
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:19
https://doi.org/10.1007/s10710-023-09467-x

1 3

Jaws 30

W. B. Langdon1

Published online: 22 November 2023 
© The Author(s) 2023

Abstract
It is 30 years since John R. Koza published “Jaws”, the first book on genetic pro-
gramming [Genetic Programming: On the Programming of Computers by Means 
of Natural Selection. MIT Press (1992)]. I recount and expand the celebration at 
GECCO 2022, very briefly summarise some of what the rest of us have done and 
make suggestions for the next thirty years of GP research.

Keywords  Genetic programming · Genetic improvement · Modularity · Scaling · 
Parallel computing

1  Introduction

An evening at the 2022 GECCO conference was devoted to celebrating the thirtieth 
anniversary of the publication of John Koza’s book “Genetic Programming: On the 
programming of computers by means of natural selection” [1].1 Indeed that is the 
purpose of this special issue of Genetic Programming and Evolvable Machines. I 
hope to put my own spin on and fill out points raised in that panel discussion (which 
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1  Named after Charles Darwin’s 1859 foundational book “On the Origin of Species by Means of Natural 
Selection” [2] which contains huge volumes of evidence (for example gathered on his five year voyage 
around the world [3]) in support of his scientific theory of evolution, which after a struggle was eventu-
ally accepted as the explanation for biology.
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was recorded and is available on line2). I should stress this is not a survey of GP and 
that many valuable contributions are omitted. Similarly many digressions are placed 
in footnotes and there are hyper links to online articles in Wikipedia etc.

1.1 � The book

Dr.​ Amy Brand, Director of The MIT Press, was clearly delighted that John Koza 
had chosen MIT Press to publish the first book on genetic programming [1] (see 
Figs. 1 and 2). She says it ”was one of the seeds from which sprang a whole ecosys-
tems of books and journals at the intersection of computer and biological sciences 
for the MIT Press.” Adding it “is still available and selling in print-on-demand. 
That’s quite solid for a specialized and ground-breaking work in computer science 
from 1992.”3

John Koza said that the motivation for the book was his team in the preceding 
five years had published GP solutions to 81 diverse problems common to artificial 
intelligence, machine learning and knowledge based systems. They had shown that 
instead of, as had previously been done, using a solution technique devoted to each 
benchmark, a single evolutionary computing technique (now named Genetic Pro-
gramming4) could solve them all56. However the GP solutions were published in 
widely disperse conference venues. The goal of the book was to convince everyone 
that 1) a single technique could solve many diverse problems and 2) they could all be 
recast as the problem of searching for (and finding) a computer program. Whereas 
previous solutions had often used (non-evolutionary) search but used a representa-
tion, e.g. graph, grammar, network, often purpose built for each benchmark. The 
size of the book7 stems from the need to convince people that GP is a general solu-
tion. Whereas everyone who first comes to programming knows that programming 
languages are exceedingly picky about insisting they get everything, every comma, 
every semicolon, in the right place: so how could random stand a hope? Hence a 

3  John Koza’s publications have been at the top of the list of publications downloaded via the genetic 
programming bibliography since 2006, when download statistics were first gathered.
4  The name Genetic Programming was suggested by David​ E.​ Goldb​erg. John Koza said he was origi-
nally reluctant to use the name but came to realise it was a brilliant choice.
5  John Koza has previously likened GP’s success with early machine learning benchmarks with Sher-
man’s march through Georgia in 1864, which helped end the four year USA civil war.
6  In the late 1990s Peter​ Nordin reported similar success with his linear genetic programming on the 
UCI machi​ne learn​ing bench​marks.
7  The first genetic programming book was colloquially known as “Jaws” after the 1975 Hollywood 
movie of the same name, were the shark appears to get progressively bigger throughout the film. In a 
similar way Koza remarked that as each new GP experiment was covered, the book got bigger, eventually 
exceeding 800 pages. The three successing GP books, are similarly known as Jaws 2 [4], Jaws 3 [5] and 
Jaws 4 [6], all four are each accompanied by an hour long video [7–10] (now available on YouTube and 
www.​human-​compe​titive.​org). In 2009, John Koza gave a seminar at Stanford summarising his GP work 
which was recorded and is also available on YouTube [11].

2  A Conversation with John Koza, 30 years after the publication of Genetic Programming Sunday, July 
10, 18:00-20:00 2022 https://​whova.​com/​portal/​webapp/​gecco_​202207/​Agenda/​25163​77
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substantial book, backed by a video, would be necessary to convince a skeptical 
public.8

1.2 � The man

John R. Koza was born 1944 and did both his undergraduate degree and PhD at the 
Unive​rsity​ of Michi​gan in Ann Arbor, studying mathematics and, the then newfan-
gled, computer science. He reports great interest in playing games including com-
puter games, with students and faculty, for example, John H.​ Holla​nd. As with John 
Holland’s other stude​nts9, he was well versed in John Holland’s genetic algorithms.

1.3 � The millionaire

John Koza graduated from the University of Michigan in December 1972, and using 
his mathematical skills in combinatorics, probability and game playing he joined a 
lottery company which printed games on paper which were sold at petrol stations 
and supermarkets. In 1974 he and a colleague formed their own company, Scientific 
Games Inc., to exploit John Koza’s invention of a secure way of printing scrat​ch off 
lotte​ry ticke​ts. They successfully lobbied various USA states to allow them to run 
the state’s lottery10. By 1978 the technology of printing had moved on and they jet-
tisoned their own technique in favour of more flexible computer based printing. In 
1987, having made his fortune, he returned to research.

1.4 � The researcher

From about 1987 until 2005, John Koza devoted himself to research, applying 
genetic algorithms to the discovery of computer programs (GP). He published some 
208 items, predominately papers but also book chapters, technical reports, proceed-
ings, etc. and of course Jaws [1] and the three follow-up up door stoppers [4–6] and 
the four accompanying videos [7–10]. Initially the genetic programming systems 
were written in Lisp, although later implementations where in C, e.g. [22].

There were GP workshops associated with the International Conference on 
Genetic Algorithms, ICGA-9311 and again in the summer of 1995 at ICGA-95 and 
ICML-​95. In the fall, John R. Koza and Eric V.​ Siegel organised a GP event with 

8  There is a growing body of work, such as automatic bug fixing [12] and genetic improvement [13], that 
shows ordinary programs are not fragile [14–21]. The misplaced semicolon problem refers to the source 
code syntax as understood by the language compiler (another computer program). Since the syntax is 
formally defined, computer generated mutations can be automatically written to be syntactically correct. 
If mutated code compiles, it often runs and produces an answer which can be fed into a fitness function.
9  John Holland’s PhD students include: Steph​anie Forre​st, Tomma​so F.​ Bersa​no-​Begey, Melan​ie Mitch​
ell, Tom Weste​rdale, Lasho​n Booker, Ted Codd, Clare​ Congd​on, Dave Goldb​erg, Annie​ Wu, Ken 
De Jong, Leean​n Fu, Rick Riolo, Chris​ Langt​on, Rober​t Reyno​lds, Berni​e Zeigl​er and John Koza.
10  By 2009 the combined profits to the USA state governments which permitted lotteries had reached 
$17.​6 billi​on.
11  ICGA had strong links with John Holland’s students.
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the 1995 Fall Symposium of the AAAI in MIT. In 1994 Kim Kinnear had launched 
the “Advances in Genetic Programming” edited book series published by MIT Press 
[23–25]. But, since ICGA was a biannual conference, there was no ICGA confer-
ence in 1996, and instead it was the right time to launch the first GP conference [26]. 
One of the rules laid down at GP-96, was the absolute need for independent peer 
review.

Fig. 1   Prof.​ Dr.​ Wolfg​ang Banzh​af holding his copy of “Genetic Programming: On the programming of 
computers by means of natural selection” (Jaws) 834 pages [1] at the GECCO 2022 celebration of 30 years 
after its publication (Wolfgang says he was told that his copy was the first one sold by the bookshop in 
Boston.)

Fig. 2   At 834 pages, the first 
genetic programming book [1] 
weighs in at 4lb 2oz

http://www.cse.msu.edu/%7ebanzhafw/
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July 1997 saw the return of ICGA-97, carefully scheduled a few days after the 
second GP conference, GP-97 [27], so attendance at both was encouraged. Again 
there was no ICGA in 1998, instead at GP-98 [28] there were serious discussions 
about combining the growing number of evolutionary computing conferences. John 
Koza in particular felt that the separate EC events were splitting EC into separate 
communities, and that the balka​nisat​ion of EC, did not make sense to people out-
side, particularly to funding bodies. And that this divergence was hurting the field. 
So at GP-98 there were negotiations about unifying, particularly: the Evolutionary 
Programming Society conference (EP), the IEEE’s WCCI/ICEC, GP, ICGA, and the 
International Workshop on Learning Classifier Systems (IWLCS). These were only 
partially successful, leading in 1999 to the formation of the duopoly of CEC 1999 
[29] and GECCO 1999 [30]. Of the european evolutionary computing conferences, 
only the IEE’s Galesia elected to join CEC. PPSN,12ICANN​GA and the newly estab-
lished EuroGP13 [31] continued as before14.

Again John Koza’s organisational skills came to the for, with him helping to draft 
the byelaws for GECCO. These ensure it has a federal “big tent” structure, whereby 
none of its constituent groups would feel left out or put down by the others.

Having progressed genetic programming to the point were it could be described 
as a routine invention machine [6, 32, 33], John Koza turned to public service and 
electoral reform and in 2006 founded Natio​nal Popul​ar Vote.

1.5 � The public benefactor

In 2004 John Koza started the annual “Humie​s” awards for human-competitive 
results produced by genetic and evolutionary computation. He continues to fund the 
cash prizes. The finals are held each year as part of the GECCO conference.

Since 2016 he has endowed Michigan State University with the first chair in 
genetic programming in the United States (held by Prof. Dr. Wolfgang Banzhaf).

1.6 � Pre‑history

At GECCO-2022 the question of research before genetic programming was raised. 
John Koza pointed out that by 1987 the field of Genetic Algorithms was already well 
established15. There had been early experiments on machine learning in Columbia 

15  In addition to genetic algorithms, there is early work on evolu​tions​strat​egie in Germany by Ingo 
Reche​nberg and Hans-​Paul Schwe​fel, and in the USA on evolu​tiona​ry progr​amming by Larry​ Fogel.

12  Parallel Problem Solving from Nature (PPSN) had started in Germany in 1990. It is a also a biannual 
conference on evolutionary computing and, although based in Europe, it was held on alternating years 
with ICGA. Like Genetic Programming, PPSN was also named by Dave Goldberg.
13  The First European Workshop on Genetic Programming had been held in 1998 in Paris, with the help 
of EvoNet, the EU Network of Excellence in Evolutionary Computing.
14  In 2003 John Koza listed 25 international conferences and workshops primarily devoted to the various 
forms of evolutionary computation. Many are still held annual or biannually, and some have combined. 
In most cases the proceedings are still available, often on line.

https://en.wikipedia.org/wiki/Balkanization
https://dblp.org/db/conf/cec/index.html
https://dblp.uni-trier.de/db/conf/gecco/index.html
https://en.wikipedia.org/wiki/Institution_of_Electrical_Engineers
https://dblp.org/db/conf/ppsn/index.html
https://dblp.uni-trier.de/db/conf/icannga/index.html
https://dblp.org/db/conf/eurogp/index.html
https://en.wikipedia.org/wiki/National_Popular_Vote_Inc.
https://www.human-competitive.org/
https://sig.sigevo.org/index.html/tiki-index.php?page=GECCOs
https://en.wikipedia.org/wiki/Evolution_strategy
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://en.wikipedia.org/wiki/Hans-Paul_Schwefel
https://en.wikipedia.org/wiki/Evolutionary_programming
https://en.wikipedia.org/wiki/Lawrence_J._Fogel
https://cordis.europa.eu/project/id/FP4_20996
http://www.genetic-programming.org/gpotherconfs.html


	 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19  Page 6 of 32

[34] and Manchester [35]16 universities. However John Koza traced Evolutionary 
Computing back to Alan Turing. He said Turing’s 1948 paper on machine intelli-
gence [36, 37] suggested three routes to machine intelligence: 1) knowledge based, 
2) based on logic (as would be expected of a mathematician), but John Koza high-
lighted the third: 3) in which machine intelligence was based on evolution. Although 
he pointed out it did not use crossover (which was added by John Holland).

1.7 � Advice for the future

Another question raised at GECCO-2022 was did John Koza have advice for new 
researchers. His answer was researchers must keep current, i.e., keep up to date with 
research, but not just in your area but with research in general. Take an interdisci-
plinary approach. He stressed be open to ideas from elsewhere, particularly from 
Biology.

John Koza’s heuristic (perhaps common to all John Holland’s students) was to 
ask himself “What would John Holland do?” to which the answer was often: John 
Holland would respond with his own question, “What does Nature do?” John Koza’s 
particular example was: how did Nature evolve from microscopic organisms (like 
bacteria) which have genes for creating may be about 500 proteins to multicellural 
organisms (e.g. us) which have genes for creating about 20 000 proteins. He reported 
asking this question around the Stanford School of Medicine.

The example John Koza quoted was the evolution of Myogl​obin and Hemog​
lobin, which is thought to have occurred via gene duplication and subsequent spe-
cialisation. The idea being: “accidental” copying of parts of DNA sequences is com-
mon.17 Once a species has two copies of a vital gene, it may be free to tinker with 
one. Since the other gene remains functional, the children with the duplicated gene 
remain viable and so some can survive long enough to carry both the working gene 
and the tinkered copy to the grand children. Over subsequent generations the two 
genes may diverge allowing the species to find new proteins which may help it sur-
vive. Susum​u Ohno in his 1970 book [40] suggested that such gene duplication is 
a powerful mechanism in natural evolution. Indeed John Koza used it as inspira-
tion [41] for his architecture-altering operations. These GP operations allow, not just 
the code within automatically defined functions (ADFs) [4] to evolve, but also their 
structure (e.g. which ADF calls which ADF) evolves [5, 42, 9, minute 10]. In terms 
of traditional AI, this can be thought of as dividing the whole problem into subcases 
and having an evolvable representation which facilitates not just the solution of the 
sub-problems but also their subsequent combination into a complete solution. Some 
form (or indeed many forms of) automatic problem decomposition is essential if any 
AI technique is to scale.

17  The evolution of repeating patterns in DNA due to crossover is common. Indeed crossover in GP can 
readily produce huge volumes of repeated code in trees  [38, 39].

16  Kilbu​rn, Grims​dale and Sumner ran their experiments in machine learning and thinking on the 
world’s first digital stored program computer the Manchester Mark 1.

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Susumu_Ohno
https://en.wikipedia.org/wiki/Tom_Kilburn
https://en.wikipedia.org/wiki/Richard_Grimsdale
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/index.html#golden
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John Koza felt that in the 1960s the University of Michigan had had a wide rang-
ing curriculum. He said computer scientists need to know about biology, language 
processing, psychology, information theory, electronic circuits, etc. However, this 
breadth has been lost from modern computer science curricula. Instead people 
should seek ideas from many places. He cited successful start ups in silic​on valley, 
such as Adobe, which had come from co-working between two people with expe-
rience of newspaper publishing and another with a computer science background. 
Often in silicon valley success had come from partnerships of individuals with dif-
ferent experience. Alternatively, success may arise when different experience or 
many odd ideas are held by one person.

I would like to add, be ambitious in the problems you tackle. John Koza’s impact, 
the impact of his book [1], stems from showing something widely viewed as impos-
sible could be done. Before his work, the idea of automatically evolving a computer 
program was clearly ludicrous. Similarly, the idea of a computer fixing computer 
bugs was clearly impossible, until Steph​anie Forre​st et  al. showed GP could do 
it   [43]. Readers may remember Lewis Carroll’s Alice and the White Queen [44] 
(Fig. 3), Alice reproaches the White Queen for some nonsense, saying it is clearly 
impossible, to which the White Queen responds that Alice should practice believing 
the impossible. My suggestion would be to an ambitions researcher that she should 
do the impossible. Claire Le Goues was a PhD student in 2009 [45, 46]. Fortunately 
her adviser did not tell her her idea was impossible. And so She and the team are 
famous, not because they completely solved the probl​em, but because they took 
something impossible and partially solved it. So that today the argument is not if it 
can be done, but what is the best way  [12] to solve the previously impossible prob-
lem [47–49].

1.8 � The ones that got away: missing gaps

John Koza was asked to muse on his less successful experiments. Two came to 
mind: FPGAs and GPUs.

1.8.1 � Genetic programming and field programmable gate arrays, FPGAs

John Koza had hope to create a field programmable gate array (FPGA), which had 
all the likely to be useful program operations pre-loaded. An ultra fast evolved GP 
program would then simply be an evolvable way of linking these together.

In some ways this seams similar to Juille’s [50] way of running a GP interpreter 
on the hugely parallel MasPar MP-2 computer. Although it had thousands of pro-
cessing units, they each did the same one thing at the same time. Juille’s brainwave 
was to say: since computing is cheap, we will discard most of it. (Simplifying), 
Juille built a tiny interpreter which ran on all processing elements one of a handful 
of GP operations. The different members of the GP population were spread across 
the processing elements. Each with its own program counter. If the interpreter was 
currently executing a GP op code that was not the one the GP individual wanted, it 
did nothing but wait. However the interpreter cycled round all possible GP op codes. 

https://en.wikipedia.org/wiki/Silicon_Valley
https://en.wikipedia.org/wiki/Stephanie_Forrest
https://program-repair.org/
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/MasPar
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When it did reach the desired op code, that processor executed it and moved that GP 
individual’s programme counter on by one. (The right hand side of Fig. 4 shows the 
same idea in the context of GPUs.)

It sounds hideously inefficient, but bear in mind the GP is getting useful works 
done, whereas mostly human programmers could not handle the MasPar MP-2’s 
SIMD architecture efficiently at all. Secondly often in many high performance com-
puters (HPCs), most of the time the processing elements are waiting for data to 
arrive and so spend most of their time spinning in idle loops. This turns on its head 
our common conception of computers. In HPC (and indeed GPUs, see Sect. 1.8.2), 
computing is often cheap compared to moving data. Indeed sometimes it can be 
more efficient to compute a value a second time, rather than store it and retrieve it 
later when it is needed18.

In many cases FPGAs form the bed rock of evolv​able hardw​are (EHW) [51, 52]. 
As well as offering a cheap and flexible alternative to dedicated integrated circuits 
(also known as application-specific integrated circuits, ASICs) they can be cost 
effective, particularly when only a limited number of chips will be needed. There are 
several examples where FPGAs have been used to run GP, e.g. [53–55].

1.8.2 � Genetic programming and graphics cards, GPUs

In the early 2000s it was noticed that the graphics cards (GPUs) used to drive com-
puter screens were becoming increasingly powerful parallel computing devices in 
their own right and so people started using them for other things.

Initially GPUs were designed just to rapidly render images on the computer’s 
screen. To do this quickly (in real time) they comprised many parallel components 
all doing the same thing but for different parts of the screen. As the computer video 
games market took off, GPUs rapidly ramped up their processing abilities and 
power. Each parallel component became a fully functional processor, often with 
special support for operations common in graphics applications (such as reciprocal 
square root [56]). This was so that more of the parallel aspects of generating, rather 
than simply displaying, real time video could be devolved from the (serial) CPU 
to the (parallel) graphics card. As GPUs were often somewhat independent of the 
end users’ computer mother board, keen video gamers could easily upgrade their 
GPU. This promoted rapid technological improvement, as rival GPU manufactures 
sought sales by offering better and/or cheaper hardware than their rivals. However 
even today, GPUs essentially (like the SIMD MasPar, page 8) require their parallel 
processing elements, to do the same thing at the same time.

Initially GPUs were very hard to program and their support software was only 
designed to be used by dedicated programmers employed by video game companies. 
However the abundant and cheap parallel processing the GPUs offered was taken up 
by scientific programming, leading to the field of General-Purpose Computing on 

18  A second recommendation to the novice computer scientist, do not assume that a very old paper has 
no merit. Computer science is littered with examples of old ideas which returned, e.g. virtu​al memory, 
virtu​al machi​nes and Mauri​ce Wilkes’ microcode.

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Evolvable_hardware
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Virtual_memory#/media/File:University_of_Manchester_Atlas,_January_1963.JPG
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Maurice_Wilkes


1 3

Genetic Programming and Evolvable Machines (2023) 24:19	 Page 9 of 32  19

Fig. 3   When I was your age I 
could think of six impossible 
things before breakfast
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Fig. 4   Left: Avoid compilation overhead by interpreting GP trees. Run single SIMD interpreter on 
GPU’s stream processors (SP) on many trees. Right: Programs wait for the interpreter to offer an instruc-
tion they need evaluating. For example an addition. When the interpreter wants to do an addition, eve-
ryone in the whole population who is waiting for addition is evaluated. The operation is ignored by eve-
ryone else. The interpreter moves on to its next operation. The interpreter runs round its loop until the 
whole population has been interpreted. Fitness values can also be calculated in parallel



	 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19  Page 10 of 32

GPUs (GPGPU) [57]. As GPGPU became more popular, the GPU manufactures, 
particularly nVidia provided much better software support.

At first in genetic programming GPUs were only used to speed up fitness evalu-
ation, e.g. work by Simon Harding [58]. and Darren Chitty [59]. Indeed it was said 
that, due to the GPUs peculiar SIMD architecture, running the GP interpreter on the 
GPU was impossible (cf. Fig. 3). Of course this was not true, and inspired by Juille’s 
work with the MasPar SIMD supercomputer   [60] (page 8), I built a SIMD inter-
preter for nVidia’s GPUs (see Fig. 4) [61, 62]19. See also [64–70].20

As the memory available on the GPU cards increased, it became possible to work 
with huge populations of small GP trees. In [71] I used a cascade of GP populations 
to winnow useful bioin​forma​tic data from more than a million GeneC​hip features. 
The top level GP populations contained more than five million individuals trees. 
This GPU application could scale from a $50  GPU to a top 500 super​ compu​ter 
[72]. Figure 1 in [73] shows the dramatic improvement in nVidia GPU speed (2003 
to 2012, which still continues), whilst Table 3 in [74] shows some high performance 
parallel GP implementations, almost all running on GPUs.21

1.8.3 � Deep learning and accelerators: GPUs and TPUs

Due to the availability of internet scale data sets and GPGPU processing power, 
since 2010 the field of deep learn​ing has taken off [77]. It is generally accepted that 
researchers need a GPU (possibly a whole cluster of GPUs) to do any form of com-
petitive deep neural net learning. Even with the availability of cloud​ compu​ting, this 
may soon have the effect of “pricing out” individual academic researchers from the 
future of deep learning [78].

Sometimes the whole notion of using a GPU to drive a computer’s screen (also 
called the computer’s monit​or) may be disregarded. Often called “headless” GPUs, 
to save space and power, some GPUs dispensed with the screen interface altogether. 
An extreme examples of this is Google’s TPU, which is totally specialised to Artifi-
cial Neural Network (ANN) processing.

As gaming and now AI have become more important, the notion of a GPU as a 
cheap alternative to the computer’s CPU has also faded, and now a top end GPU can 
cost more than a CPU.

21  Recent extremely high performance on Intel multi-core CPU SIMD hardware [75] has been achieved, 
with unchanging fitness functions, in large trees, in converged populations [76], that do not have side 
effects (and so can be evaluated in any order). This is because a lot of work can be omitted, if it can be 
proved that a child has the same fitness as its parents.

20  The metric “Genetic Programming Operations per Second” (GPops) permits easy comparison of per-
formance, e.g. across different implementations and hardware.

19  People also said that it was impossible to create random numbers on GPU. Again not true [63]. These 
days pseudo random number generators PRNG, (e.g.  CuRAND) are supplied by nVidia with its CUDA 
software.

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Affymetrix
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://developer.nvidia.com/curand
https://en.wikipedia.org/wiki/CUDA
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1.9 � Other gaps: memory, theory, bloat

John Koza mentioned that even though Jaws [1] did not include much work on 
evolving memory, he regarded it as important because it provides another route to 
allow re-use. Since a value stored in memory can be re-used, potentially many times, 
without the code for it having to be evolved more than once. He mentioned my book 
[79], although using indexed memory in GP is due to Teller [80]. Surprisingly, there 
has been a steady stream of research on evolving memory within GP [81–133].

Genetic programming theory has a variety of forms [134]. Jaws [1] starts with 
adapting the then current explanations of how linear bit string genetic algorithms 
work, due to John Holland and Dave Goldberg. Such schema theories were also ana-
lysed by Una-May O’Reilly   [135], Justin Rosca [136] and most notably by Ric-
cardo Poli [137]. Another popular thread is to take ideas from biology about how 
evolution works and use them to understand GP [138], e.g. Price’s theorem [139, 
140], population convergence [76, 141, 142] and neutral networks (plateaus) [143] 
in fitness landscapes [144–148]. Similarly biology has been an inspiration for other 
search operators, such as homologous crossover [149]. In recent years there has 
been a flowering of formal or rigorous run time analysis in evolutionary computing 
and some success applying mathematical techniques to GP problems [150–155]. Of 
course it is difficult to make such theorems widely applicable and when using results 
we must remember the inevitable assumptions they require. For example, SAT has 
been proved to be NP-complete. Nevertheless in the last decade considerable pro-
gress has been made with practical SAT solvers and they are now routinely applied, 
e.g.  in software engineering. Similarly, the No  Free  Lunch theorem [156] applies 
to GP (as with all optimisers) but fortunately (as in other branches of AI) that has 
not inhibited development of the field. Although, as noted above, there are excep-
tions, but genetic programming as a whole remains a deeply empirical endeavour 
with many new ideas being reported. However it is difficult to persuade authors to 
carefully analyse their evolving populations of programs so as to be able to explain 
why their experiment succeeded (or even why it failed).

Although John Koza reports [1] bloat22 from the start of genetic programming, 
the tendency, indeed the name, for programs to be bigger than necessary is not 
unique to GP. Bloated human written programs are common. Indeed people writ-
ing computer programs with unnecessary instructions goes back to the very begin-
ning of electronic digital computers, with bloat reported in programs run on the first 
stored program digital computer, the Manchester Mark I [35]. This human tendency 
is rampant, with some Internet code bases having grown to over a billion lines of 
code in less than 20 years. Bloat continues to be a well studied topic in GP with 426 
entries in the GP bibli​ograp​hy mentioning it.

Although there are potential ways of mitigating bloat’s impact on runtime [157] 
and reducing its memory requirements with DAGs [158] (indeed bloated trees pro-
duced by crossover [159] should be highly compressible), in practice bloated popu-
lations can quickly overwhelm the available computer resources and so the common 

22  Bloat is the tendency for programs to grow in size without commensurate increase in performance.

http://gpbib.cs.ucl.ac.uk/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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approach is to shut bloat down. For example, by enforcing either depth or size limits 
on the evolving programs. However this is not risk free [160] and more sophisticated 
approaches may be wanted. For example, controls on selection, such as using mul-
tiple fitness objectives (e.g. a size versus performance Pareto trade-off [161, 162]) 
or tighter controls on offspring generation [163–166]. In many cases bloat appears 
to be an unexpected aspect of early (even prema​ture) convergence and so has some 
similarity with overf​itting sometimes seen with artificial neural networks  (ANNs), 
where prolonged search drives locally improved performance on the training data. 
This gives a more convoluted mapping between the ANN’s inputs and outputs but 
at the possible expense of the ANN’s ability to generalise to unseen data. Where the 
goal is to explain or predict, such complexity or overfitting is clearly unhelpful. In 
ANN anti-over fitting techniques are essential. These include stopping training early 
(i.e. in GP terms using fewer generations), regularization [167–169], changing the 
training data during training [170, 171] and even expression simplification [172], 
either during evolution [173] or to increase comprehensibility and explainability, 
cf.  XAI, after GP has finished [174]. Whilst Dale Hopper [173] and other authors, 
ensure their automatic rewrite of GP individuals gives a semantically equivalent but 
smaller replacement, in many cases this is not wanted. When a 100% correct pro-
gram is not realistic, e.g. on many prediction tasks, it may be better to accept (or 
allow evolution to find) a similar but much simpler program, rather than spending 
a lot of effort creating an exactly equivalent program to what is essentially only an 
approximation.

However, bear in mind that evolution is a hacker. It builds on what was there 
before. In biology evolution overfits. Classic example include: 1)  the Giraffe’s left 
laryn​geal nerve, which runs the whole length of its neck from its head, round the 
aorta in its chest and then returns to its throat at the top of its neck, because evolu-
tion did not find a shorter path, 2) the male peacock’s heavy tail which helps secure 
a mate but impedes flight and 3) the human brain which consumes 20% of our food 
[175] but made our ancestors more appealing as mates to other members of their 
tribe [176].

2 � A brief selection of other genetic programming work

In addition to continuing with evolving Lisp like trees, major branches of genetic 
programming include: linear genetic programming [177] cartesian genetic program-
ming (CGP) [178] and grammatical evolution (GE) [179], all of which use a linear 
chromosome. Following John Koza’s automatically defined functions, ADFs, see 
page 7, there were several attempts to encourage the evolution of modular programs 
using individuals with multiple trees or libraries of subtrees [180–183]. However, 
these seem not to have taken hold.

As with evolutionary computation in general, the major computational cost of 
GP is usually evaluating fitness [1, p783]. In tree GP this is usually the cost of 

https://en.wikipedia.org/wiki/Premature_convergence
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://en.wikipedia.org/wiki/Recurrent_laryngeal_nerve
https://en.wikipedia.org/wiki/Aorta
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interpreting the trees. When members of the population are going to be run many 
times.23 it may be worth the cost of compiling the population and then running the 
compiled programs.24 rather than interpreting them [188]. However, as Ronald Cre-
peau showed [189], for GP, it is not essential to run a full blown compiler, instead 
knowing the restricted set of primitives used by GP, he constructed a dedicated fast 
compiler which converted the evolved code into machine code and ran that directly. 
Peter Nordin eliminated the compilation step entirely by using GP to evolve firstly 
Sun 32 bit SPARC RISC architecture machine code  [85] and later Intel x86 bina-
ries  [190] (which in turn later became Discipulus [191]). He used tailored mutation 
operations which respected the layout of the machine code. Although perhaps first 
motivated by speed and simplicity, the idea of evolving variable length linear pro-
grams has taken off [192, 193].

Grammatical Evolution (GE) [194, 195] shows the virtues of trying ideas out. 
Michael O’Neill and Conor Ryan took the idea of a variable length linear chromo-
some, simplified it to become just an ordered list of byte sized integers (0..255) and 
married it to another favourite of computer scientists: the Backus-​Naur form gram-
mar (BNF). Pretty much anything which can be run on a computer can be expressed 
in a BNF grammar. They disregarded that BNF is essentially tree shaped and trusted 
in evolution to find a way of putting them together. The linear stream of bytes is 
mapped using modul​us to say which branch to take next in the grammar. If there are 
not enough bytes, we simply wrap round and start again from the first. If there are 
too many, we ignore the excess. The resulting grammar is treated as the individual’s 
phenotype and in a problem dependent way converted into a trial solution with a 
fitness value. The sloppiness of the mapping from genotype to phenotype offended 
some and provoked wide discussion in a peer commentary issue of “Genetic Pro-
gramming and Evolvable Machines” [196]. But as Conor Ryan says “GE works” 
[197]. Indeed the separation of genotype from BNF grammar makes grammatical 
evolution flexible and has been widely used. (The GP bibliography contains well 
over seven hundred entries relating to grammatical evolution.)

With Cartesian Genetic Programming  (CGP) [178, 198–201], Julian Miller 
turned to a fixed representation, more a  kin to traditional bit string genetic algo-
rithms (GAs). However the chromosome is a fixed sized two dimensional rectangle, 
rather than a single string, where each cell contains a digital computational unit, 
such as an XOR gate. Both the contents of the cells and crucially the connections 
between them are evolvable.25 Notice, like linear GP (but unlike GE), evolution 

25  Nowadays in cartesian genetic programming people often set the width of the FPGA like rectangle of 
components to 1, making it effectively a string. Similarly it is common to allow only feed forward con-
nections, so preventing recurrent loops.

23  Considerable saving are sometimes possible by accepting fitness selection will be somewhat random 
and using a cheaper and approximate fitness function. After all, the goal of a fitness function, is not to 
measure performance (that can be done after the run) but to guide search. Why run thousands of fitness 
cases, when fitness will ultimately be reduced to a single bit: does this individual get a child or not? 
Even then, we typically add noise to this bit, e.g.  via tournament selection, [184–186], see also [187, 
Sect. 10.1].
24  Lisp provides compilation as an alternative to interpreting programs [1, p785].

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Exclusive_or
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directly sets the contents and connections of each cell (i.e. evolution acts directly on 
the phenotype). Also there is no explicit left-right flow of control. In CGP the chro-
mosome is treated as a circuit and so its evaluation has to take note of where data 
enters and leaves. It is also not necessary to evaluate cells which are not connected. 
Cartesian GP has been widely used, including in the evolution of approximate com-
puting [202, 203], where evolution can be well suited to finding good trade-offs 
between conflicting objectives, such as fidelity, size, number of components, power 
consumption and speed.

2.1 � Inspired by computer science

In order for subtree crossover to freely mix subtrees from parents to create chil-
dren, John Koza required the components of his GP trees to have closure [1, 
Sect. 6.1.1]. Meaning 1) any leaf or function in the tree can be an argument to 
any other function. Since components typically communicate via function return 
values, this often means GP trees use a single type, often float. 2)  To ensure 
each function can deal with any combination of inputs, many functions have 
protected GP versions. Such as protected log RLOG [1, p83], which returns a 
defined value (rather than raising an exception) even if its input is zero or nega-
tive. Alternatives might be to allow evolution to deal with the exception, or sim-
ply assign poor fitness to individuals with illegal combinations. However notice 
that ruling it out prevents GP exploring not only this tree but all the trees that 
might have evolved from it.

Perhaps the most famous extensions to closure are Dave Montana’s strongly 
typed GP [204] and Tina Yu’s polymorphic GP [205, 206] which allow mul-
tiple types but ensure evolution explores only type safe expressions. Another 
approach is to use various types of grammar to try and keep evolution in the 
most productive parts of the search space [207]. For example, using conte​xt free 
gramm​ars [208, 209], using grammars to ensure the evolution of expressions 
which are dimensionally consistent [210], using tree-​adjun​ct gramm​ars to guide 
GP (TAG3) [211] and using GP with Linde​nmaye​r Syste​ms (often abbreviated 
to L-Systems) [212–215].

Whereas Lisp and most GP systems implicitly use the system stack, programs 
which explicitly use a stack [216, 217], e.g. to pass vectors and matrices  [218], 
are also possible. An explicit stack allows the evolution of Rever​se Polis​h Notat​
ion (RPN) [62] and even infix expressions [219]. In PushGP [220] there are mul-
tiple stacks, one per type. These may include a code stack, so allowing GP to 
manipulate code, thus permitting GP to evolve its own genetic operators.

2.2 � Non genetic GP

John Koza’s GP [1] is clearly strongly influenced by his PhD supervisor, John 
Holland, and GP [1] is essentially the application of John Holland’s genetic algo-
rithms to the evolution of Lisp s-expressions, i.e. tree shaped programs. But, as 

https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/L-system
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Infix_notation
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we have seen, the programs need not be trees, and similarly the search algorithm 
does not have to be a genetic algorithm. Other techniques include: local search, 
Simulated Annealing [221, 222], Differential Evolution [223], Bayesian prob-
ability search [224], Estimation-of-Distribution Algorithms (EDAs) [225, 226] 
Ken Stanley’s Neat [227–229] and even deterministic search, e.g. Trent McCo-
naghy’s FFX [230]. Indeed search does not have to be guided only by fitness 
but can “look inside” the program [231] and its execution [232]. SRbench [233] 
compares many GP and non-GP approaches to symbolic regression, including 
MRGP [234], M3GP [235], FEW [236] and Operon [237].

2.3 � Less explored

2.3.1 � Assembly code, byte code

In human terms assembly code is usually viewed as intermediate between high level 
languages and machine code. Offering the potential advantage of machine code 
(speed and compactness), and ease of use and readability of high level source code. 
There has been very little GP work on evolving assembly code. Exceptions include 
microcontroller assembly [238], nVidia GPU PTX [239, 240] and the intermediate 
(IR) code used by LLVM [241], and again on GPUs [242].

Java, and some other interpreted languages, compile the source code into byte 
code which they then interpret. Eduard Lukschandl showed it is possible to run GP 
at the level of Java byte code [243].

2.3.2 � Modularity, recursion, loops

Some of the work on encouraging the evolution of modular code was mentioned 
on page  13. In Jaws, John Koza described GP solving the Fibonacci problem [1, 
pp473–477] as an example requiring the evolution of recursion and several examples 
where GP evolved do-until loops and other forms of iteration, but again there has 
been relatively little work on either by others. Again a few exceptions. These include 
work by Peter Whigham [244, 245] and Tom Castle [246].

2.3.3 � Coevolution

As with many topics, there are examples of co-evolution  [247, 248] in Jaws [1] and 
many elsewhere in genetic programming [81], for example in agent learning [249]. 
However, it does feel like coevolution has not yet fulfilled its potential. In deep arti-
ficial neural networks there is interest in antagonistic adversarial learning and so 
perhaps this will stimulate renewed interest in coevolution in genetic programming.
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3 � The future

At GECCO 2022 Erik Goodman asked if there we any applications of GP that had 
surprised John Koza. Amongst the many human​ compe​titive [6] results, perhaps one 
of the most encouraging is quantum computing. As with quantum physics, quan-
tum computing has a deserved reputation for being difficult for people. However, the 
rules about quantum computing gates can be coded for GP to use without being an 
expert quantum physicist, and then GP can be left to evolve novel quantum circuit 
designs incorporating them [250–252]. Riccardo Poli, Leonardo Vanneschi and oth-
ers have previously reported on the state of GP and in particular what remains to be 
done [253, 254].

In genet​ic impro​vement [13] existing (human written) software is optimised 
(typically by using GP). Notice genetic improvement does not start from primor-
dial ooze  [1]. Instead search automates the potentially labour intensive, tedious and 
error prone task of find modifications. For example, to repair bugs [12, 43, 47, 49, 
255], including energy bugs [256], reducing memory consumption [257], reduce run 
time [174, 258–265] improve existing functionality (e.g. to give better predictions 
[266]), porting to new hardware [267] including improving GPU applications [242, 
262–265, 268] or even to incorporate existing functionality from outside the existing 
code base  [269].

The idea of mixing evolutionary computing (including GP) with other optimisa-
tion tools to give hyperheuristics [270] has a long history. In particular, with the 
recent explosion of interest in deep artificial neural networks, combining evolution-
ary learning and artificial neural networks seems set to continue. One particularly 
encouraging trend is AutoML tools such as TPOT [271, 272] which automatically 
tune existing machine learning pipelines.

In GP, as in most optimisation problems, most of the computation effort is spent 
on evaluating how good the proposed solutions are. Various ideas for speeding up 
fitness evaluation have been proposed, for example surrogate fitness functions [273]. 
Colin Johnson’s Learned Guidance Functions [274] seem a particularly elegant 
approach to making best used of previously gained knowledge. It would be interest-
ing to see Learned Guidance Functions applied to genetic programming or when 
using genetic improvement to adapt existing human written programs.

Since all digital computing progressively loses information, information about 
crossover and mutation gets progressively washed out the further it has to travel. In 
nested functions without side effects, deep genetic changes become invisible to the 
fitness function. Thus to evolve complex programs, they must remain shallow and so 
I propose that to evolve large complex programs, they be composed of many shallow 
trees, within a strong low entropy-loss data interconnect to and from the environ-
ment. This should ensure that the good and bad effects of most genetic code changes 
are externally measurable [275].

At GECCO John Koza pointed out that in both biology and in human design, 
modularity and reuse are ever present. Biology scales from a single cell to individu-
als containing billions of cells. It does this, like human engineers, not by solving 

https://www.human-competitive.org/
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many billions of individual problems but by reusing existing designs. We need to 
revisit the scaling problem.

4 � Conclusions

We have seen that in the thirty years since John Koza published his first GP book, 
the field has blossomed. The genetic programming bibliography contains some 
16 367 entries by 16 342 authors26. Many of the genetic and evolutionary computa-
tion papers judged to be the best human​ compe​titive work of each year have used 
genetic programming. Clearly GP is doing well in its mission to help the world.

As mentioned at the end of the last section, although GP continues to flourish, 
perhaps we need to tackle the scaling problem. Are we evolving small things? Do 
we need to be more ambitious? Following Stephanie Forrest’s recent questions 
[276]: what could GP do with Google Deep AI scale resources?

As John Koza foresaw, 30 years of Moore’s law [277] (with component count 
doubling every 18 months) means 20 lots of doubling ( 220 = 1 048 576). That is, 
since the genetic programming field started, the computer power available to us 
has increased a million fold. What of the next 30 years? Perhaps Moore’s Law will 
end? Certainly the death of Moore’s Law has been confidently predicted many 
times. What seems certain is we will not see dramatic increases in silicon comput-
ing’s clock speeds. Instead we anticipate the future of computing will be ever more 
parallel. But as John Koza says GP is embarrassingly parallel. Indeed the use of 
distributed parallel GP populations, not only makes good use of current and future 
compute resources but is in keeping with Sewall Wright’s [278] model of natural 
evolution and as John Koza reports by keeping population diversity, the distributed 
population demes of the island model, improve GP results as well as speeding it up.

In 2052 will genetic programming researchers be using computers a million times 
faster than they use today? Certainly GP seems well placed to exploit them.
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