
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:19
https://doi.org/10.1007/s10710-023-09467-x

1 3

Jaws 30

W. B. Langdon1

Published online: 22 November 2023
© The Author(s) 2023

Abstract
It is 30 years since John R. Koza published “Jaws”, the first book on genetic pro-
gramming [Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)]. I recount and expand the celebration at
GECCO 2022, very briefly summarise some of what the rest of us have done and
make suggestions for the next thirty years of GP research.

Keywords Genetic programming · Genetic improvement · Modularity · Scaling ·
Parallel computing

1 Introduction

An evening at the 2022 GECCO conference was devoted to celebrating the thirtieth
anniversary of the publication of John Koza’s book “Genetic Programming: On the
programming of computers by means of natural selection” [1].1 Indeed that is the
purpose of this special issue of Genetic Programming and Evolvable Machines. I
hope to put my own spin on and fill out points raised in that panel discussion (which

Thirtieth Anniversary of Genetic Programming: On the Programming of Computers by Means of
Natural Selection.

Commentaries to this article can be found at: https:// doi. org/ 10. 1007/ s10710- 023- 09468-w; https://
doi. org/ 10. 1007/ s10710- 023- 09469-9; https:// doi. org/ 10. 1007/ s10710- 023- 09470-2; https:// doi. org/
10. 1007/ s10710- 023- 09471-1; https:// doi. org/ 10. 1007/ s10710- 023- 09472-0; https:// doi. org/ 10. 1007/
s10710- 023- 09473-z.

 * W. B. Langdon
 w.langdon@cs.ucl.ac.uk

1 London, UK

1 Named after Charles Darwin’s 1859 foundational book “On the Origin of Species by Means of Natural
Selection” [2] which contains huge volumes of evidence (for example gathered on his five year voyage
around the world [3]) in support of his scientific theory of evolution, which after a struggle was eventu-
ally accepted as the explanation for biology.

https://en.wikipedia.org/wiki/Genetic_and_Evolutionary_Computation_Conference
https://en.wikipedia.org/wiki/John_Koza
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09467-x&domain=pdf
https://doi.org/10.1007/s10710-023-09468-w
https://doi.org/10.1007/s10710-023-09469-9
https://doi.org/10.1007/s10710-023-09469-9
https://doi.org/10.1007/s10710-023-09470-2
https://doi.org/10.1007/s10710-023-09471-1
https://doi.org/10.1007/s10710-023-09471-1
https://doi.org/10.1007/s10710-023-09472-0
https://doi.org/10.1007/s10710-023-09473-z
https://doi.org/10.1007/s10710-023-09473-z

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 2 of 32

was recorded and is available on line2). I should stress this is not a survey of GP and
that many valuable contributions are omitted. Similarly many digressions are placed
in footnotes and there are hyper links to online articles in Wikipedia etc.

1.1 The book

Dr. Amy Brand, Director of The MIT Press, was clearly delighted that John Koza
had chosen MIT Press to publish the first book on genetic programming [1] (see
Figs. 1 and 2). She says it ”was one of the seeds from which sprang a whole ecosys-
tems of books and journals at the intersection of computer and biological sciences
for the MIT Press.” Adding it “is still available and selling in print-on-demand.
That’s quite solid for a specialized and ground-breaking work in computer science
from 1992.”3

John Koza said that the motivation for the book was his team in the preceding
five years had published GP solutions to 81 diverse problems common to artificial
intelligence, machine learning and knowledge based systems. They had shown that
instead of, as had previously been done, using a solution technique devoted to each
benchmark, a single evolutionary computing technique (now named Genetic Pro-
gramming4) could solve them all56. However the GP solutions were published in
widely disperse conference venues. The goal of the book was to convince everyone
that 1) a single technique could solve many diverse problems and 2) they could all be
recast as the problem of searching for (and finding) a computer program. Whereas
previous solutions had often used (non-evolutionary) search but used a representa-
tion, e.g. graph, grammar, network, often purpose built for each benchmark. The
size of the book7 stems from the need to convince people that GP is a general solu-
tion. Whereas everyone who first comes to programming knows that programming
languages are exceedingly picky about insisting they get everything, every comma,
every semicolon, in the right place: so how could random stand a hope? Hence a

3 John Koza’s publications have been at the top of the list of publications downloaded via the genetic
programming bibliography since 2006, when download statistics were first gathered.
4 The name Genetic Programming was suggested by David E. Goldb erg. John Koza said he was origi-
nally reluctant to use the name but came to realise it was a brilliant choice.
5 John Koza has previously likened GP’s success with early machine learning benchmarks with Sher-
man’s march through Georgia in 1864, which helped end the four year USA civil war.
6 In the late 1990s Peter Nordin reported similar success with his linear genetic programming on the
UCI machi ne learn ing bench marks.
7 The first genetic programming book was colloquially known as “Jaws” after the 1975 Hollywood
movie of the same name, were the shark appears to get progressively bigger throughout the film. In a
similar way Koza remarked that as each new GP experiment was covered, the book got bigger, eventually
exceeding 800 pages. The three successing GP books, are similarly known as Jaws 2 [4], Jaws 3 [5] and
Jaws 4 [6], all four are each accompanied by an hour long video [7–10] (now available on YouTube and
www. human- compe titive. org). In 2009, John Koza gave a seminar at Stanford summarising his GP work
which was recorded and is also available on YouTube [11].

2 A Conversation with John Koza, 30 years after the publication of Genetic Programming Sunday, July
10, 18:00-20:00 2022 https:// whova. com/ portal/ webapp/ gecco_ 202207/ Agenda/ 25163 77

https://en.wikipedia.org/wiki/Amy_Brand
https://en.wikipedia.org/wiki/MIT_Press
http://gpbib.cs.ucl.ac.uk/top_users.html
https://en.wikipedia.org/wiki/David_E._Goldberg
https://en.wikipedia.org/wiki/Peter_Nordin
https://archive.ics.uci.edu/ml/datasets.php
https://en.wikipedia.org/wiki/Jaws_%28film)
http://www.human-competitive.org
http://www.genetic-programming.com/johnkoza.html
https://whova.com/portal/webapp/gecco_202207/Agenda/2516377

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 3 of 32 19

substantial book, backed by a video, would be necessary to convince a skeptical
public.8

1.2 The man

John R. Koza was born 1944 and did both his undergraduate degree and PhD at the
Unive rsity of Michi gan in Ann Arbor, studying mathematics and, the then newfan-
gled, computer science. He reports great interest in playing games including com-
puter games, with students and faculty, for example, John H. Holla nd. As with John
Holland’s other stude nts9, he was well versed in John Holland’s genetic algorithms.

1.3 The millionaire

John Koza graduated from the University of Michigan in December 1972, and using
his mathematical skills in combinatorics, probability and game playing he joined a
lottery company which printed games on paper which were sold at petrol stations
and supermarkets. In 1974 he and a colleague formed their own company, Scientific
Games Inc., to exploit John Koza’s invention of a secure way of printing scrat ch off
lotte ry ticke ts. They successfully lobbied various USA states to allow them to run
the state’s lottery10. By 1978 the technology of printing had moved on and they jet-
tisoned their own technique in favour of more flexible computer based printing. In
1987, having made his fortune, he returned to research.

1.4 The researcher

From about 1987 until 2005, John Koza devoted himself to research, applying
genetic algorithms to the discovery of computer programs (GP). He published some
208 items, predominately papers but also book chapters, technical reports, proceed-
ings, etc. and of course Jaws [1] and the three follow-up up door stoppers [4–6] and
the four accompanying videos [7–10]. Initially the genetic programming systems
were written in Lisp, although later implementations where in C, e.g. [22].

There were GP workshops associated with the International Conference on
Genetic Algorithms, ICGA-9311 and again in the summer of 1995 at ICGA-95 and
ICML- 95. In the fall, John R. Koza and Eric V. Siegel organised a GP event with

8 There is a growing body of work, such as automatic bug fixing [12] and genetic improvement [13], that
shows ordinary programs are not fragile [14–21]. The misplaced semicolon problem refers to the source
code syntax as understood by the language compiler (another computer program). Since the syntax is
formally defined, computer generated mutations can be automatically written to be syntactically correct.
If mutated code compiles, it often runs and produces an answer which can be fed into a fitness function.
9 John Holland’s PhD students include: Steph anie Forre st, Tomma so F. Bersa no- Begey, Melan ie Mitch
ell, Tom Weste rdale, Lasho n Booker, Ted Codd, Clare Congd on, Dave Goldb erg, Annie Wu, Ken
De Jong, Leean n Fu, Rick Riolo, Chris Langt on, Rober t Reyno lds, Berni e Zeigl er and John Koza.
10 By 2009 the combined profits to the USA state governments which permitted lotteries had reached
$17. 6 billi on.
11 ICGA had strong links with John Holland’s students.

https://en.wikipedia.org/wiki/University_of_Michigan
https://en.wikipedia.org/wiki/John_Henry_Holland
https://www.mathgenealogy.org/id.php?id=5064
https://en.wikipedia.org/wiki/Scratchcard
https://en.wikipedia.org/wiki/Scratchcard
http://gpbib.cs.ucl.ac.uk/gp-html/JohnKoza.html
https://en.wikipedia.org/wiki/Lisp_%28programming_language)
https://en.wikipedia.org/wiki/C_%28programming_language)
https://en.wikipedia.org/wiki/International_Conference_on_Machine_Learning
http://gpbib.cs.ucl.ac.uk/gp-html/EricSiegel.html
https://en.wikipedia.org/wiki/Stephanie_Forrest
http://gpbib.cs.ucl.ac.uk/gp-html/TommasoFBersano-Begey.html
https://en.wikipedia.org/wiki/Melanie_Mitchell
https://en.wikipedia.org/wiki/Melanie_Mitchell
https://www.mathgenealogy.org/id.php?id=104179
https://www.mathgenealogy.org/id.php?id=104146
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://www.mathgenealogy.org/id.php?id=104150
https://en.wikipedia.org/wiki/David_E._Goldberg
https://www.mathgenealogy.org/id.php?id=104180
https://en.wikipedia.org/wiki/Kenneth_A_De_Jong
https://en.wikipedia.org/wiki/Kenneth_A_De_Jong
https://www.mathgenealogy.org/id.php?id=104156
https://www.mathgenealogy.org/id.php?id=75979
https://en.wikipedia.org/wiki/Christopher_Langton
http://gpbib.cs.ucl.ac.uk/gp-html/RobertGReynolds.html
https://d.lib.ncsu.edu/computer-simulation/videos/bernard-p-zeigler-interviewed-by-richard-e-nance-zeigler/
https://www.mathgenealogy.org/id.php?id=104164
https://en.wikipedia.org/wiki/Lotteries_in_the_United_States#State_revenues
https://dblp.org/db/conf/icga/index.html

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 4 of 32

the 1995 Fall Symposium of the AAAI in MIT. In 1994 Kim Kinnear had launched
the “Advances in Genetic Programming” edited book series published by MIT Press
[23–25]. But, since ICGA was a biannual conference, there was no ICGA confer-
ence in 1996, and instead it was the right time to launch the first GP conference [26].
One of the rules laid down at GP-96, was the absolute need for independent peer
review.

Fig. 1 Prof. Dr. Wolfg ang Banzh af holding his copy of “Genetic Programming: On the programming of
computers by means of natural selection” (Jaws) 834 pages [1] at the GECCO 2022 celebration of 30 years
after its publication (Wolfgang says he was told that his copy was the first one sold by the bookshop in
Boston.)

Fig. 2 At 834 pages, the first
genetic programming book [1]
weighs in at 4lb 2oz

http://www.cse.msu.edu/%7ebanzhafw/

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 5 of 32 19

July 1997 saw the return of ICGA-97, carefully scheduled a few days after the
second GP conference, GP-97 [27], so attendance at both was encouraged. Again
there was no ICGA in 1998, instead at GP-98 [28] there were serious discussions
about combining the growing number of evolutionary computing conferences. John
Koza in particular felt that the separate EC events were splitting EC into separate
communities, and that the balka nisat ion of EC, did not make sense to people out-
side, particularly to funding bodies. And that this divergence was hurting the field.
So at GP-98 there were negotiations about unifying, particularly: the Evolutionary
Programming Society conference (EP), the IEEE’s WCCI/ICEC, GP, ICGA, and the
International Workshop on Learning Classifier Systems (IWLCS). These were only
partially successful, leading in 1999 to the formation of the duopoly of CEC 1999
[29] and GECCO 1999 [30]. Of the european evolutionary computing conferences,
only the IEE’s Galesia elected to join CEC. PPSN,12ICANN GA and the newly estab-
lished EuroGP13 [31] continued as before14.

Again John Koza’s organisational skills came to the for, with him helping to draft
the byelaws for GECCO. These ensure it has a federal “big tent” structure, whereby
none of its constituent groups would feel left out or put down by the others.

Having progressed genetic programming to the point were it could be described
as a routine invention machine [6, 32, 33], John Koza turned to public service and
electoral reform and in 2006 founded Natio nal Popul ar Vote.

1.5 The public benefactor

In 2004 John Koza started the annual “Humie s” awards for human-competitive
results produced by genetic and evolutionary computation. He continues to fund the
cash prizes. The finals are held each year as part of the GECCO conference.

Since 2016 he has endowed Michigan State University with the first chair in
genetic programming in the United States (held by Prof. Dr. Wolfgang Banzhaf).

1.6 Pre‑history

At GECCO-2022 the question of research before genetic programming was raised.
John Koza pointed out that by 1987 the field of Genetic Algorithms was already well
established15. There had been early experiments on machine learning in Columbia

15 In addition to genetic algorithms, there is early work on evolu tions strat egie in Germany by Ingo
Reche nberg and Hans- Paul Schwe fel, and in the USA on evolu tiona ry progr amming by Larry Fogel.

12 Parallel Problem Solving from Nature (PPSN) had started in Germany in 1990. It is a also a biannual
conference on evolutionary computing and, although based in Europe, it was held on alternating years
with ICGA. Like Genetic Programming, PPSN was also named by Dave Goldberg.
13 The First European Workshop on Genetic Programming had been held in 1998 in Paris, with the help
of EvoNet, the EU Network of Excellence in Evolutionary Computing.
14 In 2003 John Koza listed 25 international conferences and workshops primarily devoted to the various
forms of evolutionary computation. Many are still held annual or biannually, and some have combined.
In most cases the proceedings are still available, often on line.

https://en.wikipedia.org/wiki/Balkanization
https://dblp.org/db/conf/cec/index.html
https://dblp.uni-trier.de/db/conf/gecco/index.html
https://en.wikipedia.org/wiki/Institution_of_Electrical_Engineers
https://dblp.org/db/conf/ppsn/index.html
https://dblp.uni-trier.de/db/conf/icannga/index.html
https://dblp.org/db/conf/eurogp/index.html
https://en.wikipedia.org/wiki/National_Popular_Vote_Inc.
https://www.human-competitive.org/
https://sig.sigevo.org/index.html/tiki-index.php?page=GECCOs
https://en.wikipedia.org/wiki/Evolution_strategy
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://en.wikipedia.org/wiki/Hans-Paul_Schwefel
https://en.wikipedia.org/wiki/Evolutionary_programming
https://en.wikipedia.org/wiki/Lawrence_J._Fogel
https://cordis.europa.eu/project/id/FP4_20996
http://www.genetic-programming.org/gpotherconfs.html

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 6 of 32

[34] and Manchester [35]16 universities. However John Koza traced Evolutionary
Computing back to Alan Turing. He said Turing’s 1948 paper on machine intelli-
gence [36, 37] suggested three routes to machine intelligence: 1) knowledge based,
2) based on logic (as would be expected of a mathematician), but John Koza high-
lighted the third: 3) in which machine intelligence was based on evolution. Although
he pointed out it did not use crossover (which was added by John Holland).

1.7 Advice for the future

Another question raised at GECCO-2022 was did John Koza have advice for new
researchers. His answer was researchers must keep current, i.e., keep up to date with
research, but not just in your area but with research in general. Take an interdisci-
plinary approach. He stressed be open to ideas from elsewhere, particularly from
Biology.

John Koza’s heuristic (perhaps common to all John Holland’s students) was to
ask himself “What would John Holland do?” to which the answer was often: John
Holland would respond with his own question, “What does Nature do?” John Koza’s
particular example was: how did Nature evolve from microscopic organisms (like
bacteria) which have genes for creating may be about 500 proteins to multicellural
organisms (e.g. us) which have genes for creating about 20 000 proteins. He reported
asking this question around the Stanford School of Medicine.

The example John Koza quoted was the evolution of Myogl obin and Hemog
lobin, which is thought to have occurred via gene duplication and subsequent spe-
cialisation. The idea being: “accidental” copying of parts of DNA sequences is com-
mon.17 Once a species has two copies of a vital gene, it may be free to tinker with
one. Since the other gene remains functional, the children with the duplicated gene
remain viable and so some can survive long enough to carry both the working gene
and the tinkered copy to the grand children. Over subsequent generations the two
genes may diverge allowing the species to find new proteins which may help it sur-
vive. Susum u Ohno in his 1970 book [40] suggested that such gene duplication is
a powerful mechanism in natural evolution. Indeed John Koza used it as inspira-
tion [41] for his architecture-altering operations. These GP operations allow, not just
the code within automatically defined functions (ADFs) [4] to evolve, but also their
structure (e.g. which ADF calls which ADF) evolves [5, 42, 9, minute 10]. In terms
of traditional AI, this can be thought of as dividing the whole problem into subcases
and having an evolvable representation which facilitates not just the solution of the
sub-problems but also their subsequent combination into a complete solution. Some
form (or indeed many forms of) automatic problem decomposition is essential if any
AI technique is to scale.

17 The evolution of repeating patterns in DNA due to crossover is common. Indeed crossover in GP can
readily produce huge volumes of repeated code in trees [38, 39].

16 Kilbu rn, Grims dale and Sumner ran their experiments in machine learning and thinking on the
world’s first digital stored program computer the Manchester Mark 1.

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Susumu_Ohno
https://en.wikipedia.org/wiki/Tom_Kilburn
https://en.wikipedia.org/wiki/Richard_Grimsdale
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/index.html#golden

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 7 of 32 19

John Koza felt that in the 1960s the University of Michigan had had a wide rang-
ing curriculum. He said computer scientists need to know about biology, language
processing, psychology, information theory, electronic circuits, etc. However, this
breadth has been lost from modern computer science curricula. Instead people
should seek ideas from many places. He cited successful start ups in silic on valley,
such as Adobe, which had come from co-working between two people with expe-
rience of newspaper publishing and another with a computer science background.
Often in silicon valley success had come from partnerships of individuals with dif-
ferent experience. Alternatively, success may arise when different experience or
many odd ideas are held by one person.

I would like to add, be ambitious in the problems you tackle. John Koza’s impact,
the impact of his book [1], stems from showing something widely viewed as impos-
sible could be done. Before his work, the idea of automatically evolving a computer
program was clearly ludicrous. Similarly, the idea of a computer fixing computer
bugs was clearly impossible, until Steph anie Forre st et al. showed GP could do
it [43]. Readers may remember Lewis Carroll’s Alice and the White Queen [44]
(Fig. 3), Alice reproaches the White Queen for some nonsense, saying it is clearly
impossible, to which the White Queen responds that Alice should practice believing
the impossible. My suggestion would be to an ambitions researcher that she should
do the impossible. Claire Le Goues was a PhD student in 2009 [45, 46]. Fortunately
her adviser did not tell her her idea was impossible. And so She and the team are
famous, not because they completely solved the probl em, but because they took
something impossible and partially solved it. So that today the argument is not if it
can be done, but what is the best way [12] to solve the previously impossible prob-
lem [47–49].

1.8 The ones that got away: missing gaps

John Koza was asked to muse on his less successful experiments. Two came to
mind: FPGAs and GPUs.

1.8.1 Genetic programming and field programmable gate arrays, FPGAs

John Koza had hope to create a field programmable gate array (FPGA), which had
all the likely to be useful program operations pre-loaded. An ultra fast evolved GP
program would then simply be an evolvable way of linking these together.

In some ways this seams similar to Juille’s [50] way of running a GP interpreter
on the hugely parallel MasPar MP-2 computer. Although it had thousands of pro-
cessing units, they each did the same one thing at the same time. Juille’s brainwave
was to say: since computing is cheap, we will discard most of it. (Simplifying),
Juille built a tiny interpreter which ran on all processing elements one of a handful
of GP operations. The different members of the GP population were spread across
the processing elements. Each with its own program counter. If the interpreter was
currently executing a GP op code that was not the one the GP individual wanted, it
did nothing but wait. However the interpreter cycled round all possible GP op codes.

https://en.wikipedia.org/wiki/Silicon_Valley
https://en.wikipedia.org/wiki/Stephanie_Forrest
https://program-repair.org/
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/MasPar

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 8 of 32

When it did reach the desired op code, that processor executed it and moved that GP
individual’s programme counter on by one. (The right hand side of Fig. 4 shows the
same idea in the context of GPUs.)

It sounds hideously inefficient, but bear in mind the GP is getting useful works
done, whereas mostly human programmers could not handle the MasPar MP-2’s
SIMD architecture efficiently at all. Secondly often in many high performance com-
puters (HPCs), most of the time the processing elements are waiting for data to
arrive and so spend most of their time spinning in idle loops. This turns on its head
our common conception of computers. In HPC (and indeed GPUs, see Sect. 1.8.2),
computing is often cheap compared to moving data. Indeed sometimes it can be
more efficient to compute a value a second time, rather than store it and retrieve it
later when it is needed18.

In many cases FPGAs form the bed rock of evolv able hardw are (EHW) [51, 52].
As well as offering a cheap and flexible alternative to dedicated integrated circuits
(also known as application-specific integrated circuits, ASICs) they can be cost
effective, particularly when only a limited number of chips will be needed. There are
several examples where FPGAs have been used to run GP, e.g. [53–55].

1.8.2 Genetic programming and graphics cards, GPUs

In the early 2000s it was noticed that the graphics cards (GPUs) used to drive com-
puter screens were becoming increasingly powerful parallel computing devices in
their own right and so people started using them for other things.

Initially GPUs were designed just to rapidly render images on the computer’s
screen. To do this quickly (in real time) they comprised many parallel components
all doing the same thing but for different parts of the screen. As the computer video
games market took off, GPUs rapidly ramped up their processing abilities and
power. Each parallel component became a fully functional processor, often with
special support for operations common in graphics applications (such as reciprocal
square root [56]). This was so that more of the parallel aspects of generating, rather
than simply displaying, real time video could be devolved from the (serial) CPU
to the (parallel) graphics card. As GPUs were often somewhat independent of the
end users’ computer mother board, keen video gamers could easily upgrade their
GPU. This promoted rapid technological improvement, as rival GPU manufactures
sought sales by offering better and/or cheaper hardware than their rivals. However
even today, GPUs essentially (like the SIMD MasPar, page 8) require their parallel
processing elements, to do the same thing at the same time.

Initially GPUs were very hard to program and their support software was only
designed to be used by dedicated programmers employed by video game companies.
However the abundant and cheap parallel processing the GPUs offered was taken up
by scientific programming, leading to the field of General-Purpose Computing on

18 A second recommendation to the novice computer scientist, do not assume that a very old paper has
no merit. Computer science is littered with examples of old ideas which returned, e.g. virtu al memory,
virtu al machi nes and Mauri ce Wilkes’ microcode.

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Evolvable_hardware
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Virtual_memory#/media/File:University_of_Manchester_Atlas,_January_1963.JPG
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Maurice_Wilkes

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 9 of 32 19

Fig. 3 When I was your age I
could think of six impossible
things before breakfast

SP

SP

SP

SP

SP

SP

SP

SP

+
1 x

+
x −

3 z

+
y x

−
1 z

*
1 +

3 x

x /
x

*

3.1

data

Training

SIMD

interpreter

Fitness values

+

x y
1 311

86

115

208

49

47

102

98

+
/

x z
y

+
No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 4 Left: Avoid compilation overhead by interpreting GP trees. Run single SIMD interpreter on
GPU’s stream processors (SP) on many trees. Right: Programs wait for the interpreter to offer an instruc-
tion they need evaluating. For example an addition. When the interpreter wants to do an addition, eve-
ryone in the whole population who is waiting for addition is evaluated. The operation is ignored by eve-
ryone else. The interpreter moves on to its next operation. The interpreter runs round its loop until the
whole population has been interpreted. Fitness values can also be calculated in parallel

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 10 of 32

GPUs (GPGPU) [57]. As GPGPU became more popular, the GPU manufactures,
particularly nVidia provided much better software support.

At first in genetic programming GPUs were only used to speed up fitness evalu-
ation, e.g. work by Simon Harding [58]. and Darren Chitty [59]. Indeed it was said
that, due to the GPUs peculiar SIMD architecture, running the GP interpreter on the
GPU was impossible (cf. Fig. 3). Of course this was not true, and inspired by Juille’s
work with the MasPar SIMD supercomputer [60] (page 8), I built a SIMD inter-
preter for nVidia’s GPUs (see Fig. 4) [61, 62]19. See also [64–70].20

As the memory available on the GPU cards increased, it became possible to work
with huge populations of small GP trees. In [71] I used a cascade of GP populations
to winnow useful bioin forma tic data from more than a million GeneC hip features.
The top level GP populations contained more than five million individuals trees.
This GPU application could scale from a $50 GPU to a top 500 super compu ter
[72]. Figure 1 in [73] shows the dramatic improvement in nVidia GPU speed (2003
to 2012, which still continues), whilst Table 3 in [74] shows some high performance
parallel GP implementations, almost all running on GPUs.21

1.8.3 Deep learning and accelerators: GPUs and TPUs

Due to the availability of internet scale data sets and GPGPU processing power,
since 2010 the field of deep learn ing has taken off [77]. It is generally accepted that
researchers need a GPU (possibly a whole cluster of GPUs) to do any form of com-
petitive deep neural net learning. Even with the availability of cloud compu ting, this
may soon have the effect of “pricing out” individual academic researchers from the
future of deep learning [78].

Sometimes the whole notion of using a GPU to drive a computer’s screen (also
called the computer’s monit or) may be disregarded. Often called “headless” GPUs,
to save space and power, some GPUs dispensed with the screen interface altogether.
An extreme examples of this is Google’s TPU, which is totally specialised to Artifi-
cial Neural Network (ANN) processing.

As gaming and now AI have become more important, the notion of a GPU as a
cheap alternative to the computer’s CPU has also faded, and now a top end GPU can
cost more than a CPU.

21 Recent extremely high performance on Intel multi-core CPU SIMD hardware [75] has been achieved,
with unchanging fitness functions, in large trees, in converged populations [76], that do not have side
effects (and so can be evaluated in any order). This is because a lot of work can be omitted, if it can be
proved that a child has the same fitness as its parents.

20 The metric “Genetic Programming Operations per Second” (GPops) permits easy comparison of per-
formance, e.g. across different implementations and hardware.

19 People also said that it was impossible to create random numbers on GPU. Again not true [63]. These
days pseudo random number generators PRNG, (e.g. CuRAND) are supplied by nVidia with its CUDA
software.

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Affymetrix
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://developer.nvidia.com/curand
https://en.wikipedia.org/wiki/CUDA

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 11 of 32 19

1.9 Other gaps: memory, theory, bloat

John Koza mentioned that even though Jaws [1] did not include much work on
evolving memory, he regarded it as important because it provides another route to
allow re-use. Since a value stored in memory can be re-used, potentially many times,
without the code for it having to be evolved more than once. He mentioned my book
[79], although using indexed memory in GP is due to Teller [80]. Surprisingly, there
has been a steady stream of research on evolving memory within GP [81–133].

Genetic programming theory has a variety of forms [134]. Jaws [1] starts with
adapting the then current explanations of how linear bit string genetic algorithms
work, due to John Holland and Dave Goldberg. Such schema theories were also ana-
lysed by Una-May O’Reilly [135], Justin Rosca [136] and most notably by Ric-
cardo Poli [137]. Another popular thread is to take ideas from biology about how
evolution works and use them to understand GP [138], e.g. Price’s theorem [139,
140], population convergence [76, 141, 142] and neutral networks (plateaus) [143]
in fitness landscapes [144–148]. Similarly biology has been an inspiration for other
search operators, such as homologous crossover [149]. In recent years there has
been a flowering of formal or rigorous run time analysis in evolutionary computing
and some success applying mathematical techniques to GP problems [150–155]. Of
course it is difficult to make such theorems widely applicable and when using results
we must remember the inevitable assumptions they require. For example, SAT has
been proved to be NP-complete. Nevertheless in the last decade considerable pro-
gress has been made with practical SAT solvers and they are now routinely applied,
e.g. in software engineering. Similarly, the No Free Lunch theorem [156] applies
to GP (as with all optimisers) but fortunately (as in other branches of AI) that has
not inhibited development of the field. Although, as noted above, there are excep-
tions, but genetic programming as a whole remains a deeply empirical endeavour
with many new ideas being reported. However it is difficult to persuade authors to
carefully analyse their evolving populations of programs so as to be able to explain
why their experiment succeeded (or even why it failed).

Although John Koza reports [1] bloat22 from the start of genetic programming,
the tendency, indeed the name, for programs to be bigger than necessary is not
unique to GP. Bloated human written programs are common. Indeed people writ-
ing computer programs with unnecessary instructions goes back to the very begin-
ning of electronic digital computers, with bloat reported in programs run on the first
stored program digital computer, the Manchester Mark I [35]. This human tendency
is rampant, with some Internet code bases having grown to over a billion lines of
code in less than 20 years. Bloat continues to be a well studied topic in GP with 426
entries in the GP bibli ograp hy mentioning it.

Although there are potential ways of mitigating bloat’s impact on runtime [157]
and reducing its memory requirements with DAGs [158] (indeed bloated trees pro-
duced by crossover [159] should be highly compressible), in practice bloated popu-
lations can quickly overwhelm the available computer resources and so the common

22 Bloat is the tendency for programs to grow in size without commensurate increase in performance.

http://gpbib.cs.ucl.ac.uk/
https://en.wikipedia.org/wiki/Directed_acyclic_graph

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 12 of 32

approach is to shut bloat down. For example, by enforcing either depth or size limits
on the evolving programs. However this is not risk free [160] and more sophisticated
approaches may be wanted. For example, controls on selection, such as using mul-
tiple fitness objectives (e.g. a size versus performance Pareto trade-off [161, 162])
or tighter controls on offspring generation [163–166]. In many cases bloat appears
to be an unexpected aspect of early (even prema ture) convergence and so has some
similarity with overfi tting sometimes seen with artificial neural networks (ANNs),
where prolonged search drives locally improved performance on the training data.
This gives a more convoluted mapping between the ANN’s inputs and outputs but
at the possible expense of the ANN’s ability to generalise to unseen data. Where the
goal is to explain or predict, such complexity or overfitting is clearly unhelpful. In
ANN anti-over fitting techniques are essential. These include stopping training early
(i.e. in GP terms using fewer generations), regularization [167–169], changing the
training data during training [170, 171] and even expression simplification [172],
either during evolution [173] or to increase comprehensibility and explainability,
cf. XAI, after GP has finished [174]. Whilst Dale Hopper [173] and other authors,
ensure their automatic rewrite of GP individuals gives a semantically equivalent but
smaller replacement, in many cases this is not wanted. When a 100% correct pro-
gram is not realistic, e.g. on many prediction tasks, it may be better to accept (or
allow evolution to find) a similar but much simpler program, rather than spending
a lot of effort creating an exactly equivalent program to what is essentially only an
approximation.

However, bear in mind that evolution is a hacker. It builds on what was there
before. In biology evolution overfits. Classic example include: 1) the Giraffe’s left
laryn geal nerve, which runs the whole length of its neck from its head, round the
aorta in its chest and then returns to its throat at the top of its neck, because evolu-
tion did not find a shorter path, 2) the male peacock’s heavy tail which helps secure
a mate but impedes flight and 3) the human brain which consumes 20% of our food
[175] but made our ancestors more appealing as mates to other members of their
tribe [176].

2 A brief selection of other genetic programming work

In addition to continuing with evolving Lisp like trees, major branches of genetic
programming include: linear genetic programming [177] cartesian genetic program-
ming (CGP) [178] and grammatical evolution (GE) [179], all of which use a linear
chromosome. Following John Koza’s automatically defined functions, ADFs, see
page 7, there were several attempts to encourage the evolution of modular programs
using individuals with multiple trees or libraries of subtrees [180–183]. However,
these seem not to have taken hold.

As with evolutionary computation in general, the major computational cost of
GP is usually evaluating fitness [1, p783]. In tree GP this is usually the cost of

https://en.wikipedia.org/wiki/Premature_convergence
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://en.wikipedia.org/wiki/Recurrent_laryngeal_nerve
https://en.wikipedia.org/wiki/Aorta

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 13 of 32 19

interpreting the trees. When members of the population are going to be run many
times.23 it may be worth the cost of compiling the population and then running the
compiled programs.24 rather than interpreting them [188]. However, as Ronald Cre-
peau showed [189], for GP, it is not essential to run a full blown compiler, instead
knowing the restricted set of primitives used by GP, he constructed a dedicated fast
compiler which converted the evolved code into machine code and ran that directly.
Peter Nordin eliminated the compilation step entirely by using GP to evolve firstly
Sun 32 bit SPARC RISC architecture machine code [85] and later Intel x86 bina-
ries [190] (which in turn later became Discipulus [191]). He used tailored mutation
operations which respected the layout of the machine code. Although perhaps first
motivated by speed and simplicity, the idea of evolving variable length linear pro-
grams has taken off [192, 193].

Grammatical Evolution (GE) [194, 195] shows the virtues of trying ideas out.
Michael O’Neill and Conor Ryan took the idea of a variable length linear chromo-
some, simplified it to become just an ordered list of byte sized integers (0..255) and
married it to another favourite of computer scientists: the Backus- Naur form gram-
mar (BNF). Pretty much anything which can be run on a computer can be expressed
in a BNF grammar. They disregarded that BNF is essentially tree shaped and trusted
in evolution to find a way of putting them together. The linear stream of bytes is
mapped using modul us to say which branch to take next in the grammar. If there are
not enough bytes, we simply wrap round and start again from the first. If there are
too many, we ignore the excess. The resulting grammar is treated as the individual’s
phenotype and in a problem dependent way converted into a trial solution with a
fitness value. The sloppiness of the mapping from genotype to phenotype offended
some and provoked wide discussion in a peer commentary issue of “Genetic Pro-
gramming and Evolvable Machines” [196]. But as Conor Ryan says “GE works”
[197]. Indeed the separation of genotype from BNF grammar makes grammatical
evolution flexible and has been widely used. (The GP bibliography contains well
over seven hundred entries relating to grammatical evolution.)

With Cartesian Genetic Programming (CGP) [178, 198–201], Julian Miller
turned to a fixed representation, more a kin to traditional bit string genetic algo-
rithms (GAs). However the chromosome is a fixed sized two dimensional rectangle,
rather than a single string, where each cell contains a digital computational unit,
such as an XOR gate. Both the contents of the cells and crucially the connections
between them are evolvable.25 Notice, like linear GP (but unlike GE), evolution

25 Nowadays in cartesian genetic programming people often set the width of the FPGA like rectangle of
components to 1, making it effectively a string. Similarly it is common to allow only feed forward con-
nections, so preventing recurrent loops.

23 Considerable saving are sometimes possible by accepting fitness selection will be somewhat random
and using a cheaper and approximate fitness function. After all, the goal of a fitness function, is not to
measure performance (that can be done after the run) but to guide search. Why run thousands of fitness
cases, when fitness will ultimately be reduced to a single bit: does this individual get a child or not?
Even then, we typically add noise to this bit, e.g. via tournament selection, [184–186], see also [187,
Sect. 10.1].
24 Lisp provides compilation as an alternative to interpreting programs [1, p785].

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Exclusive_or

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 14 of 32

directly sets the contents and connections of each cell (i.e. evolution acts directly on
the phenotype). Also there is no explicit left-right flow of control. In CGP the chro-
mosome is treated as a circuit and so its evaluation has to take note of where data
enters and leaves. It is also not necessary to evaluate cells which are not connected.
Cartesian GP has been widely used, including in the evolution of approximate com-
puting [202, 203], where evolution can be well suited to finding good trade-offs
between conflicting objectives, such as fidelity, size, number of components, power
consumption and speed.

2.1 Inspired by computer science

In order for subtree crossover to freely mix subtrees from parents to create chil-
dren, John Koza required the components of his GP trees to have closure [1,
Sect. 6.1.1]. Meaning 1) any leaf or function in the tree can be an argument to
any other function. Since components typically communicate via function return
values, this often means GP trees use a single type, often float. 2) To ensure
each function can deal with any combination of inputs, many functions have
protected GP versions. Such as protected log RLOG [1, p83], which returns a
defined value (rather than raising an exception) even if its input is zero or nega-
tive. Alternatives might be to allow evolution to deal with the exception, or sim-
ply assign poor fitness to individuals with illegal combinations. However notice
that ruling it out prevents GP exploring not only this tree but all the trees that
might have evolved from it.

Perhaps the most famous extensions to closure are Dave Montana’s strongly
typed GP [204] and Tina Yu’s polymorphic GP [205, 206] which allow mul-
tiple types but ensure evolution explores only type safe expressions. Another
approach is to use various types of grammar to try and keep evolution in the
most productive parts of the search space [207]. For example, using conte xt free
gramm ars [208, 209], using grammars to ensure the evolution of expressions
which are dimensionally consistent [210], using tree- adjun ct gramm ars to guide
GP (TAG3) [211] and using GP with Linde nmaye r Syste ms (often abbreviated
to L-Systems) [212–215].

Whereas Lisp and most GP systems implicitly use the system stack, programs
which explicitly use a stack [216, 217], e.g. to pass vectors and matrices [218],
are also possible. An explicit stack allows the evolution of Rever se Polis h Notat
ion (RPN) [62] and even infix expressions [219]. In PushGP [220] there are mul-
tiple stacks, one per type. These may include a code stack, so allowing GP to
manipulate code, thus permitting GP to evolve its own genetic operators.

2.2 Non genetic GP

John Koza’s GP [1] is clearly strongly influenced by his PhD supervisor, John
Holland, and GP [1] is essentially the application of John Holland’s genetic algo-
rithms to the evolution of Lisp s-expressions, i.e. tree shaped programs. But, as

https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/L-system
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Infix_notation

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 15 of 32 19

we have seen, the programs need not be trees, and similarly the search algorithm
does not have to be a genetic algorithm. Other techniques include: local search,
Simulated Annealing [221, 222], Differential Evolution [223], Bayesian prob-
ability search [224], Estimation-of-Distribution Algorithms (EDAs) [225, 226]
Ken Stanley’s Neat [227–229] and even deterministic search, e.g. Trent McCo-
naghy’s FFX [230]. Indeed search does not have to be guided only by fitness
but can “look inside” the program [231] and its execution [232]. SRbench [233]
compares many GP and non-GP approaches to symbolic regression, including
MRGP [234], M3GP [235], FEW [236] and Operon [237].

2.3 Less explored

2.3.1 Assembly code, byte code

In human terms assembly code is usually viewed as intermediate between high level
languages and machine code. Offering the potential advantage of machine code
(speed and compactness), and ease of use and readability of high level source code.
There has been very little GP work on evolving assembly code. Exceptions include
microcontroller assembly [238], nVidia GPU PTX [239, 240] and the intermediate
(IR) code used by LLVM [241], and again on GPUs [242].

Java, and some other interpreted languages, compile the source code into byte
code which they then interpret. Eduard Lukschandl showed it is possible to run GP
at the level of Java byte code [243].

2.3.2 Modularity, recursion, loops

Some of the work on encouraging the evolution of modular code was mentioned
on page 13. In Jaws, John Koza described GP solving the Fibonacci problem [1,
pp473–477] as an example requiring the evolution of recursion and several examples
where GP evolved do-until loops and other forms of iteration, but again there has
been relatively little work on either by others. Again a few exceptions. These include
work by Peter Whigham [244, 245] and Tom Castle [246].

2.3.3 Coevolution

As with many topics, there are examples of co-evolution [247, 248] in Jaws [1] and
many elsewhere in genetic programming [81], for example in agent learning [249].
However, it does feel like coevolution has not yet fulfilled its potential. In deep arti-
ficial neural networks there is interest in antagonistic adversarial learning and so
perhaps this will stimulate renewed interest in coevolution in genetic programming.

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 16 of 32

3 The future

At GECCO 2022 Erik Goodman asked if there we any applications of GP that had
surprised John Koza. Amongst the many human compe titive [6] results, perhaps one
of the most encouraging is quantum computing. As with quantum physics, quan-
tum computing has a deserved reputation for being difficult for people. However, the
rules about quantum computing gates can be coded for GP to use without being an
expert quantum physicist, and then GP can be left to evolve novel quantum circuit
designs incorporating them [250–252]. Riccardo Poli, Leonardo Vanneschi and oth-
ers have previously reported on the state of GP and in particular what remains to be
done [253, 254].

In genet ic impro vement [13] existing (human written) software is optimised
(typically by using GP). Notice genetic improvement does not start from primor-
dial ooze [1]. Instead search automates the potentially labour intensive, tedious and
error prone task of find modifications. For example, to repair bugs [12, 43, 47, 49,
255], including energy bugs [256], reducing memory consumption [257], reduce run
time [174, 258–265] improve existing functionality (e.g. to give better predictions
[266]), porting to new hardware [267] including improving GPU applications [242,
262–265, 268] or even to incorporate existing functionality from outside the existing
code base [269].

The idea of mixing evolutionary computing (including GP) with other optimisa-
tion tools to give hyperheuristics [270] has a long history. In particular, with the
recent explosion of interest in deep artificial neural networks, combining evolution-
ary learning and artificial neural networks seems set to continue. One particularly
encouraging trend is AutoML tools such as TPOT [271, 272] which automatically
tune existing machine learning pipelines.

In GP, as in most optimisation problems, most of the computation effort is spent
on evaluating how good the proposed solutions are. Various ideas for speeding up
fitness evaluation have been proposed, for example surrogate fitness functions [273].
Colin Johnson’s Learned Guidance Functions [274] seem a particularly elegant
approach to making best used of previously gained knowledge. It would be interest-
ing to see Learned Guidance Functions applied to genetic programming or when
using genetic improvement to adapt existing human written programs.

Since all digital computing progressively loses information, information about
crossover and mutation gets progressively washed out the further it has to travel. In
nested functions without side effects, deep genetic changes become invisible to the
fitness function. Thus to evolve complex programs, they must remain shallow and so
I propose that to evolve large complex programs, they be composed of many shallow
trees, within a strong low entropy-loss data interconnect to and from the environ-
ment. This should ensure that the good and bad effects of most genetic code changes
are externally measurable [275].

At GECCO John Koza pointed out that in both biology and in human design,
modularity and reuse are ever present. Biology scales from a single cell to individu-
als containing billions of cells. It does this, like human engineers, not by solving

https://www.human-competitive.org/
https://en.wikipedia.org/wiki/Genetic_improvement_%28computer_science)

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 17 of 32 19

many billions of individual problems but by reusing existing designs. We need to
revisit the scaling problem.

4 Conclusions

We have seen that in the thirty years since John Koza published his first GP book,
the field has blossomed. The genetic programming bibliography contains some
16 367 entries by 16 342 authors26. Many of the genetic and evolutionary computa-
tion papers judged to be the best human compe titive work of each year have used
genetic programming. Clearly GP is doing well in its mission to help the world.

As mentioned at the end of the last section, although GP continues to flourish,
perhaps we need to tackle the scaling problem. Are we evolving small things? Do
we need to be more ambitious? Following Stephanie Forrest’s recent questions
[276]: what could GP do with Google Deep AI scale resources?

As John Koza foresaw, 30 years of Moore’s law [277] (with component count
doubling every 18 months) means 20 lots of doubling (220 = 1 048 576). That is,
since the genetic programming field started, the computer power available to us
has increased a million fold. What of the next 30 years? Perhaps Moore’s Law will
end? Certainly the death of Moore’s Law has been confidently predicted many
times. What seems certain is we will not see dramatic increases in silicon comput-
ing’s clock speeds. Instead we anticipate the future of computing will be ever more
parallel. But as John Koza says GP is embarrassingly parallel. Indeed the use of
distributed parallel GP populations, not only makes good use of current and future
compute resources but is in keeping with Sewall Wright’s [278] model of natural
evolution and as John Koza reports by keeping population diversity, the distributed
population demes of the island model, improve GP results as well as speeding it up.

In 2052 will genetic programming researchers be using computers a million times
faster than they use today? Certainly GP seems well placed to exploit them.

Acknowledgements I would like to thank Sean Luke, and Andrew and Claire, and my anonymous
reviewers. No competing interests. Funded by the Meta (formerly Facebook) Oops project (Award num-
ber 181551).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

26 The GP bibli ograp hy was started by John Koza. Although in recent years it has undoubtedly missed
some work, in the five years before the pandemic (i.e. 2015–19) there were 3340 new entries and 5177
authors published at least one GP paper.

https://www.human-competitive.org/
https://en.wikipedia.org/wiki/Embarrassingly_parallel
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://gpbib.cs.ucl.ac.uk/

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 18 of 32

References

 1. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

 2. C. Darwin, On the Origin of Species by Means of Natural Selection, 1985th edn. (John Murray,
Penguin classics, London, 1859)

 3. C. Darwin, Voyage of the Beagle, 1989th edn. (Henry Colburn, Penguin classics, London, 1839)
 4. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press,

Cambridge, 1994)
 5. J.R. Koza et al., Genetic Programming III: Darwinian Invention and Problem Solving (Morgan

Kaufmann, Cambridge, 1999)
 6. J.R. Koza et al., Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Klu-

wer Academic Publishers, Dordrecht, 2003). https:// doi. org/ 10. 1007/0- 387- 26417-5_1
 7. J.R. Koza, J.P. Rice, Genetic Programming: The Movie (MIT Press, Cambridge, 1992)
 8. J.R. Koza, Genetic Programming II Videotape: The next generation (MIT Press, Cambridge, 1994)
 9. J.R. Koza et al., Genetic Programming III Videotape: Human Competitive Machine Intelligence

(Morgan Kaufmann, San Francisco, 1999)
 10. J.R. Koza et al., Genetic Programming IV Video: Human-Competitive Machine Intelligence (Klu-

wer Academic Publishers, Dordrecht, 2003)
 11. J. Koza, Automated design using Darwinian evolution and genetic programming. Stanford Univer-

sity, EE380: Computer Systems Colloquium (18 Feb 2009). https:// www. youtu be. com/ watch?v=
xIoyt wJWJP8

 12. C. Le Goues et al., Automated program repair. Commun. ACM 62(12), 56–65 (2019). https:// doi.
org/ 10. 1145/ 33181 62

 13. J. Petke et al., Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol. Com-
put. 22(3), 415–432 (2018). https:// doi. org/ 10. 1109/ TEVC. 2017. 26932 19

 14. W.B. Langdon, J. Petke, Software is not fragile. in Complex Systems Digital Campus E-conference,
ed. by P. Parrend et al. CS-DC’15. Proceedings in Complexity, Springer (Sep 30-Oct 1 2015), pp.
203–211. https:// doi. org/ 10. 1007/ 978-3- 319- 45901-1_ 24, invited talk

 15. W.B. Langdon et al., Efficient multi-objective higher order mutation testing with genetic program-
ming. J. Syst. Softw. 83(12), 2416–2430 (2010). https:// doi. org/ 10. 1016/j. jss. 2010. 07. 027

 16. N. Harrand et al., A journey among Java neutral program variants. Genet. Program Evolvable
Mach. 20(4), 531–580 (2019). https:// doi. org/ 10. 1007/ s10710- 019- 09355-3

 17. E. Schulte et al., Software mutational robustness. Genet. Program Evolvable Mach. 15(3), 281–312
(2014). https:// doi. org/ 10. 1007/ s10710- 013- 9195-8

 18. R. Abou Assi et al., Coincidental correctness in the Defects4J benchmark. Softw. Testing, Verif.
Reliab. 29(3), e1696 (2019). https:// doi. org/ 10. 1002/ stvr. 1696

 19. B. Danglot et al., Correctness attraction: a study of stability of software behavior under runt-
ime perturbation. Empir. Softw. Eng. 23(4), 2086–2119 (2018). https:// doi. org/ 10. 1007/
s10664- 017- 9571-8

 20. M. Monperrus, Principles of antifragile software. in Companion to the First International Confer-
ence on the Art, Science and Engineering of Programming. Programming ’17, ACM, New York,
NY, USA (2017), pp. 32:1–32:4. https:// doi. org/ 10. 1145/ 30793 68. 30794 12

 21. J. Petke et al., Software robustness: A survey, a theory, and some prospects, in ESEC/FSE 2021,
Ideas, Visions and Reflections. ed. by P. Avgeriou, D. Zhang (ACM, Athens, 2021), pp.1475–1478.
https:// doi. org/ 10. 1145/ 34682 64. 34731 33

 22. D. Andre, J.R. Koza, Parallel genetic programming on a network of transputers. in Proceedings
of the Workshop on Genetic Programming: From Theory to Real-World Applications, ed. by J.P.
Rosca. Tahoe City, California, USA (9 Jul 1995), pp. 111–120. http:// www. cs. ucl. ac. uk/ staff/W.
Langd on/ ftp/ papers/ andre_ 1995_ paral lel. pdf

 23. K.E. Kinnear Jr. (ed.), Advances in Genetic Programming (MIT Press, Cambridge, 1994)
 24. P.J. Angeline, K.E. Kinnear Jr. (eds.), Advances in Genetic Programming 2 (MIT Press, Cam-

bridge, 1996). https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 001. 0001
 25. L. Spector et al., Quantum computing applications of genetic programming, chap. 7, in Advances

in Genetic Programming 3. ed. by L. Spector. et al. (MIT Press, Cambridge, 1999), pp.135–160.
https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0010

https://doi.org/10.1007/0-387-26417-5_1
https://www.youtube.com/watch?v=xIoytwJWJP8
https://www.youtube.com/watch?v=xIoytwJWJP8
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-013-9195-8
https://doi.org/10.1002/stvr.1696
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3468264.3473133
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
https://doi.org/10.7551/mitpress/1109.001.0001
https://doi.org/10.7551/mitpress/1110.003.0010

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 19 of 32 19

 26. J.R. Koza et al., (eds.), Genetic Programming 1996: Proceedings of the First Annual Conference.
MIT Press, Stanford University, CA, USA (28–31 Jul 1996). http:// www. genet ic- progr amming. org/
gp96p rocee dings. html

 27. J.R. Koza et al., (eds.), Genetic Programming 1997: Proceedings of the Second Annual Confer-
ence. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997). http:// www. amazon.
com/ Genet ic- Progr amming- 2nd- Confe rence- Author/ dp/ 15586 04839

 28. J.R. Koza et al., (eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference.
Morgan Kaufmann, University of Wisconsin, Madison, WI, USA (22-25 Jul 1998)

 29. P.J. Angeline et al, (eds.), Proceedings of the 1999 Congress on Evolutionary Computation, CEC
1999. IEEE Press, Washington, DC, USA (July 6-9 1999). https:// dblp. org/ rec/ conf/ cec/ 1999. bib

 30. W. Banzhaf et al., (eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann, Orlando, Florida, USA (13-17 Jul 1999). http:// www. amazon.
com/ exec/ obidos/ ASIN/ 15586 06114/ qid% 3D977 054373/ 105- 76661 92- 32175 23

 31. W. Banzhaf et al., (eds.), Genetic Programming, LNCS, vol. 1391. Springer-Verlag, Paris (14-15
Apr 1998). https:// doi. org/ 10. 1007/ BFb00 55923

 32. J.R. Koza et al., Evolving inventions. Sci. Am. 288(2), 52–59 (2003)
 33. J.R. Koza, Human-competitive results produced by genetic programming. Genet. Programm.

Evolvable Mach. 11(3/4), 251–284 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9112-3
 34. R.M. Friedberg, A learning machine: I. IBM J. Res. Dev. 2(1), 2–13 (1958)
 35. T. Kilburn et al., Experiments in machine learning and thinking. in Information Processing, Pro-

ceedings of the 1st International Conference on Information Processing. UNESCO, Paris (15-20
Jun 1959), pp. 303–308. https:// dblp. org/ rec/ conf/ ifip/ Kilbu rnGS59. bib

 36. A.M. Turing, Intelligent machinery (1948), https:// www. npl. co. uk/ getat tachm ent/ about- us/ Histo ry/
Famous- faces/ Alan- Turing/ 80916 595- Intel ligent- Machi nery. pdf, report for National Physical Lab-
oratory. Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of A. M.
Turing. Amsterdam: North Holland. Pages 107127. Also reprinted in Meltzer, B. and Michie, D.
(editors). (1969). Machine Intelligence 5. Edinburgh: Edinburgh University Press [278]

 37. A.M. Turing, Intelligent machinery, chap. 1, in Machine Intelligence, vol. 5, ed. by B. Meltzer, D.
Michie (Edinburgh University Press, Edinburgh, 1969), pp.3–23. https:// doi. org/ 10. 1109/ GI525 43.
2021. 00008

 38. W.B. Langdon, W. Banzhaf, Repeated patterns in tree genetic programming. inProceedings of
the 8th European Conference on Genetic Programming. Lecture Notes in Computer Science, vol.
3447, ed.by M. Keijzer et al. Springer, Lausanne, Switzerland (30 Mar–1 Apr 2005), pp. 190–202.
https:// doi. org/ 10. 1007/ 978-3- 540- 31989-4_ 17

 39. W.B. Langdon, W. Banzhaf, Repeated patterns in genetic programming. Nat. Comput. 7(4), 589–
613 (2008). https:// doi. org/ 10. 1007/ s11047- 007- 9038-8

 40. S. Ohno, Evolution by Gene Duplication (Springer, Berlin, 1970). https:// doi. org/ 10. 1007/
978-3- 642- 86659-3

 41. J.R. Koza, D. Andre, A case study where biology inspired a solution to a computer science prob-
lem, in Pacific Symposium on Biocomputing ’96. ed. by L. Hunter, T.E. Klein (World Scientific,
Singapore, 1996), pp.500–511

 42. J.R. Koza, Architecture-altering operations for evolving the architecture of a multipart program in
genetic programming. Technical Report STAN-CS-94-1528, Dept. of Computer Science, Stanford
University, Stanford, California 94305, USA (Oct 1994). http:// www. genet ic- progr amming. com/
jkpdf/ tr1528. pdf

 43. S. Forrest et al., A genetic programming approach to automated software repair. in GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ed. by G.
Raidl et al. ACM, Montreal (8-12 Jul 2009), pp. 947–954. https:// doi. org/ 10. 1145/ 15699 01. 15700
31, gECCO 2019 10-Year Most Influential Paper Award, Best paper

 44. L. Carroll, Through the Looking-Glass, and What Alice Found There (Macmillan, London, 1871)
 45. W. Weimer et al., Automatically finding patches using genetic programming. in International Con-

ference on Software Engineering (ICSE) 2009, ed. by S. Fickas. Vancouver (May 16-24 2009), pp.
364–374. https:// doi. org/ 10. 1109/ ICSE. 2009. 50705 36

 46. C. Le Goues, Automatic Program Repair Using Genetic Programming. Ph.D. thesis, Faculty of the
School of Engineering and Applied Science, University of Virginia, USA (May 2013). http:// www.
cs. virgi nia. edu/ ~weimer/ stude nts/ claire- phd. pdf

http://www.genetic-programming.org/gp96proceedings.html
http://www.genetic-programming.org/gp96proceedings.html
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
https://dblp.org/rec/conf/cec/1999.bib
http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
https://doi.org/10.1007/BFb0055923
https://doi.org/10.1007/s10710-010-9112-3
https://dblp.org/rec/conf/ifip/KilburnGS59.bib
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1007/978-3-540-31989-4_17
https://doi.org/10.1007/s11047-007-9038-8
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10.1007/978-3-642-86659-3
http://www.genetic-programming.com/jkpdf/tr1528.pdf
http://www.genetic-programming.com/jkpdf/tr1528.pdf
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1109/ICSE.2009.5070536
http://www.cs.virginia.edu/%7eweimer/students/claire-phd.pdf
http://www.cs.virginia.edu/%7eweimer/students/claire-phd.pdf

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 20 of 32

 47. S.O. Haraldsson et al., Fixing bugs in your sleep: how genetic improvement became an overnight
success, in GI-2017. ed. by J. Petke et al. (ACM, Berlin, 2017), pp.1513–1520. https:// doi. org/ 10.
1145/ 30676 95. 30825 17

 48. N. Alshahwan, Industrial experience of genetic improvement in Facebook. in GI-2019, ed. by J.
Petke, et al. ICSE workshops proceedings. IEEE, Montreal (28 May 2019), p. 1. https:// doi. org/ 10.
1109/ GI. 2019. 00010, invited Keynote

 49. S. Kirbas et al., On the introduction of automatic program repair in Bloomberg. IEEE Softw. 38(4),
43–51 (2021). https:// doi. org/ 10. 1109/ MS. 2021. 30710 86

 50. H. Juille, J.B. Pollack, Massively parallel genetic programming, chap. 17, in Advances in Genetic
Programming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996), pp.339–357.
https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0023

 51. A. Thompson, Hardware Evolution Automatic Design of Electronic Circuits in Reconfig-
urable Hardware by Artificial Evolution (Springer, Berlin, 1998). https:// doi. org/ 10. 1007/
978-1- 4471- 3414-5

 52. T.G.W. Gordon, Exploiting Development to Enhance the Scalability of Hardware Evolution. Ph.D.
thesis, University College, London, UK (Jul 2005). https:// disco very. ucl. ac. uk/ id/ eprint/ 14447 75/

 53. P.N. Martin, Genetic Programming in Hardware. Ph.D. thesis, University of Essex, University of
Essex, Wivenhoe Park, Colchester, UK (Mar 2003). http:// www. naiad home. com/ Hardw areGe netic
Progr amming. pdf

 54. L. Sekanina, Z. Vasicek, CGP acceleration using field-programmable gate arrays, chap. 7, in Carte-
sian Genetic Programming. Natural Computing Series. ed. by J.F. Miller. (Springer, Berlin, 2011),
pp.217–230. https:// doi. org/ 10. 1007/ 978-3- 642- 17310-3_7

 55. C. Goribar-Jimenez et al., Towards the development of a complete GP system on an FPGA using
geometric semantic operators, in 2017 IEEE Congress on Evolutionary Computation (CEC). ed. by
J.A. Lozano (IEEE, Donostia, 2017), pp.1932–1939. https:// doi. org/ 10. 1109/ CEC. 2017. 79695 37

 56. W.B. Langdon, O. Krauss, Genetic improvement of data for maths functions. ACM Trans. Evolut.
Learn. Optim. 1(2), 7 (2021). https:// doi. org/ 10. 1145/ 34610 16

 57. J.D. Owens et al., A survey of general-purpose computation on graphics hardware. Comput. Gr.
Forum 26(1), 80–113 (2007). https:// doi. org/ 10. 1111/j. 1467- 8659. 2007. 01012.x

 58. S. Harding, W. Banzhaf, Fast genetic programming on GPUs. in Proceedings of the 10th Euro-
pean Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 4445, ed.
by M. Ebner et al. Springer, Valencia, Spain (11-13 Apr 2007), pp. 90–101. https:// doi. org/ 10.
1007/ 978-3- 540- 71605-1_9

 59. D.M. Chitty, A data parallel approach to genetic programming using programmable graphics
hardware. in GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolution-
ary computation. vol. 2, ed. by D. Thierens et al. ACM Press, London (7-11 Jul 2007), pp.
1566–1573. https:// doi. org/ 10. 1145/ 12769 58. 12772 74

 60. H. Juille, J.B. Pollack, Parallel genetic programming and fine-grained SIMD architecture. in
Working Notes for the AAAI Symposium on Genetic Programming, ed. by E.V. Siegel, J.R.
Koza. AAAI, MIT, Cambridge, MA, USA (10–12 Nov 1995), pp. 31–37. http:// www. aaai. org/
Papers/ Sympo sia/ Fall/ 1995/ FS- 95- 01/ FS95- 01- 005. pdf

 61. W.B. Langdon, A SIMD interpreter for genetic programming on GPU graphics cards. Tech.
Rep. CSM-470, Department of Computer Science, University of Essex, Colchester, UK (3 Jul
2007). http:// cswww. essex. ac. uk/ techn ical- repor ts/ 2007/ csm_ 470. pdf

 62. W.B. Langdon, W. Banzhaf, A SIMD interpreter for genetic programming on GPU graphics
cards. in Proceedings of the 11th European Conference on Genetic Programming, EuroGP
2008. Lecture Notes in Computer Science, vol. 4971, ed. by M. O’Neill et al. Springer, Naples
(26-28 Mar 2008), pp. 73–85. https:// doi. org/ 10. 1007/ 978-3- 540- 78671-9_7

 63. W.B. Langdon, A fast high quality pseudo random number generator for graphics processing
units. in 2008 IEEE World Congress on Computational Intelligence, ed. by J. Wang. IEEE,
Hong Kong (1-6 Jun 2008), pp. 459–465. https:// doi. org/ 10. 1109/ CEC. 2008. 46308 38

 64. D. Robilliard et al., Genetic programming on graphics processing units. Genet. Program Evolv-
able Mach. 10(4), 447–471 (2009). https:// doi. org/ 10. 1007/ s10710- 009- 9092-3

 65. L.A. Baumes et al., EASEA: a generic optimization tool for GPU machines in asynchronous
island model. Comput. Methods Mater. Sci. 11(3), 489–499 (2011)

 66. J. Vitola et al., Parallel algorithm for evolvable-based boolean synthesis on gpus. in Third IEEE
Latin American Symposium on Circuits and Systems (LASCAS 2012) (29 Feb-2 Mar 2012).
https:// doi. org/ 10. 1109/ LASCAS. 2012. 61803 39

https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.7551/mitpress/1109.003.0023
https://doi.org/10.1007/978-1-4471-3414-5
https://doi.org/10.1007/978-1-4471-3414-5
https://discovery.ucl.ac.uk/id/eprint/1444775/
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
https://doi.org/10.1007/978-3-642-17310-3_7
https://doi.org/10.1109/CEC.2017.7969537
https://doi.org/10.1145/3461016
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1007/978-3-540-71605-1_9
https://doi.org/10.1007/978-3-540-71605-1_9
https://doi.org/10.1145/1276958.1277274
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1109/CEC.2008.4630838
https://doi.org/10.1007/s10710-009-9092-3
https://doi.org/10.1109/LASCAS.2012.6180339

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 21 of 32 19

 67. A. Maghazeh et al., General purpose computing on low-power embedded GPUs: has it come of
age? in 2013 International Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS XIII), ed. by H. Jeschke. IEEE, Samos, Greece (15-18 Jul 2013).
https:// doi. org/ 10. 1109/ SAMOS. 2013. 66210 99

 68. D.M. Chitty, Faster GPU-based genetic programming using a two-dimensional stack. Soft.
Comput. 21(14), 3859–3878 (2017). https:// doi. org/ 10. 1007/ s00500- 016- 2034-0

 69. K. Ono, Y. Hanada, Self-organized subpopulation based on multiple features in genetic pro-
gramming on GPU. J. Adv. Comput. Intell. Intell. Inform. 25(2), 177–186 (2021). https:// doi.
org/ 10. 20965/ jaciii. 2021. p0177

 70. L. Trujillo et al., GSGP-CUDA - a CUDA framework for geometric semantic genetic program-
ming. SoftwareX 18, 101085 (2022). https:// doi. org/ 10. 1016/j. softx. 2022. 101085

 71. W.B. Langdon, A.P. Harrison, GP on SPMD parallel graphics hardware for mega bioin-
formatics data mining. Soft. Comput. 12(12), 1169–1183 (2008). https:// doi. org/ 10. 1007/
s00500- 008- 0296-x

 72. W.B. Langdon, Distilling GeneChips with genetic programming on the Emerald GPU super-
computer. SIGEVOlution Newsl. ACM Spec. Interest Group Genet. Evolut. Comput. 6(1),
15–21 (2012). https:// doi. org/ 10. 1145/ 23846 97. 23846 99

 73. W.B. Langdon, Large scale bioinformatics data mining with parallel genetic programming on
graphics processing units, chap. 15, in Massively Parallel Evolutionary Computation on GPG-
PUs. Natural Computing Series. ed. by S. Tsutsui, P. Collet. (Springer, Berlin, 2013), pp.311–
347. https:// doi. org/ 10. 1007/ 978-3- 642- 37959-8_ 15

 74. W.B. Langdon, Large scale bioinformatics data mining with parallel genetic programming on
graphics processing units, chap. 5, in Parallel and Distributed Computational Intelligence,
Studies in Computational Intelligence, ed. by F. Fernandez de Vega, E. Cantu-Paz., vol. 269
(Springer, Berlin, 2010), pp.113–141. https:// doi. org/ 10. 1007/ 978-3- 642- 10675-0_6

 75. W.B. Langdon, W. Banzhaf, Long-term evolution experiment with genetic programming. Artif.
Life 28(2), 173–204 (2022). https:// doi. org/ 10. 1162/ artl_a_ 00360

 76. W.B. Langdon, Genetic programming convergence. Genet. Program Evolvable Mach. 23(1),
71–104 (2022). https:// doi. org/ 10. 1007/ s10710- 021- 09405-9

 77. I. Goodfellow et al., Deep Learning (MIT Press, Cambridge, 2016)
 78. W. Weimer, From deep learning to human judgments: Lessons for genetic improvement. GI @

GECCO 2022 (9 Jul 2022), http:// genet icimp rovem entof softw are. com/ slides/ gi202 2gecco/ weimer-
keyno te- gi- gecco- 22. pdf, invited keynote

 79. W.B. Langdon, Genetic Programming and Data Structures: Genetic Programming + Data Struc-
tures = Automatic Programming!, Genetic Programming, vol. 1. Kluwer, Boston (1998), https://
doi. org/ 10. 1007/ 978-1- 4615- 5731-9

 80. A. Teller, The evolution of mental models, chap. 9, in Advances in Genetic Programming. ed. by
K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.199–219

 81. J. Jannink, Cracking and co-evolving randomizers, chap. 20, in Advances in Genetic Programming.
ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.425–443

 82. D. Andre, Evolution of mapmaking ability: Strategies for the evolution of learning, planning, and
memory using genetic programming. in Proceedings of the 1994 IEEE World Congress on Com-
putational Intelligence. vol. 1, IEEE Press, Orlando, Florida, USA (27-29 Jun 1994), pp. 250–255.
https:// doi. org/ 10. 1109/ ICEC. 1994. 350007

 83. H. Iba et al. Temporal data processing using genetic programming. in Genetic Algorithms: Pro-
ceedings of the Sixth International Conference (ICGA95), ed. by L.J. Eshelman. Morgan Kauf-
mann, Pittsburgh, PA, USA (15-19 Jul 1995), pp. 279–286. http:// www. cs. ucl. ac. uk/ staff/W. Langd
on/ ftp/ papers/ iba_ 1995_ tdpgp. pdf

 84. T.D. Haynes, R.L. Wainwright, A simulation of adaptive agents in hostile environment. in Pro-
ceedings of the 1995 ACM Symposium on Applied Computing, ed. by K.M. George et al. ACM
Press, Nashville, USA (1995), pp. 318–323. https:// doi. org/ 10. 1145/ 315891. 316007

 85. P. Nordin, W. Banzhaf, Evolving Turing-complete programs for a register machine with self-mod-
ifying code. in Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95),
ed. by L.J. Eshelman. Morgan Kaufmann, Pittsburgh, PA, USA (15-19 Jul 1995), pp. 318–325.
http:// www. cs. mun. ca/ ~banzh af/ papers/ icga95- 2. pdf

 86. S. Brave, Evolving recursive programs for tree search, chap. 10, in Advances in Genetic Program-
ming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996), pp.203–220. https://
doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0015

https://doi.org/10.1109/SAMOS.2013.6621099
https://doi.org/10.1007/s00500-016-2034-0
https://doi.org/10.20965/jaciii.2021.p0177
https://doi.org/10.20965/jaciii.2021.p0177
https://doi.org/10.1016/j.softx.2022.101085
https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1145/2384697.2384699
https://doi.org/10.1007/978-3-642-37959-8_15
https://doi.org/10.1007/978-3-642-10675-0_6
https://doi.org/10.1162/artl_a_00360
https://doi.org/10.1007/s10710-021-09405-9
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1109/ICEC.1994.350007
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf
https://doi.org/10.1145/315891.316007
http://www.cs.mun.ca/%7ebanzhaf/papers/icga95-2.pdf
https://doi.org/10.7551/mitpress/1109.003.0015
https://doi.org/10.7551/mitpress/1109.003.0015

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 22 of 32

 87. A.I. Esparcia Alcazar, K.C. Sharman, Some applications of genetic programming in digital sig-
nal processing. in Late Breaking Papers at the Genetic Programming 1996 Conference Stanford
University July 28-31, 1996, ed. by J.R. Koza. Stanford Bookstore, Stanford University, CA, USA
(28–31 Jul 1996), pp. 24–31.http:// www. iti. upv. es/ ~anna/ papers/ somea ppsgp 96. ps

 88. W.S. Bruce, The Application of Genetic Programming to the Automatic Generation of Object-Ori-
ented Programs. Ph.D. thesis, School of Computer and Information Sciences, Nova Southeastern
University, 3100 SW 9th Avenue, Fort Lauderdale, Florida 33315, USA (Dec 1995). https:// nsuwo
rks. nova. edu/ gscis_ etd/ 430/

 89. A. Ronge, M.G. Nordahl, Genetic programs and co-evolution developing robust general purpose
controllers using local mating in two dimensional populations. in Parallel Problem Solving from
Nature IV, Proceedings of the International Conference on Evolutionary Computation. LNCS, vol.
1141, ed. by : H.M. Voigt et al. Springer Verlag, Berlin, Germany (22-26 Sep 1996), pp. 81–90.
https:// doi. org/ 10. 1007/3- 540- 61723-X_ 972

 90. L. Spector, S. Luke, Cultural transmission of information in genetic programming. in Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, ed. by J.R. Koza et al. MIT Press,
Stanford University, CA, USA (28–31 Jul 1996), pp. 209–214. http:// www. cs. gmu. edu/ ~sean/
papers/ cultu re- gp96. pdf

 91. S.E. Raik, D.G. Browne, Evolving state and memory in genetic programming, in Simulated Evolu-
tion and Learning. ed. by X. Yao, J.H. Kim, T. Furuhashi (Springer, Berlin, 1997). https:// doi. org/
10. 1007/ BFb00 28523

 92. B. Edmonds, S. Moss, Modelling of boundedly rational agents using evolutionary programming
techniques, in Evolutionary Computing, LNCS, vol. 1305, ed. by D. Corne, J.L. Shapiro (Springer-
Verlag, Berlin, 1997), pp.31–42. https:// doi. org/ 10. 1007/ BFb00 27164

 93. F.H. Bennett III, A multi-skilled robot that recognizes and responds to different problem environ-
ments. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by J.R.
Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 44–51. http://
www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ gp1997/ bennet_ 1997_ msrrr dpe. pdf

 94. P.J. Angeline, An alternative to indexed memory for evolving programs with explicit state repre-
sentations. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by
J.R. Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 423–430

 95. I.S. Lim, D. Thalmann, Indexed memory as a generic protocol for handling vectors of data in
genetic programming. in Fifth International Conference on Parallel Problem Solving from Nature.
LNCS, vol. 1498, ed. by A.E. Eiben et al. Springer-Verlag, Amsterdam (27-30 Sep 1998), pp. 325–
334.https:// doi. org/ 10. 1007/ BFb00 56875

 96. A. Trenaman, The Evolution of Autonomous Agents Using Concurrent Genetic Programming.
Ph.D. thesis, Department of Computer Science, National University of Ireland, Maynooth, Ireland
(Oct 1999), http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ trena man/ at_ thesi s1. ps. gz

 97. A. Silva et al., Evolving controllers for autonomous agents using genetically programmed net-
works. in Genetic Programming, Proceedings of EuroGP’99. LNCS, vol. 1598, ed. by R. Poli et al.
Springer-Verlag, Goteborg, Sweden (26-27 May 1999), pp. 255–269. https:// doi. org/ 10. 1007/3-
540- 48885-5_ 22

 98. B. Andersson et al., Reactive and memory-based genetic programming for robot control. in Genetic
Programming, Proceedings of EuroGP’99. LNCS, vol. 1598, ed. by R. Poli et al. Springer-Verlag,
Goteborg, Sweden (26-27 May 1999), pp. 161–172. https:// doi. org/ 10. 1007/3- 540- 48885-5_ 13

 99. P. Martin, Genetic programming for service creation in intelligent networks. in Genetic Program-
ming, Proceedings of EuroGP’2000. LNCS, vol. 1802, ed. by R. Poli et al. Springer-Verlag, Edin-
burgh (15-16 Apr 2000), pp. 106–120. https:// doi. org/ 10. 1007/ 978-3- 540- 46239-2_8

 100. K. Bearpark, Learning and memory in genetic programming. Ph.D. thesis, School of Engineering
Sciences, University of Southampton, UK (2000). http:// eprin ts. soton. ac. uk/ 45930/

 101. R. Karlsson et al., Sound localization for a humanoid robot using genetic programming, in
Real-World Applications of Evolutionary Computing, LNCS, vol. 1803, ed. by S. Cagnoni et al.
(Springer-Verlag, Edinburgh, 2000), pp.65–76. https:// doi. org/ 10. 1007/3- 540- 45561-2_7

 102. M.C. Martin, Visual obstacle avoidance using genetic programming: First results. in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), ed. by L. Spector et al.
Morgan Kaufmann, San Francisco, California, USA (7-11 Jul 2001), pp. 1107–1113. http:// www.
marti ncmar tin. com/ Disse rtati on/ Visua lObst acleA voida nceGP. pdf

 103. S.P. Brumby et al., Evolving forest fire burn severity classification algorithms for multi-spec-
tral imagery. in In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII,

http://www.iti.upv.es/%7eanna/papers/someappsgp96.ps
https://nsuworks.nova.edu/gscis_etd/430/
https://nsuworks.nova.edu/gscis_etd/430/
https://doi.org/10.1007/3-540-61723-X_972
http://www.cs.gmu.edu/%7esean/papers/culture-gp96.pdf
http://www.cs.gmu.edu/%7esean/papers/culture-gp96.pdf
https://doi.org/10.1007/BFb0028523
https://doi.org/10.1007/BFb0028523
https://doi.org/10.1007/BFb0027164
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf
https://doi.org/10.1007/BFb0056875
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/trenaman/at_thesis1.ps.gz
https://doi.org/10.1007/3-540-48885-5_22
https://doi.org/10.1007/3-540-48885-5_22
https://doi.org/10.1007/3-540-48885-5_13
https://doi.org/10.1007/978-3-540-46239-2_8
http://eprints.soton.ac.uk/45930/
https://doi.org/10.1007/3-540-45561-2_7
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 23 of 32 19

Proceedings of SPIE. vol. 4381, ed. by S.S. Shen, M.R. Descour, (2001), pp. 236–245. https:// doi.
org/ 10. 1117/ 12. 437013

 104. D. Howard et al., The boru data crawler for object detection tasks in machine vision. in Appli-
cations of Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP,
EvoSTim/EvoPLAN. LNCS, vol. 2279, ed. by S. Cagnoni et al. Springer-Verlag, Kinsale, Ireland
(3-4 Apr 2002), pp. 222–232.https:// doi. org/ 10. 1007/3- 540- 46004-7_ 23

 105. K. Imamura et al., N-version genetic programming via fault masking. in Genetic Programming,
Proceedings of the 5th European Conference, EuroGP 2002. LNCS, vol. 2278, ed. by J.A. Fos-
ter et al. Springer-Verlag, Kinsale, Ireland (3-5 Apr 2002), pp. 172–181. https:// doi. org/ 10. 1007/3-
540- 45984-7_ 17

 106. M. Johnson, Sequence generation using machine language evolved by genetic programming. in
Procceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL’02),
ed. by L. Wang et al. Orchid Country Club, Singapore (18-22 Nov 2002), p. #1251. http:// www.
world cat. org/ title/ seal02- proce edings- of- the- 4th- asia- pacifi c- confe rence- on- simul ated- evolu tion-
and- learn ing- novem ber- 18- 22- 2002- orchid- count ry- club- singa pore/ oclc/ 51951 214

 107. M. O’Neill, C. Ryan, Investigations into memory in grammatical evolution. in GECCO 2002: Pro-
ceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference,
ed. by A.M. Barry. AAAI, New York (8 Jul 2002), pp. 141–144. http:// www. gramm atical- evolu
tion. org/ gews2 002/ oneill. ps

 108. N. Pillay, Using genetic programming for the induction of novice procedural programming solution
algorithms. in SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing. ACM
Press, Madrid, Spain (Mar 2002), pp. 578–583. https:// doi. org/ 10. 1145/ 508791. 508903

 109. M.I. Quintana et al., Morphological algorithm design for binary images using genetic pro-
gramming. Genet. Program Evolvable Mach. 7(1), 81–102 (2006). https:// doi. org/ 10. 1007/
s10710- 006- 7012-3

 110. M. Segond et al., Iterative filter generation using genetic programming. in Proceedings of the 9th
European Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 3905,
ed. by P. Collet et al. Springer, Budapest, Hungary (10 - 12 Apr 2006), pp. 145–153. https:// doi.
org/ 10. 1007/ 11729 976_ 13

 111. D. Kim, A quantitative analysis of memory usage for agent tasks, chap. 14, in Frontiers in Evolu-
tionary Robotics. ed. by H. Iba (IntechOpen, Rijeka, 2008), pp.247–274. https:// doi. org/ 10. 5772/
5458

 112. E. Frias-Martinez, F. Gobet, Automatic generation of cognitive theories using genetic program-
ming. Mind. Mach. 17(3), 287–309 (2007). https:// doi. org/ 10. 1007/ s11023- 007- 9070-6

 113. N.F. McPhee, R. Poli, Memory with memory: Soft assignment in genetic programming. in GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, ed. by
M. Keijzer et al. ACM, Atlanta, GA, USA (12-16 Jul 2008), pp. 1235–1242. https:// doi. org/ 10.
1145/ 13890 95. 13893 36

 114. G. Katz, D. Peled, Genetic programming and model checking: Synthesizing new mutual exclusion
algorithms, in Automated Technology for Verification and Analysis. Lecture Notes in Computer
Science, vol. 5311, ed. by S. Cha, J.Y. Choi, M. Kim, I. Lee, M. Viswanathan (Springer, Berlin,
2008), pp.33–47. https:// doi. org/ 10. 1007/ 978-3- 540- 88387-6_5

 115. M.S. Withall et al., An improved representation for evolving programs. Genet. Program Evolvable
Mach. 10(1), 37–70 (2009). https:// doi. org/ 10. 1007/ s10710- 008- 9069-7

 116. G.C. Wilson, W. Banzhaf, Soft memory for stock market analysis using linear and developmental
genetic programming. in GECCO ’09: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, ed. by G. Raidl et al. ACM, Montreal (8-12 Jul 2009), pp. 1633–1640.
https:// doi. org/ 10. 1145/ 15699 01. 15701 19

 117. K. Wolfson, M. Sipper, Efficient list search algorithms. in 9th International Conference, Evolu-
tion Artificielle, EA 2009. Lecture Notes in Computer Science, vol. 5975, ed. by P. Collet et al.
Springer, Strasbourg, France (Oct 26-28 2009), p. 158–169. https:// doi. org/ 10. 1007/ 978-3- 642-
14156-0_ 14, revised Selected Papers

 118. M. Hyde, A genetic programming hyper-heuristic approach to automated packing. Ph.D. the-
sis, School of Computer Science, University of Nottingham, UK (Mar 2010). http:// ethes es. notti
ngham. ac. uk/ 1625/1/ mvh_ corre cted_ thesis. pdf

 119. M. Suchorzewski, Extending genetic programming to evolve perceptron-like learning programs.
in 10th International Conference Artificial Intelligence and Soft Computing, ICAISC 2010, Part

https://doi.org/10.1117/12.437013
https://doi.org/10.1117/12.437013
https://doi.org/10.1007/3-540-46004-7_23
https://doi.org/10.1007/3-540-45984-7_17
https://doi.org/10.1007/3-540-45984-7_17
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.grammatical-evolution.org/gews2002/oneill.ps
http://www.grammatical-evolution.org/gews2002/oneill.ps
https://doi.org/10.1145/508791.508903
https://doi.org/10.1007/s10710-006-7012-3
https://doi.org/10.1007/s10710-006-7012-3
https://doi.org/10.1007/11729976_13
https://doi.org/10.1007/11729976_13
https://doi.org/10.5772/5458
https://doi.org/10.5772/5458
https://doi.org/10.1007/s11023-007-9070-6
https://doi.org/10.1145/1389095.1389336
https://doi.org/10.1145/1389095.1389336
https://doi.org/10.1007/978-3-540-88387-6_5
https://doi.org/10.1007/s10710-008-9069-7
https://doi.org/10.1145/1569901.1570119
https://doi.org/10.1007/978-3-642-14156-0_14
https://doi.org/10.1007/978-3-642-14156-0_14
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 24 of 32

II. Lecture Notes in Computer Science, vol. 6114, ed. by L. Rutkowski et al. Springer, Zakopane,
Poland (Jun 13-17 2010), pp. 221–228. https:// doi. org/ 10. 1007/ 978-3- 642- 13232-2

 120. A. Agapitos et al., Learning environment models in car racing using stateful genetic programming.
in Proceedings of the 2011 IEEE Conference on Computational Intelligence and Games. pp. 219–
226. IEEE, Seoul, South Korea (31 Aug–3 Sep 2011). https:// doi. org/ 10. 1109/ CIG. 2011. 60320 10

 121. T. Weise, K. Tang, Evolving distributed algorithms with genetic programming. IEEE Trans. Evol.
Comput. 16(2), 242–265 (2012). https:// doi. org/ 10. 1109/ TEVC. 2011. 21126 66

 122. R. Kala, Multi-robot path planning using co-evolutionary genetic programming. Expert Syst. Appl.
39(3), 3817–3831 (2012). https:// doi. org/ 10. 1016/j. eswa. 2011. 09. 090

 123. H. Yim, D. Kim, Evolving internal memory strategies for the woods problems. in 12th Interna-
tional Conference on Control, Automation and Systems (ICCAS 2012), (2012), pp. 366–369. http://
ieeex plore. ieee. org/ xpl/ artic leDet ails. jsp? tp= & arnum ber= 63934 63

 124. K. Igwe, N. Pillay, Automatic programming using genetic programming. in Proceedings of the
2013 Third World Congress on Information and Communication Technologies (WICT 2013), ed.
by L.T. Ngo et al. IEEE, Hanoi, Vietnam (15-18 Dec 2013), pp. 337–342. https:// doi. org/ 10. 1109/
WICT. 2013. 71131 58

 125. O. Qadir et al., Hardware architecture of the protein processing associative memory and the effects
of dimensionality and quantisation on performance. Genet. Program Evolvable Mach. 15(3), 245–
275 (2014). https:// doi. org/ 10. 1007/ s10710- 014- 9217-1

 126. P. Szczuko, Genetic programming extension to APF-based monocular human body pose estima-
tion. Multimed. Tools Appl. 68(1), 177–192 (2014). https:// doi. org/ 10. 1007/ s11042- 012- 1147-4

 127. X. Yuan et al., Making lock-free data structures verifiable with artificial transactions. in Proceed-
ings of the 8th Workshop on Programming Languages and Operating Systems, PLOS 2015. ACM,
Monterey, California, USA (4-7 Oct 2015), pp. 39–45. https:// doi. org/ 10. 1145/ 28183 02. 28183 09

 128. N. Chaumont, C. Adami, Evolution of sustained foraging in three-dimensional environments
with physics. Genet. Program Evolvable Mach. 17(4), 359–390 (2016). https:// doi. org/ 10. 1007/
s10710- 016- 9270-z

 129. R. Smith, M. Heywood, A model of external memory for navigation in partially observative visual
reinforcement learning tasks. in EuroGP 2019: Proceedings of the 22nd European Conference on
Genetic Programming. LNCS, vol. 11451, ed. by L. Sekanina et al. Springer Verlag, Leipzig, Ger-
many (24-26 Apr 2019), pp. 162–177. https:// doi. org/ 10. 1007/ 978-3- 030- 16670-0_ 11

 130. S. Kelly et al., Emergent tangled program graphs in partially observable recursive forecasting and
ViZDoom navigation tasks. ACM Trans. Evolut. Learn. Optim. 1(3), 1–41 (2021). https:// doi. org/
10. 1145/ 34688 57

 131. E. Real et al., AutoML-zero: Evolving machine learning algorithms from scratch. in Proceedings
of the 37th International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 119, ed. by H. Daume III, A. Singh, PMLR (13–18 Jul 2020), pp. 8007–8019. http://
www. human- compe titive. org/ sites/ defau lt/ files/ automl_ zero_ humies_ compe tition_ entry. txt, win-
ner 2021 HUMIES

 132. C. Sulyok et al., Evolving the process of a virtual composer. Nat. Comput. 18(1), 47–60 (2019).
https:// doi. org/ 10. 1007/ s11047- 016- 9561-6

 133. M. Al Masalma, M. Heywood, Genetic programming with external memory in sequence recall
tasks. in Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion,
ed. by H. Trautmann et al. GECCO ’22, Association for Computing Machinery, Boston, USA (9-13
Jul 2022), pp. 518–521. https:// doi. org/ 10. 1145/ 35203 04. 35288 83

 134. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer-Verlag, Berlin, 2002).
https:// doi. org/ 10. 1007/ 978-3- 662- 04726-2

 135. U.M. O’Reilly, F. Oppacher, The troubling aspects of a building block hypothesis for genetic pro-
gramming, in Foundations of Genetic Algorithms 3. ed. by L.D. Whitley, M.D. Vose (Morgan
Kaufmann, Estes Park, 1994), pp.73–88. https:// doi. org/ 10. 1016/ B978-1- 55860- 356-1. 50008-X

 136. J.P. Rosca, D.H. Ballard, Rooted-tree schemata in genetic programming, chap. 11, in Advances
in Genetic Programming 3. ed. by L. Spector et al. (MIT Press, Cambridge, 1999), pp.243–271.
https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0015

 137. R. Poli, Exact schema theory for genetic programming and variable-length genetic algorithms with
one-point crossover. Genet. Program Evolvable Mach. 2(2), 123–163 (2001). https:// doi. org/ 10.
1023/A: 10115 52313 821

https://doi.org/10.1007/978-3-642-13232-2
https://doi.org/10.1109/CIG.2011.6032010
https://doi.org/10.1109/TEVC.2011.2112666
https://doi.org/10.1016/j.eswa.2011.09.090
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=%20&arnumber=6393463
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=%20&arnumber=6393463
https://doi.org/10.1109/WICT.2013.7113158
https://doi.org/10.1109/WICT.2013.7113158
https://doi.org/10.1007/s10710-014-9217-1
https://doi.org/10.1007/s11042-012-1147-4
https://doi.org/10.1145/2818302.2818309
https://doi.org/10.1007/s10710-016-9270-z
https://doi.org/10.1007/s10710-016-9270-z
https://doi.org/10.1007/978-3-030-16670-0_11
https://doi.org/10.1145/3468857
https://doi.org/10.1145/3468857
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
https://doi.org/10.1007/s11047-016-9561-6
https://doi.org/10.1145/3520304.3528883
https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1016/B978-1-55860-356-1.50008-X
https://doi.org/10.7551/mitpress/1110.003.0015
https://doi.org/10.1023/A:1011552313821
https://doi.org/10.1023/A:1011552313821

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 25 of 32 19

 138. C.R. Stephens, R. Poli, EC theory–" in theory": Towards a unification of evolutionary computation
theory, chap. 7, in Frontiers of Evolutionary Computation, vol. 11, ed. by A. Menon (Kluwer, Bos-
ton, 2004), pp.129–155. https:// doi. org/ 10. 1007/1- 4020- 7782-3_7

 139. G.R. Price, Selection and covariance. Nature 227, 520–521 (1970). https:// doi. org/ 10. 1038/ 22752
0a0

 140. L. Altenberg, The evolution of evolvability in genetic programming, chap. 3, in Advances in
Genetic Programming. ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.47–74

 141. C. Ryan et al., A competitive building block hypothesis, in Genetic and Evolutionary Computa-
tion - GECCO-2004, Part II. Lecture Notes in Computer Science, vol. 3103, ed. by K. Deb et al.
(Springer-Verlag, Seattle, 2004), pp.654–665. https:// doi. org/ 10. 1007/ 978-3- 540- 24855-2_ 73

 142. D.R. White et al., Modelling genetic programming as a simple sampling algorithm, in Genetic
Programming Theory and Practice XVII. ed. by W. Banzhaf et al. (Springer, East Lansing, 2019),
pp.367–381. https:// doi. org/ 10. 1007/ 978-3- 030- 39958-0_ 18

 143. J. Miller, What bloat? cartesian genetic programming on Boolean problems. in 2001 Genetic and
Evolutionary Computation Conference Late Breaking Papers, ed. by E.D. Goodman. San Fran-
cisco, California, USA (9-11 Jul 2001), pp. 295–302. http:// www. elec. york. ac. uk/ intsys/ users/ jfm7/
gecco 2001L ate. pdf

 144. T. Jones, One operator, one landscape. Tech. Rep. SFI TR 95-02-025, Santa Fe Institute (January
1995). http:// www. santa fe. edu/ sfi/ publi catio ns/ Worki ng- Papers/ 95- 02- 025. ps

 145. U.M. O’Reilly, Using a distance metric on genetic programs to understand genetic operators. in
IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics
and Simulation. vol. 5, Orlando, Florida, USA (12-15 Oct 1997), pp. 4092–4097. https:// doi. org/
10. 1109/ ICSMC. 1997. 637337

 146. V.K. Vassilev et al., Smoothness, ruggedness and neutrality of fitness landscapes: from theory to
application, in Advances in Evolutionary Computing: Theory and Applications. ed. by A. Ghosh, S.
Tsutsui (Springer-Verlag, New York, 2003), pp.3–44. https:// doi. org/ 10. 1007/ 978-3- 642- 18965-4_1

 147. W.B. Langdon, M. Harman, Fitness landscape of the Triangle program. in PPSN-2016 Workshop
on Landscape-Aware Heuristic Search, ed. by N. Veerapen, G. Ochoa. Edinburgh (17 Sep 2016).
http:// www. cs. ucl. ac. uk/ filea dmin/ UCL- CS/ resea rch/ Resea rch_ Notes/ rn1605. pdf, also available as
UCL RN/16/05

 148. W.B. Langdon et al., Dissipative polynomials. in 5th Workshop on Landscape-Aware Heuristic
Search, ed. by N. Veerapen et al. GECCO 2021 Companion, ACM, Internet (10-14 Jul 2021), pp.
1683–1691. https:// doi. org/ 10. 1145/ 34497 26. 34631 47

 149. F.D. Francone et al., Homologous crossover in genetic programming. in Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, ed. by W. Banzhaf et al. Morgan Kaufmann,
Orlando, Florida, USA (13-17 Jul 1999), pp. 1021–1026. http:// gpbib. cs. ucl. ac. uk/ gecco 1999/ GP-
463. pdf

 150. G. Durrett et al., Computational complexity analysis of simple genetic programming on two prob-
lems modeling isolated program semantics, in Foundations of Genetic Algorithms. ed. by H.G.
Beyer, W.B. Langdon (ACM, Schwarzenberg, 2011), pp.69–80. https:// doi. org/ 10. 1145/ 19676 54.
19676 61

 151. T. Koetzing et al., The Max problem revisited: the importance of mutation in genetic program-
ming. Theoret. Comput. Sci. 545, 94–107 (2014). https:// doi. org/ 10. 1016/j. tcs. 2013. 06. 014

 152. A. Nguyen et al., Single- and multi-objective genetic programming: new bounds for weighted order
and majority, in Foundations of Genetic Algorithms. ed. by F. Neumann, K. De Jong (ACM, Ade-
laide, 2013), pp.161–172. https:// doi. org/ 10. 1145/ 24602 39. 24602 54

 153. A. Lissovoi, P.S. Oliveto, On the time and space complexity of genetic programming for evolving
boolean conjunctions. J. Artif. Intell. Res. 66, 655–689 (2019). https:// doi. org/ 10. 1613/ jair.1. 11821

 154. B. Doerr et al., The impact of lexicographic parsimony pressure for ORDER/MAJORITY on the
run time. Theoret. Comput. Sci. 816, 144–168 (2020). https:// doi. org/ 10. 1016/j. tcs. 2020. 01. 011

 155. T. Koetzing et al., Destructiveness of lexicographic parsimony pressure and alleviation by a con-
catenation crossover in genetic programming. Theoret. Comput. Sci. 816, 96–113 (2020). https://
doi. org/ 10. 1016/j. tcs. 2019. 11. 036

 156. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-
put. 1(1), 67–82 (1997)

 157. W.B. Langdon, Incremental evaluation in genetic programming. in EuroGP 2021: Proceedings of
the 24th European Conference on Genetic Programming. LNCS, vol. 12691, ed. by T. Hu et al.

https://doi.org/10.1007/1-4020-7782-3_7
https://doi.org/10.1038/227520a0
https://doi.org/10.1038/227520a0
https://doi.org/10.1007/978-3-540-24855-2_73
https://doi.org/10.1007/978-3-030-39958-0_18
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
https://doi.org/10.1109/ICSMC.1997.637337
https://doi.org/10.1109/ICSMC.1997.637337
https://doi.org/10.1007/978-3-642-18965-4_1
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
https://doi.org/10.1145/3449726.3463147
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf
https://doi.org/10.1145/1967654.1967661
https://doi.org/10.1145/1967654.1967661
https://doi.org/10.1016/j.tcs.2013.06.014
https://doi.org/10.1145/2460239.2460254
https://doi.org/10.1613/jair.1.11821
https://doi.org/10.1016/j.tcs.2020.01.011
https://doi.org/10.1016/j.tcs.2019.11.036
https://doi.org/10.1016/j.tcs.2019.11.036

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 26 of 32

Springer Verlag, Virtual Event (7-9 Apr 2021), pp. 229–246. https:// doi. org/ 10. 1007/ 978-3- 030-
72812-0_ 15

 158. S. Handley, On the use of a directed acyclic graph to represent a population of computer programs.
in Proceedings of the 1994 IEEE World Congress on Computational Intelligence. vol. 1, IEEE
Press, Orlando, Florida, USA (27-29 Jun 1994), pp. 154–159. https:// doi. org/ 10. 1109/ ICEC. 1994.
350024

 159. W.B. Langdon, W. Banzhaf, Repeated sequences in linear genetic programming genomes. Com-
plex Syst. 15(4), 285–306 (2005)

 160. T. Soule, J.A. Foster, Effects of code growth and parsimony pressure on populations in genetic pro-
gramming. Evolut. Comput. 6(4), 293–309 (1998). https:// doi. org/ 10. 1162/ evco. 1998.6. 4. 293

 161. E.D. de Jong, J.B. Pollack, Multi-objective methods for tree size control. Genet. Program Evolv-
able Mach. 4(3), 211–233 (2003). https:// doi. org/ 10. 1023/A: 10251 22906 870

 162. S. Bleuler et al., Multiobjective genetic programming: Reducing bloat using spea2. in Proceedings
of the 2001 Congress on Evolutionary Computation CEC2001. IEEE Press, COEX, World Trade
Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea (27-30 May 2001), pp. 536–543. https://
doi. org/ 10. 1109/ CEC. 2001. 934438

 163. L. Panait, S. Luke, Alternative bloat control methods, in Genetic and Evolutionary Computa-
tion - GECCO-2004, Part II. Lecture Notes in Computer Science, vol. 3103, ed. by K. Deb et al.
(Springer-Verlag, Seattle, 2004), pp.630–641. https:// doi. org/ 10. 1007/ b98645

 164. R. Poli, A simple but theoretically-motivated method to control bloat in genetic programming.
in Genetic Programming, Proceedings of EuroGP’2003. LNCS, vol. 2610, ed. by C. Ryan et al.
Springer-Verlag, Essex (14-16 Apr 2003), pp. 204–217. https:// doi. org/ 10. 1007/3- 540- 36599-0_ 19

 165. S. Silva, Controlling Bloat: Individual and Population Based Approaches in Genetic Program-
ming. Ph.D. thesis, Coimbra University, Portugal (Apr 2008). http:// hdl. handle. net/ 10316/ 8542,
full author name is Sara Guilherme Oliveira da Silva

 166. S. Dignum, R. Poli, Operator equalisation and bloat free GP. in Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008. Lecture Notes in Computer Science, vol.
4971, ed. by M. O’Neill et al. Springer, Naples (26-28 Mar 2008), pp. 110–121. https:// doi. org/ 10.
1007/ 978-3- 540- 78671-9_ 10

 167. N.I. Nikolaev, H. Iba, Accelerated genetic programming of polynomials. Genet. Program Evolv-
able Mach. 2(3), 231–257 (2001). https:// doi. org/ 10. 1023/A: 10119 49326 249

 168. I. Kushchu, Genetic programming and evolutionary generalization. IEEE Trans. Evol. Comput.
6(5), 431–442 (2002). https:// doi. org/ 10. 1109/ TEVC. 2002. 805038

 169. T. Kowaliw, R. Doursat, Bias-variance decomposition in genetic programming. Open Math. 14(1),
62–80 (2016). https:// doi. org/ 10. 1515/ math- 2016- 0005

 170. C. Gathercole, P. Ross, Dynamic training subset selection for supervised learning in genetic pro-
gramming, in Parallel Problem Solving from Nature III. LNCS, vol. 866, ed. by Y. Davidor et al.
(Springer-Verlag, Jerusalem, 1994), pp.312–321. https:// doi. org/ 10. 1007/3- 540- 58484-6_ 275

 171. L. Spector et al., Relaxations of lexicase parent selection, in Genetic Programming Theory and
Practice XV. Genetic and Evolutionary Computation. ed. by W. Banzhaf et al. (Springer, Cham,
2017), pp.105–120. https:// doi. org/ 10. 1007/ 978-3- 319- 90512-9_7

 172. N. Javed et al., Simplification of genetic programs: a literature survey. Data Min. Knowl. Discov.
36(4), 1279–1300 (2022). https:// doi. org/ 10. 1007/ s10618- 022- 00830-7

 173. D. Hooper, N.S. Flann, Improving the accuracy and robustness of genetic programming through
expression simplification. in Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, ed. by J.R. Koza et al. MIT Press, Stanford University, CA, USA (28–31 Jul 1996), p. 428.
http:// digit al. cs. usu. edu/ ~flann/ gp. pdf

 174. W.B. Langdon, M. Harman, Optimising existing software with genetic programming. IEEE Trans.
Evol. Comput. 19(1), 118–135 (2015). https:// doi. org/ 10. 1109/ TEVC. 2013. 22815 44

 175. M.E. Raichle, D.A. Gusnard, Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. 99(16),
10237–10239 (2002). https:// doi. org/ 10. 1073/ pnas. 17239 9499

 176. M. Ridley, The Red Queen, Sex and the Evolution of Human Nature. Penquin (1993). http:// www.
pengu in. co. uk/ Pengu in/ Books/ 01401 67722. html

 177. P. Nordin, A compiling genetic programming system that directly manipulates the machine code,
chap. 14, in Advances in Genetic Programming. ed. by K.E. Kinnear Jr. (MIT Press, Cambridge,
1994), pp.311–331

 178. J.F. Miller, An empirical study of the efficiency of learning Boolean functions using a cartesian
genetic programming approach. in Proceedings of the Genetic and Evolutionary Computation

https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1109/ICEC.1994.350024
https://doi.org/10.1109/ICEC.1994.350024
https://doi.org/10.1162/evco.1998.6.4.293
https://doi.org/10.1023/A:1025122906870
https://doi.org/10.1109/CEC.2001.934438
https://doi.org/10.1109/CEC.2001.934438
https://doi.org/10.1007/b98645
https://doi.org/10.1007/3-540-36599-0_19
http://hdl.handle.net/10316/8542
https://doi.org/10.1007/978-3-540-78671-9_10
https://doi.org/10.1007/978-3-540-78671-9_10
https://doi.org/10.1023/A:1011949326249
https://doi.org/10.1109/TEVC.2002.805038
https://doi.org/10.1515/math-2016-0005
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/s10618-022-00830-7
http://digital.cs.usu.edu/%7eflann/gp.pdf
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1073/pnas.172399499
http://www.penguin.co.uk/Penguin/Books/0140167722.html
http://www.penguin.co.uk/Penguin/Books/0140167722.html

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 27 of 32 19

Conference. vol. 2, ed. by W. Banzhaf et al. Morgan Kaufmann, Orlando, Florida, USA (13-17 Jul
1999), pp. 1135–1142. http:// cites eer. ist. psu. edu/ 153431. html

 179. C. Ryan et al., Grammatical evolution: Evolving programs for an arbitrary language. in Proceed-
ings of the First European Workshop on Genetic Programming. LNCS, vol. 1391, ed. by W. Ban-
zhaf et al. Springer-Verlag, Paris (14-15 Apr 1998), pp. 83–96. https:// doi. org/ 10. 1007/ BFb00
55930

 180. P.J. Angeline, J.B. Pollack, The evolutionary induction of subroutines. in Proceedings of the Four-
teenth Annual Conference of the Cognitive Science Society. pp. 236–241. Lawrence Erlbaum,
Bloomington, Indiana, USA (1992), http:// www. demo. cs. brand eis. edu/ papers/ glib92. pdf

 181. J. Rosca, Towards automatic discovery of building blocks in genetic programming. in Working
Notes for the AAAI Symposium on Genetic Programming, ed. by E.V. Siegel, J.R. Koza. AAAI,
MIT, Cambridge, MA, USA (10–12 Nov 1995), pp. 78–85. http:// www. aaai. org/ Papers/ Sympo sia/
Fall/ 1995/ FS- 95- 01/ FS95- 01- 011. pdf

 182. L. Spector, Simultaneous evolution of programs and their control structures, chap. 7, in Advances
in Genetic Programming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996),
pp.137–154. https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0012

 183. G. Murphy, C. Ryan, Seeding methods for run transferable libraries. in GECCO ’07: Proceedings
of the 9th annual conference on Genetic and Evolutionary Computation. vol. 2,ed. by D. Thierens
et al. ACM Press, London (7-11 Jul 2007), pp. 1755–1755. https:// doi. org/ 10. 1145/ 12769 58. 12773
05

 184. W.B. Langdon, Data Structures and Genetic Programming. Ph.D. thesis, University College, Lon-
don, UK (27 Sep 1996), http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ langd on. ps. gz

 185. A. Teller, D. Andre, Automatically choosing the number of fitness cases: The rational allocation
of trials. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by
J.R. Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 321–328.
http:// www. cs. cmu. edu/ afs/ cs/ usr/ astro/ public/ papers/ GR. ps

 186. L. Spector, Assessment of problem modality by differential performance of lexicase selection in
genetic programming: a preliminary report, in 1st workshop on Understanding Problems (GECCO-
UP). ed. by K. McClymont, E. Keedwell (ACM, Philadelphia, 2012), pp.401–408. https:// doi. org/
10. 1145/ 23307 84. 23308 46

 187. R. Poli et al., A field guide to genetic programming. Published via http:// lulu. com and freely avail-
able at http:// www. gp- field- guide. org. uk (2008), http:// www. gp- field- guide. org. uk, (With contribu-
tions by J. R. Koza)

 188. S.L. Harding, W. Banzhaf, Distributed genetic programming on GPUs using CUDA, in Workshop
on Parallel Architectures and Bioinspired Algorithms. ed. by I. Hidalgo et al. (Universidad Com-
plutense de Madrid, Raleigh, 2009), pp.1–10

 189. R.L. Crepeau, Genetic evolution of machine language software. in Proceedings of the Workshop
on Genetic Programming: From Theory to Real-World Applications, ed. by J.P. Rosca. Tahoe City,
California, USA (9 Jul 1995), pp. 121–134. http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/
GEMS_ Artic le. pdf

 190. P. Nordin et al., Efficient evolution of machine code for CISC architectures using instruction blocks
and homologous crossover, chap. 12, in Advances in Genetic Programming 3. ed. by L. Spector
et al. (MIT Press, Cambridge, 1999), pp.275–299. https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0017

 191. F.D. Francone, Discipulus Owner’s Manual. 11757 W. Ken Caryl Avenue F, PBM 512, Littleton,
Colorado, 80127-3719, USA, version 3.0 draft edn. (2001). http:// gpbib. cs. ucl. ac. uk/ gp- html/ franc
one_ manual. html

 192. W. Banzhaf et al., Genetic Programming-An Introduction;On the Automatic Evolution of Computer
Programs and its Applications (Morgan Kaufmann, San Francisco, 1998)

 193. M. Brameier, W. Banzhaf, Linear Genetic Programming. No. XVI in Genetic and Evolutionary
Computation (Springer, Berlin, 2007)

 194. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001).
https:// doi. org/ 10. 1109/ 4235. 942529

 195. M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a Arbi-
trary Language, Genetic programming, vol. 4 (Kluwer Academic Publishers, Dordrecht, 2003).
https:// doi. org/ 10. 1007/ 978-1- 4615- 0447-4

 196. L. Spector, Introduction to the peer commentary special section on “on the mapping of genotype
to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclau-
rin. Genetic Programming and Evolvable Machines 18(3), 351–352 (Sep 2017). https:// doi. org/

http://citeseer.ist.psu.edu/153431.html
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/BFb0055930
http://www.demo.cs.brandeis.edu/papers/glib92.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
https://doi.org/10.7551/mitpress/1109.003.0012
https://doi.org/10.1145/1276958.1277305
https://doi.org/10.1145/1276958.1277305
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon.ps.gz
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
https://doi.org/10.7551/mitpress/1110.003.0017
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
https://doi.org/10.1109/4235.942529
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/s10710-017-9287-y

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 28 of 32

10. 1007/ s10710- 017- 9287-y, special Peer Commentary on Mapping of Genotype to Phenotype in
Evolutionary Algorithms

 197. C. Ryan, A rebuttal to whigham, dick, and maclaurin by one of the inventors of grammatical evo-
lution: Commentary on “on the mapping of genotype to phenotype in evolutionary algorithms”
by Peter A. Whigham, Grant Dick, and James Maclaurin. Genetic Programming and Evolvable
Machines 18(3), 385–389 (Sep 2017). https:// doi. org/ 10. 1007/ s10710- 017- 9294-z, special Peer
Commentary on Mapping of Genotype to Phenotype in Evolutionary Algorithms

 198. J.F. Miller et al., Principles in the evolutionary design of digital circuits-part I. Genet. Program
Evolvable Mach. 1(1/2), 7–35 (2000). https:// doi. org/ 10. 1023/A: 10100 16313 373

 199. J.F. Miller et al., Principles in the evolutionary design of digital circuits-part II. Genet. Program
Evolvable Mach. 1(3), 259–288 (2000). https:// doi. org/ 10. 1023/A: 10100 66330 916

 200. J.F. Miller (ed.), Cartesian Genetic Programming. Natural Computing Series (Springer, Berlin,
2011). https:// doi. org/ 10. 1007/ 978-3- 642- 17310-3

 201. J.F. Miller, Cartesian Genetic Programming: its status and future. Genetic Programming and
Evolvable Machines 21(1–2), 129–168 (2020). https:// doi. org/ 10. 1007/ s10710- 019- 09360-6

 202. L. Sekanina, Z. Vasicek, Approximate circuit design by means of evolvable hardware. in IEEE
International Conference on Evolvable Systems (ICES 2013). (Apr 2013), pp. 21–28. https:// doi. org/
10. 1109/ ICES. 2013. 66132 78

 203. L. Sekanina et al., Approximate circuits in low-power image and video processing: The approxi-
mate median filter. Radioengineering 26(3), 623–632 (2017). https:// doi. org/ 10. 13164/ re. 2017.
0623

 204. D.J. Montana, Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230
(1995). https:// doi. org/ 10. 1162/ evco. 1995.3. 2. 199

 205. T. Yu, Structure abstraction and genetic programming. in Proceedings of the Congress on Evolu-
tionary Computation. vol. 1, ed. by P.J. Angeline et al. IEEE Press, Mayflower Hotel, Washington
D.C., USA (6-9 Jul 1999), pp. 652–659. https:// doi. org/ 10. 1109/ CEC. 1999. 781995

 206. T. Yu, Hierachical processing for evolving recursive and modular programs using higher order
functions and lambda abstractions. Genet. Program Evolvable Mach. 2(4), 345–380 (2001). https://
doi. org/ 10. 1023/A: 10129 26821 302

 207. R.I. McKay et al., Grammar-based genetic programming: a survey. Genet. Program. Evolvable
Mach. 11(3/4), 365–396 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9109-y

 208. P.A. Whigham, Grammatically-based genetic programming. in Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World Applications, ed. by J.P. Rosca. Tahoe City,
California, USA (9 Jul 1995), pp. 33–41. http:// divcom. otago. ac. nz/ sirc/ Peterw/ Publi catio ns/ ml95.
zip

 209. P.A. Whigham et al., On the mapping of genotype to phenotype in evolutionary algorithms. Genet.
Program. Evolvable Mach. 18(3), 353–361 (2017). https:// doi. org/ 10. 1007/ s10710- 017- 9288-x

 210. A. Ratle, M. Sebag, A novel approach to machine discovery: Genetic programming and stochastic gram-
mars. in Proceedings of Twelfth International Conference on Inductive Logic Programming. LNCS, vol.
2583, ed. by S. Matwin, C. Sammut. Springer Verlag, Sydney, Australia (Jul 9-11 2002), pp. 207–222.
https:// doi. org/ 10. 1007/3- 540- 36468-4_ 14, revised Papers

 211. X.H. Nguyen et al., Solving the symbolic regression problem with tree-adjunct grammar guided
genetic programming: the comparative results. Aust. J. Intell. Inform. Process. Syst. 7(3/4), 114–
121 (2001)

 212. C. Jacob, Evolution and coevolution of developmental programs. Comput. Phys. Commun. 121–
122, 46–50 (1999). https:// doi. org/ 10. 1016/ S0010- 4655(99) 00277-5

 213. C. Jacob, Illustrating Evolutionary Computation with Mathematica (Morgan Kaufmann, Cam-
bridge, 2001). https:// doi. org/ 10. 1016/ B978- 15586 0637-1/ 50020-5

 214. G.S. Hornby, J.B. Pollack, Evolving L-systems to generate virtual creatures. Comput. Graph.
25(6), 1041–1048 (2001). https:// doi. org/ 10. 1016/ S0097- 8493(01) 00157-1. (artificial Life)

 215. M. Hemberg et al., Genr8: Architects’ experience with an emergent design tool, in The Art of
Artificial Evolution: A Handbook on Evolutionary Art and Music, chap. 8. ed. by J. Romero, P.
Machado (Springer, 2008), pp.167–188. https:// doi. org/ 10. 1007/ 978-3- 540- 72877-1_8

 216. T. Perkis, Stack-based genetic programming. in Proceedings of the 1994 IEEE World Congress on
Computational Intelligence. vol. 1, pp. 148–153. IEEE Press, Orlando, Florida, USA (27-29 Jun
1994). https:// doi. org/ 10. 1109/ ICEC. 1994. 350025

https://doi.org/10.1007/s10710-017-9287-y
https://doi.org/10.1007/s10710-017-9294-z
https://doi.org/10.1023/A:1010016313373
https://doi.org/10.1023/A:1010066330916
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1109/ICES.2013.6613278
https://doi.org/10.1109/ICES.2013.6613278
https://doi.org/10.13164/re.2017.0623
https://doi.org/10.13164/re.2017.0623
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1109/CEC.1999.781995
https://doi.org/10.1023/A:1012926821302
https://doi.org/10.1023/A:1012926821302
https://doi.org/10.1007/s10710-010-9109-y
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
https://doi.org/10.1007/s10710-017-9288-x
https://doi.org/10.1007/3-540-36468-4_14
https://doi.org/10.1016/S0010-4655(99)00277-5
https://doi.org/10.1016/B978-155860637-1/50020-5
https://doi.org/10.1016/S0097-8493(01)00157-1
https://doi.org/10.1007/978-3-540-72877-1_8
https://doi.org/10.1109/ICEC.1994.350025

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 29 of 32 19

 217. S. Openshaw, I. Turton, Building new spatial interaction models using genetic programming, in
Evolutionary Computing. ed. by T.C. Fogarty (AISB workshop, Leeds, UK, 1994). https:// doi. org/
10. 1007/3- 540- 58483-8

 218. K. Holladay et al., Fifth: A stack based gp language for vector processing. in Proceedings of the
10th European Conference on Genetic Programming. Lecture Notes in Computer Science, vol.
4445, ed. by M. Ebner et al. pp. 102–113. Springer, Valencia, Spain (11-13 Apr 2007). https:// doi.
org/ 10. 1007/ 978-3- 540- 71605-1_ 10

 219. M. Oltean, C. Grosan, Solving classification problems using infix form genetic programming, in
Advances in Intelligent Data Analysis V. Lecture Notes in Computer Science, vol. 2810, ed. by
M.R. Berthold et al. (Springer, Berlin, 2003), pp.242–253. https:// doi. org/ 10. 1007/ 978-3- 540-
45231-7_ 23

 220. L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the push
programming language. Genet. Program Evolvable Mach. 3(1), 7–40 (2002). https:// doi. org/ 10.
1023/A: 10145 38503 543

 221. U.M. O’Reilly, F. Oppacher, Program search with a hierarchical variable length representation:
genetic programming, simulated annealing and hill climbing, in Parallel Problem Solving from
Nature - PPSN III. Lecture Notes in Computer Science, vol. 866, ed. by Y. Davidor et al. (Springer-
Verlag, Jerusalem, 1994), pp.397–406. https:// doi. org/ 10. 1007/3- 540- 58484-6_ 283

 222. A.I. Esparcia-Alcazar, K.C. Sharman, Genetic programming techniques that evolve recurrent neu-
ral networks architectures for signal processing. in IEEE Workshop on Neural Networks for Sig-
nal Processing. IEEE, Seiko, Kyoto, Japan (4-6 Sep 1996), pp. 139–148. https:// doi. org/ 10. 1109/
NNSP. 1996. 548344

 223. A. Moraglio, S. Silva, Geometric differential evolution on the space of genetic programs. in Pro-
ceedings of the 13th European Conference on Genetic Programming, EuroGP 2010. LNCS, vol.
6021, ed. by A.I. Esparcia-Alcazar et al. Springer, Istanbul (7-9 Apr 2010), pp. 171–183. https://
doi. org/ 10. 1007/ 978-3- 642- 12148-7_ 15, best paper

 224. B.T. Zhang, Bayesian methods for efficient genetic programming. Genet. Program Evolvable
Mach. 1(3), 217–242 (2000). https:// doi. org/ 10. 1023/A: 10100 10230 007

 225. K. Yanai, H. Iba, Estimation of distribution programming based on Bayesian network. in Pro-
ceedings of the 2003 Congress on Evolutionary Computation CEC2003, ed. by R. Sarker et al.
IEEE Press, Canberra (8-12 Dec 2003), pp. 1618–1625. https:// doi. org/ 10. 1109/ CEC. 2003.
12998 66

 226. P.A.N. Bosman, E.D. de Jong, Learning probabilistic tree grammars for genetic programming,
in Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, ed. by X. Yao et al.
(Springer-Verlag, Birmingham, 2004), pp.192–201. https:// doi. org/ 10. 1007/ b1006 01

 227. A. Rodriguez, A Neat Approach To Genetic Programming. Master’s thesis, School of School of
Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida,
USA (2007). https:// stars. libra ry. ucf. edu/ etd/ 3323. pdf

 228. Z. Buk et al., NEAT in HyperNEAT substituted with genetic programming. in 9th International
Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009. Lecture Notes
in Computer Science, vol. 5495, ed. by M. Kolehmainen et al. Springer, Kuopio, Finland (23-
25 Apr 2009), pp. 243–252. https:// doi. org/ 10. 1007/ 978-3- 642- 04921-7_ 25, revised selected
papers

 229. L. Trujillo et al., neat genetic programming: Controlling bloat naturally. Inf. Sci. 333, 21–43
(2016). https:// doi. org/ 10. 1016/j. ins. 2015. 11. 010

 230. T. McConaghy, FFX: fast, scalable, deterministic symbolic regression technology, chap. 13, in
Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation. ed. by
R. Riolo et al. (Springer, Ann Arbor, 2011), pp.235–260. https:// doi. org/ 10. 1007/ 978-1- 4614-
1770-5_ 13

 231. A. Moraglio et al., Geometric semantic genetic programming, in Parallel Problem Solving from
Nature, PPSN XII (part 1). Lecture Notes in Computer Science, vol. 7491, ed. by C.A. Coello Coe-
llo et al. (Springer, Taormina, 2012), pp.21–31. https:// doi. org/ 10. 1007/ 978-3- 642- 32937-1_3

 232. W.B. Langdon, Directed crossover within genetic programming. Research Note RN/95/71, Univer-
sity College London, Gower Street, London WC1E 6BT, UK (Sep 1995), http:// www. cs. ucl. ac. uk/
staff/W. Langd on/ ftp/ papers/ direc ted_ cross over. pdf

 233. P. Orzechowski et al., Where are we now?: a large benchmark study of recent symbolic regression
methods. in GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference,

https://doi.org/10.1007/3-540-58483-8
https://doi.org/10.1007/3-540-58483-8
https://doi.org/10.1007/978-3-540-71605-1_10
https://doi.org/10.1007/978-3-540-71605-1_10
https://doi.org/10.1007/978-3-540-45231-7_23
https://doi.org/10.1007/978-3-540-45231-7_23
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1007/3-540-58484-6_283
https://doi.org/10.1109/NNSP.1996.548344
https://doi.org/10.1109/NNSP.1996.548344
https://doi.org/10.1007/978-3-642-12148-7_15
https://doi.org/10.1007/978-3-642-12148-7_15
https://doi.org/10.1023/A:1010010230007
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1007/b100601
https://stars.library.ucf.edu/etd/3323.pdf
https://doi.org/10.1007/978-3-642-04921-7_25
https://doi.org/10.1016/j.ins.2015.11.010
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-3-642-32937-1_3
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 30 of 32

ed. by H. Aguirre et al. ACM, Kyoto, Japan (15-19 Jul 2018), pp. 1183–1190. https:// doi. org/ 10.
1145/ 32054 55. 32055 39

 234. I. Arnaldo et al., Multiple regression genetic programming. in GECCO ’14: Proceedings of the
2014 conference on Genetic and evolutionary computation, ed. by C. Igel et al. ACM, Vancouver,
BC, Canada (12-16 Jul 2014), pp. 879–886. https:// doi. org/ 10. 1145/ 25767 68. 25982 91

 235. L. Munoz et al., M3GP: multiclass classification with GP. in 18th European Conference on Genetic
Programming. LNCS, vol. 9025, ed. by P. Machado et al. Springer, Copenhagen (8-10 Apr 2015),
pp. 78–91. https:// doi. org/ 10. 1007/ 978-3- 319- 16501-1_7

 236. W. La Cava, J. Moore, A general feature engineering wrapper for machine learning using epsilon-
lexicase survival. in EuroGP 2017: Proceedings of the 20th European Conference on Genetic Pro-
gramming. LNCS, vol. 10196, ed. by M. Castelli et al. Springer Verlag, Amsterdam (19-21 Apr
2017), pp. 80–95. https:// doi. org/ 10. 1007/ 978-3- 319- 55696-3_6

 237. B. Burlacu et al., Operon C++: An efficient genetic programming framework for symbolic regres-
sion. in Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion,
ed. by R. Allmendinger et al. GECCO ’20, Association for Computing Machinery, internet (Jul
8-12 2020), pp. 1562–1570. https:// doi. org/ 10. 1145/ 33779 29. 33980 99

 238. D. Mota Dias et al., Automatic synthesis of microcontroller assembly code through linear genetic
programming, in Genetic Systems Programming: Theory and Experiences, Studies in Computa-
tional Intelligence, vol. 13, ed. by N. Nedjah et al. (Springer, Germany, 2006), pp.193–227. https://
doi. org/ 10. 1007/3- 540- 32498-4_9

 239. T.E. Lewis, G.D. Magoulas, TMBL kernels for CUDA GPUs compile faster using PTX, in GECCO
2011 Computational Intelligence on Consumer Games and Graphics Hardware (CIGPU). ed. by
S. Harding et al. (ACM, Dublin, 2011), pp.455–462. https:// doi. org/ 10. 1145/ 20018 58. 20020 33

 240. L.F. Cupertino et al., Evolving CUDA PTX programs by quantum inspired linear genetic program-
ming, in GECCO 2011 Computational intelligence on Consumer Games and Graphics Hardware
(CIGPU). ed. by S. Harding et al. (ACM, Dublin, 2011), pp.399–406. https:// doi. org/ 10. 1145/
20018 58. 20020 26

 241. M. Gregor, J. Spalek, Using LLVM-based JIT compilation in genetic programming. In: 2016 ELE-
KTRO. pp. 406–411. IEEE, Strbske Pleso, Slovakia (16-18 May 2016). https:// doi. org/ 10. 1109/
ELEKT RO. 2016. 75121 08

 242. J.Y. Liou et al., GEVO: GPU code optimization using evolutionary computation. ACM Trans.
Archit. Code Optim. 17(4), 33 (2020). https:// doi. org/ 10. 1145/ 34180 55

 243. E. Lukschandl et al., Distributed java bytecode genetic programming. in Genetic Programming,
Proceedings of EuroGP’2000. LNCS, vol. 1802, ed. by R. Poli et al. Springer-Verlag, Edinburgh
(15-16 Apr 2000), pp. 316–325. https:// doi. org/ 10. 1007/ 978-3- 540- 46239-2_ 24

 244. P.A. Whigham, R.I. McKay, Genetic approaches to learning recursive relations, in Progress in Evo-
lutionary Computation. Lecture Notes in Artificial Intelligence, vol. 956, ed. by X. Yao (Springer-
Verlag, Berlin, 1995), pp.17–27. https:// doi. org/ 10. 1007/3- 540- 60154-6_ 44

 245. P.A. Whigham, A schema theorem for context-free grammars. in 1995 IEEE Conference on Evo-
lutionary Computation. vol. 1, pp. 178–181. IEEE Press, Perth, Australia (29 Nov - 1 Dec 1995).
https:// doi. org/ 10. 1109/ ICEC. 1995. 489140

 246. T. Castle, C.G. Johnson, Evolving high-level imperative program trees with strongly formed
genetic programming. in Proceedings of the 15th European Conference on Genetic Programming,
EuroGP 2012. LNCS, vol. 7244, ed. by A. Moraglio et al. Springer Verlag, Malaga, Spain (11-13
Apr 2012), pp. 1–12. https:// doi. org/ 10. 1007/ 978-3- 642- 29139-5_1

 247. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, in
Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. X, ed. by C.G. Lang-
ton et al. (Addison-Wesley, Santa Fe Institute, 1992), pp.313–324

 248. E. Popovici et al., Coevolutionary principles, chap. 31, in Handbook of Natural Computing. ed.
by G. Rozenberg et al. (Springer, Berlin, 2012), pp.987–1033. https:// doi. org/ 10. 1007/ 978-3- 540-
92910-9_ 31

 249. B.T. Zhang, D.Y. Cho, Coevolutionary fitness switching: Learning complex collective behaviors
using genetic programming, chap. 18, in Advances in Genetic Programming 3. ed. by L. Spector
et al. (MIT Press, Cambridge, 1999), pp.425–445. https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0023

 250. A. Leier, W. Banzhaf, Exploring the search space of quantum programs. in Proceedings of the
2003 Congress on Evolutionary Computation CEC2003. vol. 1, ed. by R. Sarker et al. IEEE Press,
Canberra (8-12 Dec 2003), pp. 170–177. https:// doi. org/ 10. 1109/ CEC. 2003. 12995 71

https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/2576768.2598291
https://doi.org/10.1007/978-3-319-16501-1_7
https://doi.org/10.1007/978-3-319-55696-3_6
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1007/3-540-32498-4_9
https://doi.org/10.1007/3-540-32498-4_9
https://doi.org/10.1145/2001858.2002033
https://doi.org/10.1145/2001858.2002026
https://doi.org/10.1145/2001858.2002026
https://doi.org/10.1109/ELEKTRO.2016.7512108
https://doi.org/10.1109/ELEKTRO.2016.7512108
https://doi.org/10.1145/3418055
https://doi.org/10.1007/978-3-540-46239-2_24
https://doi.org/10.1007/3-540-60154-6_44
https://doi.org/10.1109/ICEC.1995.489140
https://doi.org/10.1007/978-3-642-29139-5_1
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.7551/mitpress/1110.003.0023
https://doi.org/10.1109/CEC.2003.1299571

1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 31 of 32 19

 251. L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach,
Genetic Programming, vol. 7 (Kluwer Academic Publishers, Boston, 2004). https:// doi. org/ 10.
1007/ 978-0- 387- 36791-0

 252. G. O’Brien, J. Clark, Using genetic improvement to retarget quantum software on differing hard-
ware. In: Petke, J., et al. (eds.) GI @ ICSE 2021. IEEE, internet (30 May 2021), pp. 31–38. https://
doi. org/ 10. 1109/ GI525 43. 2021. 00015, winner Best Presentation

 253. R. Poli et al., Theoretical results in genetic programming: the next ten years? Genet. Program.
Evolvable Mach. 11(3/4), 285–320 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9110-5

 254. L. Vanneschi, R. Poli, Genetic programming: introduction, applications, theory and open issues,
chap. 24, in Handbook of Natural Computing, vol. 2, ed. by G. Rozenberg et al. (Springer, Berlin,
2012), pp.709–739. https:// doi. org/ 10. 1007/ 978-3- 540- 92910-9_ 24

 255. A. Marginean et al., SapFix: automated end-to-end repair at scale. in 41st International Conference
on Software Engineering, ed. by J.M. Atlee, T. Bultan, ACM, Montreal (25-31 May 2019), ACM,
Montreal (25-31 May 2019), pp. 269-278. https:// doi. org/ 10. 1109/ ICSE- SEIP. 2019. 00039

 256. B.R. Bruce et al., Approximate oracles and synergy in software energy search spaces. IEEE Trans.
Software Eng. 45(11), 1150–1169 (2019). https:// doi. org/ 10. 1109/ TSE. 2018. 28270 66

 257. F. Wu et al., Deep parameter optimisation. in GECCO ’15: Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, ed. by S. Silva et al. ACM, Madrid (11-15 Jul
2015), pp. 1375–1382. https:// doi. org/ 10. 1145/ 27394 80. 27546 48

 258. W.B. Langdon, M. Harman, Genetically improved CUDA C++ software. in 17th European Con-
ference on Genetic Programming. LNCS, vol. 8599, ed. by M. Nicolau et al. Springer, Granada,
Spain (23-25 Apr 2014), pp. 87–99. https:// doi. org/ 10. 1007/ 978-3- 662- 44303-3_8

 259. W.B. Langdon et al., Improving 3D medical image registration CUDA software with genetic pro-
gramming. in GECCO ’14: Proceeding of the sixteenth annual conference on genetic and evolu-
tionary computation conference, ed. by C. Igel et al. ACM, Vancouver, BC, Canada (12-15 Jul
2014), pp. 951–958. https:// doi. org/ 10. 1145/ 25767 68. 25982 44

 260. W.B. Langdon, M. Harman, Grow and graft a better CUDA pknotsRG for RNA pseudoknot free
energy calculation, in Genetic Improvement 2015 Workshop. ed. by W.B. Langdon et al. (ACM,
Madrid, 2015), pp.805–810. https:// doi. org/ 10. 1145/ 27394 82. 27684 18

 261. K. Yeboah-Antwi, B. Baudry, Embedding adaptivity in software systems using the ECSELR
framework, in Genetic Improvement 2015 Workshop. ed. by W.B. Langdon et al. (ACM, Madrid,
2015), pp.839–844. https:// doi. org/ 10. 1145/ 27394 82. 27684 25

 262. W.B. Langdon et al., Improving CUDA DNA analysis software with genetic programming. in
GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion, ed. by S. Silva et al. ACM, Madrid (11-15 Jul 2015), pp. 1063–1070. https:// doi. org/ 10. 1145/
27394 80. 27546 52

 263. W.B. Langdon et al., Genetic improvement of GPU software. Genet. Program Evolvable Mach.
18(1), 5–44 (2017). https:// doi. org/ 10. 1007/ s10710- 016- 9273-9

 264. W.B. Langdon, Genetically improved software, chap. 8, in Handbook of Genetic Programming
Applications. ed. by A.H. Gandomi et al. (Springer, Berlin, 2015), pp.181–220. https:// doi. org/ 10.
1007/ 978-3- 319- 20883-1_8

 265. W.B. Langdon, B.Y.H. Lam, Genetically improved BarraCUDA. BioData Mining (2017). https://
doi. org/ 10. 1186/ s13040- 017- 0149-1

 266. W.B. Langdon et al., Evolving better RNAfold structure prediction. in EuroGP 2018: Proceedings
of the 21st European Conference on Genetic Programming. LNCS, vol. 10781, ed. by M. Castelli
et al. Springer Verlag, Parma, Italy (4-6 Apr 2018), pp. 220–236. https:// doi. org/ 10. 1007/ 978-3-
319- 77553-1_ 14

 267. W.B. Langdon, M. Harman, Evolving a CUDA kernel from an nVidia template. in 2010 IEEE
World Congress on Computational Intelligence, ed. by P. Sobrevilla. IEEE, Barcelona (18-23 Jul
2010), pp. 2376–2383. https:// doi. org/ 10. 1109/ CEC. 2010. 55859 22

 268. J.Y. Liou et al., Genetic improvement of GPU code. in GI-2019, ICSE workshops proceedings,
ed. by J. Petke et al. IEEE, Montreal (28 May 2019), pp. 20–27. https:// doi. org/ 10. 1109/ GI. 2019.
00014, best Paper

 269. E.T. Barr et al., Automated software transplantation. in International Symposium on Software Test-
ing and Analysis, ISSTA 2015, ed. by T. Xie, M. Young. ACM, Baltimore, Maryland, USA (14-17
Jul 2015), pp. 257–269. https:// doi. org/ 10. 1145/ 27717 83. 27717 96, ACM SIGSOFT Distinguished
Paper Award

https://doi.org/10.1007/978-0-387-36791-0
https://doi.org/10.1007/978-0-387-36791-0
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1007/s10710-010-9110-5
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/TSE.2018.2827066
https://doi.org/10.1145/2739480.2754648
https://doi.org/10.1007/978-3-662-44303-3_8
https://doi.org/10.1145/2576768.2598244
https://doi.org/10.1145/2739482.2768418
https://doi.org/10.1145/2739482.2768425
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1007/978-3-319-20883-1_8
https://doi.org/10.1007/978-3-319-20883-1_8
https://doi.org/10.1186/s13040-017-0149-1
https://doi.org/10.1186/s13040-017-0149-1
https://doi.org/10.1007/978-3-319-77553-1_14
https://doi.org/10.1007/978-3-319-77553-1_14
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/GI.2019.00014
https://doi.org/10.1109/GI.2019.00014
https://doi.org/10.1145/2771783.2771796

 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 32 of 32

 270. E.K. Burke et al., Exploring hyper-heuristic methodologies with genetic programming, chap. 6, in
Computational Intelligence, Intelligent Systems Reference Library, vol. 1, ed. by C.L. Mumford,
L.C. Jain (Berlin, Springer, 2009), pp.177–201. https:// doi. org/ 10. 1007/ 978-3- 642- 01799-5_6

 271. R.S. Olson, J.H. Moore, TPOT: A tree-based pipeline optimization tool for automating data sci-
ence. In: Hutter, F., et al. (eds.) AutoML 2016 workshop. New York City, USA (Jun 24 2016),
https:// docs. google. com/ viewer? a= v & pid= sites & srcid= ZGVmY XVsdG RvbWF pbnxh dXRvb
WwyMD E2fGd 4OmFm YjMyN WU2NW I1YTB mZg, collocated with ICML

 272. D. Radecic, Machine Learning Automation with TPOT. Packt Publishing (2021). https:// www.
amazon. com/ Machi ne- Learn ing- Autom ation- TPOT- autom ated/ dp/ 18005 6788X? asin= 18005
6788X & revis ionId= & format= 4 & depth=1

 273. K. Krawiec, P. Liskowski, Adaptive test selection for factorization-based surrogate fitness in
genetic programming. Found. Comput. Decis. Sci. 42(4), 339–358 (2017). https:// doi. org/ 10. 1515/
fcds- 2017- 0017

 274. C.G. Johnson, Solving the Rubik’s cube with stepwise deep learning. Expert Syst.: J. Knowl. Eng.
38(3), e12665 (2021). https:// doi. org/ 10. 1111/ exsy. 12665

 275. W.B. Langdon, Evolving open complexity. SIGEVOlution Newsl. ACM Spec. Interest Group
Genet. Evolut. Comput. 15(1), 1–4 (2022). https:// doi. org/ 10. 1145/ 35329 42. 35329 45

 276. S. Forrest, Engineering and evolving software (2021). https:// doi. org/ 10. 1109/ GI525 43. 2021.
00008

 277. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117
(1965)

 278. S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution. in Proceed-
ings of the Sixth Annual Congress of Genetics. pp. 356–366 (1932). http:// www. black wellp ublis
hing. com/ ridley/ class ictex ts/ wright. pdf

Publisher’s Note Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-01799-5_6
https://docs.google.com/viewer?a=v%20&pid=sites%20&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://docs.google.com/viewer?a=v%20&pid=sites%20&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://doi.org/10.1515/fcds-2017-0017
https://doi.org/10.1515/fcds-2017-0017
https://doi.org/10.1111/exsy.12665
https://doi.org/10.1145/3532942.3532945
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1109/GI52543.2021.00008
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf

	Jaws 30
	Abstract
	1 Introduction
	1.1 The book
	1.2 The man
	1.3 The millionaire
	1.4 The researcher
	1.5 The public benefactor
	1.6 Pre-history
	1.7 Advice for the future
	1.8 The ones that got away: missing gaps
	1.8.1 Genetic programming and field programmable gate arrays, FPGAs
	1.8.2 Genetic programming and graphics cards, GPUs
	1.8.3 Deep learning and accelerators: GPUs and TPUs

	1.9 Other gaps: memory, theory, bloat

	2 A brief selection of other genetic programming work
	2.1 Inspired by computer science
	2.2 Non genetic GP
	2.3 Less explored
	2.3.1 Assembly code, byte code
	2.3.2 Modularity, recursion, loops
	2.3.3 Coevolution

	3 The future
	4 Conclusions
	Acknowledgements
	References

