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Abstract
It is 30 years since John R. Koza published “Jaws”, the first book on genetic pro-
gramming [Genetic Programming: On the Programming of Computers by Means 
of Natural Selection. MIT Press (1992)]. I recount and expand the celebration at 
GECCO 2022, very briefly summarise some of what the rest of us have done and 
make suggestions for the next thirty years of GP research.

Keywords Genetic programming · Genetic improvement · Modularity · Scaling · 
Parallel computing

1 Introduction

An evening at the 2022 GECCO conference was devoted to celebrating the thirtieth 
anniversary of the publication of John Koza’s book “Genetic Programming: On the 
programming of computers by means of natural selection” [1].1 Indeed that is the 
purpose of this special issue of Genetic Programming and Evolvable Machines. I 
hope to put my own spin on and fill out points raised in that panel discussion (which 
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was recorded and is available on line2). I should stress this is not a survey of GP and 
that many valuable contributions are omitted. Similarly many digressions are placed 
in footnotes and there are hyper links to online articles in Wikipedia etc.

1.1  The book

Dr.  Amy Brand, Director of The MIT Press, was clearly delighted that John Koza 
had chosen MIT Press to publish the first book on genetic programming [1] (see 
Figs. 1 and 2). She says it ”was one of the seeds from which sprang a whole ecosys-
tems of books and journals at the intersection of computer and biological sciences 
for the MIT Press.” Adding it “is still available and selling in print-on-demand. 
That’s quite solid for a specialized and ground-breaking work in computer science 
from 1992.”3

John Koza said that the motivation for the book was his team in the preceding 
five years had published GP solutions to 81 diverse problems common to artificial 
intelligence, machine learning and knowledge based systems. They had shown that 
instead of, as had previously been done, using a solution technique devoted to each 
benchmark, a single evolutionary computing technique (now named Genetic Pro-
gramming4) could solve them all56. However the GP solutions were published in 
widely disperse conference venues. The goal of the book was to convince everyone 
that 1) a single technique could solve many diverse problems and 2) they could all be 
recast as the problem of searching for (and finding) a computer program. Whereas 
previous solutions had often used (non-evolutionary) search but used a representa-
tion, e.g. graph, grammar, network, often purpose built for each benchmark. The 
size of the book7 stems from the need to convince people that GP is a general solu-
tion. Whereas everyone who first comes to programming knows that programming 
languages are exceedingly picky about insisting they get everything, every comma, 
every semicolon, in the right place: so how could random stand a hope? Hence a 

3 John Koza’s publications have been at the top of the list of publications downloaded via the genetic 
programming bibliography since 2006, when download statistics were first gathered.
4 The name Genetic Programming was suggested by David  E.  Goldb erg. John Koza said he was origi-
nally reluctant to use the name but came to realise it was a brilliant choice.
5 John Koza has previously likened GP’s success with early machine learning benchmarks with Sher-
man’s march through Georgia in 1864, which helped end the four year USA civil war.
6 In the late 1990s Peter  Nordin reported similar success with his linear genetic programming on the 
UCI machi ne learn ing bench marks.
7 The first genetic programming book was colloquially known as “Jaws” after the 1975 Hollywood 
movie of the same name, were the shark appears to get progressively bigger throughout the film. In a 
similar way Koza remarked that as each new GP experiment was covered, the book got bigger, eventually 
exceeding 800 pages. The three successing GP books, are similarly known as Jaws 2 [4], Jaws 3 [5] and 
Jaws 4 [6], all four are each accompanied by an hour long video [7–10] (now available on YouTube and 
www. human- compe titive. org). In 2009, John Koza gave a seminar at Stanford summarising his GP work 
which was recorded and is also available on YouTube [11].

2 A Conversation with John Koza, 30 years after the publication of Genetic Programming Sunday, July 
10, 18:00-20:00 2022 https:// whova. com/ portal/ webapp/ gecco_ 202207/ Agenda/ 25163 77
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substantial book, backed by a video, would be necessary to convince a skeptical 
public.8

1.2  The man

John R. Koza was born 1944 and did both his undergraduate degree and PhD at the 
Unive rsity  of Michi gan in Ann Arbor, studying mathematics and, the then newfan-
gled, computer science. He reports great interest in playing games including com-
puter games, with students and faculty, for example, John H.  Holla nd. As with John 
Holland’s other stude nts9, he was well versed in John Holland’s genetic algorithms.

1.3  The millionaire

John Koza graduated from the University of Michigan in December 1972, and using 
his mathematical skills in combinatorics, probability and game playing he joined a 
lottery company which printed games on paper which were sold at petrol stations 
and supermarkets. In 1974 he and a colleague formed their own company, Scientific 
Games Inc., to exploit John Koza’s invention of a secure way of printing scrat ch off 
lotte ry ticke ts. They successfully lobbied various USA states to allow them to run 
the state’s lottery10. By 1978 the technology of printing had moved on and they jet-
tisoned their own technique in favour of more flexible computer based printing. In 
1987, having made his fortune, he returned to research.

1.4  The researcher

From about 1987 until 2005, John Koza devoted himself to research, applying 
genetic algorithms to the discovery of computer programs (GP). He published some 
208 items, predominately papers but also book chapters, technical reports, proceed-
ings, etc. and of course Jaws [1] and the three follow-up up door stoppers [4–6] and 
the four accompanying videos [7–10]. Initially the genetic programming systems 
were written in Lisp, although later implementations where in C, e.g. [22].

There were GP workshops associated with the International Conference on 
Genetic Algorithms, ICGA-9311 and again in the summer of 1995 at ICGA-95 and 
ICML- 95. In the fall, John R. Koza and Eric V.  Siegel organised a GP event with 

8 There is a growing body of work, such as automatic bug fixing [12] and genetic improvement [13], that 
shows ordinary programs are not fragile [14–21]. The misplaced semicolon problem refers to the source 
code syntax as understood by the language compiler (another computer program). Since the syntax is 
formally defined, computer generated mutations can be automatically written to be syntactically correct. 
If mutated code compiles, it often runs and produces an answer which can be fed into a fitness function.
9 John Holland’s PhD students include: Steph anie Forre st, Tomma so F.  Bersa no- Begey, Melan ie Mitch 
ell, Tom Weste rdale, Lasho n Booker, Ted Codd, Clare  Congd on, Dave Goldb erg, Annie  Wu, Ken 
De Jong, Leean n Fu, Rick Riolo, Chris  Langt on, Rober t Reyno lds, Berni e Zeigl er and John Koza.
10 By 2009 the combined profits to the USA state governments which permitted lotteries had reached 
$17. 6 billi on.
11 ICGA had strong links with John Holland’s students.
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the 1995 Fall Symposium of the AAAI in MIT. In 1994 Kim Kinnear had launched 
the “Advances in Genetic Programming” edited book series published by MIT Press 
[23–25]. But, since ICGA was a biannual conference, there was no ICGA confer-
ence in 1996, and instead it was the right time to launch the first GP conference [26]. 
One of the rules laid down at GP-96, was the absolute need for independent peer 
review.

Fig. 1  Prof.  Dr.  Wolfg ang Banzh af holding his copy of “Genetic Programming: On the programming of 
computers by means of natural selection” (Jaws) 834 pages [1] at the GECCO 2022 celebration of 30 years 
after its publication (Wolfgang says he was told that his copy was the first one sold by the bookshop in 
Boston.)

Fig. 2  At 834 pages, the first 
genetic programming book [1] 
weighs in at 4lb 2oz

http://www.cse.msu.edu/%7ebanzhafw/
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July 1997 saw the return of ICGA-97, carefully scheduled a few days after the 
second GP conference, GP-97 [27], so attendance at both was encouraged. Again 
there was no ICGA in 1998, instead at GP-98 [28] there were serious discussions 
about combining the growing number of evolutionary computing conferences. John 
Koza in particular felt that the separate EC events were splitting EC into separate 
communities, and that the balka nisat ion of EC, did not make sense to people out-
side, particularly to funding bodies. And that this divergence was hurting the field. 
So at GP-98 there were negotiations about unifying, particularly: the Evolutionary 
Programming Society conference (EP), the IEEE’s WCCI/ICEC, GP, ICGA, and the 
International Workshop on Learning Classifier Systems (IWLCS). These were only 
partially successful, leading in 1999 to the formation of the duopoly of CEC 1999 
[29] and GECCO 1999 [30]. Of the european evolutionary computing conferences, 
only the IEE’s Galesia elected to join CEC. PPSN,12ICANN GA and the newly estab-
lished EuroGP13 [31] continued as before14.

Again John Koza’s organisational skills came to the for, with him helping to draft 
the byelaws for GECCO. These ensure it has a federal “big tent” structure, whereby 
none of its constituent groups would feel left out or put down by the others.

Having progressed genetic programming to the point were it could be described 
as a routine invention machine [6, 32, 33], John Koza turned to public service and 
electoral reform and in 2006 founded Natio nal Popul ar Vote.

1.5  The public benefactor

In 2004 John Koza started the annual “Humie s” awards for human-competitive 
results produced by genetic and evolutionary computation. He continues to fund the 
cash prizes. The finals are held each year as part of the GECCO conference.

Since 2016 he has endowed Michigan State University with the first chair in 
genetic programming in the United States (held by Prof. Dr. Wolfgang Banzhaf).

1.6  Pre‑history

At GECCO-2022 the question of research before genetic programming was raised. 
John Koza pointed out that by 1987 the field of Genetic Algorithms was already well 
established15. There had been early experiments on machine learning in Columbia 

15 In addition to genetic algorithms, there is early work on evolu tions strat egie in Germany by Ingo 
Reche nberg and Hans- Paul Schwe fel, and in the USA on evolu tiona ry progr amming by Larry  Fogel.

12 Parallel Problem Solving from Nature (PPSN) had started in Germany in 1990. It is a also a biannual 
conference on evolutionary computing and, although based in Europe, it was held on alternating years 
with ICGA. Like Genetic Programming, PPSN was also named by Dave Goldberg.
13 The First European Workshop on Genetic Programming had been held in 1998 in Paris, with the help 
of EvoNet, the EU Network of Excellence in Evolutionary Computing.
14 In 2003 John Koza listed 25 international conferences and workshops primarily devoted to the various 
forms of evolutionary computation. Many are still held annual or biannually, and some have combined. 
In most cases the proceedings are still available, often on line.
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[34] and Manchester [35]16 universities. However John Koza traced Evolutionary 
Computing back to Alan Turing. He said Turing’s 1948 paper on machine intelli-
gence [36, 37] suggested three routes to machine intelligence: 1) knowledge based, 
2) based on logic (as would be expected of a mathematician), but John Koza high-
lighted the third: 3) in which machine intelligence was based on evolution. Although 
he pointed out it did not use crossover (which was added by John Holland).

1.7  Advice for the future

Another question raised at GECCO-2022 was did John Koza have advice for new 
researchers. His answer was researchers must keep current, i.e., keep up to date with 
research, but not just in your area but with research in general. Take an interdisci-
plinary approach. He stressed be open to ideas from elsewhere, particularly from 
Biology.

John Koza’s heuristic (perhaps common to all John Holland’s students) was to 
ask himself “What would John Holland do?” to which the answer was often: John 
Holland would respond with his own question, “What does Nature do?” John Koza’s 
particular example was: how did Nature evolve from microscopic organisms (like 
bacteria) which have genes for creating may be about 500 proteins to multicellural 
organisms (e.g. us) which have genes for creating about 20 000 proteins. He reported 
asking this question around the Stanford School of Medicine.

The example John Koza quoted was the evolution of Myogl obin and Hemog 
lobin, which is thought to have occurred via gene duplication and subsequent spe-
cialisation. The idea being: “accidental” copying of parts of DNA sequences is com-
mon.17 Once a species has two copies of a vital gene, it may be free to tinker with 
one. Since the other gene remains functional, the children with the duplicated gene 
remain viable and so some can survive long enough to carry both the working gene 
and the tinkered copy to the grand children. Over subsequent generations the two 
genes may diverge allowing the species to find new proteins which may help it sur-
vive. Susum u Ohno in his 1970 book [40] suggested that such gene duplication is 
a powerful mechanism in natural evolution. Indeed John Koza used it as inspira-
tion [41] for his architecture-altering operations. These GP operations allow, not just 
the code within automatically defined functions (ADFs) [4] to evolve, but also their 
structure (e.g. which ADF calls which ADF) evolves [5, 42, 9, minute 10]. In terms 
of traditional AI, this can be thought of as dividing the whole problem into subcases 
and having an evolvable representation which facilitates not just the solution of the 
sub-problems but also their subsequent combination into a complete solution. Some 
form (or indeed many forms of) automatic problem decomposition is essential if any 
AI technique is to scale.

17 The evolution of repeating patterns in DNA due to crossover is common. Indeed crossover in GP can 
readily produce huge volumes of repeated code in trees  [38, 39].

16 Kilbu rn, Grims dale and Sumner ran their experiments in machine learning and thinking on the 
world’s first digital stored program computer the Manchester Mark 1.
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John Koza felt that in the 1960s the University of Michigan had had a wide rang-
ing curriculum. He said computer scientists need to know about biology, language 
processing, psychology, information theory, electronic circuits, etc. However, this 
breadth has been lost from modern computer science curricula. Instead people 
should seek ideas from many places. He cited successful start ups in silic on valley, 
such as Adobe, which had come from co-working between two people with expe-
rience of newspaper publishing and another with a computer science background. 
Often in silicon valley success had come from partnerships of individuals with dif-
ferent experience. Alternatively, success may arise when different experience or 
many odd ideas are held by one person.

I would like to add, be ambitious in the problems you tackle. John Koza’s impact, 
the impact of his book [1], stems from showing something widely viewed as impos-
sible could be done. Before his work, the idea of automatically evolving a computer 
program was clearly ludicrous. Similarly, the idea of a computer fixing computer 
bugs was clearly impossible, until Steph anie Forre st et  al. showed GP could do 
it   [43]. Readers may remember Lewis Carroll’s Alice and the White Queen [44] 
(Fig. 3), Alice reproaches the White Queen for some nonsense, saying it is clearly 
impossible, to which the White Queen responds that Alice should practice believing 
the impossible. My suggestion would be to an ambitions researcher that she should 
do the impossible. Claire Le Goues was a PhD student in 2009 [45, 46]. Fortunately 
her adviser did not tell her her idea was impossible. And so She and the team are 
famous, not because they completely solved the probl em, but because they took 
something impossible and partially solved it. So that today the argument is not if it 
can be done, but what is the best way  [12] to solve the previously impossible prob-
lem [47–49].

1.8  The ones that got away: missing gaps

John Koza was asked to muse on his less successful experiments. Two came to 
mind: FPGAs and GPUs.

1.8.1  Genetic programming and field programmable gate arrays, FPGAs

John Koza had hope to create a field programmable gate array (FPGA), which had 
all the likely to be useful program operations pre-loaded. An ultra fast evolved GP 
program would then simply be an evolvable way of linking these together.

In some ways this seams similar to Juille’s [50] way of running a GP interpreter 
on the hugely parallel MasPar MP-2 computer. Although it had thousands of pro-
cessing units, they each did the same one thing at the same time. Juille’s brainwave 
was to say: since computing is cheap, we will discard most of it. (Simplifying), 
Juille built a tiny interpreter which ran on all processing elements one of a handful 
of GP operations. The different members of the GP population were spread across 
the processing elements. Each with its own program counter. If the interpreter was 
currently executing a GP op code that was not the one the GP individual wanted, it 
did nothing but wait. However the interpreter cycled round all possible GP op codes. 
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When it did reach the desired op code, that processor executed it and moved that GP 
individual’s programme counter on by one. (The right hand side of Fig. 4 shows the 
same idea in the context of GPUs.)

It sounds hideously inefficient, but bear in mind the GP is getting useful works 
done, whereas mostly human programmers could not handle the MasPar MP-2’s 
SIMD architecture efficiently at all. Secondly often in many high performance com-
puters (HPCs), most of the time the processing elements are waiting for data to 
arrive and so spend most of their time spinning in idle loops. This turns on its head 
our common conception of computers. In HPC (and indeed GPUs, see Sect. 1.8.2), 
computing is often cheap compared to moving data. Indeed sometimes it can be 
more efficient to compute a value a second time, rather than store it and retrieve it 
later when it is needed18.

In many cases FPGAs form the bed rock of evolv able hardw are (EHW) [51, 52]. 
As well as offering a cheap and flexible alternative to dedicated integrated circuits 
(also known as application-specific integrated circuits, ASICs) they can be cost 
effective, particularly when only a limited number of chips will be needed. There are 
several examples where FPGAs have been used to run GP, e.g. [53–55].

1.8.2  Genetic programming and graphics cards, GPUs

In the early 2000s it was noticed that the graphics cards (GPUs) used to drive com-
puter screens were becoming increasingly powerful parallel computing devices in 
their own right and so people started using them for other things.

Initially GPUs were designed just to rapidly render images on the computer’s 
screen. To do this quickly (in real time) they comprised many parallel components 
all doing the same thing but for different parts of the screen. As the computer video 
games market took off, GPUs rapidly ramped up their processing abilities and 
power. Each parallel component became a fully functional processor, often with 
special support for operations common in graphics applications (such as reciprocal 
square root [56]). This was so that more of the parallel aspects of generating, rather 
than simply displaying, real time video could be devolved from the (serial) CPU 
to the (parallel) graphics card. As GPUs were often somewhat independent of the 
end users’ computer mother board, keen video gamers could easily upgrade their 
GPU. This promoted rapid technological improvement, as rival GPU manufactures 
sought sales by offering better and/or cheaper hardware than their rivals. However 
even today, GPUs essentially (like the SIMD MasPar, page 8) require their parallel 
processing elements, to do the same thing at the same time.

Initially GPUs were very hard to program and their support software was only 
designed to be used by dedicated programmers employed by video game companies. 
However the abundant and cheap parallel processing the GPUs offered was taken up 
by scientific programming, leading to the field of General-Purpose Computing on 

18 A second recommendation to the novice computer scientist, do not assume that a very old paper has 
no merit. Computer science is littered with examples of old ideas which returned, e.g. virtu al memory, 
virtu al machi nes and Mauri ce Wilkes’ microcode.
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Fig. 3  When I was your age I 
could think of six impossible 
things before breakfast
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Fig. 4  Left: Avoid compilation overhead by interpreting GP trees. Run single SIMD interpreter on 
GPU’s stream processors (SP) on many trees. Right: Programs wait for the interpreter to offer an instruc-
tion they need evaluating. For example an addition. When the interpreter wants to do an addition, eve-
ryone in the whole population who is waiting for addition is evaluated. The operation is ignored by eve-
ryone else. The interpreter moves on to its next operation. The interpreter runs round its loop until the 
whole population has been interpreted. Fitness values can also be calculated in parallel
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GPUs (GPGPU) [57]. As GPGPU became more popular, the GPU manufactures, 
particularly nVidia provided much better software support.

At first in genetic programming GPUs were only used to speed up fitness evalu-
ation, e.g. work by Simon Harding [58]. and Darren Chitty [59]. Indeed it was said 
that, due to the GPUs peculiar SIMD architecture, running the GP interpreter on the 
GPU was impossible (cf. Fig. 3). Of course this was not true, and inspired by Juille’s 
work with the MasPar SIMD supercomputer   [60] (page 8), I built a SIMD inter-
preter for nVidia’s GPUs (see Fig. 4) [61, 62]19. See also [64–70].20

As the memory available on the GPU cards increased, it became possible to work 
with huge populations of small GP trees. In [71] I used a cascade of GP populations 
to winnow useful bioin forma tic data from more than a million GeneC hip features. 
The top level GP populations contained more than five million individuals trees. 
This GPU application could scale from a $50  GPU to a top 500 super  compu ter 
[72]. Figure 1 in [73] shows the dramatic improvement in nVidia GPU speed (2003 
to 2012, which still continues), whilst Table 3 in [74] shows some high performance 
parallel GP implementations, almost all running on GPUs.21

1.8.3  Deep learning and accelerators: GPUs and TPUs

Due to the availability of internet scale data sets and GPGPU processing power, 
since 2010 the field of deep learn ing has taken off [77]. It is generally accepted that 
researchers need a GPU (possibly a whole cluster of GPUs) to do any form of com-
petitive deep neural net learning. Even with the availability of cloud  compu ting, this 
may soon have the effect of “pricing out” individual academic researchers from the 
future of deep learning [78].

Sometimes the whole notion of using a GPU to drive a computer’s screen (also 
called the computer’s monit or) may be disregarded. Often called “headless” GPUs, 
to save space and power, some GPUs dispensed with the screen interface altogether. 
An extreme examples of this is Google’s TPU, which is totally specialised to Artifi-
cial Neural Network (ANN) processing.

As gaming and now AI have become more important, the notion of a GPU as a 
cheap alternative to the computer’s CPU has also faded, and now a top end GPU can 
cost more than a CPU.

21 Recent extremely high performance on Intel multi-core CPU SIMD hardware [75] has been achieved, 
with unchanging fitness functions, in large trees, in converged populations [76], that do not have side 
effects (and so can be evaluated in any order). This is because a lot of work can be omitted, if it can be 
proved that a child has the same fitness as its parents.

20 The metric “Genetic Programming Operations per Second” (GPops) permits easy comparison of per-
formance, e.g. across different implementations and hardware.

19 People also said that it was impossible to create random numbers on GPU. Again not true [63]. These 
days pseudo random number generators PRNG, (e.g.  CuRAND) are supplied by nVidia with its CUDA 
software.
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1.9  Other gaps: memory, theory, bloat

John Koza mentioned that even though Jaws [1] did not include much work on 
evolving memory, he regarded it as important because it provides another route to 
allow re-use. Since a value stored in memory can be re-used, potentially many times, 
without the code for it having to be evolved more than once. He mentioned my book 
[79], although using indexed memory in GP is due to Teller [80]. Surprisingly, there 
has been a steady stream of research on evolving memory within GP [81–133].

Genetic programming theory has a variety of forms [134]. Jaws [1] starts with 
adapting the then current explanations of how linear bit string genetic algorithms 
work, due to John Holland and Dave Goldberg. Such schema theories were also ana-
lysed by Una-May O’Reilly   [135], Justin Rosca [136] and most notably by Ric-
cardo Poli [137]. Another popular thread is to take ideas from biology about how 
evolution works and use them to understand GP [138], e.g. Price’s theorem [139, 
140], population convergence [76, 141, 142] and neutral networks (plateaus) [143] 
in fitness landscapes [144–148]. Similarly biology has been an inspiration for other 
search operators, such as homologous crossover [149]. In recent years there has 
been a flowering of formal or rigorous run time analysis in evolutionary computing 
and some success applying mathematical techniques to GP problems [150–155]. Of 
course it is difficult to make such theorems widely applicable and when using results 
we must remember the inevitable assumptions they require. For example, SAT has 
been proved to be NP-complete. Nevertheless in the last decade considerable pro-
gress has been made with practical SAT solvers and they are now routinely applied, 
e.g.  in software engineering. Similarly, the No  Free  Lunch theorem [156] applies 
to GP (as with all optimisers) but fortunately (as in other branches of AI) that has 
not inhibited development of the field. Although, as noted above, there are excep-
tions, but genetic programming as a whole remains a deeply empirical endeavour 
with many new ideas being reported. However it is difficult to persuade authors to 
carefully analyse their evolving populations of programs so as to be able to explain 
why their experiment succeeded (or even why it failed).

Although John Koza reports [1] bloat22 from the start of genetic programming, 
the tendency, indeed the name, for programs to be bigger than necessary is not 
unique to GP. Bloated human written programs are common. Indeed people writ-
ing computer programs with unnecessary instructions goes back to the very begin-
ning of electronic digital computers, with bloat reported in programs run on the first 
stored program digital computer, the Manchester Mark I [35]. This human tendency 
is rampant, with some Internet code bases having grown to over a billion lines of 
code in less than 20 years. Bloat continues to be a well studied topic in GP with 426 
entries in the GP bibli ograp hy mentioning it.

Although there are potential ways of mitigating bloat’s impact on runtime [157] 
and reducing its memory requirements with DAGs [158] (indeed bloated trees pro-
duced by crossover [159] should be highly compressible), in practice bloated popu-
lations can quickly overwhelm the available computer resources and so the common 

22 Bloat is the tendency for programs to grow in size without commensurate increase in performance.

http://gpbib.cs.ucl.ac.uk/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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approach is to shut bloat down. For example, by enforcing either depth or size limits 
on the evolving programs. However this is not risk free [160] and more sophisticated 
approaches may be wanted. For example, controls on selection, such as using mul-
tiple fitness objectives (e.g. a size versus performance Pareto trade-off [161, 162]) 
or tighter controls on offspring generation [163–166]. In many cases bloat appears 
to be an unexpected aspect of early (even prema ture) convergence and so has some 
similarity with overfi tting sometimes seen with artificial neural networks  (ANNs), 
where prolonged search drives locally improved performance on the training data. 
This gives a more convoluted mapping between the ANN’s inputs and outputs but 
at the possible expense of the ANN’s ability to generalise to unseen data. Where the 
goal is to explain or predict, such complexity or overfitting is clearly unhelpful. In 
ANN anti-over fitting techniques are essential. These include stopping training early 
(i.e. in GP terms using fewer generations), regularization [167–169], changing the 
training data during training [170, 171] and even expression simplification [172], 
either during evolution [173] or to increase comprehensibility and explainability, 
cf.  XAI, after GP has finished [174]. Whilst Dale Hopper [173] and other authors, 
ensure their automatic rewrite of GP individuals gives a semantically equivalent but 
smaller replacement, in many cases this is not wanted. When a 100% correct pro-
gram is not realistic, e.g. on many prediction tasks, it may be better to accept (or 
allow evolution to find) a similar but much simpler program, rather than spending 
a lot of effort creating an exactly equivalent program to what is essentially only an 
approximation.

However, bear in mind that evolution is a hacker. It builds on what was there 
before. In biology evolution overfits. Classic example include: 1)  the Giraffe’s left 
laryn geal nerve, which runs the whole length of its neck from its head, round the 
aorta in its chest and then returns to its throat at the top of its neck, because evolu-
tion did not find a shorter path, 2) the male peacock’s heavy tail which helps secure 
a mate but impedes flight and 3) the human brain which consumes 20% of our food 
[175] but made our ancestors more appealing as mates to other members of their 
tribe [176].

2  A brief selection of other genetic programming work

In addition to continuing with evolving Lisp like trees, major branches of genetic 
programming include: linear genetic programming [177] cartesian genetic program-
ming (CGP) [178] and grammatical evolution (GE) [179], all of which use a linear 
chromosome. Following John Koza’s automatically defined functions, ADFs, see 
page 7, there were several attempts to encourage the evolution of modular programs 
using individuals with multiple trees or libraries of subtrees [180–183]. However, 
these seem not to have taken hold.

As with evolutionary computation in general, the major computational cost of 
GP is usually evaluating fitness [1, p783]. In tree GP this is usually the cost of 
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interpreting the trees. When members of the population are going to be run many 
times.23 it may be worth the cost of compiling the population and then running the 
compiled programs.24 rather than interpreting them [188]. However, as Ronald Cre-
peau showed [189], for GP, it is not essential to run a full blown compiler, instead 
knowing the restricted set of primitives used by GP, he constructed a dedicated fast 
compiler which converted the evolved code into machine code and ran that directly. 
Peter Nordin eliminated the compilation step entirely by using GP to evolve firstly 
Sun 32 bit SPARC RISC architecture machine code  [85] and later Intel x86 bina-
ries  [190] (which in turn later became Discipulus [191]). He used tailored mutation 
operations which respected the layout of the machine code. Although perhaps first 
motivated by speed and simplicity, the idea of evolving variable length linear pro-
grams has taken off [192, 193].

Grammatical Evolution (GE) [194, 195] shows the virtues of trying ideas out. 
Michael O’Neill and Conor Ryan took the idea of a variable length linear chromo-
some, simplified it to become just an ordered list of byte sized integers (0..255) and 
married it to another favourite of computer scientists: the Backus- Naur form gram-
mar (BNF). Pretty much anything which can be run on a computer can be expressed 
in a BNF grammar. They disregarded that BNF is essentially tree shaped and trusted 
in evolution to find a way of putting them together. The linear stream of bytes is 
mapped using modul us to say which branch to take next in the grammar. If there are 
not enough bytes, we simply wrap round and start again from the first. If there are 
too many, we ignore the excess. The resulting grammar is treated as the individual’s 
phenotype and in a problem dependent way converted into a trial solution with a 
fitness value. The sloppiness of the mapping from genotype to phenotype offended 
some and provoked wide discussion in a peer commentary issue of “Genetic Pro-
gramming and Evolvable Machines” [196]. But as Conor Ryan says “GE works” 
[197]. Indeed the separation of genotype from BNF grammar makes grammatical 
evolution flexible and has been widely used. (The GP bibliography contains well 
over seven hundred entries relating to grammatical evolution.)

With Cartesian Genetic Programming  (CGP) [178, 198–201], Julian Miller 
turned to a fixed representation, more a  kin to traditional bit string genetic algo-
rithms (GAs). However the chromosome is a fixed sized two dimensional rectangle, 
rather than a single string, where each cell contains a digital computational unit, 
such as an XOR gate. Both the contents of the cells and crucially the connections 
between them are evolvable.25 Notice, like linear GP (but unlike GE), evolution 

25 Nowadays in cartesian genetic programming people often set the width of the FPGA like rectangle of 
components to 1, making it effectively a string. Similarly it is common to allow only feed forward con-
nections, so preventing recurrent loops.

23 Considerable saving are sometimes possible by accepting fitness selection will be somewhat random 
and using a cheaper and approximate fitness function. After all, the goal of a fitness function, is not to 
measure performance (that can be done after the run) but to guide search. Why run thousands of fitness 
cases, when fitness will ultimately be reduced to a single bit: does this individual get a child or not? 
Even then, we typically add noise to this bit, e.g.  via tournament selection, [184–186], see also [187, 
Sect. 10.1].
24 Lisp provides compilation as an alternative to interpreting programs [1, p785].

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Exclusive_or


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 14 of 32

directly sets the contents and connections of each cell (i.e. evolution acts directly on 
the phenotype). Also there is no explicit left-right flow of control. In CGP the chro-
mosome is treated as a circuit and so its evaluation has to take note of where data 
enters and leaves. It is also not necessary to evaluate cells which are not connected. 
Cartesian GP has been widely used, including in the evolution of approximate com-
puting [202, 203], where evolution can be well suited to finding good trade-offs 
between conflicting objectives, such as fidelity, size, number of components, power 
consumption and speed.

2.1  Inspired by computer science

In order for subtree crossover to freely mix subtrees from parents to create chil-
dren, John Koza required the components of his GP trees to have closure [1, 
Sect. 6.1.1]. Meaning 1) any leaf or function in the tree can be an argument to 
any other function. Since components typically communicate via function return 
values, this often means GP trees use a single type, often float. 2)  To ensure 
each function can deal with any combination of inputs, many functions have 
protected GP versions. Such as protected log RLOG [1, p83], which returns a 
defined value (rather than raising an exception) even if its input is zero or nega-
tive. Alternatives might be to allow evolution to deal with the exception, or sim-
ply assign poor fitness to individuals with illegal combinations. However notice 
that ruling it out prevents GP exploring not only this tree but all the trees that 
might have evolved from it.

Perhaps the most famous extensions to closure are Dave Montana’s strongly 
typed GP [204] and Tina Yu’s polymorphic GP [205, 206] which allow mul-
tiple types but ensure evolution explores only type safe expressions. Another 
approach is to use various types of grammar to try and keep evolution in the 
most productive parts of the search space [207]. For example, using conte xt free 
gramm ars [208, 209], using grammars to ensure the evolution of expressions 
which are dimensionally consistent [210], using tree- adjun ct gramm ars to guide 
GP (TAG3) [211] and using GP with Linde nmaye r Syste ms (often abbreviated 
to L-Systems) [212–215].

Whereas Lisp and most GP systems implicitly use the system stack, programs 
which explicitly use a stack [216, 217], e.g. to pass vectors and matrices  [218], 
are also possible. An explicit stack allows the evolution of Rever se Polis h Notat 
ion (RPN) [62] and even infix expressions [219]. In PushGP [220] there are mul-
tiple stacks, one per type. These may include a code stack, so allowing GP to 
manipulate code, thus permitting GP to evolve its own genetic operators.

2.2  Non genetic GP

John Koza’s GP [1] is clearly strongly influenced by his PhD supervisor, John 
Holland, and GP [1] is essentially the application of John Holland’s genetic algo-
rithms to the evolution of Lisp s-expressions, i.e. tree shaped programs. But, as 
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we have seen, the programs need not be trees, and similarly the search algorithm 
does not have to be a genetic algorithm. Other techniques include: local search, 
Simulated Annealing [221, 222], Differential Evolution [223], Bayesian prob-
ability search [224], Estimation-of-Distribution Algorithms (EDAs) [225, 226] 
Ken Stanley’s Neat [227–229] and even deterministic search, e.g. Trent McCo-
naghy’s FFX [230]. Indeed search does not have to be guided only by fitness 
but can “look inside” the program [231] and its execution [232]. SRbench [233] 
compares many GP and non-GP approaches to symbolic regression, including 
MRGP [234], M3GP [235], FEW [236] and Operon [237].

2.3  Less explored

2.3.1  Assembly code, byte code

In human terms assembly code is usually viewed as intermediate between high level 
languages and machine code. Offering the potential advantage of machine code 
(speed and compactness), and ease of use and readability of high level source code. 
There has been very little GP work on evolving assembly code. Exceptions include 
microcontroller assembly [238], nVidia GPU PTX [239, 240] and the intermediate 
(IR) code used by LLVM [241], and again on GPUs [242].

Java, and some other interpreted languages, compile the source code into byte 
code which they then interpret. Eduard Lukschandl showed it is possible to run GP 
at the level of Java byte code [243].

2.3.2  Modularity, recursion, loops

Some of the work on encouraging the evolution of modular code was mentioned 
on page  13. In Jaws, John Koza described GP solving the Fibonacci problem [1, 
pp473–477] as an example requiring the evolution of recursion and several examples 
where GP evolved do-until loops and other forms of iteration, but again there has 
been relatively little work on either by others. Again a few exceptions. These include 
work by Peter Whigham [244, 245] and Tom Castle [246].

2.3.3  Coevolution

As with many topics, there are examples of co-evolution  [247, 248] in Jaws [1] and 
many elsewhere in genetic programming [81], for example in agent learning [249]. 
However, it does feel like coevolution has not yet fulfilled its potential. In deep arti-
ficial neural networks there is interest in antagonistic adversarial learning and so 
perhaps this will stimulate renewed interest in coevolution in genetic programming.
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3  The future

At GECCO 2022 Erik Goodman asked if there we any applications of GP that had 
surprised John Koza. Amongst the many human  compe titive [6] results, perhaps one 
of the most encouraging is quantum computing. As with quantum physics, quan-
tum computing has a deserved reputation for being difficult for people. However, the 
rules about quantum computing gates can be coded for GP to use without being an 
expert quantum physicist, and then GP can be left to evolve novel quantum circuit 
designs incorporating them [250–252]. Riccardo Poli, Leonardo Vanneschi and oth-
ers have previously reported on the state of GP and in particular what remains to be 
done [253, 254].

In genet ic impro vement [13] existing (human written) software is optimised 
(typically by using GP). Notice genetic improvement does not start from primor-
dial ooze  [1]. Instead search automates the potentially labour intensive, tedious and 
error prone task of find modifications. For example, to repair bugs [12, 43, 47, 49, 
255], including energy bugs [256], reducing memory consumption [257], reduce run 
time [174, 258–265] improve existing functionality (e.g. to give better predictions 
[266]), porting to new hardware [267] including improving GPU applications [242, 
262–265, 268] or even to incorporate existing functionality from outside the existing 
code base  [269].

The idea of mixing evolutionary computing (including GP) with other optimisa-
tion tools to give hyperheuristics [270] has a long history. In particular, with the 
recent explosion of interest in deep artificial neural networks, combining evolution-
ary learning and artificial neural networks seems set to continue. One particularly 
encouraging trend is AutoML tools such as TPOT [271, 272] which automatically 
tune existing machine learning pipelines.

In GP, as in most optimisation problems, most of the computation effort is spent 
on evaluating how good the proposed solutions are. Various ideas for speeding up 
fitness evaluation have been proposed, for example surrogate fitness functions [273]. 
Colin Johnson’s Learned Guidance Functions [274] seem a particularly elegant 
approach to making best used of previously gained knowledge. It would be interest-
ing to see Learned Guidance Functions applied to genetic programming or when 
using genetic improvement to adapt existing human written programs.

Since all digital computing progressively loses information, information about 
crossover and mutation gets progressively washed out the further it has to travel. In 
nested functions without side effects, deep genetic changes become invisible to the 
fitness function. Thus to evolve complex programs, they must remain shallow and so 
I propose that to evolve large complex programs, they be composed of many shallow 
trees, within a strong low entropy-loss data interconnect to and from the environ-
ment. This should ensure that the good and bad effects of most genetic code changes 
are externally measurable [275].

At GECCO John Koza pointed out that in both biology and in human design, 
modularity and reuse are ever present. Biology scales from a single cell to individu-
als containing billions of cells. It does this, like human engineers, not by solving 
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many billions of individual problems but by reusing existing designs. We need to 
revisit the scaling problem.

4  Conclusions

We have seen that in the thirty years since John Koza published his first GP book, 
the field has blossomed. The genetic programming bibliography contains some 
16 367 entries by 16 342 authors26. Many of the genetic and evolutionary computa-
tion papers judged to be the best human  compe titive work of each year have used 
genetic programming. Clearly GP is doing well in its mission to help the world.

As mentioned at the end of the last section, although GP continues to flourish, 
perhaps we need to tackle the scaling problem. Are we evolving small things? Do 
we need to be more ambitious? Following Stephanie Forrest’s recent questions 
[276]: what could GP do with Google Deep AI scale resources?

As John Koza foresaw, 30 years of Moore’s law [277] (with component count 
doubling every 18 months) means 20 lots of doubling ( 220 = 1 048 576). That is, 
since the genetic programming field started, the computer power available to us 
has increased a million fold. What of the next 30 years? Perhaps Moore’s Law will 
end? Certainly the death of Moore’s Law has been confidently predicted many 
times. What seems certain is we will not see dramatic increases in silicon comput-
ing’s clock speeds. Instead we anticipate the future of computing will be ever more 
parallel. But as John Koza says GP is embarrassingly parallel. Indeed the use of 
distributed parallel GP populations, not only makes good use of current and future 
compute resources but is in keeping with Sewall Wright’s [278] model of natural 
evolution and as John Koza reports by keeping population diversity, the distributed 
population demes of the island model, improve GP results as well as speeding it up.

In 2052 will genetic programming researchers be using computers a million times 
faster than they use today? Certainly GP seems well placed to exploit them.

Acknowledgements I would like to thank Sean Luke, and Andrew and Claire, and my anonymous 
reviewers. No competing interests. Funded by the Meta (formerly Facebook) Oops project (Award num-
ber 181551).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

26 The GP bibli ograp hy was started by John Koza. Although in recent years it has undoubtedly missed 
some work, in the five years before the pandemic (i.e. 2015–19) there were 3340 new entries and 5177 
authors published at least one GP paper.

https://www.human-competitive.org/
https://en.wikipedia.org/wiki/Embarrassingly_parallel
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://gpbib.cs.ucl.ac.uk/


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 18 of 32

References

 1. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

 2. C. Darwin, On the Origin of Species by Means of Natural Selection, 1985th edn. (John Murray, 
Penguin classics, London, 1859)

 3. C. Darwin, Voyage of the Beagle, 1989th edn. (Henry Colburn, Penguin classics, London, 1839)
 4. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press, 

Cambridge, 1994)
 5. J.R. Koza et  al., Genetic Programming III: Darwinian Invention and Problem Solving (Morgan 

Kaufmann, Cambridge, 1999)
 6. J.R. Koza et al., Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Klu-

wer Academic Publishers, Dordrecht, 2003). https:// doi. org/ 10. 1007/0- 387- 26417-5_1
 7. J.R. Koza, J.P. Rice, Genetic Programming: The Movie (MIT Press, Cambridge, 1992)
 8. J.R. Koza, Genetic Programming II Videotape: The next generation (MIT Press, Cambridge, 1994)
 9. J.R. Koza et  al., Genetic Programming III Videotape: Human Competitive Machine Intelligence 

(Morgan Kaufmann, San Francisco, 1999)
 10. J.R. Koza et al., Genetic Programming IV Video: Human-Competitive Machine Intelligence (Klu-

wer Academic Publishers, Dordrecht, 2003)
 11. J. Koza, Automated design using Darwinian evolution and genetic programming. Stanford Univer-

sity, EE380: Computer Systems Colloquium (18 Feb 2009). https:// www. youtu be. com/ watch?v= 
xIoyt wJWJP8

 12. C. Le Goues et al., Automated program repair. Commun. ACM 62(12), 56–65 (2019). https:// doi. 
org/ 10. 1145/ 33181 62

 13. J. Petke et al., Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol. Com-
put. 22(3), 415–432 (2018). https:// doi. org/ 10. 1109/ TEVC. 2017. 26932 19

 14. W.B. Langdon, J. Petke, Software is not fragile. in Complex Systems Digital Campus E-conference, 
ed. by P. Parrend et al. CS-DC’15. Proceedings in Complexity, Springer (Sep 30-Oct 1 2015), pp. 
203–211. https:// doi. org/ 10. 1007/ 978-3- 319- 45901-1_ 24, invited talk

 15. W.B. Langdon et al., Efficient multi-objective higher order mutation testing with genetic program-
ming. J. Syst. Softw. 83(12), 2416–2430 (2010). https:// doi. org/ 10. 1016/j. jss. 2010. 07. 027

 16. N. Harrand et  al., A journey among Java neutral program variants. Genet. Program Evolvable 
Mach. 20(4), 531–580 (2019). https:// doi. org/ 10. 1007/ s10710- 019- 09355-3

 17. E. Schulte et al., Software mutational robustness. Genet. Program Evolvable Mach. 15(3), 281–312 
(2014). https:// doi. org/ 10. 1007/ s10710- 013- 9195-8

 18. R. Abou Assi et al., Coincidental correctness in the Defects4J benchmark. Softw. Testing, Verif. 
Reliab. 29(3), e1696 (2019). https:// doi. org/ 10. 1002/ stvr. 1696

 19. B. Danglot et  al., Correctness attraction: a study of stability of software behavior under runt-
ime perturbation. Empir. Softw. Eng. 23(4), 2086–2119 (2018). https:// doi. org/ 10. 1007/ 
s10664- 017- 9571-8

 20. M. Monperrus, Principles of antifragile software. in Companion to the First International Confer-
ence on the Art, Science and Engineering of Programming. Programming ’17, ACM, New York, 
NY, USA (2017), pp. 32:1–32:4. https:// doi. org/ 10. 1145/ 30793 68. 30794 12

 21. J. Petke et al., Software robustness: A survey, a theory, and some prospects, in ESEC/FSE 2021, 
Ideas, Visions and Reflections. ed. by P. Avgeriou, D. Zhang (ACM, Athens, 2021), pp.1475–1478. 
https:// doi. org/ 10. 1145/ 34682 64. 34731 33

 22. D. Andre, J.R. Koza, Parallel genetic programming on a network of transputers. in Proceedings 
of the Workshop on Genetic Programming: From Theory to Real-World Applications, ed. by J.P. 
Rosca. Tahoe City, California, USA (9 Jul 1995), pp. 111–120. http:// www. cs. ucl. ac. uk/ staff/W. 
Langd on/ ftp/ papers/ andre_ 1995_ paral lel. pdf

 23. K.E. Kinnear Jr. (ed.), Advances in Genetic Programming (MIT Press, Cambridge, 1994)
 24. P.J. Angeline, K.E. Kinnear Jr. (eds.), Advances in Genetic Programming 2 (MIT Press, Cam-

bridge, 1996). https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 001. 0001
 25. L. Spector et al., Quantum computing applications of genetic programming, chap. 7, in Advances 

in Genetic Programming 3. ed. by L. Spector. et al. (MIT Press, Cambridge, 1999), pp.135–160. 
https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0010

https://doi.org/10.1007/0-387-26417-5_1
https://www.youtube.com/watch?v=xIoytwJWJP8
https://www.youtube.com/watch?v=xIoytwJWJP8
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-013-9195-8
https://doi.org/10.1002/stvr.1696
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3468264.3473133
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
https://doi.org/10.7551/mitpress/1109.001.0001
https://doi.org/10.7551/mitpress/1110.003.0010


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 19 of 32 19

 26. J.R. Koza et al., (eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. 
MIT Press, Stanford University, CA, USA (28–31 Jul 1996). http:// www. genet ic- progr amming. org/ 
gp96p rocee dings. html

 27. J.R. Koza et  al., (eds.), Genetic Programming 1997: Proceedings of the Second Annual Confer-
ence. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997). http:// www. amazon. 
com/ Genet ic- Progr amming- 2nd- Confe rence- Author/ dp/ 15586 04839

 28. J.R. Koza et al., (eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference. 
Morgan Kaufmann, University of Wisconsin, Madison, WI, USA (22-25 Jul 1998)

 29. P.J. Angeline et al, (eds.), Proceedings of the 1999 Congress on Evolutionary Computation, CEC 
1999. IEEE Press, Washington, DC, USA (July 6-9 1999). https:// dblp. org/ rec/ conf/ cec/ 1999. bib

 30. W. Banzhaf et al., (eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Computation 
Conference. Morgan Kaufmann, Orlando, Florida, USA (13-17 Jul 1999). http:// www. amazon. 
com/ exec/ obidos/ ASIN/ 15586 06114/ qid% 3D977 054373/ 105- 76661 92- 32175 23

 31. W. Banzhaf et al., (eds.), Genetic Programming, LNCS, vol. 1391. Springer-Verlag, Paris (14-15 
Apr 1998). https:// doi. org/ 10. 1007/ BFb00 55923

 32. J.R. Koza et al., Evolving inventions. Sci. Am. 288(2), 52–59 (2003)
 33. J.R. Koza, Human-competitive results produced by genetic programming. Genet. Programm. 

Evolvable Mach. 11(3/4), 251–284 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9112-3
 34. R.M. Friedberg, A learning machine: I. IBM J. Res. Dev. 2(1), 2–13 (1958)
 35. T. Kilburn et al., Experiments in machine learning and thinking. in Information Processing, Pro-

ceedings of the 1st International Conference on Information Processing. UNESCO, Paris (15-20 
Jun 1959), pp. 303–308. https:// dblp. org/ rec/ conf/ ifip/ Kilbu rnGS59. bib

 36. A.M. Turing, Intelligent machinery (1948), https:// www. npl. co. uk/ getat tachm ent/ about- us/ Histo ry/ 
Famous- faces/ Alan- Turing/ 80916 595- Intel ligent- Machi nery. pdf, report for National Physical Lab-
oratory. Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of A. M. 
Turing. Amsterdam: North Holland. Pages 107127. Also reprinted in Meltzer, B. and Michie, D. 
(editors). (1969). Machine Intelligence 5. Edinburgh: Edinburgh University Press [278]

 37. A.M. Turing, Intelligent machinery, chap. 1, in Machine Intelligence, vol. 5, ed. by B. Meltzer, D. 
Michie (Edinburgh University Press, Edinburgh, 1969), pp.3–23. https:// doi. org/ 10. 1109/ GI525 43. 
2021. 00008

 38. W.B. Langdon, W. Banzhaf, Repeated patterns in tree genetic programming. inProceedings of 
the 8th European Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 
3447, ed.by M. Keijzer et al. Springer, Lausanne, Switzerland (30 Mar–1 Apr 2005), pp. 190–202. 
https:// doi. org/ 10. 1007/ 978-3- 540- 31989-4_ 17

 39. W.B. Langdon, W. Banzhaf, Repeated patterns in genetic programming. Nat. Comput. 7(4), 589–
613 (2008). https:// doi. org/ 10. 1007/ s11047- 007- 9038-8

 40. S. Ohno, Evolution by Gene Duplication (Springer, Berlin, 1970). https:// doi. org/ 10. 1007/ 
978-3- 642- 86659-3

 41. J.R. Koza, D. Andre, A case study where biology inspired a solution to a computer science prob-
lem, in Pacific Symposium on Biocomputing ’96. ed. by L. Hunter, T.E. Klein (World Scientific, 
Singapore, 1996), pp.500–511

 42. J.R. Koza, Architecture-altering operations for evolving the architecture of a multipart program in 
genetic programming. Technical Report STAN-CS-94-1528, Dept. of Computer Science, Stanford 
University, Stanford, California 94305, USA (Oct 1994). http:// www. genet ic- progr amming. com/ 
jkpdf/ tr1528. pdf

 43. S. Forrest et al., A genetic programming approach to automated software repair. in GECCO ’09: 
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ed. by G. 
Raidl et al. ACM, Montreal (8-12 Jul 2009), pp. 947–954. https:// doi. org/ 10. 1145/ 15699 01. 15700 
31, gECCO 2019 10-Year Most Influential Paper Award, Best paper

 44. L. Carroll, Through the Looking-Glass, and What Alice Found There (Macmillan, London, 1871)
 45. W. Weimer et al., Automatically finding patches using genetic programming. in International Con-

ference on Software Engineering (ICSE) 2009, ed. by S. Fickas. Vancouver (May 16-24 2009), pp. 
364–374. https:// doi. org/ 10. 1109/ ICSE. 2009. 50705 36

 46. C. Le Goues, Automatic Program Repair Using Genetic Programming. Ph.D. thesis, Faculty of the 
School of Engineering and Applied Science, University of Virginia, USA (May 2013). http:// www. 
cs. virgi nia. edu/ ~weimer/ stude nts/ claire- phd. pdf

http://www.genetic-programming.org/gp96proceedings.html
http://www.genetic-programming.org/gp96proceedings.html
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
https://dblp.org/rec/conf/cec/1999.bib
http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
https://doi.org/10.1007/BFb0055923
https://doi.org/10.1007/s10710-010-9112-3
https://dblp.org/rec/conf/ifip/KilburnGS59.bib
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1007/978-3-540-31989-4_17
https://doi.org/10.1007/s11047-007-9038-8
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10.1007/978-3-642-86659-3
http://www.genetic-programming.com/jkpdf/tr1528.pdf
http://www.genetic-programming.com/jkpdf/tr1528.pdf
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1109/ICSE.2009.5070536
http://www.cs.virginia.edu/%7eweimer/students/claire-phd.pdf
http://www.cs.virginia.edu/%7eweimer/students/claire-phd.pdf


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 20 of 32

 47. S.O. Haraldsson et al., Fixing bugs in your sleep: how genetic improvement became an overnight 
success, in GI-2017. ed. by J. Petke et al. (ACM, Berlin, 2017), pp.1513–1520. https:// doi. org/ 10. 
1145/ 30676 95. 30825 17

 48. N. Alshahwan, Industrial experience of genetic improvement in Facebook. in GI-2019, ed. by J. 
Petke, et al. ICSE workshops proceedings. IEEE, Montreal (28 May 2019), p. 1. https:// doi. org/ 10. 
1109/ GI. 2019. 00010, invited Keynote

 49. S. Kirbas et al., On the introduction of automatic program repair in Bloomberg. IEEE Softw. 38(4), 
43–51 (2021). https:// doi. org/ 10. 1109/ MS. 2021. 30710 86

 50. H. Juille, J.B. Pollack, Massively parallel genetic programming, chap. 17, in Advances in Genetic 
Programming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996), pp.339–357. 
https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0023

 51. A. Thompson, Hardware Evolution Automatic Design of Electronic Circuits in Reconfig-
urable Hardware by Artificial Evolution (Springer, Berlin, 1998). https:// doi. org/ 10. 1007/ 
978-1- 4471- 3414-5

 52. T.G.W. Gordon, Exploiting Development to Enhance the Scalability of Hardware Evolution. Ph.D. 
thesis, University College, London, UK (Jul 2005). https:// disco very. ucl. ac. uk/ id/ eprint/ 14447 75/

 53. P.N. Martin, Genetic Programming in Hardware. Ph.D. thesis, University of Essex, University of 
Essex, Wivenhoe Park, Colchester, UK (Mar 2003). http:// www. naiad home. com/ Hardw areGe netic 
Progr amming. pdf

 54. L. Sekanina, Z. Vasicek, CGP acceleration using field-programmable gate arrays, chap. 7, in Carte-
sian Genetic Programming. Natural Computing Series. ed. by J.F. Miller. (Springer, Berlin, 2011), 
pp.217–230. https:// doi. org/ 10. 1007/ 978-3- 642- 17310-3_7

 55. C. Goribar-Jimenez et al., Towards the development of a complete GP system on an FPGA using 
geometric semantic operators, in 2017 IEEE Congress on Evolutionary Computation (CEC). ed. by 
J.A. Lozano (IEEE, Donostia, 2017), pp.1932–1939. https:// doi. org/ 10. 1109/ CEC. 2017. 79695 37

 56. W.B. Langdon, O. Krauss, Genetic improvement of data for maths functions. ACM Trans. Evolut. 
Learn. Optim. 1(2), 7 (2021). https:// doi. org/ 10. 1145/ 34610 16

 57. J.D. Owens et al., A survey of general-purpose computation on graphics hardware. Comput. Gr. 
Forum 26(1), 80–113 (2007). https:// doi. org/ 10. 1111/j. 1467- 8659. 2007. 01012.x

 58. S. Harding, W. Banzhaf, Fast genetic programming on GPUs. in Proceedings of the 10th Euro-
pean Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 4445, ed. 
by M. Ebner et al. Springer, Valencia, Spain (11-13 Apr 2007), pp. 90–101. https:// doi. org/ 10. 
1007/ 978-3- 540- 71605-1_9

 59. D.M. Chitty, A data parallel approach to genetic programming using programmable graphics 
hardware. in GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolution-
ary computation. vol.  2, ed. by D. Thierens et  al. ACM Press, London (7-11 Jul 2007), pp. 
1566–1573. https:// doi. org/ 10. 1145/ 12769 58. 12772 74

 60. H. Juille, J.B. Pollack, Parallel genetic programming and fine-grained SIMD architecture. in 
Working Notes for the AAAI Symposium on Genetic Programming, ed. by E.V. Siegel, J.R. 
Koza. AAAI, MIT, Cambridge, MA, USA (10–12 Nov 1995), pp. 31–37. http:// www. aaai. org/ 
Papers/ Sympo sia/ Fall/ 1995/ FS- 95- 01/ FS95- 01- 005. pdf

 61. W.B. Langdon, A SIMD interpreter for genetic programming on GPU graphics cards. Tech. 
Rep. CSM-470, Department of Computer Science, University of Essex, Colchester, UK (3 Jul 
2007). http:// cswww. essex. ac. uk/ techn ical- repor ts/ 2007/ csm_ 470. pdf

 62. W.B. Langdon, W. Banzhaf, A SIMD interpreter for genetic programming on GPU graphics 
cards. in Proceedings of the 11th European Conference on Genetic Programming, EuroGP 
2008. Lecture Notes in Computer Science, vol. 4971, ed. by M. O’Neill et al. Springer, Naples 
(26-28 Mar 2008), pp. 73–85. https:// doi. org/ 10. 1007/ 978-3- 540- 78671-9_7

 63. W.B. Langdon, A fast high quality pseudo random number generator for graphics processing 
units. in 2008 IEEE World Congress on Computational Intelligence, ed. by J. Wang. IEEE, 
Hong Kong (1-6 Jun 2008), pp. 459–465. https:// doi. org/ 10. 1109/ CEC. 2008. 46308 38

 64. D. Robilliard et al., Genetic programming on graphics processing units. Genet. Program Evolv-
able Mach. 10(4), 447–471 (2009). https:// doi. org/ 10. 1007/ s10710- 009- 9092-3

 65. L.A. Baumes et  al., EASEA: a generic optimization tool for GPU machines in asynchronous 
island model. Comput. Methods Mater. Sci. 11(3), 489–499 (2011)

 66. J. Vitola et al., Parallel algorithm for evolvable-based boolean synthesis on gpus. in Third IEEE 
Latin American Symposium on Circuits and Systems (LASCAS 2012) (29 Feb-2 Mar 2012). 
https:// doi. org/ 10. 1109/ LASCAS. 2012. 61803 39

https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.7551/mitpress/1109.003.0023
https://doi.org/10.1007/978-1-4471-3414-5
https://doi.org/10.1007/978-1-4471-3414-5
https://discovery.ucl.ac.uk/id/eprint/1444775/
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
https://doi.org/10.1007/978-3-642-17310-3_7
https://doi.org/10.1109/CEC.2017.7969537
https://doi.org/10.1145/3461016
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1007/978-3-540-71605-1_9
https://doi.org/10.1007/978-3-540-71605-1_9
https://doi.org/10.1145/1276958.1277274
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1109/CEC.2008.4630838
https://doi.org/10.1007/s10710-009-9092-3
https://doi.org/10.1109/LASCAS.2012.6180339


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 21 of 32 19

 67. A. Maghazeh et al., General purpose computing on low-power embedded GPUs: has it come of 
age? in 2013 International Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS XIII), ed. by H. Jeschke. IEEE, Samos, Greece (15-18 Jul 2013). 
https:// doi. org/ 10. 1109/ SAMOS. 2013. 66210 99

 68. D.M. Chitty, Faster GPU-based genetic programming using a two-dimensional stack. Soft. 
Comput. 21(14), 3859–3878 (2017). https:// doi. org/ 10. 1007/ s00500- 016- 2034-0

 69. K. Ono, Y. Hanada, Self-organized subpopulation based on multiple features in genetic pro-
gramming on GPU. J. Adv. Comput. Intell. Intell. Inform. 25(2), 177–186 (2021). https:// doi. 
org/ 10. 20965/ jaciii. 2021. p0177

 70. L. Trujillo et al., GSGP-CUDA - a CUDA framework for geometric semantic genetic program-
ming. SoftwareX 18, 101085 (2022). https:// doi. org/ 10. 1016/j. softx. 2022. 101085

 71. W.B. Langdon, A.P. Harrison, GP on SPMD parallel graphics hardware for mega bioin-
formatics data mining. Soft. Comput. 12(12), 1169–1183 (2008). https:// doi. org/ 10. 1007/ 
s00500- 008- 0296-x

 72. W.B. Langdon, Distilling GeneChips with genetic programming on the Emerald GPU super-
computer. SIGEVOlution Newsl. ACM Spec. Interest Group Genet. Evolut. Comput. 6(1), 
15–21 (2012). https:// doi. org/ 10. 1145/ 23846 97. 23846 99

 73. W.B. Langdon, Large scale bioinformatics data mining with parallel genetic programming on 
graphics processing units, chap. 15, in Massively Parallel Evolutionary Computation on GPG-
PUs. Natural Computing Series. ed. by S. Tsutsui, P. Collet. (Springer, Berlin, 2013), pp.311–
347. https:// doi. org/ 10. 1007/ 978-3- 642- 37959-8_ 15

 74. W.B. Langdon, Large scale bioinformatics data mining with parallel genetic programming on 
graphics processing units, chap. 5, in Parallel and Distributed Computational Intelligence, 
Studies in Computational Intelligence, ed. by F. Fernandez de Vega, E. Cantu-Paz., vol. 269 
(Springer, Berlin, 2010), pp.113–141. https:// doi. org/ 10. 1007/ 978-3- 642- 10675-0_6

 75. W.B. Langdon, W. Banzhaf, Long-term evolution experiment with genetic programming. Artif. 
Life 28(2), 173–204 (2022). https:// doi. org/ 10. 1162/ artl_a_ 00360

 76. W.B. Langdon, Genetic programming convergence. Genet. Program Evolvable Mach. 23(1), 
71–104 (2022). https:// doi. org/ 10. 1007/ s10710- 021- 09405-9

 77. I. Goodfellow et al., Deep Learning (MIT Press, Cambridge, 2016)
 78. W. Weimer, From deep learning to human judgments: Lessons for genetic improvement. GI @ 

GECCO 2022 (9 Jul 2022), http:// genet icimp rovem entof softw are. com/ slides/ gi202 2gecco/ weimer- 
keyno te- gi- gecco- 22. pdf, invited keynote

 79. W.B. Langdon, Genetic Programming and Data Structures: Genetic Programming + Data Struc-
tures = Automatic Programming!, Genetic Programming, vol. 1. Kluwer, Boston (1998), https:// 
doi. org/ 10. 1007/ 978-1- 4615- 5731-9

 80. A. Teller, The evolution of mental models, chap. 9, in Advances in Genetic Programming. ed. by 
K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.199–219

 81. J. Jannink, Cracking and co-evolving randomizers, chap. 20, in Advances in Genetic Programming. 
ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.425–443

 82. D. Andre, Evolution of mapmaking ability: Strategies for the evolution of learning, planning, and 
memory using genetic programming. in Proceedings of the 1994 IEEE World Congress on Com-
putational Intelligence. vol. 1, IEEE Press, Orlando, Florida, USA (27-29 Jun 1994), pp. 250–255. 
https:// doi. org/ 10. 1109/ ICEC. 1994. 350007

 83. H. Iba et  al. Temporal data processing using genetic programming. in Genetic Algorithms: Pro-
ceedings of the Sixth International Conference (ICGA95), ed. by L.J. Eshelman. Morgan Kauf-
mann, Pittsburgh, PA, USA (15-19 Jul 1995), pp. 279–286. http:// www. cs. ucl. ac. uk/ staff/W. Langd 
on/ ftp/ papers/ iba_ 1995_ tdpgp. pdf

 84. T.D. Haynes, R.L. Wainwright, A simulation of adaptive agents in hostile environment. in Pro-
ceedings of the 1995 ACM Symposium on Applied Computing, ed. by K.M. George et  al. ACM 
Press, Nashville, USA (1995), pp. 318–323. https:// doi. org/ 10. 1145/ 315891. 316007

 85. P. Nordin, W. Banzhaf, Evolving Turing-complete programs for a register machine with self-mod-
ifying code. in Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), 
ed. by L.J. Eshelman. Morgan Kaufmann, Pittsburgh, PA, USA (15-19 Jul 1995), pp. 318–325. 
http:// www. cs. mun. ca/ ~banzh af/ papers/ icga95- 2. pdf

 86. S. Brave, Evolving recursive programs for tree search, chap. 10, in Advances in Genetic Program-
ming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996), pp.203–220. https:// 
doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0015

https://doi.org/10.1109/SAMOS.2013.6621099
https://doi.org/10.1007/s00500-016-2034-0
https://doi.org/10.20965/jaciii.2021.p0177
https://doi.org/10.20965/jaciii.2021.p0177
https://doi.org/10.1016/j.softx.2022.101085
https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1145/2384697.2384699
https://doi.org/10.1007/978-3-642-37959-8_15
https://doi.org/10.1007/978-3-642-10675-0_6
https://doi.org/10.1162/artl_a_00360
https://doi.org/10.1007/s10710-021-09405-9
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1109/ICEC.1994.350007
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf
https://doi.org/10.1145/315891.316007
http://www.cs.mun.ca/%7ebanzhaf/papers/icga95-2.pdf
https://doi.org/10.7551/mitpress/1109.003.0015
https://doi.org/10.7551/mitpress/1109.003.0015


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 22 of 32

 87. A.I. Esparcia Alcazar, K.C. Sharman, Some applications of genetic programming in digital sig-
nal processing. in Late Breaking Papers at the Genetic Programming 1996 Conference Stanford 
University July 28-31, 1996, ed. by J.R. Koza. Stanford Bookstore, Stanford University, CA, USA 
(28–31 Jul 1996), pp. 24–31.http:// www. iti. upv. es/ ~anna/ papers/ somea ppsgp 96. ps

 88. W.S. Bruce, The Application of Genetic Programming to the Automatic Generation of Object-Ori-
ented Programs. Ph.D. thesis, School of Computer and Information Sciences, Nova Southeastern 
University, 3100 SW 9th Avenue, Fort Lauderdale, Florida 33315, USA (Dec 1995). https:// nsuwo 
rks. nova. edu/ gscis_ etd/ 430/

 89. A. Ronge, M.G. Nordahl, Genetic programs and co-evolution developing robust general purpose 
controllers using local mating in two dimensional populations. in Parallel Problem Solving from 
Nature IV, Proceedings of the International Conference on Evolutionary Computation. LNCS, vol. 
1141, ed. by : H.M. Voigt et al. Springer Verlag, Berlin, Germany (22-26 Sep 1996), pp. 81–90. 
https:// doi. org/ 10. 1007/3- 540- 61723-X_ 972

 90. L. Spector, S. Luke, Cultural transmission of information in genetic programming. in Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, ed. by J.R. Koza et al. MIT Press, 
Stanford University, CA, USA (28–31 Jul 1996), pp. 209–214. http:// www. cs. gmu. edu/ ~sean/ 
papers/ cultu re- gp96. pdf

 91. S.E. Raik, D.G. Browne, Evolving state and memory in genetic programming, in Simulated Evolu-
tion and Learning. ed. by X. Yao, J.H. Kim, T. Furuhashi (Springer, Berlin, 1997). https:// doi. org/ 
10. 1007/ BFb00 28523

 92. B. Edmonds, S. Moss, Modelling of boundedly rational agents using evolutionary programming 
techniques, in Evolutionary Computing, LNCS, vol. 1305, ed. by D. Corne, J.L. Shapiro (Springer-
Verlag, Berlin, 1997), pp.31–42. https:// doi. org/ 10. 1007/ BFb00 27164

 93. F.H. Bennett III, A multi-skilled robot that recognizes and responds to different problem environ-
ments. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by J.R. 
Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 44–51. http:// 
www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ gp1997/ bennet_ 1997_ msrrr dpe. pdf

 94. P.J. Angeline, An alternative to indexed memory for evolving programs with explicit state repre-
sentations. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by 
J.R. Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 423–430

 95. I.S. Lim, D. Thalmann, Indexed memory as a generic protocol for handling vectors of data in 
genetic programming. in Fifth International Conference on Parallel Problem Solving from Nature. 
LNCS, vol. 1498, ed. by A.E. Eiben et al. Springer-Verlag, Amsterdam (27-30 Sep 1998), pp. 325–
334.https:// doi. org/ 10. 1007/ BFb00 56875

 96. A. Trenaman, The Evolution of Autonomous Agents Using Concurrent Genetic Programming. 
Ph.D. thesis, Department of Computer Science, National University of Ireland, Maynooth, Ireland 
(Oct 1999), http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ trena man/ at_ thesi s1. ps. gz

 97. A. Silva et  al., Evolving controllers for autonomous agents using genetically programmed net-
works. in Genetic Programming, Proceedings of EuroGP’99. LNCS, vol. 1598, ed. by R. Poli et al. 
Springer-Verlag, Goteborg, Sweden (26-27 May 1999), pp. 255–269. https:// doi. org/ 10. 1007/3- 
540- 48885-5_ 22

 98. B. Andersson et al., Reactive and memory-based genetic programming for robot control. in Genetic 
Programming, Proceedings of EuroGP’99. LNCS, vol. 1598, ed. by R. Poli et al. Springer-Verlag, 
Goteborg, Sweden (26-27 May 1999), pp. 161–172. https:// doi. org/ 10. 1007/3- 540- 48885-5_ 13

 99. P. Martin, Genetic programming for service creation in intelligent networks. in Genetic Program-
ming, Proceedings of EuroGP’2000. LNCS, vol. 1802, ed. by R. Poli et al. Springer-Verlag, Edin-
burgh (15-16 Apr 2000), pp. 106–120. https:// doi. org/ 10. 1007/ 978-3- 540- 46239-2_8

 100. K. Bearpark, Learning and memory in genetic programming. Ph.D. thesis, School of Engineering 
Sciences, University of Southampton, UK (2000). http:// eprin ts. soton. ac. uk/ 45930/

 101. R. Karlsson et  al., Sound localization for a humanoid robot using genetic programming, in 
Real-World Applications of Evolutionary Computing, LNCS, vol. 1803, ed. by S. Cagnoni et  al. 
(Springer-Verlag, Edinburgh, 2000), pp.65–76. https:// doi. org/ 10. 1007/3- 540- 45561-2_7

 102. M.C. Martin, Visual obstacle avoidance using genetic programming: First results. in Proceedings 
of the Genetic and Evolutionary Computation Conference (GECCO-2001), ed. by L. Spector et al. 
Morgan Kaufmann, San Francisco, California, USA (7-11 Jul 2001), pp. 1107–1113. http:// www. 
marti ncmar tin. com/ Disse rtati on/ Visua lObst acleA voida nceGP. pdf

 103. S.P. Brumby et  al., Evolving forest fire burn severity classification algorithms for multi-spec-
tral imagery. in In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, 

http://www.iti.upv.es/%7eanna/papers/someappsgp96.ps
https://nsuworks.nova.edu/gscis_etd/430/
https://nsuworks.nova.edu/gscis_etd/430/
https://doi.org/10.1007/3-540-61723-X_972
http://www.cs.gmu.edu/%7esean/papers/culture-gp96.pdf
http://www.cs.gmu.edu/%7esean/papers/culture-gp96.pdf
https://doi.org/10.1007/BFb0028523
https://doi.org/10.1007/BFb0028523
https://doi.org/10.1007/BFb0027164
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf
https://doi.org/10.1007/BFb0056875
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/trenaman/at_thesis1.ps.gz
https://doi.org/10.1007/3-540-48885-5_22
https://doi.org/10.1007/3-540-48885-5_22
https://doi.org/10.1007/3-540-48885-5_13
https://doi.org/10.1007/978-3-540-46239-2_8
http://eprints.soton.ac.uk/45930/
https://doi.org/10.1007/3-540-45561-2_7
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 23 of 32 19

Proceedings of SPIE. vol. 4381, ed. by S.S. Shen, M.R. Descour, (2001), pp. 236–245. https:// doi. 
org/ 10. 1117/ 12. 437013

 104. D. Howard et  al., The boru data crawler for object detection tasks in machine vision. in Appli-
cations of Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, 
EvoSTim/EvoPLAN. LNCS, vol. 2279, ed. by S. Cagnoni et al. Springer-Verlag, Kinsale, Ireland 
(3-4 Apr 2002), pp. 222–232.https:// doi. org/ 10. 1007/3- 540- 46004-7_ 23

 105. K. Imamura et  al., N-version genetic programming via fault masking. in Genetic Programming, 
Proceedings of the 5th European Conference, EuroGP 2002. LNCS, vol. 2278, ed. by J.A. Fos-
ter et al. Springer-Verlag, Kinsale, Ireland (3-5 Apr 2002), pp. 172–181. https:// doi. org/ 10. 1007/3- 
540- 45984-7_ 17

 106. M. Johnson, Sequence generation using machine language evolved by genetic programming. in 
Procceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL’02), 
ed. by L. Wang et al. Orchid Country Club, Singapore (18-22 Nov 2002), p. #1251. http:// www. 
world cat. org/ title/ seal02- proce edings- of- the- 4th- asia- pacifi c- confe rence- on- simul ated- evolu tion- 
and- learn ing- novem ber- 18- 22- 2002- orchid- count ry- club- singa pore/ oclc/ 51951 214

 107. M. O’Neill, C. Ryan, Investigations into memory in grammatical evolution. in GECCO 2002: Pro-
ceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, 
ed. by A.M. Barry. AAAI, New York (8 Jul 2002), pp. 141–144. http:// www. gramm atical- evolu 
tion. org/ gews2 002/ oneill. ps

 108. N. Pillay, Using genetic programming for the induction of novice procedural programming solution 
algorithms. in SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing. ACM 
Press, Madrid, Spain (Mar 2002), pp. 578–583. https:// doi. org/ 10. 1145/ 508791. 508903

 109. M.I. Quintana et  al., Morphological algorithm design for binary images using genetic pro-
gramming. Genet. Program Evolvable Mach. 7(1), 81–102 (2006). https:// doi. org/ 10. 1007/ 
s10710- 006- 7012-3

 110. M. Segond et al., Iterative filter generation using genetic programming. in Proceedings of the 9th 
European Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 3905, 
ed. by P. Collet et al. Springer, Budapest, Hungary (10 - 12 Apr 2006), pp. 145–153. https:// doi. 
org/ 10. 1007/ 11729 976_ 13

 111. D. Kim, A quantitative analysis of memory usage for agent tasks, chap. 14, in Frontiers in Evolu-
tionary Robotics. ed. by H. Iba (IntechOpen, Rijeka, 2008), pp.247–274. https:// doi. org/ 10. 5772/ 
5458

 112. E. Frias-Martinez, F. Gobet, Automatic generation of cognitive theories using genetic program-
ming. Mind. Mach. 17(3), 287–309 (2007). https:// doi. org/ 10. 1007/ s11023- 007- 9070-6

 113. N.F. McPhee, R. Poli, Memory with memory: Soft assignment in genetic programming. in GECCO 
’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, ed. by 
M. Keijzer et  al. ACM, Atlanta, GA, USA (12-16 Jul 2008), pp. 1235–1242. https:// doi. org/ 10. 
1145/ 13890 95. 13893 36

 114. G. Katz, D. Peled, Genetic programming and model checking: Synthesizing new mutual exclusion 
algorithms, in Automated Technology for Verification and Analysis. Lecture Notes in Computer 
Science, vol. 5311, ed. by S. Cha, J.Y. Choi, M. Kim, I. Lee, M. Viswanathan (Springer, Berlin, 
2008), pp.33–47. https:// doi. org/ 10. 1007/ 978-3- 540- 88387-6_5

 115. M.S. Withall et al., An improved representation for evolving programs. Genet. Program Evolvable 
Mach. 10(1), 37–70 (2009). https:// doi. org/ 10. 1007/ s10710- 008- 9069-7

 116. G.C. Wilson, W. Banzhaf, Soft memory for stock market analysis using linear and developmental 
genetic programming. in GECCO ’09: Proceedings of the 11th Annual Conference on Genetic and 
Evolutionary Computation, ed. by G. Raidl et al. ACM, Montreal (8-12 Jul 2009), pp. 1633–1640. 
https:// doi. org/ 10. 1145/ 15699 01. 15701 19

 117. K. Wolfson, M. Sipper, Efficient list search algorithms. in 9th International Conference, Evolu-
tion Artificielle, EA 2009. Lecture Notes in Computer Science, vol. 5975, ed. by P. Collet et  al. 
Springer, Strasbourg, France (Oct 26-28 2009), p. 158–169. https:// doi. org/ 10. 1007/ 978-3- 642- 
14156-0_ 14, revised Selected Papers

 118. M. Hyde, A genetic programming hyper-heuristic approach to automated packing. Ph.D. the-
sis, School of Computer Science, University of Nottingham, UK (Mar 2010). http:// ethes es. notti 
ngham. ac. uk/ 1625/1/ mvh_ corre cted_ thesis. pdf

 119. M. Suchorzewski, Extending genetic programming to evolve perceptron-like learning programs. 
in 10th International Conference Artificial Intelligence and Soft Computing, ICAISC 2010, Part 

https://doi.org/10.1117/12.437013
https://doi.org/10.1117/12.437013
https://doi.org/10.1007/3-540-46004-7_23
https://doi.org/10.1007/3-540-45984-7_17
https://doi.org/10.1007/3-540-45984-7_17
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.grammatical-evolution.org/gews2002/oneill.ps
http://www.grammatical-evolution.org/gews2002/oneill.ps
https://doi.org/10.1145/508791.508903
https://doi.org/10.1007/s10710-006-7012-3
https://doi.org/10.1007/s10710-006-7012-3
https://doi.org/10.1007/11729976_13
https://doi.org/10.1007/11729976_13
https://doi.org/10.5772/5458
https://doi.org/10.5772/5458
https://doi.org/10.1007/s11023-007-9070-6
https://doi.org/10.1145/1389095.1389336
https://doi.org/10.1145/1389095.1389336
https://doi.org/10.1007/978-3-540-88387-6_5
https://doi.org/10.1007/s10710-008-9069-7
https://doi.org/10.1145/1569901.1570119
https://doi.org/10.1007/978-3-642-14156-0_14
https://doi.org/10.1007/978-3-642-14156-0_14
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 24 of 32

II. Lecture Notes in Computer Science, vol. 6114, ed. by L. Rutkowski et al. Springer, Zakopane, 
Poland (Jun 13-17 2010), pp. 221–228. https:// doi. org/ 10. 1007/ 978-3- 642- 13232-2

 120. A. Agapitos et al., Learning environment models in car racing using stateful genetic programming. 
in Proceedings of the 2011 IEEE Conference on Computational Intelligence and Games. pp. 219–
226. IEEE, Seoul, South Korea (31 Aug–3 Sep 2011). https:// doi. org/ 10. 1109/ CIG. 2011. 60320 10

 121. T. Weise, K. Tang, Evolving distributed algorithms with genetic programming. IEEE Trans. Evol. 
Comput. 16(2), 242–265 (2012). https:// doi. org/ 10. 1109/ TEVC. 2011. 21126 66

 122. R. Kala, Multi-robot path planning using co-evolutionary genetic programming. Expert Syst. Appl. 
39(3), 3817–3831 (2012). https:// doi. org/ 10. 1016/j. eswa. 2011. 09. 090

 123. H. Yim, D. Kim, Evolving internal memory strategies for the woods problems. in 12th Interna-
tional Conference on Control, Automation and Systems (ICCAS 2012), (2012), pp. 366–369. http:// 
ieeex plore. ieee. org/ xpl/ artic leDet ails. jsp? tp=  & arnum ber= 63934 63

 124. K. Igwe, N. Pillay, Automatic programming using genetic programming. in Proceedings of the 
2013 Third World Congress on Information and Communication Technologies (WICT 2013), ed. 
by L.T. Ngo et al. IEEE, Hanoi, Vietnam (15-18 Dec 2013), pp. 337–342. https:// doi. org/ 10. 1109/ 
WICT. 2013. 71131 58

 125. O. Qadir et al., Hardware architecture of the protein processing associative memory and the effects 
of dimensionality and quantisation on performance. Genet. Program Evolvable Mach. 15(3), 245–
275 (2014). https:// doi. org/ 10. 1007/ s10710- 014- 9217-1

 126. P. Szczuko, Genetic programming extension to APF-based monocular human body pose estima-
tion. Multimed. Tools Appl. 68(1), 177–192 (2014). https:// doi. org/ 10. 1007/ s11042- 012- 1147-4

 127. X. Yuan et al., Making lock-free data structures verifiable with artificial transactions. in Proceed-
ings of the 8th Workshop on Programming Languages and Operating Systems, PLOS 2015. ACM, 
Monterey, California, USA (4-7 Oct 2015), pp. 39–45. https:// doi. org/ 10. 1145/ 28183 02. 28183 09

 128. N. Chaumont, C. Adami, Evolution of sustained foraging in three-dimensional environments 
with physics. Genet. Program Evolvable Mach. 17(4), 359–390 (2016). https:// doi. org/ 10. 1007/ 
s10710- 016- 9270-z

 129. R. Smith, M. Heywood, A model of external memory for navigation in partially observative visual 
reinforcement learning tasks. in EuroGP 2019: Proceedings of the 22nd European Conference on 
Genetic Programming. LNCS, vol. 11451, ed. by L. Sekanina et al. Springer Verlag, Leipzig, Ger-
many (24-26 Apr 2019), pp. 162–177. https:// doi. org/ 10. 1007/ 978-3- 030- 16670-0_ 11

 130. S. Kelly et al., Emergent tangled program graphs in partially observable recursive forecasting and 
ViZDoom navigation tasks. ACM Trans. Evolut. Learn. Optim. 1(3), 1–41 (2021). https:// doi. org/ 
10. 1145/ 34688 57

 131. E. Real et al., AutoML-zero: Evolving machine learning algorithms from scratch. in Proceedings 
of the 37th International Conference on Machine Learning. Proceedings of Machine Learning 
Research, vol. 119, ed. by H. Daume III, A. Singh, PMLR (13–18 Jul 2020), pp. 8007–8019. http:// 
www. human- compe titive. org/ sites/ defau lt/ files/ automl_ zero_ humies_ compe tition_ entry. txt, win-
ner 2021 HUMIES

 132. C. Sulyok et al., Evolving the process of a virtual composer. Nat. Comput. 18(1), 47–60 (2019). 
https:// doi. org/ 10. 1007/ s11047- 016- 9561-6

 133. M. Al Masalma, M. Heywood, Genetic programming with external memory in sequence recall 
tasks. in Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion, 
ed. by H. Trautmann et al. GECCO ’22, Association for Computing Machinery, Boston, USA (9-13 
Jul 2022), pp. 518–521. https:// doi. org/ 10. 1145/ 35203 04. 35288 83

 134. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer-Verlag, Berlin, 2002). 
https:// doi. org/ 10. 1007/ 978-3- 662- 04726-2

 135. U.M. O’Reilly, F. Oppacher, The troubling aspects of a building block hypothesis for genetic pro-
gramming, in Foundations of Genetic Algorithms 3. ed. by L.D. Whitley, M.D. Vose (Morgan 
Kaufmann, Estes Park, 1994), pp.73–88. https:// doi. org/ 10. 1016/ B978-1- 55860- 356-1. 50008-X

 136. J.P. Rosca, D.H. Ballard, Rooted-tree schemata in genetic programming, chap. 11, in Advances 
in Genetic Programming 3. ed. by L. Spector et al. (MIT Press, Cambridge, 1999), pp.243–271. 
https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0015

 137. R. Poli, Exact schema theory for genetic programming and variable-length genetic algorithms with 
one-point crossover. Genet. Program Evolvable Mach. 2(2), 123–163 (2001). https:// doi. org/ 10. 
1023/A: 10115 52313 821

https://doi.org/10.1007/978-3-642-13232-2
https://doi.org/10.1109/CIG.2011.6032010
https://doi.org/10.1109/TEVC.2011.2112666
https://doi.org/10.1016/j.eswa.2011.09.090
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=%20&arnumber=6393463
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=%20&arnumber=6393463
https://doi.org/10.1109/WICT.2013.7113158
https://doi.org/10.1109/WICT.2013.7113158
https://doi.org/10.1007/s10710-014-9217-1
https://doi.org/10.1007/s11042-012-1147-4
https://doi.org/10.1145/2818302.2818309
https://doi.org/10.1007/s10710-016-9270-z
https://doi.org/10.1007/s10710-016-9270-z
https://doi.org/10.1007/978-3-030-16670-0_11
https://doi.org/10.1145/3468857
https://doi.org/10.1145/3468857
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
https://doi.org/10.1007/s11047-016-9561-6
https://doi.org/10.1145/3520304.3528883
https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1016/B978-1-55860-356-1.50008-X
https://doi.org/10.7551/mitpress/1110.003.0015
https://doi.org/10.1023/A:1011552313821
https://doi.org/10.1023/A:1011552313821


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 25 of 32 19

 138. C.R. Stephens, R. Poli, EC theory–" in theory": Towards a unification of evolutionary computation 
theory, chap. 7, in Frontiers of Evolutionary Computation, vol. 11, ed. by A. Menon (Kluwer, Bos-
ton, 2004), pp.129–155. https:// doi. org/ 10. 1007/1- 4020- 7782-3_7

 139. G.R. Price, Selection and covariance. Nature 227, 520–521 (1970). https:// doi. org/ 10. 1038/ 22752 
0a0

 140. L. Altenberg, The evolution of evolvability in genetic programming, chap. 3, in Advances in 
Genetic Programming. ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, 1994), pp.47–74

 141. C. Ryan et al., A competitive building block hypothesis, in Genetic and Evolutionary Computa-
tion - GECCO-2004, Part II. Lecture Notes in Computer Science, vol. 3103, ed. by K. Deb et al. 
(Springer-Verlag, Seattle, 2004), pp.654–665. https:// doi. org/ 10. 1007/ 978-3- 540- 24855-2_ 73

 142. D.R. White et  al., Modelling genetic programming as a simple sampling algorithm, in Genetic 
Programming Theory and Practice XVII. ed. by W. Banzhaf et al. (Springer, East Lansing, 2019), 
pp.367–381. https:// doi. org/ 10. 1007/ 978-3- 030- 39958-0_ 18

 143. J. Miller, What bloat? cartesian genetic programming on Boolean problems. in 2001 Genetic and 
Evolutionary Computation Conference Late Breaking Papers, ed. by E.D. Goodman. San Fran-
cisco, California, USA (9-11 Jul 2001), pp. 295–302. http:// www. elec. york. ac. uk/ intsys/ users/ jfm7/ 
gecco 2001L ate. pdf

 144. T. Jones, One operator, one landscape. Tech. Rep. SFI TR 95-02-025, Santa Fe Institute (January 
1995). http:// www. santa fe. edu/ sfi/ publi catio ns/ Worki ng- Papers/ 95- 02- 025. ps

 145. U.M. O’Reilly, Using a distance metric on genetic programs to understand genetic operators. in 
IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics 
and Simulation. vol. 5, Orlando, Florida, USA (12-15 Oct 1997), pp. 4092–4097. https:// doi. org/ 
10. 1109/ ICSMC. 1997. 637337

 146. V.K. Vassilev et al., Smoothness, ruggedness and neutrality of fitness landscapes: from theory to 
application, in Advances in Evolutionary Computing: Theory and Applications. ed. by A. Ghosh, S. 
Tsutsui (Springer-Verlag, New York, 2003), pp.3–44. https:// doi. org/ 10. 1007/ 978-3- 642- 18965-4_1

 147. W.B. Langdon, M. Harman, Fitness landscape of the Triangle program. in PPSN-2016 Workshop 
on Landscape-Aware Heuristic Search, ed. by N. Veerapen, G. Ochoa. Edinburgh (17 Sep 2016). 
http:// www. cs. ucl. ac. uk/ filea dmin/ UCL- CS/ resea rch/ Resea rch_ Notes/ rn1605. pdf, also available as 
UCL RN/16/05

 148. W.B. Langdon et  al., Dissipative polynomials. in 5th Workshop on Landscape-Aware Heuristic 
Search, ed. by N. Veerapen et al. GECCO 2021 Companion, ACM, Internet (10-14 Jul 2021), pp. 
1683–1691. https:// doi. org/ 10. 1145/ 34497 26. 34631 47

 149. F.D. Francone et al., Homologous crossover in genetic programming. in Proceedings of the Genetic 
and Evolutionary Computation Conference, vol. 2, ed. by W. Banzhaf et  al. Morgan Kaufmann, 
Orlando, Florida, USA (13-17 Jul 1999), pp. 1021–1026. http:// gpbib. cs. ucl. ac. uk/ gecco 1999/ GP- 
463. pdf

 150. G. Durrett et al., Computational complexity analysis of simple genetic programming on two prob-
lems modeling isolated program semantics, in Foundations of Genetic Algorithms. ed. by H.G. 
Beyer, W.B. Langdon (ACM, Schwarzenberg, 2011), pp.69–80. https:// doi. org/ 10. 1145/ 19676 54. 
19676 61

 151. T. Koetzing et  al., The Max problem revisited: the importance of mutation in genetic program-
ming. Theoret. Comput. Sci. 545, 94–107 (2014). https:// doi. org/ 10. 1016/j. tcs. 2013. 06. 014

 152. A. Nguyen et al., Single- and multi-objective genetic programming: new bounds for weighted order 
and majority, in Foundations of Genetic Algorithms. ed. by F. Neumann, K. De Jong (ACM, Ade-
laide, 2013), pp.161–172. https:// doi. org/ 10. 1145/ 24602 39. 24602 54

 153. A. Lissovoi, P.S. Oliveto, On the time and space complexity of genetic programming for evolving 
boolean conjunctions. J. Artif. Intell. Res. 66, 655–689 (2019). https:// doi. org/ 10. 1613/ jair.1. 11821

 154. B. Doerr et al., The impact of lexicographic parsimony pressure for ORDER/MAJORITY on the 
run time. Theoret. Comput. Sci. 816, 144–168 (2020). https:// doi. org/ 10. 1016/j. tcs. 2020. 01. 011

 155. T. Koetzing et al., Destructiveness of lexicographic parsimony pressure and alleviation by a con-
catenation crossover in genetic programming. Theoret. Comput. Sci. 816, 96–113 (2020). https:// 
doi. org/ 10. 1016/j. tcs. 2019. 11. 036

 156. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-
put. 1(1), 67–82 (1997)

 157. W.B. Langdon, Incremental evaluation in genetic programming. in EuroGP 2021: Proceedings of 
the 24th European Conference on Genetic Programming. LNCS, vol. 12691, ed. by T. Hu et al. 

https://doi.org/10.1007/1-4020-7782-3_7
https://doi.org/10.1038/227520a0
https://doi.org/10.1038/227520a0
https://doi.org/10.1007/978-3-540-24855-2_73
https://doi.org/10.1007/978-3-030-39958-0_18
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
https://doi.org/10.1109/ICSMC.1997.637337
https://doi.org/10.1109/ICSMC.1997.637337
https://doi.org/10.1007/978-3-642-18965-4_1
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
https://doi.org/10.1145/3449726.3463147
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf
https://doi.org/10.1145/1967654.1967661
https://doi.org/10.1145/1967654.1967661
https://doi.org/10.1016/j.tcs.2013.06.014
https://doi.org/10.1145/2460239.2460254
https://doi.org/10.1613/jair.1.11821
https://doi.org/10.1016/j.tcs.2020.01.011
https://doi.org/10.1016/j.tcs.2019.11.036
https://doi.org/10.1016/j.tcs.2019.11.036


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 26 of 32

Springer Verlag, Virtual Event (7-9 Apr 2021), pp. 229–246. https:// doi. org/ 10. 1007/ 978-3- 030- 
72812-0_ 15

 158. S. Handley, On the use of a directed acyclic graph to represent a population of computer programs. 
in Proceedings of the 1994 IEEE World Congress on Computational Intelligence. vol.  1, IEEE 
Press, Orlando, Florida, USA (27-29 Jun 1994), pp. 154–159. https:// doi. org/ 10. 1109/ ICEC. 1994. 
350024

 159. W.B. Langdon, W. Banzhaf, Repeated sequences in linear genetic programming genomes. Com-
plex Syst. 15(4), 285–306 (2005)

 160. T. Soule, J.A. Foster, Effects of code growth and parsimony pressure on populations in genetic pro-
gramming. Evolut. Comput. 6(4), 293–309 (1998). https:// doi. org/ 10. 1162/ evco. 1998.6. 4. 293

 161. E.D. de Jong, J.B. Pollack, Multi-objective methods for tree size control. Genet. Program Evolv-
able Mach. 4(3), 211–233 (2003). https:// doi. org/ 10. 1023/A: 10251 22906 870

 162. S. Bleuler et al., Multiobjective genetic programming: Reducing bloat using spea2. in Proceedings 
of the 2001 Congress on Evolutionary Computation CEC2001. IEEE Press, COEX, World Trade 
Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea (27-30 May 2001), pp. 536–543. https:// 
doi. org/ 10. 1109/ CEC. 2001. 934438

 163. L. Panait, S. Luke, Alternative bloat control methods, in Genetic and Evolutionary Computa-
tion - GECCO-2004, Part II. Lecture Notes in Computer Science, vol. 3103, ed. by K. Deb et al. 
(Springer-Verlag, Seattle, 2004), pp.630–641. https:// doi. org/ 10. 1007/ b98645

 164. R. Poli, A simple but theoretically-motivated method to control bloat in genetic programming. 
in Genetic Programming, Proceedings of EuroGP’2003. LNCS, vol. 2610, ed. by C. Ryan et al. 
Springer-Verlag, Essex (14-16 Apr 2003), pp. 204–217. https:// doi. org/ 10. 1007/3- 540- 36599-0_ 19

 165. S. Silva, Controlling Bloat: Individual and Population Based Approaches in Genetic Program-
ming. Ph.D. thesis, Coimbra University, Portugal (Apr 2008). http:// hdl. handle. net/ 10316/ 8542, 
full author name is Sara Guilherme Oliveira da Silva

 166. S. Dignum, R. Poli, Operator equalisation and bloat free GP. in Proceedings of the 11th European 
Conference on Genetic Programming, EuroGP 2008. Lecture Notes in Computer Science, vol. 
4971, ed. by M. O’Neill et al. Springer, Naples (26-28 Mar 2008), pp. 110–121. https:// doi. org/ 10. 
1007/ 978-3- 540- 78671-9_ 10

 167. N.I. Nikolaev, H. Iba, Accelerated genetic programming of polynomials. Genet. Program Evolv-
able Mach. 2(3), 231–257 (2001). https:// doi. org/ 10. 1023/A: 10119 49326 249

 168. I. Kushchu, Genetic programming and evolutionary generalization. IEEE Trans. Evol. Comput. 
6(5), 431–442 (2002). https:// doi. org/ 10. 1109/ TEVC. 2002. 805038

 169. T. Kowaliw, R. Doursat, Bias-variance decomposition in genetic programming. Open Math. 14(1), 
62–80 (2016). https:// doi. org/ 10. 1515/ math- 2016- 0005

 170. C. Gathercole, P. Ross, Dynamic training subset selection for supervised learning in genetic pro-
gramming, in Parallel Problem Solving from Nature III. LNCS, vol. 866, ed. by Y. Davidor et al. 
(Springer-Verlag, Jerusalem, 1994), pp.312–321. https:// doi. org/ 10. 1007/3- 540- 58484-6_ 275

 171. L. Spector et  al., Relaxations of lexicase parent selection, in Genetic Programming Theory and 
Practice XV. Genetic and Evolutionary Computation. ed. by W. Banzhaf et al. (Springer, Cham, 
2017), pp.105–120. https:// doi. org/ 10. 1007/ 978-3- 319- 90512-9_7

 172. N. Javed et al., Simplification of genetic programs: a literature survey. Data Min. Knowl. Discov. 
36(4), 1279–1300 (2022). https:// doi. org/ 10. 1007/ s10618- 022- 00830-7

 173. D. Hooper, N.S. Flann, Improving the accuracy and robustness of genetic programming through 
expression simplification. in Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, ed. by J.R. Koza et al. MIT Press, Stanford University, CA, USA (28–31 Jul 1996), p. 428. 
http:// digit al. cs. usu. edu/ ~flann/ gp. pdf

 174. W.B. Langdon, M. Harman, Optimising existing software with genetic programming. IEEE Trans. 
Evol. Comput. 19(1), 118–135 (2015). https:// doi. org/ 10. 1109/ TEVC. 2013. 22815 44

 175. M.E. Raichle, D.A. Gusnard, Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. 99(16), 
10237–10239 (2002). https:// doi. org/ 10. 1073/ pnas. 17239 9499

 176. M. Ridley, The Red Queen, Sex and the Evolution of Human Nature. Penquin (1993). http:// www. 
pengu in. co. uk/ Pengu in/ Books/ 01401 67722. html

 177. P. Nordin, A compiling genetic programming system that directly manipulates the machine code, 
chap. 14, in Advances in Genetic Programming. ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, 
1994), pp.311–331

 178. J.F. Miller, An empirical study of the efficiency of learning Boolean functions using a cartesian 
genetic programming approach. in Proceedings of the Genetic and Evolutionary Computation 

https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1109/ICEC.1994.350024
https://doi.org/10.1109/ICEC.1994.350024
https://doi.org/10.1162/evco.1998.6.4.293
https://doi.org/10.1023/A:1025122906870
https://doi.org/10.1109/CEC.2001.934438
https://doi.org/10.1109/CEC.2001.934438
https://doi.org/10.1007/b98645
https://doi.org/10.1007/3-540-36599-0_19
http://hdl.handle.net/10316/8542
https://doi.org/10.1007/978-3-540-78671-9_10
https://doi.org/10.1007/978-3-540-78671-9_10
https://doi.org/10.1023/A:1011949326249
https://doi.org/10.1109/TEVC.2002.805038
https://doi.org/10.1515/math-2016-0005
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/978-3-319-90512-9_7
https://doi.org/10.1007/s10618-022-00830-7
http://digital.cs.usu.edu/%7eflann/gp.pdf
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1073/pnas.172399499
http://www.penguin.co.uk/Penguin/Books/0140167722.html
http://www.penguin.co.uk/Penguin/Books/0140167722.html


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 27 of 32 19

Conference. vol. 2, ed. by W. Banzhaf et al. Morgan Kaufmann, Orlando, Florida, USA (13-17 Jul 
1999), pp. 1135–1142. http:// cites eer. ist. psu. edu/ 153431. html

 179. C. Ryan et al., Grammatical evolution: Evolving programs for an arbitrary language. in Proceed-
ings of the First European Workshop on Genetic Programming. LNCS, vol. 1391, ed. by W. Ban-
zhaf et  al. Springer-Verlag, Paris (14-15 Apr 1998), pp. 83–96. https:// doi. org/ 10. 1007/ BFb00 
55930

 180. P.J. Angeline, J.B. Pollack, The evolutionary induction of subroutines. in Proceedings of the Four-
teenth Annual Conference of the Cognitive Science Society. pp. 236–241. Lawrence Erlbaum, 
Bloomington, Indiana, USA (1992), http:// www. demo. cs. brand eis. edu/ papers/ glib92. pdf

 181. J. Rosca, Towards automatic discovery of building blocks in genetic programming. in Working 
Notes for the AAAI Symposium on Genetic Programming, ed. by E.V. Siegel, J.R. Koza. AAAI, 
MIT, Cambridge, MA, USA (10–12 Nov 1995), pp. 78–85. http:// www. aaai. org/ Papers/ Sympo sia/ 
Fall/ 1995/ FS- 95- 01/ FS95- 01- 011. pdf

 182. L. Spector, Simultaneous evolution of programs and their control structures, chap. 7, in Advances 
in Genetic Programming 2. ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, 1996), 
pp.137–154. https:// doi. org/ 10. 7551/ mitpr ess/ 1109. 003. 0012

 183. G. Murphy, C. Ryan, Seeding methods for run transferable libraries. in GECCO ’07: Proceedings 
of the 9th annual conference on Genetic and Evolutionary Computation. vol. 2,ed. by D. Thierens 
et al. ACM Press, London (7-11 Jul 2007), pp. 1755–1755. https:// doi. org/ 10. 1145/ 12769 58. 12773 
05

 184. W.B. Langdon, Data Structures and Genetic Programming. Ph.D. thesis, University College, Lon-
don, UK (27 Sep 1996), http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ langd on. ps. gz

 185. A. Teller, D. Andre, Automatically choosing the number of fitness cases: The rational allocation 
of trials. in Genetic Programming 1997: Proceedings of the Second Annual Conference, ed. by 
J.R. Koza et al. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), pp. 321–328. 
http:// www. cs. cmu. edu/ afs/ cs/ usr/ astro/ public/ papers/ GR. ps

 186. L. Spector, Assessment of problem modality by differential performance of lexicase selection in 
genetic programming: a preliminary report, in 1st workshop on Understanding Problems (GECCO-
UP). ed. by K. McClymont, E. Keedwell (ACM, Philadelphia, 2012), pp.401–408. https:// doi. org/ 
10. 1145/ 23307 84. 23308 46

 187. R. Poli et al., A field guide to genetic programming. Published via http:// lulu. com and freely avail-
able at http:// www. gp- field- guide. org. uk (2008), http:// www. gp- field- guide. org. uk, (With contribu-
tions by J. R. Koza)

 188. S.L. Harding, W. Banzhaf, Distributed genetic programming on GPUs using CUDA, in Workshop 
on Parallel Architectures and Bioinspired Algorithms. ed. by I. Hidalgo et al. (Universidad Com-
plutense de Madrid, Raleigh, 2009), pp.1–10

 189. R.L. Crepeau, Genetic evolution of machine language software. in Proceedings of the Workshop 
on Genetic Programming: From Theory to Real-World Applications, ed. by J.P. Rosca. Tahoe City, 
California, USA (9 Jul 1995), pp. 121–134. http:// www. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ 
GEMS_ Artic le. pdf

 190. P. Nordin et al., Efficient evolution of machine code for CISC architectures using instruction blocks 
and homologous crossover, chap. 12, in Advances in Genetic Programming 3. ed. by L. Spector 
et al. (MIT Press, Cambridge, 1999), pp.275–299. https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0017

 191. F.D. Francone, Discipulus Owner’s Manual. 11757 W. Ken Caryl Avenue F, PBM 512, Littleton, 
Colorado, 80127-3719, USA, version 3.0 draft edn. (2001). http:// gpbib. cs. ucl. ac. uk/ gp- html/ franc 
one_ manual. html

 192. W. Banzhaf et al., Genetic Programming-An Introduction;On the Automatic Evolution of Computer 
Programs and its Applications (Morgan Kaufmann, San Francisco, 1998)

 193. M. Brameier, W. Banzhaf, Linear Genetic Programming. No. XVI in Genetic and Evolutionary 
Computation (Springer, Berlin, 2007)

 194. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001). 
https:// doi. org/ 10. 1109/ 4235. 942529

 195. M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a Arbi-
trary Language, Genetic programming, vol. 4 (Kluwer Academic Publishers, Dordrecht, 2003). 
https:// doi. org/ 10. 1007/ 978-1- 4615- 0447-4

 196. L. Spector, Introduction to the peer commentary special section on “on the mapping of genotype 
to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclau-
rin. Genetic Programming and Evolvable Machines 18(3), 351–352 (Sep 2017). https:// doi. org/ 

http://citeseer.ist.psu.edu/153431.html
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/BFb0055930
http://www.demo.cs.brandeis.edu/papers/glib92.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
https://doi.org/10.7551/mitpress/1109.003.0012
https://doi.org/10.1145/1276958.1277305
https://doi.org/10.1145/1276958.1277305
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon.ps.gz
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
https://doi.org/10.7551/mitpress/1110.003.0017
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
https://doi.org/10.1109/4235.942529
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/s10710-017-9287-y


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 28 of 32

10. 1007/ s10710- 017- 9287-y, special Peer Commentary on Mapping of Genotype to Phenotype in 
Evolutionary Algorithms

 197. C. Ryan, A rebuttal to whigham, dick, and maclaurin by one of the inventors of grammatical evo-
lution: Commentary on “on the mapping of genotype to phenotype in evolutionary algorithms” 
by Peter A. Whigham, Grant Dick, and James Maclaurin. Genetic Programming and Evolvable 
Machines 18(3), 385–389 (Sep 2017). https:// doi. org/ 10. 1007/ s10710- 017- 9294-z, special Peer 
Commentary on Mapping of Genotype to Phenotype in Evolutionary Algorithms

 198. J.F. Miller et  al., Principles in the evolutionary design of digital circuits-part I. Genet. Program 
Evolvable Mach. 1(1/2), 7–35 (2000). https:// doi. org/ 10. 1023/A: 10100 16313 373

 199. J.F. Miller et al., Principles in the evolutionary design of digital circuits-part II. Genet. Program 
Evolvable Mach. 1(3), 259–288 (2000). https:// doi. org/ 10. 1023/A: 10100 66330 916

 200. J.F. Miller (ed.), Cartesian Genetic Programming. Natural Computing Series (Springer, Berlin, 
2011). https:// doi. org/ 10. 1007/ 978-3- 642- 17310-3

 201. J.F. Miller, Cartesian Genetic Programming: its status and future. Genetic Programming and 
Evolvable Machines 21(1–2), 129–168 (2020). https:// doi. org/ 10. 1007/ s10710- 019- 09360-6

 202. L. Sekanina, Z. Vasicek, Approximate circuit design by means of evolvable hardware. in IEEE 
International Conference on Evolvable Systems (ICES 2013). (Apr 2013), pp. 21–28. https:// doi. org/ 
10. 1109/ ICES. 2013. 66132 78

 203. L. Sekanina et al., Approximate circuits in low-power image and video processing: The approxi-
mate median filter. Radioengineering 26(3), 623–632 (2017). https:// doi. org/ 10. 13164/ re. 2017. 
0623

 204. D.J. Montana, Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 
(1995). https:// doi. org/ 10. 1162/ evco. 1995.3. 2. 199

 205. T. Yu, Structure abstraction and genetic programming. in Proceedings of the Congress on Evolu-
tionary Computation. vol. 1, ed. by P.J. Angeline et al. IEEE Press, Mayflower Hotel, Washington 
D.C., USA (6-9 Jul 1999), pp. 652–659. https:// doi. org/ 10. 1109/ CEC. 1999. 781995

 206. T. Yu, Hierachical processing for evolving recursive and modular programs using higher order 
functions and lambda abstractions. Genet. Program Evolvable Mach. 2(4), 345–380 (2001). https:// 
doi. org/ 10. 1023/A: 10129 26821 302

 207. R.I. McKay et  al., Grammar-based genetic programming: a survey. Genet. Program. Evolvable 
Mach. 11(3/4), 365–396 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9109-y

 208. P.A. Whigham, Grammatically-based genetic programming. in Proceedings of the Workshop on 
Genetic Programming: From Theory to Real-World Applications, ed. by J.P. Rosca. Tahoe City, 
California, USA (9 Jul 1995), pp. 33–41. http:// divcom. otago. ac. nz/ sirc/ Peterw/ Publi catio ns/ ml95. 
zip

 209. P.A. Whigham et al., On the mapping of genotype to phenotype in evolutionary algorithms. Genet. 
Program. Evolvable Mach. 18(3), 353–361 (2017). https:// doi. org/ 10. 1007/ s10710- 017- 9288-x

 210. A. Ratle, M. Sebag, A novel approach to machine discovery: Genetic programming and stochastic gram-
mars. in Proceedings of Twelfth International Conference on Inductive Logic Programming. LNCS, vol. 
2583, ed. by S. Matwin, C. Sammut. Springer Verlag, Sydney, Australia (Jul 9-11 2002), pp. 207–222. 
https:// doi. org/ 10. 1007/3- 540- 36468-4_ 14, revised Papers

 211. X.H. Nguyen et al., Solving the symbolic regression problem with tree-adjunct grammar guided 
genetic programming: the comparative results. Aust. J. Intell. Inform. Process. Syst. 7(3/4), 114–
121 (2001)

 212. C. Jacob, Evolution and coevolution of developmental programs. Comput. Phys. Commun. 121–
122, 46–50 (1999). https:// doi. org/ 10. 1016/ S0010- 4655(99) 00277-5

 213. C. Jacob, Illustrating Evolutionary Computation with Mathematica (Morgan Kaufmann, Cam-
bridge, 2001). https:// doi. org/ 10. 1016/ B978- 15586 0637-1/ 50020-5

 214. G.S. Hornby, J.B. Pollack, Evolving L-systems to generate virtual creatures. Comput. Graph. 
25(6), 1041–1048 (2001). https:// doi. org/ 10. 1016/ S0097- 8493(01) 00157-1. (artificial Life)

 215. M. Hemberg et  al., Genr8: Architects’ experience with an emergent design tool, in The Art of 
Artificial Evolution: A Handbook on Evolutionary Art and Music, chap. 8. ed. by J. Romero, P. 
Machado (Springer, 2008), pp.167–188. https:// doi. org/ 10. 1007/ 978-3- 540- 72877-1_8

 216. T. Perkis, Stack-based genetic programming. in Proceedings of the 1994 IEEE World Congress on 
Computational Intelligence. vol. 1, pp. 148–153. IEEE Press, Orlando, Florida, USA (27-29 Jun 
1994). https:// doi. org/ 10. 1109/ ICEC. 1994. 350025

https://doi.org/10.1007/s10710-017-9287-y
https://doi.org/10.1007/s10710-017-9294-z
https://doi.org/10.1023/A:1010016313373
https://doi.org/10.1023/A:1010066330916
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1109/ICES.2013.6613278
https://doi.org/10.1109/ICES.2013.6613278
https://doi.org/10.13164/re.2017.0623
https://doi.org/10.13164/re.2017.0623
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1109/CEC.1999.781995
https://doi.org/10.1023/A:1012926821302
https://doi.org/10.1023/A:1012926821302
https://doi.org/10.1007/s10710-010-9109-y
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
https://doi.org/10.1007/s10710-017-9288-x
https://doi.org/10.1007/3-540-36468-4_14
https://doi.org/10.1016/S0010-4655(99)00277-5
https://doi.org/10.1016/B978-155860637-1/50020-5
https://doi.org/10.1016/S0097-8493(01)00157-1
https://doi.org/10.1007/978-3-540-72877-1_8
https://doi.org/10.1109/ICEC.1994.350025


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 29 of 32 19

 217. S. Openshaw, I. Turton, Building new spatial interaction models using genetic programming, in 
Evolutionary Computing. ed. by T.C. Fogarty (AISB workshop, Leeds, UK, 1994). https:// doi. org/ 
10. 1007/3- 540- 58483-8

 218. K. Holladay et al., Fifth: A stack based gp language for vector processing. in Proceedings of the 
10th European Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 
4445, ed. by M. Ebner et al. pp. 102–113. Springer, Valencia, Spain (11-13 Apr 2007). https:// doi. 
org/ 10. 1007/ 978-3- 540- 71605-1_ 10

 219. M. Oltean, C. Grosan, Solving classification problems using infix form genetic programming, in 
Advances in Intelligent Data Analysis V. Lecture Notes in Computer Science, vol. 2810, ed. by 
M.R. Berthold et  al. (Springer, Berlin, 2003), pp.242–253. https:// doi. org/ 10. 1007/ 978-3- 540- 
45231-7_ 23

 220. L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the push 
programming language. Genet. Program Evolvable Mach. 3(1), 7–40 (2002). https:// doi. org/ 10. 
1023/A: 10145 38503 543

 221. U.M. O’Reilly, F. Oppacher, Program search with a hierarchical variable length representation: 
genetic programming, simulated annealing and hill climbing, in Parallel Problem Solving from 
Nature - PPSN III. Lecture Notes in Computer Science, vol. 866, ed. by Y. Davidor et al. (Springer-
Verlag, Jerusalem, 1994), pp.397–406. https:// doi. org/ 10. 1007/3- 540- 58484-6_ 283

 222. A.I. Esparcia-Alcazar, K.C. Sharman, Genetic programming techniques that evolve recurrent neu-
ral networks architectures for signal processing. in IEEE Workshop on Neural Networks for Sig-
nal Processing. IEEE, Seiko, Kyoto, Japan (4-6 Sep 1996), pp. 139–148. https:// doi. org/ 10. 1109/ 
NNSP. 1996. 548344

 223. A. Moraglio, S. Silva, Geometric differential evolution on the space of genetic programs. in Pro-
ceedings of the 13th European Conference on Genetic Programming, EuroGP 2010. LNCS, vol. 
6021, ed. by A.I. Esparcia-Alcazar et al. Springer, Istanbul (7-9 Apr 2010), pp. 171–183. https:// 
doi. org/ 10. 1007/ 978-3- 642- 12148-7_ 15, best paper

 224. B.T. Zhang, Bayesian methods for efficient genetic programming. Genet. Program Evolvable 
Mach. 1(3), 217–242 (2000). https:// doi. org/ 10. 1023/A: 10100 10230 007

 225. K. Yanai, H. Iba, Estimation of distribution programming based on Bayesian network. in Pro-
ceedings of the 2003 Congress on Evolutionary Computation CEC2003, ed. by R. Sarker et al. 
IEEE Press, Canberra (8-12 Dec 2003), pp. 1618–1625. https:// doi. org/ 10. 1109/ CEC. 2003. 
12998 66

 226. P.A.N. Bosman, E.D. de Jong, Learning probabilistic tree grammars for genetic programming, 
in Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, ed. by X. Yao et  al. 
(Springer-Verlag, Birmingham, 2004), pp.192–201. https:// doi. org/ 10. 1007/ b1006 01

 227. A. Rodriguez, A Neat Approach To Genetic Programming. Master’s thesis, School of School of 
Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 
USA (2007). https:// stars. libra ry. ucf. edu/ etd/ 3323. pdf

 228. Z. Buk et al., NEAT in HyperNEAT substituted with genetic programming. in 9th International 
Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009. Lecture Notes 
in Computer Science, vol. 5495, ed. by M. Kolehmainen et al. Springer, Kuopio, Finland (23-
25 Apr 2009), pp. 243–252. https:// doi. org/ 10. 1007/ 978-3- 642- 04921-7_ 25, revised selected 
papers

 229. L. Trujillo et  al., neat genetic programming: Controlling bloat naturally. Inf. Sci. 333, 21–43 
(2016). https:// doi. org/ 10. 1016/j. ins. 2015. 11. 010

 230. T. McConaghy, FFX: fast, scalable, deterministic symbolic regression technology, chap. 13, in 
Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation. ed. by 
R. Riolo et  al. (Springer, Ann Arbor, 2011), pp.235–260. https:// doi. org/ 10. 1007/ 978-1- 4614- 
1770-5_ 13

 231. A. Moraglio et  al., Geometric semantic genetic programming, in Parallel Problem Solving from 
Nature, PPSN XII (part 1). Lecture Notes in Computer Science, vol. 7491, ed. by C.A. Coello Coe-
llo et al. (Springer, Taormina, 2012), pp.21–31. https:// doi. org/ 10. 1007/ 978-3- 642- 32937-1_3

 232. W.B. Langdon, Directed crossover within genetic programming. Research Note RN/95/71, Univer-
sity College London, Gower Street, London WC1E 6BT, UK (Sep 1995), http:// www. cs. ucl. ac. uk/ 
staff/W. Langd on/ ftp/ papers/ direc ted_ cross over. pdf

 233. P. Orzechowski et al., Where are we now?: a large benchmark study of recent symbolic regression 
methods. in GECCO ’18: Proceedings of the Genetic and Evolutionary Computation Conference, 

https://doi.org/10.1007/3-540-58483-8
https://doi.org/10.1007/3-540-58483-8
https://doi.org/10.1007/978-3-540-71605-1_10
https://doi.org/10.1007/978-3-540-71605-1_10
https://doi.org/10.1007/978-3-540-45231-7_23
https://doi.org/10.1007/978-3-540-45231-7_23
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1007/3-540-58484-6_283
https://doi.org/10.1109/NNSP.1996.548344
https://doi.org/10.1109/NNSP.1996.548344
https://doi.org/10.1007/978-3-642-12148-7_15
https://doi.org/10.1007/978-3-642-12148-7_15
https://doi.org/10.1023/A:1010010230007
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1007/b100601
https://stars.library.ucf.edu/etd/3323.pdf
https://doi.org/10.1007/978-3-642-04921-7_25
https://doi.org/10.1016/j.ins.2015.11.010
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-3-642-32937-1_3
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 30 of 32

ed. by H. Aguirre et al. ACM, Kyoto, Japan (15-19 Jul 2018), pp. 1183–1190. https:// doi. org/ 10. 
1145/ 32054 55. 32055 39

 234. I. Arnaldo et  al., Multiple regression genetic programming. in GECCO ’14: Proceedings of the 
2014 conference on Genetic and evolutionary computation, ed. by C. Igel et al. ACM, Vancouver, 
BC, Canada (12-16 Jul 2014), pp. 879–886. https:// doi. org/ 10. 1145/ 25767 68. 25982 91

 235. L. Munoz et al., M3GP: multiclass classification with GP. in 18th European Conference on Genetic 
Programming. LNCS, vol. 9025, ed. by P. Machado et al. Springer, Copenhagen (8-10 Apr 2015), 
pp. 78–91. https:// doi. org/ 10. 1007/ 978-3- 319- 16501-1_7

 236. W. La Cava, J. Moore, A general feature engineering wrapper for machine learning using epsilon-
lexicase survival. in EuroGP 2017: Proceedings of the 20th European Conference on Genetic Pro-
gramming. LNCS, vol. 10196, ed. by M. Castelli et al. Springer Verlag, Amsterdam (19-21 Apr 
2017), pp. 80–95. https:// doi. org/ 10. 1007/ 978-3- 319- 55696-3_6

 237. B. Burlacu et al., Operon C++: An efficient genetic programming framework for symbolic regres-
sion. in Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, 
ed. by R. Allmendinger et  al. GECCO ’20, Association for Computing Machinery, internet (Jul 
8-12 2020), pp. 1562–1570. https:// doi. org/ 10. 1145/ 33779 29. 33980 99

 238. D. Mota Dias et al., Automatic synthesis of microcontroller assembly code through linear genetic 
programming, in Genetic Systems Programming: Theory and Experiences, Studies in Computa-
tional Intelligence, vol. 13, ed. by N. Nedjah et al. (Springer, Germany, 2006), pp.193–227. https:// 
doi. org/ 10. 1007/3- 540- 32498-4_9

 239. T.E. Lewis, G.D. Magoulas, TMBL kernels for CUDA GPUs compile faster using PTX, in GECCO 
2011 Computational Intelligence on Consumer Games and Graphics Hardware (CIGPU). ed. by 
S. Harding et al. (ACM, Dublin, 2011), pp.455–462. https:// doi. org/ 10. 1145/ 20018 58. 20020 33

 240. L.F. Cupertino et al., Evolving CUDA PTX programs by quantum inspired linear genetic program-
ming, in GECCO 2011 Computational intelligence on Consumer Games and Graphics Hardware 
(CIGPU). ed. by S. Harding et  al. (ACM, Dublin, 2011), pp.399–406. https:// doi. org/ 10. 1145/ 
20018 58. 20020 26

 241. M. Gregor, J. Spalek, Using LLVM-based JIT compilation in genetic programming. In: 2016 ELE-
KTRO. pp. 406–411. IEEE, Strbske Pleso, Slovakia (16-18 May 2016). https:// doi. org/ 10. 1109/ 
ELEKT RO. 2016. 75121 08

 242. J.Y. Liou et  al., GEVO: GPU code optimization using evolutionary computation. ACM Trans. 
Archit. Code Optim. 17(4), 33 (2020). https:// doi. org/ 10. 1145/ 34180 55

 243. E. Lukschandl et  al., Distributed java bytecode genetic programming. in Genetic Programming, 
Proceedings of EuroGP’2000. LNCS, vol. 1802, ed. by R. Poli et al. Springer-Verlag, Edinburgh 
(15-16 Apr 2000), pp. 316–325. https:// doi. org/ 10. 1007/ 978-3- 540- 46239-2_ 24

 244. P.A. Whigham, R.I. McKay, Genetic approaches to learning recursive relations, in Progress in Evo-
lutionary Computation. Lecture Notes in Artificial Intelligence, vol. 956, ed. by X. Yao (Springer-
Verlag, Berlin, 1995), pp.17–27. https:// doi. org/ 10. 1007/3- 540- 60154-6_ 44

 245. P.A. Whigham, A schema theorem for context-free grammars. in 1995 IEEE Conference on Evo-
lutionary Computation. vol. 1, pp. 178–181. IEEE Press, Perth, Australia (29 Nov - 1 Dec 1995). 
https:// doi. org/ 10. 1109/ ICEC. 1995. 489140

 246. T. Castle, C.G. Johnson, Evolving high-level imperative program trees with strongly formed 
genetic programming. in Proceedings of the 15th European Conference on Genetic Programming, 
EuroGP 2012. LNCS, vol. 7244, ed. by A. Moraglio et al. Springer Verlag, Malaga, Spain (11-13 
Apr 2012), pp. 1–12. https:// doi. org/ 10. 1007/ 978-3- 642- 29139-5_1

 247. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, in 
Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. X, ed. by C.G. Lang-
ton et al. (Addison-Wesley, Santa Fe Institute, 1992), pp.313–324

 248. E. Popovici et  al., Coevolutionary principles, chap. 31, in Handbook of Natural Computing. ed. 
by G. Rozenberg et al. (Springer, Berlin, 2012), pp.987–1033. https:// doi. org/ 10. 1007/ 978-3- 540- 
92910-9_ 31

 249. B.T. Zhang, D.Y. Cho, Coevolutionary fitness switching: Learning complex collective behaviors 
using genetic programming, chap. 18, in Advances in Genetic Programming 3. ed. by L. Spector 
et al. (MIT Press, Cambridge, 1999), pp.425–445. https:// doi. org/ 10. 7551/ mitpr ess/ 1110. 003. 0023

 250. A. Leier, W. Banzhaf, Exploring the search space of quantum programs. in Proceedings of the 
2003 Congress on Evolutionary Computation CEC2003. vol. 1, ed. by R. Sarker et al. IEEE Press, 
Canberra (8-12 Dec 2003), pp. 170–177. https:// doi. org/ 10. 1109/ CEC. 2003. 12995 71

https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/2576768.2598291
https://doi.org/10.1007/978-3-319-16501-1_7
https://doi.org/10.1007/978-3-319-55696-3_6
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1007/3-540-32498-4_9
https://doi.org/10.1007/3-540-32498-4_9
https://doi.org/10.1145/2001858.2002033
https://doi.org/10.1145/2001858.2002026
https://doi.org/10.1145/2001858.2002026
https://doi.org/10.1109/ELEKTRO.2016.7512108
https://doi.org/10.1109/ELEKTRO.2016.7512108
https://doi.org/10.1145/3418055
https://doi.org/10.1007/978-3-540-46239-2_24
https://doi.org/10.1007/3-540-60154-6_44
https://doi.org/10.1109/ICEC.1995.489140
https://doi.org/10.1007/978-3-642-29139-5_1
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.7551/mitpress/1110.003.0023
https://doi.org/10.1109/CEC.2003.1299571


1 3

Genetic Programming and Evolvable Machines (2023) 24:19 Page 31 of 32 19

 251. L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach, 
Genetic Programming, vol. 7 (Kluwer Academic Publishers, Boston, 2004). https:// doi. org/ 10. 
1007/ 978-0- 387- 36791-0

 252. G. O’Brien, J. Clark, Using genetic improvement to retarget quantum software on differing hard-
ware. In: Petke, J., et al. (eds.) GI @ ICSE 2021. IEEE, internet (30 May 2021), pp. 31–38. https:// 
doi. org/ 10. 1109/ GI525 43. 2021. 00015, winner Best Presentation

 253. R. Poli et  al., Theoretical results in genetic programming: the next ten years? Genet. Program. 
Evolvable Mach. 11(3/4), 285–320 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9110-5

 254. L. Vanneschi, R. Poli, Genetic programming: introduction, applications, theory and open issues, 
chap. 24, in Handbook of Natural Computing, vol. 2, ed. by G. Rozenberg et al. (Springer, Berlin, 
2012), pp.709–739. https:// doi. org/ 10. 1007/ 978-3- 540- 92910-9_ 24

 255. A. Marginean et al., SapFix: automated end-to-end repair at scale. in 41st International Conference 
on Software Engineering, ed. by J.M. Atlee, T. Bultan, ACM, Montreal (25-31 May 2019), ACM, 
Montreal (25-31 May 2019), pp. 269-278. https:// doi. org/ 10. 1109/ ICSE- SEIP. 2019. 00039

 256. B.R. Bruce et al., Approximate oracles and synergy in software energy search spaces. IEEE Trans. 
Software Eng. 45(11), 1150–1169 (2019). https:// doi. org/ 10. 1109/ TSE. 2018. 28270 66

 257. F. Wu et al., Deep parameter optimisation. in GECCO ’15: Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, ed. by S. Silva et al. ACM, Madrid (11-15 Jul 
2015), pp. 1375–1382. https:// doi. org/ 10. 1145/ 27394 80. 27546 48

 258. W.B. Langdon, M. Harman, Genetically improved CUDA C++ software. in 17th European Con-
ference on Genetic Programming. LNCS, vol. 8599, ed. by M. Nicolau et al. Springer, Granada, 
Spain (23-25 Apr 2014), pp. 87–99. https:// doi. org/ 10. 1007/ 978-3- 662- 44303-3_8

 259. W.B. Langdon et al., Improving 3D medical image registration CUDA software with genetic pro-
gramming. in GECCO ’14: Proceeding of the sixteenth annual conference on genetic and evolu-
tionary computation conference, ed. by C. Igel et  al. ACM, Vancouver, BC, Canada (12-15 Jul 
2014), pp. 951–958. https:// doi. org/ 10. 1145/ 25767 68. 25982 44

 260. W.B. Langdon, M. Harman, Grow and graft a better CUDA pknotsRG for RNA pseudoknot free 
energy calculation, in Genetic Improvement 2015 Workshop. ed. by W.B. Langdon et al. (ACM, 
Madrid, 2015), pp.805–810. https:// doi. org/ 10. 1145/ 27394 82. 27684 18

 261. K. Yeboah-Antwi, B. Baudry, Embedding adaptivity in software systems using the ECSELR 
framework, in Genetic Improvement 2015 Workshop. ed. by W.B. Langdon et al. (ACM, Madrid, 
2015), pp.839–844. https:// doi. org/ 10. 1145/ 27394 82. 27684 25

 262. W.B. Langdon et  al., Improving CUDA DNA analysis software with genetic programming. in 
GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion, ed. by S. Silva et al. ACM, Madrid (11-15 Jul 2015), pp. 1063–1070. https:// doi. org/ 10. 1145/ 
27394 80. 27546 52

 263. W.B. Langdon et  al., Genetic improvement of GPU software. Genet. Program Evolvable Mach. 
18(1), 5–44 (2017). https:// doi. org/ 10. 1007/ s10710- 016- 9273-9

 264. W.B. Langdon, Genetically improved software, chap. 8, in Handbook of Genetic Programming 
Applications. ed. by A.H. Gandomi et al. (Springer, Berlin, 2015), pp.181–220. https:// doi. org/ 10. 
1007/ 978-3- 319- 20883-1_8

 265. W.B. Langdon, B.Y.H. Lam, Genetically improved BarraCUDA. BioData Mining (2017). https:// 
doi. org/ 10. 1186/ s13040- 017- 0149-1

 266. W.B. Langdon et al., Evolving better RNAfold structure prediction. in EuroGP 2018: Proceedings 
of the 21st European Conference on Genetic Programming. LNCS, vol. 10781, ed. by M. Castelli 
et  al. Springer Verlag, Parma, Italy (4-6 Apr 2018), pp. 220–236. https:// doi. org/ 10. 1007/ 978-3- 
319- 77553-1_ 14

 267. W.B. Langdon, M. Harman, Evolving a CUDA kernel from an nVidia template. in 2010 IEEE 
World Congress on Computational Intelligence, ed. by P. Sobrevilla. IEEE, Barcelona (18-23 Jul 
2010), pp. 2376–2383. https:// doi. org/ 10. 1109/ CEC. 2010. 55859 22

 268. J.Y. Liou et  al., Genetic improvement of GPU code. in GI-2019, ICSE workshops proceedings, 
ed. by J. Petke et al. IEEE, Montreal (28 May 2019), pp. 20–27. https:// doi. org/ 10. 1109/ GI. 2019. 
00014, best Paper

 269. E.T. Barr et al., Automated software transplantation. in International Symposium on Software Test-
ing and Analysis, ISSTA 2015, ed. by T. Xie, M. Young. ACM, Baltimore, Maryland, USA (14-17 
Jul 2015), pp. 257–269. https:// doi. org/ 10. 1145/ 27717 83. 27717 96, ACM SIGSOFT Distinguished 
Paper Award

https://doi.org/10.1007/978-0-387-36791-0
https://doi.org/10.1007/978-0-387-36791-0
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1007/s10710-010-9110-5
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/TSE.2018.2827066
https://doi.org/10.1145/2739480.2754648
https://doi.org/10.1007/978-3-662-44303-3_8
https://doi.org/10.1145/2576768.2598244
https://doi.org/10.1145/2739482.2768418
https://doi.org/10.1145/2739482.2768425
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1007/978-3-319-20883-1_8
https://doi.org/10.1007/978-3-319-20883-1_8
https://doi.org/10.1186/s13040-017-0149-1
https://doi.org/10.1186/s13040-017-0149-1
https://doi.org/10.1007/978-3-319-77553-1_14
https://doi.org/10.1007/978-3-319-77553-1_14
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/GI.2019.00014
https://doi.org/10.1109/GI.2019.00014
https://doi.org/10.1145/2771783.2771796


 Genetic Programming and Evolvable Machines (2023) 24:19

1 3

19 Page 32 of 32

 270. E.K. Burke et al., Exploring hyper-heuristic methodologies with genetic programming, chap. 6, in 
Computational Intelligence, Intelligent Systems Reference Library, vol. 1, ed. by C.L. Mumford, 
L.C. Jain (Berlin, Springer, 2009), pp.177–201. https:// doi. org/ 10. 1007/ 978-3- 642- 01799-5_6

 271. R.S. Olson, J.H. Moore, TPOT: A tree-based pipeline optimization tool for automating data sci-
ence. In: Hutter, F., et  al. (eds.) AutoML 2016 workshop. New York City, USA (Jun 24 2016), 
https:// docs. google. com/ viewer? a= v & pid= sites  & srcid= ZGVmY XVsdG RvbWF pbnxh dXRvb 
WwyMD E2fGd 4OmFm YjMyN WU2NW I1YTB mZg, collocated with ICML

 272. D. Radecic, Machine Learning Automation with TPOT. Packt Publishing (2021). https:// www. 
amazon. com/ Machi ne- Learn ing- Autom ation- TPOT- autom ated/ dp/ 18005 6788X? asin= 18005 
6788X  & revis ionId=  & format= 4 & depth=1

 273. K. Krawiec, P. Liskowski, Adaptive test selection for factorization-based surrogate fitness in 
genetic programming. Found. Comput. Decis. Sci. 42(4), 339–358 (2017). https:// doi. org/ 10. 1515/ 
fcds- 2017- 0017

 274. C.G. Johnson, Solving the Rubik’s cube with stepwise deep learning. Expert Syst.: J. Knowl. Eng. 
38(3), e12665 (2021). https:// doi. org/ 10. 1111/ exsy. 12665

 275. W.B. Langdon, Evolving open complexity. SIGEVOlution Newsl. ACM Spec. Interest Group 
Genet. Evolut. Comput. 15(1), 1–4 (2022). https:// doi. org/ 10. 1145/ 35329 42. 35329 45

 276. S. Forrest, Engineering and evolving software (2021). https:// doi. org/ 10. 1109/ GI525 43. 2021. 
00008

 277. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 
(1965)

 278. S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution. in Proceed-
ings of the Sixth Annual Congress of Genetics. pp. 356–366 (1932). http:// www. black wellp ublis 
hing. com/ ridley/ class ictex ts/ wright. pdf

Publisher’s Note Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-01799-5_6
https://docs.google.com/viewer?a=v%20&pid=sites%20&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://docs.google.com/viewer?a=v%20&pid=sites%20&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X%20&revisionId=%20&format=4%20&depth=1
https://doi.org/10.1515/fcds-2017-0017
https://doi.org/10.1515/fcds-2017-0017
https://doi.org/10.1111/exsy.12665
https://doi.org/10.1145/3532942.3532945
https://doi.org/10.1109/GI52543.2021.00008
https://doi.org/10.1109/GI52543.2021.00008
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf

	Jaws 30
	Abstract
	1 Introduction
	1.1 The book
	1.2 The man
	1.3 The millionaire
	1.4 The researcher
	1.5 The public benefactor
	1.6 Pre-history
	1.7 Advice for the future
	1.8 The ones that got away: missing gaps
	1.8.1 Genetic programming and field programmable gate arrays, FPGAs
	1.8.2 Genetic programming and graphics cards, GPUs
	1.8.3 Deep learning and accelerators: GPUs and TPUs

	1.9 Other gaps: memory, theory, bloat

	2 A brief selection of other genetic programming work
	2.1 Inspired by computer science
	2.2 Non genetic GP
	2.3 Less explored
	2.3.1 Assembly code, byte code
	2.3.2 Modularity, recursion, loops
	2.3.3 Coevolution


	3 The future
	4 Conclusions
	Acknowledgements 
	References




