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Abstract
Progress in AI has brought new approaches for designing products via co-creative 
human–computer interaction. In architecture, interior design, and industrial design, 
computational methods such as evolutionary algorithms support the designer’s crea-
tive process by revealing populations of computer-generated design solutions in a 
parametric design space. Because the benefits and shortcomings of such algorithms’ 
use in design processes are not yet fully understood, the authors studied the intri-
cate interactions of an industrial designer employing an interactive evolutionary 
algorithm for a non-trivial creative product design task. In an in-depth report on 
the in-situ longitudinal experiences arising between the algorithm, human designer, 
and environment, from ideation to fabrication, they reflect on the algorithm’s role in 
inspiring design, its relationship to fixation, and the stages of the creative process 
in which it yielded perceived value. The paper concludes with proposals for future 
research into co-creative AI in design exploration and creative practice.
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1 Introduction

Although evolutionary algorithms’ potential has long been recognized in the design 
domain [39], only within the last decade have they become available to design pro-
fessionals, through incorporation into commercial computer-aided design (CAD) 
software. These algorithms provide an opportunity to move CAD applications 
beyond creativity support [8, 16], transforming them into co-creative systems [25] 
capable of not only augmenting but also complementing the creativity of human 
designers [3]. Furthermore, they hold potential to enrich design of personalized 
products by building on recent advances in manufacturing technologies [53].

Deployment of new tools and technologies for human–computer co-creativ-
ity transforms designers’ work methods, inducing profound shifts in the design 
processes, creativity, and experience of agency. In this history  [49], interactive 
evolutionary algorithms constitute a vital development by bringing guidance—
rather than automation—to the exploration process’s search for optimal designs. 
They permit the designer to intervene in the optimization process and selecting 
the best-performing candidates; thus, the human implicitly injects performance 
criteria that may be tedious, hard, or impossible to formalize explicitly. In other 
words, interactive evolutionary algorithms leave room in the optimization process 
for design intuition, tacit knowledge, and subjective criteria. Such qualities may 
be crucial for cultivating profoundly successful designs that win users’ hearts.

Negotiating the balance of these algorithms’ role in creative design remains 
tricky, e.g. due to the designer’s reduction in control of the algorithm and results, 
and human cognitive bounds, e.g. on handling large volumes of information.

While some interactive evolutionary algorithms have found their way into 
established design software through third-party extensions such as Biomorpher 
[22], they are a fairly recent addition to the commercial design realm, so they are 
neither a standard feature of design software nor typically covered in contempo-
rary design-school curricula. Accordingly, we have little understanding of how 
the ones available thus far can be incorporated appropriately into design practice, 
and, conversely, how design practice could inform algorithm development.

This article addresses these gaps through the lens of an introspective study 
focused on an industrial designer-researcher’s use of an interactive evolution-
ary algorithm in a real-world creative design task. Its seeds lay in a conference 
paper  [52] documenting the first author’s experiences of using design software 
equipped with evolutionary design support over a span of 11 weeks, which 
encompassed the design of a solution space capable of visualizing pendant-lamp 
concepts. As is typical of creative design processes, the work involved focus and 
incubation phases, entailing large amounts of iteration and exploration. This por-
tion of the account is condensed slightly from what was reported in the confer-
ence paper. This article affords deeper insight by documenting the evolution of 
the refactored co-creative design into physical prototypes presented at Espoo 
Museum of Modern Art (EMMA), near Helsinki, Finland, in September 2022. 
The prototypes, part of a complementary event to the exhibition “In Search of the 
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Present”, which explored the complex interactions between art, technology, and 
nature, exemplify genuine collaboration between a designer and an algorithm.

Our contributions are threefold. Firstly, we inform the adoption of interactive 
evolutionary algorithms in design practice by describing their use, benefits, and 
shortcomings in a real-world design task from the ideation phase through to three 
finished physical design prototypes (presented at the exhibition), as a representa-
tion of a single parameterized solution space. The parameterization and algorithm 
together facilitate creating and fabricating unique artifacts for individual users. The 
paper attends in particular to how the algorithm can complement the designer’s cre-
ativity, its connection with design fixation, and how it can aid in turning a digitally 
co-created artifact into a physical object. Secondly, we reflect on computer science 
development how algorithms of this nature could solidly support future design prac-
tice. The paper especially highlights opportunities related to the meta-evolution of 
parametric design definitions and for introducing visualization and manipulation of 
design instances as the process progresses toward the final physical prototype. Our 
final contribution is to reveal fruitful ways to study emerging work practices in situ. 
We find such a foundation necessary for longitudinal studies of practice-based expe-
riences of emerging CAD tools. Covering the entire complex process from ideation, 
through design exploration and detail design, to manufacture of a physical product 
supports holistic understanding and comprehensive solutions.

After providing some grounding in design theory and evolutionary algorithms’ 
application to creative product design, the article offers an autoethnographic account 
of an algorithm’s part in the process, with regard to two phases: the steps from initial 
design to renderings (dealt with to some extent in the conference paper) and, after 
this, detailed physical design that ultimately led to the finished artifacts as presented 
at the museum. The article’s concluding discussion frames the resultant reflections 
in terms of design theory and computational co-creativity, then points to potential 
directions for future research.

2  Background

Our review of prior work presents the most significant research into the nature of 
creative design , then ties the recent development of evolutionary algorithms in with 
it.

We draw parallels between design practice and evolutionary algorithms, concen-
trating in particular on the dynamic construction and sculpting of solution spaces 
as analogous to the co-evolutionary construction of problems and solutions within 
design processes.

2.1  The process of creative design

Creative design is fundamentally a reflective process wherein the designer’s goals, 
interaction with the materials, and the opportunities and constraints entailed by the 
design problem shape each other. This view builds on Schön’s conceptualization of 
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design practice [44], which identifies a prominent role for both “reflection in action” 
(i.e., during the activity) and “reflection on action” (prior to and after the activity). 
In his characterization, reflecting contributes to “re-framing of the design problem” 
[44, pp.  94–95], where framing is the process of a designer making sense of the 
problem at hand, imposing a corresponding interpretation, and using that to gener-
ate ideas for small design experiments to probe the value of possible paths to more 
substantial solutions. Elsewhere, Schön describes this method as “reflective conver-
sation with the materials in a design situation” [45].

Through framing, the designer constructs a mental image of the design and solu-
tion spaces within which the desired design can be explored and identified [14]. The 
problem space is not static: the designer’s creative re-framings may well change 
it. Likewise, the solution space might get re-framed through insight amassed amid 
efforts to solve a specific problem. Since the problem space and solution space con-
sequently co-evolve [11, 15], a typical design process encompasses more than seek-
ing optimal solutions to some given, fixed problem. The traditional use of evolution-
ary algorithms for optimization captures only one part of the process.

The work of a designer is best regarded as “satisficing” rather than optimizing 
[48]. After all, design spaces are vast, with numerous possible designs in all direc-
tions [54]. Furthermore, design often concerns itself with wicked problems: the 
system’s intricate relations and even internal contradictions may render any solu-
tion suboptimal or downright harmful in some situations or as environments change 
[41]. For instance, industrial design requires tradeoffs among product-manufactur-
ing efficiency, materials’ properties, costs, human factors, sustainability concerns, 
style trends, and other factors. These manifold requirements are typically far from 
straightforward to formalize in the objective function of a standard evolutionary 
algorithm for the optimization of a design problem.

The complexity of compromise-demanding objectives and the co-evolving nature 
of problem and solution spaces elucidate why designers could benefit greatly from 
interactive evolutionary algorithms as co-creation partners, as opposed to algo-
rithms consigned to the role of solvers seeking an optimal solution in a stable design 
space.

2.2  Evolutionary algorithms

Among the various algorithmic solutions that can enhance the design process are 
improved differential evolution [56], and improved particle swarm optimization [57], 
both families that focus on optimization for given criteria. At present, evolutionary 
algorithms cannot replace humans in design practice; what algorithms can do is help 
designers explore the characteristics of problem and solution spaces and articulate 
them (spell them out and arrange elements in a structured manner [47]). For an evo-
lutionary algorithm, the notion of re-framing a solution space as discussed above 
in the design context corresponds to altering the objective function that measures 
the success of the solutions generated. By generating alternative designs, algorithms 
may be able to counteract designers’ tendency to fixate on a certain subset of pos-
sible solutions [35].
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While evolutionary algorithms have grown popular in architecture, there are 
fewer examples of them in product design. Their application in industrial prod-
uct design has consisted predominantly of deploying non-interactive genetic 
algorithms, or GAs (in one case, to explore the design space of lamp-holders 
[30]). It has proven especially challenging to express subjective factors such as 
aesthetic preferences in the GA’s objective function – notwithstanding various 
theory-inspired attempts to formalize aesthetics (e.g., of product shapes [31]), a 
satisfying solution for communicating subjective, intuitive qualities for GA pur-
poses remains elusive. An alternative technique for dealing with such features 
is to employ a “human-in-the-loop” approach, which complements algorithmic 
selection (via an explicitly stated objective function) with a human selecting from 
among the alternatives generated. Our research was focused on exploring the 
design process from the angle of the latter approach, referred to as interactive 
genetic algorithms (IGAs).

Scholars have analyzed IGAs’ value for the design of cameras [29], cars [10], fra-
grance bottles [26], wine-glass profiles [50], and fashion [18, 51], with their atten-
tion largely confined to the algorithms’ benefits for exploring the design space [1, 
2, 28] and to engineering aspects of the systems’ architecture and implementa-
tion. Those few studies that have examined how IGAs are used and experienced 
by designers have restricted their gaze to one stage of design or just a few compo-
nents of the larger process. When surveying the landscape in light of Howard et al.’s 
general six-stage model for engineering design processes [23], one finds that prior 
work covers no more than narrow windows from the process and usually focuses on 
conceptual design [10], the third stage in the process (identifying a need, analyzing 
the task, performing conceptual design, conducting embodiment design, executing 
detailed design, and implementing).

One exception is Bezirtzis et al.’s work [5] considering the fourth stage, in which 
the structural or product-architecture design identifies a myriad of opportunities and 
requirements for the process, in “embodiment.” From studying IGA use during the 
embodiment phase of a design process for designing an airport scooter, they present 
some basic techniques to frame and shape the solution space. The team introduces 
the concept of meta-designers to articulate the conclusion that designers who work 
with an IGA are the authors of a sufficient parametric design space which enables 
the creation of the final design by them or others. One fundamental challenge they 
pinpoint as linked with meta-designers’ role is that of balancing diversity against fit-
ness. In particular, adding details to the design can produce an exponential increase 
in the parameterization’s complexity.

Our analysis of related work revealed a dearth of first-hand longitudinal accounts 
of real-world designer experiences of applying IGAs, yet only research with authen-
tic industrial design problems outside laboratory conditions and covering the full 
breadth of multi-stage creative design can inform both the design of suitably refined 
algorithms and their appropriate, well-afforded adoption by practitioners. Any such 
work must examine the design system comprising the human designer and the 
software jointly. It must address this socio-technical system’s creation of a com-
plete design specification for not a single output but a solution space capturing the 
dynamics of a real-world design case. Thereby, scholarship and practice alike can 
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understand all the relevant objectives, requirements, and limitations, in awareness of 
the resources available and factors such as the intended use environment [38].

3  The design study

We found an autoethnographic method highly suitable for rich data promoting pro-
found insight that fills the research gap. With this technique, our study not only 
builds on the established tradition of qualitative research in design research [7] but 
also tackles a concrete design task “in the wild.”

3.1  The design task

Our study cohered around the real-world task of designing a pendant lamp fixture 
suitable for mass personalization. This framing, by constraining the primary manu-
facturing and assembly methods under consideration, already restricted the design 
space substantially. In its function, a pendant lamp fixture is a rather mature basic 
concept in interior design: typically, at least one bulb or other light source hangs 
from the ceiling via electrical wire or supports, with the fixture having a configura-
tion of shades and reflectors attached to it. Pendant structure, however, manifests 
extensive variety, and the markets show constant interest in new designs. With these 
characteristics, the design of a pendant lamp offered an ecologically valid design 
problem for our purposes.

As for the temporal framing, the project’s Phase 1, lasting 11 weeks, was based 
on the designer-researcher’s personal interest rather than commissioned work. Phase 
2  of six weeks, in contrast, entailed more significant time pressure and extrinsic 
motivation, in that the results were to be exhibited publicly as assembled unique 
artifacts.

3.2  Methods

The research project situated this task within the research through design (RtD) 
framework. Evolving from a design-oriented stream of human–computer interac-
tion research, RtD focuses on building knowledge through design practice [59]. It 
shares characteristics with constructive design research [27], a way of addressing 
design problems by design-specific means to produce design outcomes. With strong 
accountability directed principally toward design practice rather than other fields, 
the rigorous theoretical use of RtD in design research has recently attracted the 
design community’s interest [20, 36].

Some studies examining the design process have employed a think-aloud proto-
col. This method has propelled two contributions that informed our work: dividing 
a designer’s activities in a parametric-design process into two levels—application of 
design knowledge and a rule algorithm [58]—and developing a problem–solution 
co-evolution model for design [15]. However, protocol-based studies encompass 
only brief portions of the full design process. In their typically lab-based settings, 
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one cannot comprehensively chart the interactions among key components of the 
process, such as actors’ capabilities, their actions, the artifact’s creation, audiences, 
and the affordances of the material world [17].

Studies that adhere to protocols also presume a gulf between the researcher and 
the designer subject. While such splitting allows for reflection in action, this setting 
remains limited to researcher-imposed problems and discrete phases or steps, since 
the researcher seldom can accompany the designer for a longer time. This limita-
tion renders the think-aloud method impractical for longitudinal, reflection-in-action 
studies of real-world design problems.

These considerations were among the factors guiding us toward researcher intro-
spection. In this family of methods, researchers’ investigation of their own ongo-
ing experiences serves as the primary source for generating knowledge. Xue and 
Desmet in particular stress its value for human–computer interaction researchers 
wishing to access insider experiences in a specific domain [55]. The researcher-
introspection technique we chose is autoethnography, a means of bringing together 
autobiographical reflection and ethnographic principles for inquiring into cultural 
phenomena through self-observation and reflexive investigation [33]. From a survey 
of the literature, Lucero has compiled criteria for successful ethnography (well-set 
study boundaries, authenticity, plausibility, criticality, self-revealing writing, inter-
lacing of ethnographic material and confessional writing, and generalizability) [32]. 
Offering further guidance, Chien and Hassenzahl examined how autoethnography 
can be combined with the RtD approach [9]. They put emphasis on the richness of 
the data obtained from the designer’s accounts, alongside the analysis’s systematic 
nature and anchoring the interpretation of the data in theory-based knowledge.

Adhering to the principles specified by Chien and Hassenzahl, the paper’s first 
author conducted autoethnographic research utilizing screenshots from the software 
(encapsulating interim genotype versions and phenotypes developed by an evolu-
tionary algorithm) and textual notes taken during and right after design sessions (in 
line with practical considerations detailed by design researchers [37, 55] in relation 
to material such as diary entries). Hence, our study benefited from both concurrent 
and retrospective introspection, with emphasis weighted toward the latter.

Fig. 1  The design study’s activities depicted in line with Howard et al.’s [23] six stages of engineering 
design processes, where the dots marking the key events in the reflection reported upon point to how 
IGA was used throughout the design process
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Presenting the study’s design and key steps, Fig.  1 highlights the longitudinal 
nature of the project and its exploration-oriented goal. We sought to identify areas 
worthy of future study rather than find generalizable answers to a specific question. 
Our discussion section details the steps necessary for the designer to reach that cru-
cial goal.

3.3  Designer perspective

Especially with regard to the findings and their interpretation, this researcher-intro-
spection study was shaped by all authors. However, at the heart of it is the autoeth-
nography by the first author, an experienced researcher and designer. Alongside 
eight years of human-centered design research, this author’s background includes 
a decade of industry experience as a consulting and in-house industrial designer in 
Europe and the US. Work as a surface modeler in the automotive industry and as an 
industrial designer for e.g. occupational protective equipment has supplied expert-
level skills in surface and parametric solid CAD. Also, the designer-researcher has 
been teaching the use of CAD tools at design universities part- and full-time. As for 
the software employed in our study, the first author can be considered an advanced 
user but not an expert.

3.4  The software tools and algorithm

Dovetailing with the objectives of constructive design research, one of our major 
goals is to advance the adoption of IGAs in industrial product design. This neces-
sitates empowering other designers to apply our insights. For ready application in 
their practice, we turned to a set of off-the-shelf software tools that are already pop-
ular in real-world design.

The designer’s co-creation partner in our case study was a multiple-component 
system. In it, the visual programming extension Grasshopper [19] provides a par-
ametric design environment (PDE) for the second component, the 3D modeling 
application Rhinoceros 3D [40]. For the environment’s construction, parameterized 
nodes get connected to form a directed acyclic graph, where the nodes represent 
shape-grammar rules. Finally, freely available add-on Biomorpher provides an IGA 
serving to optimize the parameters (see Fig. 2). To this end, Biomorpher encodes all 
parameters in a normalized real-number genotype vector. It provides a user interface 
for manipulating the algorithm’s initial parameters, such as mutation rate, popula-
tion size, and single-point crossover. The interface also facilitates later evaluation 
and selection of design candidates that the human partner deems worthy of retention 
and further evolution.

Generative design algorithms in general can effortlessly produce innumerable 
design candidates; however, reviewing these outputs and choosing the best of them 
for further development can quickly grow overwhelming [18, 46]. To reduce user 
fatigue, Biomorpher exploits a cluster-orientated genetic algorithm (COGA) [6] that 
applies k-means clustering to the whole population of candidates and presents only 
12 instances of the clusters’ centroids to the designer for review, as shown in Fig. 3. 
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In a similarity to Krish’s “represented regions” of the solution space [28], the clus-
ters can be thought of as representing the various designs’ spread of locations in a 
multi-dimensional space of quality characteristics. All instances are accompanied by 
details such as the number of non-shown instances in the cluster. The system assigns 
all user-selected candidates a maximum fitness of 1.0. A designer may complement 
the chosen set of design candidates by specifying objective performance criteria for 
further evolution; these criteria correspond to standard evolutionary algorithms’ 
objective function. Any optional criteria supplied get transformed into a single fit-
ness value (in which they are granted equal weight) applied to all candidates not 
yet picked by the user. When creating a new population from the fittest individu-
als, Biomorpher maintains a record of the previous population so that the user can 
return to previous generations if evolution leads in an undesired direction in the 
parameterized solution space. After having terminated the process, the designer can 
commence further design/fabrication from a given instance’s 3D geometry. Biomor-
pher’s operation and interaction with the designer, outlined in Fig. 2, are detailed 
more fully from a technical standpoint elsewhere [22].

3.5  Findings: introspective design reflections

This section presents an experientially oriented account of using the IGA software 
described above. It is written in the first-person singular to emphasize the autoeth-
nographic reflections and for readily distinguishing from the analysis based upon it.

The presentation begins with the Phase 1, the 11 weeks in which the designer 
used the IGA software to delimit a solution space capable of visualizing pendant-
lamp concepts. From section “Operationalizing disorder” onward, the account deals 
with the six weeks within which Phase 2 refactored the design and fabricated a set 

Fig. 2  The Biomorpher process, with human-interaction stages in red—flowchart adapted and extended 
from Harding and Brandt-Olsen’s work [22] (Color figure online)



 Genetic Programming and Evolvable Machines            (2024) 25:4 

1 3

    4  Page 10 of 23

of physical prototypes for the EMMA exhibition. The report focuses on reflections 
that illuminate how developments in the designer’s knowledge-level problem space 
affect rule-level considerations, an issue elaborated upon below in the context of 
design fixation.

3.5.1  Aesthetic objectives

The pendant would need to be rather large: the actual interior I had in mind was a 
9 × 5 meter space in a lakeside cabin with a contemporary ethos, where the ceiling 
is five meters high on average. The harsh, often windy north-European locale of this 
shoreline site bears resemblances to the northern Atlantic coast. My initial concepts 
for the design borrowed from the aesthetics of aviation, specifically the wing foil 
and truss structures of airplanes. Another design cue came from cetaceans, even a 
whale carcass with the rib cage visible as bare bones. Vaguely linked to this in my 
mind was an Inuit kayak: flashes from some old films of Inuit life hit my mind occa-
sionally during the intentionally low-key incubation process. Hence, the cues were 
conceptual in nature.

At this early stage in the design, I performed no searches (e.g., of the Internet) 
for images, since that might have constrained the mental imagery of the structures 
during a very sensitive stage in the design process. My objective was to channel an 
experience of people enjoying the interior with subtle visual cues, leading to inter-
pretations stemming from their personal experience. I framed the artifact as one 
intended to raise questions, not model any existing entity. Success in honoring the 
design intent for the pendant must be judged by these multi-interpretive semantics.

Fig. 3  Biomorpher’s selection view from the second phase of the project: drawn from the full generation 
of 48 instances, 12 example design instances intended to present maximally different designs, as deter-
mined by k-means clustering in Biomorpher (the whale-skeleton-like rib structure is a primary-generator 
feature retained throughout the process)—screenshot taken and used with permission from Biomorpher’s 
authors [22], with white balance adjusted for clarity
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The initial design space was not informed by visual cues and form semantics 
alone, however; materials and manufacturing technology often restrict the design 
space significantly. In a product architecture, no clear line exists between the struc-
ture’s visual elements and various functions. The balance for this particular product 
lay more toward aesthetics’ significant role in interior design, and few stakeholders 
with conflicting requirements were involved.

For the material, I contemplated plywood, because of its affordances for design. 
Even high quality plywood is available locally. This material is lightweight, rela-
tively inexpensive, long-lasting, easily and safely disposable, and rather sustainable 
from a manufacturing point of view. Such techniques as laser cutting make it easy 
to cut accurately from a sheet, and assembly, in turn, can rely on simple separate fit-
tings if any are needed at all. It can bend, though only in a single direction at a time. 
Another aesthetic element is thin sheets’ ability to let some light through. Finally, 
plywood is visually suited to many environments.

3.5.2  A definition and genotype from conceptual cues

I used the IGA for a low-intensity process of initial fixture design from January to 
early March 2021, often with days between consecutive sessions. When the initial 
design cues, aesthetic considerations, and material selection had circumscribed 
the concept sufficiently for proceeding with embodiment design  [23], I developed 
the initial parameters for the model. My objectives for the parameterization and its 
genes were to 1) create valid geometry; 2) enable easy growth of the solution space, 
for greater diversity of fabricable designs; and 3) sufficiently factor in the capabili-
ties and limitations of the materials, manufacture, and assembly methods.

While the aforementioned cabin interior functioned as an environment cue, I 
did not confine my focus to delivering a single design. Instead, the objective was a 
robust parametric representation and genotype capable of ultimately covering a large 
enough solution space for efficient product personalization, aligned with the prom-
ise  of  industry 4.0 [53]. Accordingly, the co-creative system had to mesh seam-
lessly with the final stages (detail design and implementation [23]), since it would 
be inconvenient to leave any significant steps of manual post-processing for indi-
vidual phenotypes.

I generated the initial populations during the first design session with the com-
puter, after parameterizing the design and setting up the initial gene configuration. 
Thus began an iterative process with the IGA: After creating a few generations via 
one parametric definition, I compiled insight for re-framing the problem. Once the 
generated populations had served their purpose in facilitating this re-framing, I dis-
carded them. The insight then guided my further development of the definition and 
changes to the gene value domain limits (i.e., shaping of the solution space).

To support exploration of the solution space, I directed the IGA’s generation of 
populations, sometimes without a clear objective in mind. With an aim of exploring 
the current solution space, I was attuned to unexpected versions and details. Aware-
ness of the solution space’s limitations motivated me to encourage variety in what 
the system produced. The visual representations and an ability to both manipulate 
and render them at different degrees of fidelity on the screen were imperative for 
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assessment and for decisions on future definition changes. In the majority of cases, 
I found the plain visualization furnished by Biomorpher’s user interface (an exam-
ple of which is shown in Fig. 3) sufficient. In both the first and the second phase of 
the project, I carried out rudimentary lighting studies via computer renderings after 
half of the parameterization effort (Fig. 4 presents a few of these renderings). For 
such renderings to be representative enough for full-fledged analysis, a certain level 
of model fidelity is necessary. Current PDE tools require the human partner to put 
some effort into the model.

For further development of the design, I engaged in individual sessions at inter-
vals of several days. In some of these sessions too, I generated populations for 
exploring the solution space where inspiration led me, without making changes 
to the parameter settings, while focused parameterization work ensued on other 
occasions.

3.5.3  A patch of botched efforts

After five design sessions (of 2–4 h each) in phase 1, I created a new parametric def-
inition, with a wider solution space, from scratch. Ultimately, I had to discard this 
after a few hours of work because a critical mistake became evident with regard to 
the objective constraints of the material: geometry that requires curvature in two 
dimensions, of which plywood is incapable. When defining the initial parameters, 

I was aware of the constraints linked to the material choice, but I later forgot the 
reason for setting them as I had. Upon finding the resulting instances beyond the via-
ble design space, I back-pedaled to an earlier version, which I refactored for added 
robustness and greater capacity to produce further variations. Later on, sharing the 
state of the “evolution in progress” with three peers (on separate occasions) left me 
demotivated: disappointed that they had not seen anything particularly creative in 
the output, I felt pressure to pursue more novel output.

Fig. 4  Computer-generated renderings as used for the assessment of diversity within the parameterized 
solution space and for visual appeal of both the basic structural concept and the individual instances 
when lighting is simulated
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3.5.4  Inspiration from the wild

Then, in the third week of the first phase, viewing a television program with swim-
ming whales inspired me to test a wave pattern for the strips under the pendant’s 
belly. This knowledge-rooted inspiration sparked rule-articulation efforts: I set out 
to find patterns that fitted the materials and furnished a visually appealing feature. 
Although the re-designed parameterization and solution space in the second phase 
would not end up utilizing these patterns—development of other parts made it 
unnecessary—the renderings with the wave patterns did provide seeds for generat-
ing visual appeal via the gradient generated by the interplay of curved plywood and 
light.

Another ultimately influential factor lay in the material I procured after the first 
main phase was complete: I ended up using thinner plywood than originally envi-
sioned, for both bending and light-passing properties. This three-ply wood bends 
easily with the direction of the surface grain. Combined with aspirations for greater 
three-dimensionality in the outcome (for aesthetics and lighting appeal), this led 
toward a final configuration wherein the fixture’s louvers (the ribs) follow a curve. 
The definition evolved iteratively as the design process uncovered further material- 
and geometry-related opportunities and constraints.

3.5.5  Operationalizing disorder

In the second phase of the work, I selected several form-describing attributes to 
equip the system with objectives for the design of the solution space. These entailed 
continua such as symmetric–asymmetric and organized–disorganized. My aim 
of expanding the solutions’ variance required steering clear of the popular mod-
eling practice of mirroring. Even though refactoring from disorganized definitions 
in insufficiently commented visual code demanded precious time and necessitated 
changes from the original principles for parameterization, both the underlying form 
principles and the design of the details improved in consequence. This is not uncom-
mon in the course of remodeling something.

All told, 20 distinct genes control the geometry in the final version. The final 
parameterization for the artifact’s asymmetrical undulation can be characterized 
thus: One gene is binary, for asymmetry being either on or off. In the former case, 
the amplitude of asymmetrical undulation of the features and, thereby, the global 
form can vary under the control of another gene. A gene that can take different val-
ues provides the seed for a random-number generator that dictates the locations of 
geometry change. Since evolution requires traits to pass to the next generation, the 
system can retain this.

Figure   5 presents an illustrative set of both symmetric and asymmetric 
instances—i.e., solutions with and without the randomly generated undulation in 
shape of the belly curves.
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3.5.6  Fabrication

For the move to creating a solution for prototype fabrication, I made a few post-
evolution adjustments to the selected phenotype in each instance, by tuning the 
variables (individual “genes”) that guide feature-generation. The aim was to 
accentuate key characteristics, since one role for the fabricated prototypes was to 
demonstrate the extent of the variability that the parameterization could create. 
Accordingly, I adjusted such elements as the length, amplitude, and frequency of 
the wave-formed perimeter of the reflection-shield profile (which, in turn, con-
trols the quantity of ribs) and the amplitude of the ribs’ asymmetric undulation. 
Even in this “tweaking” step, the solution-space exploration still involved the 

Fig. 5  A collection of generated instances that showcases some of the diversity (the instances shown 
could be fabricated by unrolling the parts and cutting from sheet material; for explication, Fig. 6 presents 
the instance fourth from the left here as a fabricated prototype

Fig. 6  A photograph of 
fabricated instances from the 
solution space, as exhibited at 
the museum
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IGA through an evolutionary process. Once evolution had led me to an appealing 
instance, the tuning process applied alterations for its fabricated version.

The first fabricated instance was cut from 1.4 mm plywood with a laser cutter. 
Assembly was surprisingly smooth, leaving me proud that so little “real” proto-
typing had yielded such a successful outcome. Figure 6 presents photographs of 
three of the fully assembled artifacts at the museum. The third prototype’s asym-
metrical undulation showcases the degree of versatility possible across instances 
from the solution space established.

4  Discussion

Proceeding from the autoethnographic material, the team of authors reflected col-
lectively on the nature of the design process that emerged, on the creation per-
formed by the designer and IGA together, and on the study’s limitations.

In sum, the introspective RtD study revealed the IGA’s multifaceted part in the 
design process. It helped the designer articulate the design space and, thereby, 
also understand that space’s boundaries. It played a role also in visualizing and 
conceptualizing the landscape of possibilities within them. Moreover, the algo-
rithm functioned as a pathfinder too: the designer could take a passive role and let 
the IGA offer its suggestions, for rejection or to be picked up for further explora-
tion. Finally, the algorithm aided the designer in visualizing and fine-tuning the 
vision for the final design. These roles prompted consideration of designer–IGA 
co-creation on several fronts, discussed below.

4.1  Early compassing of the design space

In that the designer set the initial objectives in response to particular visual cues 
for the design’s direction (e.g., a whale skeleton), the design process seems to 
have been informed by a primary generator [13], or a promising conjecture, often 
cited as supplying a basis for the design as it begins to unfold. However, the pro-
cess deviated from the typical method of collecting visual material to serve as or 
develop primary generators. The designer searched for visual images aligned with 
the design cues only after developing a parametric definition and population gen-
erations based on this. The notes reproduced above express a concern that perus-
ing actual images early on might be constrictive. For this reason, it seemed ben-
eficial to use the IGA for probing aesthetic directions. Indeed, the IGA provided 
further cues of potential within the design space from early on. This observation 
provides evidence of IGAs’ potential utility as partners in actualizing and refin-
ing a designer’s visions. Proceeding from the primary generators, the co-creators 
can follow directions worthy of exploring by sculpting the parameterized solution 
space.
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4.2  Support in problem–solution co‑evolution

The initial parameter sets took only a few hours to develop, after which the designer 
utilized the IGA for population generation and evolution. The process of develop-
ing some populations and iteratively looping back to develop the definition further 
(or to correct the genes’ scaling to reflect the design space’s constraints) resembles 
the problem–solution co-evolution process as delineated by such scholars as Bernal 
et al., who note that, while generative design approximates the co-evolution problem 
and solution characteristic to expert designers, it lacks mechanisms for reformula-
tion [4]. Because co-creativity with an IGA naturally steers a design process toward 
such dialogue, IGAs may help equip some of designers’ processes with more expert-
oriented characteristics.

A technique applied in the study’s second phase may point to a mode of meta-
design and IGA application that has received little scholarly attention (with few 
exceptions [5]) in the context of product design. This involves placing focus on 
sculpting the solution space. When developing the parameter definition’s final ver-
sion that resulted in the actual prototypes, the designer resolved to apply the IGA 
in phase 2’s third parameterization session. Building on the earlier phase’s results, 
the work now focused on attempting to expand the solution space via further fea-
tures and control of them. While there was less need to “play with” IGAs in the 
early steps after some initial parameterization setup, the IGA ended up getting used 
constantly to inform the shaping of the solution space. The ability to visualize the 
variability of phenotypes encapsulated in the solution space and, on this basis, pro-
ceed further in some intriguing directions through evolution benefited the creative 
process. This afforded a meaningful, concrete mode of reflection and analysis that 
deserves greater attention.

The findings support the contention that employing an IGA in the design process 
can be valuable for informing and filtering the design space [21] through a cycle of 
population generation, analysis, and editing of the genotypic representation. In our 
case, by filtering the design space, the IGA exposed areas for potential inquiry, thus 
motivating the designer to redefine the constraints of the space. The role evident 
here is quite different from merely serving as a meta-heuristic tool for finding unex-
pected but iteratively optimized solutions to quantifiable problems: the IGA assisted 
in redefining the problems themselves, in addition to offering solutions.

4.3  The fixation trap and escaping it

As the foregoing discussion explicates, genetic algorithms open a door whereby 
their users (designers and others) can discover unexpected, serendipitous solutions 
to problems. Indeed, the designer’s introspective report identifies several occasions 
on which this occurred in our single case study alone. However, hindsight enabled 
identifying something else alongside these: negative impacts on the design process 
from the interaction with IGAs. These correspond to three “fixation modes” concep-
tualized by Robertson and Radcliffe in the context of CAD more generally [42].
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Firstly, a form of bounded ideation is evident in the session wherein the designer 
started creating an alternative genotype from scratch but later recognized the solu-
tion to be outside the limits of the fabrication possibilities accepted. Since expert 
designers intuitively grasp the many constraints involved and frame the problem 
accordingly [12], this can be regarded as a “newbie error.” While having attended 
to the constraints initially, the designer forgot a fundamental one after getting cap-
tivated by the engaging computational-design task of defining a parameterization 
with a large enough solution space and growing immersed in the suggestions pre-
sented by the partner. In the language of Yu et al.’s model of parametric design [58], 
cognitive load from work at rule-algorithm level led to mistakes in knowledge-level 
work.

Secondly, while one of the initial reasons for devising a new genotype was to 
open new angles of approach to the design space so as to avoid premature fixation. 
In the initial genotypic representation, the interaction with the software distracted 
from the creative tasks at the core of the project. Coupled with time constraints, 
this distraction resulted in returning to the older version of the genotypic representa-
tion rather than creating a new one. Likewise, the labor perceived as connected with 
untangling the convoluted codebase culminated in delays to the inevitable refactor-
ing of the definition for the asymmetry features. These compromised the end result’s 
operationalization of asymmetry. As one might expect, the threshold to significant 
changes rose with complexity. Such coding practices as proper commenting and 
good general organization could have ameliorated this manifestation of premature 
fixation by decreasing the cognitive burden of refactoring and considering further 
changes.

Finally, circumscribed thinking became prominent in the process observed. From 
among all possible ways of using Grasshopper, with its numerous features and 
plugins, the designer chose to approach the design task primarily by means of para-
metric modeling schemas encountered previously. By circumscribing the designer’s 
thinking, prior experience may have resulted in missed opportunities to develop a 
genotype for broader design-space exploration— e.g.,  applying an evolutionary 
approach that affords greater variability [24]. The diary from the second phase of 
the project captures a second example, through contemplation of whether directly 
modeling one or a few instances might support accumulation of design knowledge 
better than does immersion at algorithm level with all its attendant difficulties of 
widening the solution space for generation of instances. The notes imply a feeling 
of being “swamped” by rule-development work, with accompanying worries about 
general progress and the resulting design quality. In another telling incident, build-
ing a physical prototype sparked awareness that the rule definition had caused an 
unappealing inflection in the instances’ longitudinal strips whenever the asymme-
try gene was active. Stepping outside the digital design environment uncovered 
new design knowledge, prompting changes at rule-algorithm level. This interplay 
too highlights circumscribed thinking as an outgrowth of challenges in propagating 
design knowledge to operations (algorithm) level.

While much of the fixation identified in connection with these modes may plague 
work with PDEs more broadly, applying an IGA certainly influenced their mag-
nitude. We can conclude that genetic algorithms, while offering general benefits 
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through their capacity to generate unexpected, seemingly creative design solutions, 
may also limit the designer’s field of vision, foster complacency and overlooking of 
biases, and lead to suboptimal work practices.

4.4  The IGA as a creation partner

Creativity is most commonly defined in terms of two components, novelty and value 
[43]. In conditions of a fitting parameterization, IGAs provide an opportunity to 
search for unexpected, novel solutions from a meaningful (i.e., valuable) solution 
space. Moreover, they permit inclusion of objective selection criteria if needed. By 
virtue of their ability to assess both novelty and value, we consider them partners in 
co-creative interaction.

The IGA’s capacity to draw out instances previously unknown to the designer 
spurred the human partner to generate new populations and generations accord-
ingly, even in the absence of a corresponding explicit objective. Accordingly, the 
risk of user fatigue, articulated by, among others, Shackelford [46], likely depends 
on the role, expectations, and motivations of the person performing the selection: a 
designer striving to improve the meta-design differs in exploration-drivers from one 
merely aiming for a sufficient solution from some solution space. In any case, the 
practical flow of the designer’s work sits well within frameworks of a creative pro-
cess comprising mutually distinct phases of active doing plus thinking (i.e., param-
eterization) and spans of lower-intensity incubation (in which one might apply IGAs 
“for fun”) [34].

For the IGA to act as a creative partner, the algorithm must encode some of the 
human designer’s knowledge of the design space. How close it comes to the neces-
sary level of expertise depends on the designer’s ability to encode the design space 
in a creativity-conducive manner. Notwithstanding the success of the case project, 
we cannot conclude that it is universally achievable. Being a rather new addition 
to designers’ toolboxes, IGAs probably will undergo substantial experimentation 
in various design communities before best practice for representing design spaces 
becomes clear and established.

By following the intricate lines of relations between the co-creative partners, 
along with the flows of the process’s materials and environment, our study shed light 
on several avenues for improving the partnership further, particularly in relation to 
the fixation modes discussed above, support for design co-evolution, and means of 
inspiring designers (e.g., through visualization). These paths offer a starting point 
for developers embarking on further adaptation of IGAs in co-creative design.

The method followed in the project develops diverse configurations with the same 
basic structure, rather than disparate instances [24], as Fig. 5 illustrates. This stems 
from the primary generator driving the initial work, in conjunction with the focus on 
producing tangible outcomes in awareness of the constraints imposed by the materi-
als and manufacturing methods. Another factor directly affecting variability is the 
designer’s skill in transferring design knowledge to rule-algorithm level. One could 
argue that the computer is only as good a designer as its human partner is.
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Co-creation with the resulting parametric definition can produce variety-rich sets 
of valid geometries that are suitable for fabrication. From the selections to fabri-
cation in the case project, little extra labor was needed to generate the vectors for 
cutting the parts from sheet material (e.g., with laser or water-jet tools) for the pro-
totypes in Fig.  6. Upon the conclusion of the design process, the IGA’s role had 
evolved from playing a part in developing the design (i.e., in the meta-design effort) 
to that of a partner entity with which the personalized instances underwent evolution 
and ultimate selection.

The outcomes are conditioned also by the partners’ concept of the design pro-
ject: how both humans and algorithmic tools express it. The final “tweaking” of the 
designs before fabrication is a case in point. In a contemporaneous note, the designer 
mentions perceiving them as sub-types of instances and undertaking fine-tuning to 
create a prototypical example of a certain sub-type. The designer saw the solution 
space not as uniform but as regions represented by certain prototypical instances.

4.5  Limitations of the study

Though our report fruitfully expands the picture from our earlier work by covering, 
in addition, the design-project phases of late concept design, embodiment design, 
detail design, and to some extent the implementation stage, it could be extended 
further, beyond the stages of Howard et al. [23]. Co-creative commercialization of 
the solution space would benefit from refining the design for lean manufacturing and 
assembly.

The reader should bear in mind also that our study is anchored in experiences 
from a single designer and design case. Often, first-person methods such as the one 
employed here face justified criticism for their limited potential to offer generaliz-
able conclusions. While we judged a reflection-based longitudinal case study to hold 
particular value for tool-creators’ endeavors to explore how a given tool gets used 
and experienced in practice, we were keenly aware that such work primarily pin-
points areas meriting further study. To produce general conclusions, the research 
must encompass a broad spectrum of participants and cases, and it would benefit 
also from quantitative measurement instruments. The paper’s final section elabo-
rates on our plans for precisely such efforts.

In this study, the researcher was part of the experiment. While separation between 
designer-participant and researcher may have mitigated risks of bias, it would also 
have removed the researcher from the experience. For studies building on our work, 
we recommend a mix between independent participants and designers acting also 
as researchers, for reducing any bias while still permitting some researcher intro-
spection. Also, the introspection method, while valuable, shows sensitivity to time 
and context. When comparing the Phases 1 and 2 of the experiment in hindsight, 
the designer reported feeling differently about some of the earlier self-reflection, 
likely through experience gained with the algorithm and work with the physical pro-
totype. This highlights that one’s contemplation perspectives can vary and develop 
even within a single creative process. To circumvent such issues with introspection’s 
validity and address note-taking granularity, we engaged in further reflection on 
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action when framing the designer’s notes against the backdrop of design literature 
and when preparing this article.

When reviewing the project’s documentation, we found little reflection in action: 
most notes were retrospective reflections on the activities, even if the insight was 
recorded not long after the design session. Future research could attend more closely 
to balance in this respect. A think-aloud method with simultaneous screen-capture 
from the software could have encouraged different thoughts, on a wider range of 
topics. However, anyone applying such techniques to a project several weeks long 
(and potentially involving incubation periods during which additional insight may 
develop) must wrestle with vast quantities of data. Furthermore, these data-collec-
tion methods bring their own validity threats – for instance, as things get interest-
ing and a certain flow state is established, note-taking may interfere with pivotal 
moments [37]. That said, additional in-situ documentation methods, such as cap-
turing video of the activities for subsequent analysis, would provide higher-fidelity 
results. We intend to implement these to enrich future work.

5  Conclusions and future work

Our RtD-grounded report provides a thorough experiential overview of co-creative 
IGA application throughout a real-world creative design process – all the way from 
late concept design to tailoring for fabrication of working prototypes for products 
suited to personalized manufacture. At the same time, it presents methodology 
and rich practical insight contributing to the emerging body of research into how 
AI influences the experience, and perceived agency, of product-design practitioners 
specifically and professional creatives more generally.

Reflecting on our findings against theory from design research and computa-
tional design, we found that the relative ease of applying interactive evolution-
ary algorithms to support design-space articulation and exploration improved the 
designer’s capabilities and highlighted alternative paths in the design process. On 
the other hand, the case study revealed the “darker side” too: how engaging with 
such algorithms can impinge on design practice (e.g., by exacerbating bounded idea-
tion). Awareness of these potential pitfalls could serve as a first step toward avoiding 
them through both appropriate use of the software and developers’ adjustments to it. 
Translating design knowledge emerged as particularly important. Its operationaliza-
tion was rendered much more complex and daunting on account of the objective of a 
solution space of fabricable instances, as opposed to a single design instance. Acting 
as a meta-designer tackling these objectives requires skills that may require more 
advanced skills and, ultimately, specialization on designers’ part.

The autoethnographic study highlights shifting and complex relations that are by 
no means straightforward. Hence, we plan to direct our future work toward offering 
deeper, generalizable, and more actionable insight pinpointing how AI algorithms 
can augment and also complement human creativity in design practice. To this end, 
we aim to conduct longitudinal research that combines small-scale first-person stud-
ies with larger protocol-based studies. This should produce highly reliable findings 
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fueled by broad-based reflection in action by a wide pool of designers. In scholarly 
work following from such efforts, large-scale quantitative studies should flesh out 
the picture still further by using custom-developed questionnaires and well-validated 
established instruments to check the generalizability of selected findings.
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