only communication. This structure can limit the takeover time,
allowing the preservation of diversity. Clearly, there is a trade-off between
the amount of local communication and the semantics of the individuals
that can be generated using only the individuals in a limited neighbour-
hood. In particular, for any semantic crossover the results are bound to

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 28 of 32

be in the convex hull of the possible parents, a smaller neighbourhood
restricts the part of the space where new individuals can be generated,
thus limiting the possible semantics that can be obtained. Hence, new
semantics might require more time to be generated, with a decrease in the
speed of exploration.

	� Experimentally, we observed that a small neighbourhood radius provides
better diversity among different neighbourhoods at the cost of slow-
ing down the exploration. By increasing the radius, the exploration gets
faster at the cost of losing overall diversity. Therefore, a reasonable trade-
off should be found to obtain both good diversity and a reasonably fast
exploration.

	� By analyzing the Moran’s I coefficient, we observe that cGSGP can pro-
vide diversity among different local neighbourhoods in the early stages of
the evolution, enabling a more complete exploration of the search space
before dominant solutions propagate to the entire population. This implies
that a spatial structure such as a cellular-based one is beneficial also in the
context of GSGP.

RQ2	� Can cGSGP exploit the presence of local communication to produce better
solutions than GSGP?

	� In the majority of cases, cGSGP-based methods can produce better solu-
tions than GSGP. This is especially true for cGSGP-based methods with
two or three as radius applied to real-world datasets. Hence, we assume
that our neighbourhood-based selection strategy that exploits local com-
munication is beneficial for the improvement of GSGP. Furthermore, by
analyzing convergence rates, this seems to hold regardless of the actual
number of generations executed.

7 � Conclusion

In this paper, we introduce the cellular GSGP (cGSGP), a way to endow a com-
munication topology on GSGP that allows to improve the performance compared
to standard GSGP. This seems to be because by leveraging a spatial structure within
GSGP we are able to increase the takeover time and reduce the corresponding loss
of diversity, limiting GSGP operators to act only on individuals belonging to the
same neighbourhood. In particular, in the early stage of the evolution, the population
is characterized by low intra-neighbourhood and high inter-neighbourhood diversity,
as measured via Moran’s I coefficient. While not explored in this work, a cellular
structure can be useful from a scalability point of view: local communications allow
for easy distribution of the computation among multiple nodes.

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 29 of 32  8

In terms of future directions of research, the influence of topology is an important
aspect to study. Furthermore, the effect of which local selection to use appears to
be important, so this aspect requires further studies. Additional studies should also
be performed to understand the propagation of information inside the population to
obtain some insights into the interplay between topology and evolution. Finally, it
would be interesting to implement cGSGP in a distributed way, taking advantage of
the local-only communications that are part of the methods.

Authors’ contributions  The method design is by LM, the experiments were performed by LR and LB and
the code implementation was performed by LR and LB. LR and LB contributed to writing the first draft
of the manuscript; LM and AdL contributed to revising the manuscript. LM and AdL provided supervi-
sion during all phases of the project.

Funding  Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE
Agreement.

Declarations 

Conflict of interest  The authors have no financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

	 1.	 J.R. Koza, Genetic programming as a means for programming computers by natural selection. Stat.
Comput. 4, 87–112 (1994)

	 2.	 A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming, vol. 7491 (2012),
pp. 21–31. https://​doi.​org/​10.​1007/​978-3-​642-​32937-1_3

	 3.	 M. Castelli, L. Vanneschi, S. Silva, Prediction of high performance concrete strength using genetic
programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862
(2013)

	 4.	 M. Castelli, L. Vanneschi, S. Silva, Prediction of the unified Parkinson’s disease rating scale assess-
ment using a genetic programming system with geometric semantic genetic operators. Expert Syst.
Appl. 41(10), 4608–4616 (2014)

	 5.	 Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for
real life applications, in Genetic Programming Theory and Practice XI (2014), pp. 191–209

	 6.	 T.P. Pawlak, B. Wieloch, K. Krawiec, Review and comparative analysis of geometric semantic
crossovers. Genet. Program Evolvable Mach. 16, 351–386 (2015)

	 7.	 J.V. Neumann, Theory of self-reproducing automata. Math Comput 21, 745 (1966)
	 8.	 E.F. Codd, Cellular Automata (Academic Press, Cambridge, 1968)
	 9.	 P. Sarkar, A brief history of cellular automata. ACM Comput Surv (CSUR) 32(1), 80–107 (2000)
	10.	 E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algo-

rithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)
	11.	 E. Alba, B. Dorronsoro, Introduction to Cellular Genetic Algorithms (Springer, Boston, 2008),

pp.3–20. https://​doi.​org/​10.​1007/​978-0-​387-​77610-1_1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-0-387-77610-1_1

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 30 of 32

	12.	 C. Salto, E. Alba, Cellular genetic algorithms: Understanding the behavior of using neighborhoods.
Appl. Artif. Intell. 33(10), 863–880 (2019)

	13.	 J.H. Holland, Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105
(1973)

	14.	 Y. Deng, J. Xiong, Q. Wang, A hybrid cellular genetic algorithm for the traveling salesman problem.
Math. Probl. Eng. 2021, 1–16 (2021)

	15.	 T. Murata, M. Gen, Cellular genetic algorithm for multi-objective optimization, in Proc. of the 4th
Asian Fuzzy System Symposium (Citeseer, 2002), pp. 538–542

	16.	 A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, E. Alba, Mocell: a cellular genetic algorithm for
multiobjective optimization. Int. J. Intell. Syst. 24(7), 726–746 (2009)

	17.	 G. Folino, C. Pizzuti, G. Spezzano, A scalable cellular implementation of parallel genetic program-
ming. IEEE Trans. Evol. Comput. 7(1), 37–53 (2003)

	18.	 W.N. Martin, Island (migration) models: evolutionary algorithms based on punctuated equilibria, in
Handbook of Evolutionary Computation (1997)

	19.	 P.A. Whigham, G. Dick, Implicitly controlling bloat in genetic programming. IEEE Trans. Evol.
Comput. 14(2), 173–190 (2009)

	20.	 G. Dick, P.A. Whigham, Controlling bloat through parsimonious elitist replacement and spatial
structure, in European Conference on Genetic Programming (Springer, 2013), pp. 13–24

	21.	 Y. Shi, H. Liu, L. Gao, G. Zhang, Cellular particle swarm optimization. Inf. Sci. 181(20), 4460–
4493 (2011)

	22.	 M.A. Al-Betar, A.T. Khader, M.A. Awadallah, M.H. Alawan, B. Zaqaibeh, Cellular harmony search
for optimization problems. J. Appl. Math. 2013, 61–80 (2013)

	23.	 M. Zhang, N. Tian, V. Palade, Z. Ji, Y. Wang, Cellular artificial bee colony algorithm with gaussian
distribution. Inf. Sci. 462, 374–401 (2018)

	24.	 A. Della Cioppa, A. Marcelli, P. Napoli, Speciation in evolutionary algorithms: adaptive species
discovery, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
(2011), pp. 1053–1060

	25.	 L. Trujillo, L. Muñoz, E. Galván-López, S. Silva, neat genetic programming: controlling bloat natu-
rally. Inf. Sci. 333, 21–43 (2016)

	26.	 K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.
Comput. 10(2), 99–127 (2002)

	27.	 P. Juárez-Smith, L. Trujillo, M. García-Valdez, F. Vega, F. Chávez, Local search in speciation-based
bloat control for genetic programming. Genet. Program Evolvable Mach. 20, 351–384 (2019)

	28.	 S. Cussat-Blanc, K. Harrington, J. Pollack, Gene regulatory network evolution through augmenting
topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)

	29.	 T.M. Martins, R.F. Neves, Applying genetic algorithms with speciation for optimization of grid
template pattern detection in financial markets. Expert Syst. Appl. 147, 113191 (2020)

	30.	 R. Wickman, B. Poudel, T.M. Villarreal, X. Zhang, W. Li, Efficient quality-diversity optimization
through diverse quality species, in Proceedings of the Companion Conference on Genetic and Evo-
lutionary Computation (2023), pp. 699–702

	31.	 D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in
Foundations of Genetic Algorithms, vol. 1 (Elsevier, 1991), pp. 69–93

	32.	 H. Xie, M. Zhang, Impacts of sampling strategies in tournament selection for genetic programming.
Soft. Comput. 16, 615–633 (2012)

	33.	 J. Sarma, K. De Jong, An analysis of the effects of neighborhood size and shape on local selection
algorithms, in International Conference on Parallel Problem Solving From Nature (Springer, 1996),
pp. 236–244

	34.	 M. Giacobini, M. Tomassini, A.G. Tettamanzi, E. Alba, Selection intensity in cellular evolutionary
algorithms for regular lattices. IEEE Trans. Evol. Comput. 9(5), 489–505 (2005)

	35.	 L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet.
Program Evolvable Mach. 15, 195–214 (2014)

	36.	 M. Castelli, S. Silva, L. Vanneschi, A c++ framework for geometric semantic genetic programming.
Genet. Program Evolvable Mach. 16, 73–81 (2015)

	37.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic
gp and its application to problems in pharmacokinetics, in Genetic Programming: 16th European
Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013. Proceedings 16 (Springer, 2013), pp.
205–216

1 3

Genetic Programming and Evolvable Machines (2024) 25:8 	 Page 31 of 32  8

	38.	 M. Castelli, L. Vanneschi, A. Popovič, Controlling individuals growth in semantic genetic program-
ming through elitist replacement. Comput. Intell. Neurosci. 2016, 42–42 (2016)

	39.	 J.F.B. Martins, L.O.V. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the exponential
growth of symbolic regression trees in geometric semantic genetic programming, in Proceedings of
the Genetic and Evolutionary Computation Conference (2018), pp. 1151–1158

	40.	 D. Koga, K. Ohnishi, Non-generational geometric semantic genetic programming, in 2021 IEEE
Symposium Series on Computational Intelligence (SSCI) (IEEE, 2021), pp. 1–7

	41.	 L. Trujillo, J.M.M. Contreras, D.E. Hernandez, M. Castelli, J.J. Tapia, GSGP-CUDA–A CUDA
framework for geometric semantic genetic programming. SoftwareX 18, 101085 (2022)

	42.	 M. Castelli, L. Manzoni, L. Vanneschi, S. Silva, A. Popovič, Self-tuning geometric semantic genetic
programming. Genet. Program Evolvable Mach. 17, 55–74 (2016)

	43.	 D.R. White, J. McDermott, M. Castelli, L. Manzoni, B.W. Goldman, G. Kronberger, W. Jaśkowski,
U.-M. O’Reilly, S. Luke, Better GP benchmarks: community survey results and proposals. Genet.
Program Evolvable Mach. 14, 3–29 (2013)

	44.	 E.J. Vladislavleva, G.F. Smits, D. Hertog, Order of nonlinearity as a complexity measure for mod-
els generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput.
13(2), 333–349 (2009). https://​doi.​org/​10.​1109/​TEVC.​2008.​926486

	45.	 Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling, in European
Conference on Genetic Programming, (Springer, 2003), pp. 70–82

	46.	 M. Streeter, L.A. Becker, Automated discovery of numerical approximation formulae via genetic
programming. Genet. Program Evolvable Mach. 4, 255–286 (2003)

	47.	 T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil self-noise and prediction. Technical report (1989)
	48.	 I.-C. Yeh, Simulation of concrete slump using neural networks. Proc. Inst. Civ. Eng. Constr. Mater.

162(1), 11–18 (2009)
	49.	 F. Archetti, S. Lanzeni, E. Messina, L. Vanneschi, Genetic programming for computational pharma-

cokinetics in drug discovery and development. Genet. Program Evolvable Mach. 8, 413–432 (2007)
	50.	 I. Ortigosa, R. Lopez, J. Garcia, A neural networks approach to residuary resistance of sailing yachts

prediction, in Proceedings of the International Conference on Marine Engineering MARINE, vol.
2007 (2007), p. 250

	51.	 J.S. Armstrong, F. Collopy, Error measures for generalizing about forecasting methods: empirical
comparisons. Int. J. Forecast. 8(1), 69–80 (1992)

	52.	 F. Wilcoxon, Individual comparisons by ranking methods (Springer, New York, 1992)
	53.	 S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)
	54.	 W.H. Kruskal, W.A. Wallis, Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc.

47(260), 583–621 (1952)
	55.	 P.A. Moran, Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17–23 (1950)
	56.	 H. Li, C.A. Calder, N. Cressie, Beyond moran’s i: testing for spatial dependence based on the spatial

autoregressive model. Geogr. Anal. 39(4), 357–375 (2007)
	57.	 L. Anselin, S. Rey, Properties of tests for spatial dependence in linear regression models. Geogr.

Anal. 23(2), 112–131 (1991)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Lorenzo Bonin1 · Luigi Rovito1 · Andrea De Lorenzo2 · Luca Manzoni1

 *	 Luca Manzoni
	 lmanzoni@units.it

	 Lorenzo Bonin
	 lorenzo.bonin@phd.units.it

	 Luigi Rovito
	 luigi.rovito@phd.units.it

https://doi.org/10.1109/TEVC.2008.926486

	 Genetic Programming and Evolvable Machines (2024) 25:8

1 3

 8   Page 32 of 32

	 Andrea De Lorenzo
	 andrea.delorenzo@units.it

1	 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Alfonso
Valerio 12/1, 34127 Trieste, TS, Italy

2	 Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Via Alfonso Valerio
6/1, 34127 Trieste, TS, Italy

	Cellular geometric semantic genetic programming
	Abstract
	1 Introduction
	2 Related works
	3 Methods
	3.1 Geometric semantic genetic programming
	3.2 Cellular GSGP
	3.2.1 Selection strategies

	4 Experimental study
	5 Results
	5.1 Statistical comparison with the baseline
	5.2 Best RMSE distribution
	5.3 Convergence rate analysis
	5.4 Population fitness distribution
	5.5 Semantic diversity analysis
	5.6 Solution size analysis

	6 Discussion
	7 Conclusion
	References

