
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:10
https://doi.org/10.1007/s10710-023-09458-y

1 3

RESEARCH

GAAMmf: genetic algorithm with aggressive mutation
and decreasing feature set for feature selection

Rejer Izabela1 · Lorenz Krzysztof1

Received: 16 September 2022 / Revised: 9 June 2023 / Accepted: 27 June 2023 /
Published online: 26 July 2023
© The Author(s) 2023

Abstract
This paper introduces a modified version of a genetic algorithm with aggressive
mutation (GAAM), one of the genetic algorithms (GAs) used for feature selection.
The modification proposed in this study expands the original GAAM’s capabili-
ties by allowing not only feature selection but also feature reduction. To obtain this
effect, we applied the concept of ranks used in the non-dominated sorting genetic
algorithm (NSGA) and the concept of penalty term used in the Holland genetic
algorithm. With those two concepts, we managed to balance the importance of two
competing criteria in the GAAM fitness function: classification accuracy and the
feature subset’s size. To assess the algorithm’s effectiveness, we evaluated it on
eleven datasets with different characteristics and compared the results with eight
reference methods: GAAM, Melting GAAM, Holland GA with a penalty term,
NSGA-II, Correlation-based Feature Selection, Lasso, Sequential Forward Selec-
tion, and IniPG (an algorithm for particle swarm optimisation). The main conclu-
sion drawn from this study is that the genetic algorithm with aggressive mutation
and decreasing feature set (GAAMmf) introduced in this paper returned feature sets
with a significantly smaller number of features than almost all reference methods.
Furthermore, GAAMmf outperformed most of the methods in terms of classifica-
tion accuracy (except the original GAAM). In contrast to Holland GA and NSGA-II,
GAAMmf was able to perform the feature reduction task for all datasets, regardless
of the initial number of features.

Keywords Feature selection · Genetic algorithm · Aggressive mutation · Holland ·
NSGA · GAAM

Rejer Izabela and Lorenz Krzysztof have contributed equally to this work.

Handling Editor: Sebastian Risi.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09458-y&domain=pdf

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 2 of 25

1 Introduction

The algorithms used for classification, regression, or clustering typically do not
perform well on high-dimensional data [1]. Therefore, a traditional approach in
machine learning is to implement procedures to reduce the number of features
used by those algorithms. The goal of all feature selection procedures is to find
a small subset of features that provide a high value of the implemented perfor-
mance measure.

In many areas, the actual feature reduction rate is not a critical parameter. For
example, when the algorithm’s task is to identify cancer areas in medical images
in offline mode, additional features may be acceptable if they enhance recogni-
tion. However, there are areas where we cannot afford any additional features.
The need for the smallest possible feature set is particularly crucial when the
classifier is used for real-time decision-making, and the time needed to extract
each feature from the current stream of data is considerably high. In such a situ-
ation, each additional feature that must be extracted from the data stream is an
unnecessary burden that can disrupt the real-time classification or even make it
impossible.

There are many traditional feature selection approaches, including filters such
as ReliefF [2], Correlation-based Feature Selection [3], and Consistency-based
Feature Selection, as well as wrappers like step-wise selection [4, 5], random
selection [6], and Recursive Feature Elimination [7]. Additionally, embedded
methods such as Lasso [8] can also be used. Besides classic approaches, heuristic
approaches inspired by nature are becoming increasingly popular. A comprehen-
sive review of these approaches is provided in [9], which reports dozens of algo-
rithms inspired by the behaviour of insects, reptiles, birds, and animals.

Among all nature-inspired feature selection algorithms, the most popular and
commonly used are those based on swarm intelligence (SI) and genetic algo-
rithms (GA). Some of the well-known algorithms from the first category are par-
ticle swarm optimization (PSO) [10–14], ant colony optimization (ACO) [15–17],
and artificial bee colony optimization (ABC) [18–20]. Many studies have shown
that SI algorithms are efficient feature selection techniques [21–23]. However,
according to [1], most SI-based feature selection algorithms suffer from the poor
scalability of representation, which usually makes them unsuitable for applica-
tions where thousands or millions of features are possible. Furthermore, although
SI-inspired feature selection algorithms use different types of representation
(either binary or continuous), they do not directly support the search process
among feature sets containing a fixed and very small portion of all the possible
features. Hence, when the smallest possible feature subset is needed, GA-based
approaches might be a better option [24–31].

One advantage of using a GA as a feature selector is that it evaluates the
entire set of solutions simultaneously, instead of sequentially [24]. Therefore,
it can explore different parts of the search space in the same generation, rather
than focusing on one particular area and potentially getting stuck in a local min-
imum. Additionally, even if it falls into a local minimum, it can escape on its

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 3 of 25 10

own. Another feature of GA that is critical for the feature selection process is
that it does not assume any interactions among features existing in the feature
set [32–34]. However, the main disadvantage of using GAs as feature selectors is
their long processing time, which is a consequence of wrapping the feature selec-
tion process around a classification scheme [6, 35].

Several GA approaches have been proposed to solve the feature selection prob-
lem, with one of the most popular being based on the classic Holland GA [27,
31, 32, 34, 36–38]. In this approach, features are coded into genes using a binary
scheme, wherein a gene possessing a value of 1 denotes that the feature is included
into an individual, while a gene possessing a value of 0 indicates its absence. With
this scheme, the number of genes in an individual is equal to the total number of
features in the feature space. However, a high number of genes in an individual has
two disadvantages. First, when the GA fitness function is based solely on classifica-
tion accuracy, as in the classic Holland GA, the classifiers are trained with a mas-
sive number of features, which is a time-consuming process. Second, although the
classifiers’ accuracy is often approximately 100% at the very first algorithm itera-
tion, most have limited application due to their limited generalization capabilities.
Both problems can be resolved by introducing a penalty term into the classic Hol-
land GA’s fitness function, penalizing individuals with too many features [24, 39,
40]. This solution generally achieves this task, but the feature reduction process is
slow since the individuals in the initial population start with approximately half of
all available features.

Another well-known feature selection approach based on a genetic algorithm is
the non-dominated sorting genetic algorithm (NSGA), and its modification, NSGA-
II [24, 25, 40–45]. The NSGA algorithm encodes features into individuals using
a binary scheme, as in the classic Holland GA. The main difference between the
algorithms is the optimization criterion. While the Holland GA optimises only the
classification accuracy (maximization), the NSGA algorithm optimizes two criteria
simultaneously: classification accuracy (maximization) and the number of features
encoded in an individual (minimization). To perform this simultaneous optimiza-
tion, the NSGA fitness function uses the domination principle, where individuals
are assigned different ranks based on their level of dominance. The problem with the
NSGA algorithm is similar to that with the Holland GA. Both algorithms start with
a random population of individuals containing approximately 50% of the possible
features (a result of a binary coding scheme) and then try to find a balance between
the individuals’ accuracy and their number of features, which is a time-consuming
process.

In [40], we proposed another GA dedicated to feature selection, a genetic algo-
rithm with aggressive mutation (GAAM). This algorithm was designed to address
one of the problems of the Holland approach, which emerged in datasets composed
of thousands of features—the huge size of individuals. To overcome this issue, we
changed the coding scheme from binary to integer, with genes encoding the feature
indexes. We also designed a new mutation operator and adjusted other GA steps.
These changes allowed us to use the algorithm with individuals of arbitrary length,
from individuals containing only one gene to individuals coding all the features
from the feature space. However, we encountered a subsequent problem.

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 4 of 25

The classic version of GAAM works with individuals of a fixed number of
genes (features) set as a parameter. This highly restricts the possibility of training
over-sized classifiers, but also limits the algorithm’s ability to search for subsets of
features smaller than the initially chosen size. The only chance for decreasing the
number of features is when an individual with repeated features is born in the repro-
duction process. When such a situation occurs, one of the redundant features is dis-
carded, and the individual shrinks. Unfortunately, this is a sporadic event. Hence,
although GAAM works well in terms of accuracy, classifier generalisation capabili-
ties, and computation time, as compared to other approaches [40, 46–49], there is
still room for improvement in changing individuals’ length. Although we can set the
number of individuals’ genes to a reasonable value for the given task, we cannot pre-
dict if this value is optimal. Therefore, from the beginning of our work with GAAM,
we have tried to adjust the algorithm so it could reduce the initial number of genes.
To address this problem, we proposed a second version of the algorithm: Melting
GAAM [24].

Melting GAAM uses an iterative approach to reduce the number of genes in indi-
viduals. It begins with the number of genes set by the user and attempts to improve
classification accuracy to the specified level (also set by the user) during a given
number of iterations. If the desired level is achieved, one random gene is removed
from all individuals in the current population, and the optimization process restarts.
The algorithm stops when it cannot surpass the accuracy threshold within the given
number of iterations. While this approach works well, it is not flawless. Firstly, the
process of optimising the classification accuracy is repeated numerous times for
each number of genes. Although the process restarts from individuals highly similar
to those from the previous iteration (with only one gene discarded), it requires some
time for the algorithm to stabilize. Secondly, setting the accuracy threshold correctly
is challenging: too high threshold quickly halts the feature reduction process, while
too low threshold removes many features but yields individuals with low accuracy.

In this paper, we propose an alternative solution to decrease the number of indi-
viduals’ genes. The proposed solution utilizes both, the penalty term employed in
Holland GA and the ranks assigned to individuals in the NSGA algorithm. The
paper presents a detailed algorithm of our approach, called Genetic Algorithm with
Aggressive Mutation and Minimum Features (GAAMmf), and the results of experi-
ments comparing its performance to four other GAs (GAAM, Melting GAAM,
Holland with a penalty term, and NSGA-II) and four non-genetic feature selection
methods (Correlation-based Feature Selection (CFS), Lasso, Sequential Forward
Selection (SFS) [4] and IniPG [11]—one of PSO algorithms) conducted on eleven
datasets with different characteristics. The experiments demonstrate that GAAMmf
produces individuals encoding feature sets of comparable accuracy but containing a
significantly smaller number of features. Furthermore, in addition to returning the
final solution, the algorithm also generates individuals with the highest accuracy
for each analyzed number of features. Due to this feature, the algorithm’s user can
decide by himself which feature subset is preferable, larger but more precise or less
precise but containing a smaller number of features.

The paper’s structure is as follows. The subsequent section describes the main
concepts of GAAM and provides a detailed explanation of GAAMmf. The following

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 5 of 25 10

two sections discuss the experimental setup used to compare the algorithm’s perfor-
mance and report the results. Finally, the last section concludes the paper.

2 Methods

The algorithm described in this manuscript is a modification of the GAAM algo-
rithm introduced in [25]. The proposed modification involves altering the fitness
function used to evaluate individuals in subsequent generations. While in the orig-
inal GAAM, the individuals are ordered exclusively according to their classifica-
tion accuracy, GAAMmf combines two criteria in the fitness function, classification
accuracy and the number of features encoded in an individual. This change allows
for a gradual decrease in the number of features in successive generations, which is
unattainable with the original GAAM algorithm.

2.1 The original GAAM

The pseudocode of the original GAAM is presented in Algorithm 1. The algorithm
begins by setting four parameters: N, M, T, and tourN. Parameters N and M represent
the initial population size, where N denotes the number of genes (features) encoded
in each individual, and M denotes the number of individuals in the population.
Parameter T determines the stopping condition for the algorithm, i.e., the number of
generations to perform. Lastly, parameter tourN indicates the number of individuals
used in the tournament selection procedure.

After setting the algorithm’s parameters, the initial mother population motherP)
is drawn (function: DrawInitialPopulation). The population is composed of M ran-
domly selected individuals, where each individual contains N genes. The genes are
integer values corresponding to the indexes of features in the set of possible features
1,..., P}.

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 6 of 25

The main algorithm loop commences with two reproduction operations exe-
cuted on the individuals from the initial population (motherP): a traditional one-
point crossover (function: OnePointCrossover) and the aggressive mutation (func-
tion: AggressiveMutation). The latter is a GAAM-specific concept, performed
individually on each gene of each individual, in accordance with the pseudocode
presented in Algorithm 2. The two populations created during the reproduction
operations are concatenated with the mother population, forming the final popula-
tion (finalP).

Subsequently, each individual is assessed based on the classification accuracy
attained by the classifier utilizing the features encoded in the individual’s genes. Fol-
lowing evaluation, the M best individuals are selected from the current population
using the tournament selection procedure. The algorithm terminates after achieving
the predefined number of iterations.

2.2 The GAAMmf

As mentioned previously, the primary motivation for developing a new version of
GAAM was to further reduce the number of features returned by the algorithm. To
achieve this goal, we designed the GAAMmf fitness function to incorporate two cri-
teria: classification accuracy, as in the original GAAM, and the number of features
encoded in an individual. This new fitness function required several modifications in
the GAAMmf algorithm, which are described below and presented in pseudocode
in Algorithm 3. The three functions—DrawInitialPopulation, OnePointCrossover,
and AggressiveMutation—remain unchanged and perform the same operations as
described in Sect. 2.1.

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 7 of 25 10

First, we had to ensure that the algorithm’s individuals would be composed of
a variable number of genes. We achieved this goal by using a redundant number
of genes at the beginning of the algorithm. Second, we had to ensure the compa-
rability of both criteria used in the evaluation function. To deal with this task, we
employed the concept of ranks from the NSGA-II algorithm and assigned a set of
ranks to different levels of accuracy and another set of ranks to different numbers
of features. Third, we had to ensure that the original (unranked) values of both
criteria would be passed between successive populations. To this end, we divided
the algorithm evaluation function into two parts. The first part (function: accFit-
ness) evaluated each individual’s accuracy. The second part counted the individu-
als’ features, ranked them individually according to both criteria, and calculated
the final fitness of each individual (function: GAAMmfFitness). While we used
the accFitness function twice in the algorithm body, first to evaluate the initial
population and then in the main algorithm loop to evaluate each new population,
the GAAMmfFitness function was used only once: in the main loop, after concat-
enating mother and child population.

Finally, to ensure an equal contribution of both criteria in the total fitness
value, we added two algorithm constants, accFactor and fsFactor, which were cal-
culated based on the number of possible accuracy levels and the number of possi-
ble features in an individual. We assumed that the accuracy levels range from 0 to
100% (100 integer levels) and the number of features, from 1 to N (N−1 levels).

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 8 of 25

Under these assumptions, the accFactor and fsFactor constants were calculated
as shown in Formulas (1) and (2), respectively.

In GAAMmf, the fitness of individuals is calculated within the GAAMmfFitness
function (Algorithm 4). The function takes two input parameters: the final popu-
lation of individuals, which includes individuals from the mother population and
all off-springs born during the crossover and mutation operations, and the accuracy
vector containing the classification accuracy of all individuals from the final popula-
tion. Inside the function, a sequence of seven operations is performed.

First, the individuals from the final population are sorted according to their increas-
ing accuracy. Then, they are ranked based on the rule that individuals with the same
accuracy (rounded to integer values) are assigned the same rank. Rank 1 is assigned to
individuals with the worst accuracy. Since the range of ranks can differ for both crite-
ria, the ranks are normalized using a pseudo min-max normalization (3) after assign-
ing accuracy ranks to all individuals. We refer to this as "pseudo min–max normaliza-
tion" to indicate that accuracy values are normalized based on fixed boundaries set to
0 and 100 for the accuracy criterion, rather than the minimum and maximum accuracy
obtained in the current population.

where accNorm(i)—accuracy rank of individual i after normalisation, and acc(i)—
accuracy rank of individual i.

The three steps described for the accuracy criterion are repeated for the number
of features criterion, with two subtle changes. First, since the worst rank (Rank 1) for
this criterion should be assigned to individuals with the largest number of features,
individuals are sorted in descending order. Second, the pseudo min–max normaliza-
tion boundaries are set to 1 and N, indicating that the normalized ranks are calculated
according to Formula (4).

where fsNorm(i)—number-of-feature rank of individual i after normalisation, fs(i)—
number-of-feature rank of individual i, and N—number of genes in an individual.

Finally, the normalized ranks are multiplied by the corresponding weights and added
together, as shown in (5):

(1)accFactor = 100
100

N − 1

(2)fsFactor = (N − 1)
100

N − 1
= 100

(3)accNorm(i) =
acc(i)

100

(4)fsNorm(i) =
fs(i) − 1

N − 1

(5)
fitness(i) = accWeight ∗ accFactor ∗ accNorm(i)

+ fsWeight ∗ fsFactor ∗ fsNorm(i)

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 9 of 25 10

where fitness(i)—the final fitness of individual i, accNorm(i) and fsNorm(i)—the
normalized ranks of individual i with respect to the accuracy (accNorm) and the
number of features (fsNorm) criteria, accFactor and fsFactor—factors that ensure
an equal contribution of both criteria to the total fitness, accWeight and fsWeight—
weights that allow the importance of both criteria to be regulated.

Since the algorithm simultaneously explores subsets of features of different sizes,
its output is not a single individual with the best characteristics, but a set of indi-
viduals. Each individual in the final set of bestIndividuals represents the solution of
the highest accuracy obtained for the feature set of the given number of features. As
a result, the algorithm user might decide which solution better suits their needs: that
with slightly lower accuracy but a smaller number of features or that with slightly
higher accuracy but a higher number of features.

Apart from the change in the fitness function, we introduced the two other sub-
tle modifications that we had tested previously in other papers on GAAM [25, 50].
Firstly, we introduced a new algorithm parameter probM (probability of mutation)
to control the intensity of the mutation process. This parameter enhanced the algo-
rithm’s scalability and enabled its application for problems described in a high-
dimensional feature space.

Secondly, we changed the selection procedure from tournament selection to rank
selection. This alteration resulted in a significant reduction of the computational bur-
den imposed by the algorithm. By employing aggressive mutation, the GAAMmf
explores various regions within the problem space during each iteration. Conse-
quently, it requires only a limited number of iterations to attain the final results,
although each of these iterations is computationally intensive. The transition from
tournament selection to rank selection facilitated a decrease in the number of itera-
tions needed (as the best individuals consistently prevail in rank selection), thereby
leading to a significant reduction in the overall processing time of the algorithm.

3 Experiment setup

To evaluate the effectiveness of GAAMmf, we conducted a study using eleven data-
sets, namely Pima-Indians-diabetes, Orlraws10P, Dermatology, Adult, Gisette,
Humanactivity, Coil100, Gli_85, Orl_32×32, WarpAR10P, and Yale_32×32,

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 10 of 25

downloaded from sources cited in Table 1. The datasets differed in terms of the
number of features, classes, and examples. The aim of our study was to demonstrate
that regardless of the dataset characteristics, GAAMmf produces individuals with
classification accuracy comparable to reference methods but containing significantly
fewer genes. The results of GAAMmf were compared with those of the original
GAAM and three other genetic approaches that allow for changes in the number of
individuals’ genes, namely Melting GAAM, Holland GA with a penalty term, and
NSGA-II. In addition to genetic algorithms, we compared the GAAMmf results with
results returned by four non-genetic feature selection methods (CFS, Lasso, SFS,
and IniPG).

Before using the datasets in the study, we applied the following preprocessing
procedures: (i) removal of all records containing NaN values, (ii) removal of redun-
dant features (features that had the same value for each record), and (iii) identifica-
tion of pairs of features whose linear correlation exceeded 99%, and discarding one
feature from each pair. The detailed demography of the datasets before and after
applying the preprocessing procedures is presented in Table 1.

For all datasets, the main GAAMmf parameters were set at the same levels: M
(number of individuals in the mother population) was set to 10, probM (mutation
probability) to 1, and T (number of algorithm iterations) to 100 (for the first two
experiments) or 1000 (for the last experiment). The value of the N parameter, denot-
ing the initial number of individual’s genes, was also standardized for most datasets
and was set to 20. Only for two datasets, namely Adult and Prima-Indians-diabetes,
which contained 14 and 8 potential features, respectively, the N parameter was set to
the total number of features.

The accuracy of individuals was evaluated using a linear discriminant analy-
sis (LDA) classifier. Our decision to employ the LDA classifier was motivated by
two key factors. Firstly, the adoption of a linear classification procedure allows
for the generation of a classification model with a minimal number of parameters.

Table 1 The characteristics of the datasets used in the survey

Values in bold refer to the number of features, classes, and examples that remained in the datasets after
the preprocessing stage

Dataset No. of features No. of classes No. of examples References

Pima-Indians-diabetes 8 2 768 [51]
Orlraws10P 10304 10 100 [52]
Dermatology 34 6 366/358 [53]
Adult 14 2 48,842/45,222 [54]
Gisette 5000/4891 23 7000 [55]
Humanactivity 60/57 5 24,075 [56, 57]
Coil100 1024 100 7200 [58]
Gli_85 22,283/22,259 2 85 [59]
Orl_32×32 1024/1023 40 400 [60]
WarpAR10P 2420/2251 10 210 [61]
Yale_32×32 1024 15 165 [62]

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 11 of 25 10

Consequently, this choice mitigates the potential impact of variations that may occur
in each training instance on the outcomes produced by the feature selection proce-
dures. Another advantage of the LDA classifier is that it does not require a numerical
procedure to estimate the model parameters. As a result, the estimation process of
the LDA model is significantly faster compared to classifiers, whose parameters are
estimated under the training process. The parameters of each LDA classifier were
estimated according to the 10-fold cross-validation procedure on 80% of data chosen
randomly from the dataset. The remaining 20% of data was used to test the gener-
alisation capabilities of the final classification model returned by the algorithm. The
LDA classifier was employed in all algorithms tested in the paper.

In the case of GAAM and Melting GAAM, the three parameters shared by both
algorithms (M, N, and T) were set at the same levels as in GAAMmf. In addition,
for Melting GAAM, an extra parameter needed to be set: the accuracy threshold.
This parameter informs the algorithm that the current number of genes has achieved
satisfactory accuracy, and the algorithm should proceed with N = N−1 genes. We
assumed that we would be satisfied with the classifier of 90% accuracy, and hence
we set the accuracy threshold at 90%. Unfortunately, setting the accuracy threshold
beforehand can be challenging as it depends on the characteristics of the dataset. As
discussed in the Sect. 4, our threshold was too high for some datasets, resulting in
no feature reduction, and too low for others, leading to the convergence of the algo-
rithm to individuals with low classification accuracy.

For Holland GA, the classic scheme was employed, utilizing the two most popular
genetic operations, flip mutation (with a probability of 0.1) and one-point crossover
(with a probability of 1). The selection process was performed with the tournament
method (the tourN parameter was set to 2). The two primary algorithm parameters,
the number of individuals in the mother population and the number of iterations,
were set to the same levels as in GAAMmf. The fitness function was composed of
accuracy and penalty terms, where the penalty term was introduced to penalise indi-
viduals for having too many genes. Both terms were assigned equal importance (6).

where fitness(i)—the fitness of individual i, acc(i)—accuracy of the classifier
equipped with features encoded in individual i, P—number of all features in the fea-
ture set, and features(i)—number of features encoded in individual i.

The primary parameters of NSGA-II, the last GA employed in the experiments
(number of individuals in the population, mutation and crossover probability, and
number of iterations), were set to the same levels as those for the Holland algorithm.
Binary coding of features was applied, and the algorithm scheme proposed in [43]
was implemented.

In addition to the four GAs, the set of reference methods employed in the
experiments also included four non-genetic feature selection techniques: one fil-
ter (CFS), one embedded method (Lasso), and two wrappers (SFS and IniPG). To
ensure comparability with the genetic algorithms, the upper boundary of the fea-
ture set size was set for all four methods at the same level as that for all GAs (8 for

(6)fitness(i) = 0.5 ∗ acc(i) + 0.5 ∗
P − features(i)

P
,

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 12 of 25

Pima-Indians-diabetes, 14 for Adult, and 20 for the remaining datasets). All param-
eters required to run IniPG algorithm were set at the levels reported in [11].

The experiments were conducted on a machine with the following specifica-
tion: Processor AMD Ryzen 5 1400 Quad-Core Processor CPU @ 3.20 GHz, 16GB
RAM, Windows 10 Pro x64.

4 Results and discussion

In order to showcase the features of the proposed algorithm, we conducted a series
of experiments. The first experiment aimed to demonstrate the impact of the two
parameters incorporated in the algorithm for controlling the significance of the two
competing criteria, namely classification accuracy (accWeight) and the number of
features (fsWeight). Subsequently, we compared GAAMmf with four other genetic
algorithms (GAs) capable of performing feature selection, namely GAAM, Melting
GAAM, Holland with a penalty term, and NSGA-II. To facilitate the visual presen-
tation of the results obtained from the first two experiments, both were executed on
a single dataset only (Gisette in the first experiment; Humanactivity in the second
experiment). Finally, we compared the performance of GAAMmf with all eight ref-
erence algorithms across the eleven datasets described in Sect. 3.

4.1 GAAMmf parameters (Gisette dataset)

This subsection provides an overview of GAAMmf’s performance on the Gisette
dataset, described in Sect. 3. To showcase the impact of the accWeight and fsWeight
parameters on the algorithm’s results, we executed the algorithm three times, each
time with different values of both parameters. For the initial run, we set both param-
eters to 1 (accWeight = 1, fsWeight = 1). For the second and third runs, we dou-
bled the significance of one of the fitness criteria, the number of features criterion
(accWeight = 1, fsWeight = 2) in run 2 and the accuracy criterion (accWeight = 2,
fsWeight = 1) in run 3. Each run was conducted over a period of 100 iterations. Fig-
ure 1 illustrates the average validation accuracy and the number of features encoded
in the best individual returned by the algorithm for each iteration of each run. Addi-
tionally, Table 2 shows the average accuracy of the best individual found for differ-
ent numbers of features.

As presented in Table 2, the algorithm produced comparable results across all
three levels of accWeight and fsWeight. The highest classification accuracy was
equal to 93.15% for an equal value of both parameters, 92.04% for the doubled sig-
nificance of the number-of-features criterion (fsWeight = 2), and 94.03% for the dou-
bled importance of the accuracy criterion (accWeight = 2). Regarding the second
criterion, the algorithm attained the smallest number of features (i.e., 10) with a dou-
bled fsWeight parameter. The other algorithm runs returned feature sets composed of
15 features. Upon comparing the three sets of results, the algorithm obtained the
most promising outcomes with a doubled accuracy weight. As demonstrated in the
last two columns of Table 2, by applying greater pressure on the accuracy criterion,

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 13 of 25 10

Fig. 1 The GAAMmf performance for the Gisette dataset; the plots on the left present the average valida-
tion accuracy of the best individual returned in each iteration, the plots on the right present the number
of features encoded in that individual; the rows of plots present results for different levels of accWeight
and fsWeight parameters: a accWeight = 1, fsWeight = 1; b accWeight = 1, fsWeight = 2; c accWeight =
2, fsWeight = 1

Table 2 The highest accuracy obtained for different numbers of features for the Gisette dataset

The values in brackets present the accuracy calculated over the test set. The results come from three runs
of GAAMmf performed with different levels of accWeight and fsWeight parameters

accWeight = 1, fsWeight = 1 accWeight = 1, fsWeight = 2 accWeight = 2, fsWeight = 1

Acc (%) No. of features Acc (%) No. of features Acc (%) No. of features

92.81 (90.57) 15 91.17 (90.07) 10 93.91 (92.64) 15
93.15 (90.86) 16 91.29 (90.00) 11 94.03 (92.61) 16
91.81 (90.36) 17 91.81 (90.36) 12 93.04 (91.93) 17
92.68 (91.57) 18 91.73 (90.36) 13 93.10 (91.50) 18
92.04 (91.93) 19 91.99 (90.64) 14 92.83 (90.36) 19
91.05 (90.07) 20 92.04 (90.71) 15 91.81 (89.07) 20

90.90 (89.29) 16
90.72 (89.57) 17
89.83 (87.79) 18
88.84 (87.50) 19
88.70 (87.79) 20

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 14 of 25

we forced the algorithm to conduct a more thorough search amongst the individuals
with the same number of features. Consequently, the algorithm returned individu-
als of greater accuracy for each number of features in comparison to the other two
cases. Since we were interested in high accuracy in the two following experiments,
we utilized the variant with accWeight = 2 and fsWeight = 1 in both.

As illustrated in Fig. 1, the performance of the algorithm was consistent across
all levels of the parameters accWeight and fsWeight, leading to individuals with high
accuracy and a small number of features. The convergence rate varied across runs
and was dependent on the parameter levels, with higher values of fsWeight result-
ing in a more rapid reduction of features but with some fluctuations in accuracy
(Fig. 1b). Conversely, for higher values of accWeight (Fig. 1c), the algorithm dem-
onstrated a highly stable accuracy performance, albeit with a slower rate of feature
reduction.

4.2 Comparison of GAAMmf with genetic reference methods (Humanactivity
dataset)

The second experiment aimed to compare the performance of GAAMmf with four
other GAs (GAAM, Melting GAAM, Holland with a penalty term, and NSGA-II) on
the Humanactivity dataset. Results are presented in Tables 3, 4 and Fig. 2. Table 3
shows the average validation accuracy of the best individuals identified for various
numbers of features, Table 4 presents the processing time required to complete 100
iterations, and Fig. 2 compares the performance of all five algorithms across 100
iterations.

Table 3 demonstrates that the highest accuracy obtained by all four reference
algorithms was similar, approximately 96–97%. The best accuracy of 97.80% was
obtained with GAAM, followed by Melting GAAM with 97.30%, NSGA-II with
97.22%, and finally Holland with 96.98%. The accuracy of the best individual pro-
vided by the GAAMmf algorithm was slightly lower (96.99%) than the accuracy of
the reference algorithms, but the difference was tiny, ranging from 0.23 to 0.81%.

Although the accuracy obtained with all five algorithms was similar, the num-
ber of features in individuals with the highest accuracy varied significantly. For the
algorithms using a binary coding scheme (NSGA-II and Holland), the feature reduc-
tion was relatively small, with the best individuals containing 22 features (NSGA-
II). In the case of GAAM, there was no feature reduction at all; the change from
an initial 20 to 19 genes was caused only by a duplicated feature in the individual.
The highest reduction was achieved for GAAMmf and Melting GAAM. In the case
of GAAMmf, an individual with only 7 features had an accuracy (96.54%) of only
1.26% lower than the best individual in the table (20 features, 97.80%).

When comparing the feature reduction plots (the plots on the right-hand side
of Fig. 2), it can be observed that the reduction process for GAAMmf and Melt-
ing GAAM remained relatively stable over time, gradually decreasing until the
final number of features was reached. In contrast, the number of features in indi-
viduals produced by the two other algorithms designed for feature reduction
(Holland and NSGA-II) slightly fluctuated during the initial period. Since the

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 15 of 25 10

goal of the last algorithm (GAAM) was not feature reduction, the number of
features in individuals produced by this algorithm remained largely consistent
across all 100 iterations.

Finally, regarding the processing time, it can be observed (Table 4) that
GAAMmf required a significant amount of time to complete the required number
of iterations (1 h 57 min), especially when compared to Holland (18 min), Melt-
ing GAAM (24 min) and NSGA-II (1 h 02 min). One of the reasons for such a
long processing time was a significantly higher number of individuals evaluated
by GAAMmf in each iteration. While Holland and NSGA-II evaluated only 10
individuals per iteration, i.e., 1000 individuals in 100 iterations, GAAMmf eval-
uated between 94 and 190 individuals in each iteration (10 mother individuals,
10 crossed-over, and from 70 to 170 mutated, depending on the average number
of features in individuals in the current population). Although Melting GAAM
started with the same number of individuals as GAAMmf, it quickly reduced the
number of individuals needing evaluation to only one per iteration. Neverthe-
less, regardless of the reason, the long processing time should be considered a
limitation of the proposed algorithm.

Table 3 The highest accuracy returned by five GAs for different numbers of features (Humanactivity
dataset)

Acc average classification accuracy, F number of features
The values in brackets present the accuracy calculated over the test set

GAAMmf GAAM Melting NSGA-II Holland

Acc (%) F Acc (%) F Acc (%) F Acc (%) F Acc (%) F

96.54 (96.03) 7 97.65 (97.51) 19 84.35 (84.67) 1 96.55 (96.43) 22 96.98 (96.95) 27
96.58 (96.12) 8 97.80 (97.59) 20 94.85 (94.50) 2 96.99 (97.26) 24 96.95 (96.93) 28
96.62 (96.24) 9 95.36 (94.56) 3 96.98 (97.23) 25 96.93 (97.03) 32
96.76 (96.24) 10 95.52 (94.75) 4 96.88 (96.68) 26 96.66 (96.66) 33
96.81 (96.28) 11 95.89 (95.06) 5 97.09 (96.93) 27
96.62 (96.22) 12 96.28 (95.78) 6 96.61 (96.81) 28
96.93 (96.78) 13 96.49 (95.93) 7 97.22 (97.05) 29
96.98 (96.78) 14 96.66 (96.37) 8
96.99 (96.68) 15 96.76 (96.32) 9
96.95 (96.74) 16 96.90 (96.51) 10
95.40 (95.04) 17 96.90 (96.39) 11

96.90 (96.41) 12
96.98 (96.39) 13
97.30 (96.49) 14
96.88 (96.45) 15
96.91 (96.51) 16
96.71 (96.59) 17
96.63 (96.55) 18

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 16 of 25

4.3 Comparison of GAAMmf with reference methods (all datasets)

In the previous subsection, we demonstrated that the individuals returned by
GAAMmf for the Humanactivity dataset had slightly lower accuracy but were com-
posed of a significantly smaller number of features compared to those produced by
most other GAs (with the exception of Melting GAAM). The objective of the experi-
ment reported in this section was to determine whether this observation is consistent

Fig. 2 The algorithms’ performance for the Humanactivity dataset; the plots on the left present the aver-
age validation accuracy of the best individual returned in each iteration, the plots on the right present the
number of features encoded in that individual; the rows of plots present results for different algorithms: a
GAAMmf; b GAAM; c Melting GAAM; d NSGA-II; e Holland

Table 4 The processing time needed to complete 100 iterations by each GA (results for Humanactivity
dataset)

GAAMmf GAAM Melting NSGA-II Holland

1 h 57 min 5 h 14 min 24 min 1 h 02 min 18 min

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 17 of 25 10

across datasets of different numbers of features, classes, and examples. Unlike in the
two previous sections, we do not present here the detailed results obtained in indi-
vidual iterations. Instead, for each method and dataset, we report the characteristics
of the feature set with the best classification accuracy. The comparison of results
achieved by GAAMmf and eight reference methods (GAAM, Melting GAAM, Hol-
land, NSGA-II, CFS, Lasso, SFS, IniPG) for eleven datasets described in Sect. 3
(Table 1) is presented in Table 5.

To test the statistical significance of GAAMmf’s results against those obtained
with the reference methods, we conducted a series of one-sample tests with a signifi-
cance level (�) set to 0.05. Each test tested the hypothesis H0: the difference between
the accuracy (or number of features) of individuals returned by GAAMmf and one
of the reference methods is equal to zero against the alternative hypothesis H1: the
difference between the accuracy (or number of features) of individuals returned by
GAAMmf and one of the reference methods is not equal to zero.

To verify this set of hypotheses, we first calculated the differences between the
results obtained by GAAMmf and each of the reference methods. This process
yielded a set of 12 samples, consisting of 6 samples for differences in accuracy and
6 samples for differences in the number of features. Subsequently, we assessed the
normality condition for each sample using the one-sample Lilliefors test with � set
to 0.05. Finally, since not all samples met the normality condition, we applied a one-
sample Wilcoxon signed-rank test to test the differences significance. The results of
the Wilcoxon test are presented in Fig. 3, which shows the mean differences in accu-
racy (Fig. 3a) and the number of features (Fig. 3b) calculated between GAAMmf
and each of the reference methods (the actual p-value is provided for all statistically
significant results).

As shown in Table 5, not all methods produced results for all datasets. The Hol-
land and NSGA-II algorithms encountered problems in the classifiers’ training pro-
cess for the individuals from seven datasets (Orlraws10P, Gisette, Coil100, Gli_85,
Orl_32×32, WarpAR10P, and Yale_32×32). For all of those datasets, due to the
unfavourable ratio of the number of features to the number of examples, the clas-
sification process could not be completed because the covariance matrices did not
meet the positive definiteness condition. Since only four valid results were possible
to obtain for the Holland and NSGA-II algorithms, they were excluded from the sta-
tistical tests. At first, a similar problem was encountered with IniPG. However, we
managed to overcome it by slightly changing the parameters proposed in [11]. Our
modification was to initialize all the particles with a small number of features (the
same as was used for other algorithms) instead of using particles with sparse and
dense initialization.

When analysing the classification accuracy of the algorithms presented in
Table 5, GAAM outperformed the other methods for almost all datasets. Only for
three datasets, Adult, Gisette, and Orl_32×32, other algorithms returned classifiers
with marginally higher accuracy. The second place was shared between GAAMmf
(eight datasets), Holland (two datasets), and CFS (one dataset). Comparing the
accuracy differences averaged over eleven datasets (Fig. 3a), it can be noticed that
GAAMmf exhibited superior performance compared to the five reference methods:
Melting GAAM, Lasso, CFS, IniPG, and SFS. In the case of all of those methods,

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 18 of 25

Table 5 The algorithms’ results across all datasets

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Classification accuracy (validation phase) [%]
Pima-Indians-

diabetes
78.12 78.28 77.36 77.87 72.77 77.19 73.13 77.36 77.17

Orlraws10P 98.75 100.00 89.79 – – 80.00 57.50 97.50 96.26
Dermatology 97.91 98.79 89.19 97.90 98.35 96.15 88.10 94.97 96.17
Adult 79.04 78.78 78.88 79.53 79.06 78.73 78.75 77.92 77.88
Gisette 93.91 92.31 89.97 – – 91.20 89.02 83.15 94.04
Humanactivity 96.54 97.65 84.35 96.55 96.98 90.76 95.21 93.59 93.25
Coil100 73.67 74.02 73.18 – – 51.67 40.47 68.53 71.23
Gli_85 94.29 100.00 79.06 – – 92.38 95.48 93.45 94.20
Orl_32×32 95.37 95.35 89.86 – – 66.56 55.31 96.25 90.94
WarpAR10P 95.57 99.55 88.66 – – 78.82 40.64 94.51 92.36
Yale_32×32 92.17 94.25 89.48 – – 52.2 35.55 84.2 75.16
Mean 90.48 91.73 84.53 – – 77.79 68.11 87.40 87.15

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Classification accuracy (test phase) [%]
Pima-Indians-

diabetes
78.57 75.32 75.97 72.73 78.57 74.68 79.87 77.27 77.27

Orlraws10P 95.00 85.00 75.00 – – 70.00 70.00 85.00 85.00
Dermatology 97.22 93.06 87.50 91.67 93.06 90.28 83.33 94.44 91.67
Adult 79.14 78.89 78.53 79.39 79.13 78.53 78.88 77.26 77.67
Gisette 92.64 90.57 87.21 – – 90.29 88.86 83.79 92.57
Humanactivity 96.03 97.51 84.67 96.43 96.95 90.80 95.18 93.31 93.31
Coil100 72.50 71.60 69.93 – – 49.65 41.04 67.87 68.82
Gli_85 82.35 76.47 58.82 – – 82.35 88.24 76.47 76.47
Orl_32×32 91.25 83.75 77.50 – – 67.50 52.50 96.05 80.00
WarpAR10P 84.62 84.62 61.54 – – 65.38 61.54 88.46 69.23
Yale_32×32 75.70 69.70 75.76 – – 36.36 33.33 66.67 57.58
Mean 85.91 82.41 75.68 – – 72.35 70.25 82.42 79.05

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Number of features
Pima-Indians-

diabetes
5 5 7 5 2 8 8 5 5

Orlraws10P 6 20 3 – – 20 20 39 7
Dermatology 8 19 4 17 11 20 20 19 9
Adult 3 13 14 7 3 14 14 2 3
Gisette 15 20 8 – – 18 20 20 20
Humanactivity 7 19 1 22 27 20 20 8 14
Coil100 20 20 20 – – 20 20 20 20
Gli_85 2 19 1 – – 18 20 40 2
Orl_32×32 16 20 11 – – 19 20 78 16
WarpAR10P 13 19 7 – – 20 20 40 9

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 19 of 25 10

the difference in accuracy was statistically significant. In fact, the only algorithm
that performed better than GAAMmf in terms of accuracy was the original GAAM.
However, the difference in accuracy between those two algorithms was insignificant.

As shown in Table 5, although Holland and NSGA-II returned individuals with
accuracies comparable to those generated by GAAM-based algorithms, their appli-
cation can sometimes be challenging. This is due to the fact that both algorithms
employ a binary coding scheme, which begins the search process with roughly half

Table 5 (continued)

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Yale_32×32 15 19 12 – – 20 20 59 15
Mean 10 18 8 – – 18 18 30 11

Dataset GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Processing time
Pima-Indians-

diabetes
18′ 28′ 24′ 44′ 13′ 2″ 1″ 12′ 3″

Orlraws10P 17′ 15′ 9′ – – 15″ 2″ 10′ 23′
Dermatology 24′ 16′ 9′ 1 h 19′ 9′ 2″ 1″ 11′ 10″
Adult 5 h 18′ 2 h 56′ 4 h 23′ 9 h 10′ 2 h 37′ 13″ 1″ 42′ 10″
Gisette 6 h 54′ 4 h 11′ 41′ – – 2′ 6″ 3 h 47″ 2 h 38′
Humanactivity 8 h 47′ 5 h 31′ 24′ 49 h 12′ 14 h 11′ 15″ 1″ 4 h 3′ 5′
Coil100 68 h 55′ 19 h 32′ 65 h 17′ – – 22″ 1″ 5 h 56′ 4 h 11′
Gli_85 57′ 1 h 15′ 9′ – – 30″ 8″ 7′ 29′
Orl_32×32 3 h 17′ 3 h 53′ 1 h 49′ – – 5″ 1″ 21′ 16′
WarpAR10P 1 h 21′ 1 h 37′ 29′ – – 6″ 1″ 9′ 10′
Yale_32×32 1 h 28′ 1 h 57′ 9′ – – 3″ 1″ 12′ 7′
Mean 8 h 54′ 3 h 48′ 6 h 43′ – – 0.01′ 0.01′ 1 h 21′ 45′

Fig. 3 The statistical significance of differences calculated between GAAMmf and other methods in
terms of a classification accuracy, b number of features; p value for each significant difference is pre-
sented over the corresponding bar

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 20 of 25

of the total number of features. As a result, their individuals can be difficult to evalu-
ate in terms of classification accuracy when applied to datasets with an unfavorable
ratio between the number of features and the number of examples (e.g., Gisette and
Orlaws10P). In contrast, all three GAAM-based algorithms permit the initial selec-
tion of the number of genes (i.e., features) in individuals. Consequently, they are not
affected by the dimensionality ’curse’ and can be applied to datasets with arbitrary
characteristics.

Moreover, it is worth noting that some non-genetic feature selection meth-
ods exhibited significantly poorer performance when confronted with multiclass
problems. For example, as can be noticed in Table 5, Lasso and CFS performed
much worse in the case of most multiclass datasets (apart from Dermatology and
Gisette (analysed by Lasso)). The most extreme drop in accuracy measured between
GAAMmf and the aforementioned methods could be observed for Orlraws10P,
Coil100, Orl_32×32, WarpAR10P, and Yale_32×32.

The second section of Table 5 displays the accuracy of the final classification
model estimated for each algorithm using the 20% of data that was not utilized in the
parameters estimation process. We marked with bold font all the cases where the test
accuracy was 10% lower than the corresponding validation accuracy reported in the
first part of the table. Analysis of the table reveals that the parameters of most clas-
sifiers were correctly estimated, with the test accuracy being only slightly lower or,
in some cases, slightly higher than the validation accuracy. Additionally, it is evident
that the occurrence of overfitting behaviour primarily depended on the characteris-
tics of the datasets rather than the algorithms themselves. Notably, for four datasets
(Orlaws10P, Gli_85, WarpAR10P, and Yale_32×32), almost all classifiers exhibited
overfitting behaviour, while for the remaining datasets, overfitting was not observed.

Regarding the average accuracy calculated across all eleven datasets, the clas-
sic GAAM outperformed other algorithms in terms of average validation accuracy,
achieving a score of 91.73%. However, it displayed the poorest generalization capa-
bilities among the estimated classifiers. On the other hand, GAAMmf demonstrated
slightly lower average validation accuracy (90.48%) compared to GAAM, but it
emerged as the winner in terms of test accuracy and generalization capabilities.

Concerning the third section of Table 5, which presents the number of features
encoded in individuals with the highest accuracy, the outcomes significantly differ
from those presented in the first section of the table. Here, Melting GAAM returned
individuals with the fewest features, averaging at 8 features. GAAMmf followed
closely with 10 features, while SFS obtained the third-best performance with 11 fea-
tures. Other algorithms yielded significantly larger feature sets (Fig. 3b).

The comparison across different datasets presents one undesirable feature of
Melting GAAM that motivated us to seek an approach to balance the accuracy
and number of feature criteria in the feature selection process. By fixing the accu-
racy, the algorithm might halt the search process with individuals that are far from
optimal, either in terms of accuracy or the number of features. When the accuracy
threshold is underestimated, the algorithm terminates with individuals of a much
worse accuracy than optimal (for Orlraws10P, the accuracy of Melting GAAM was
over 10% worse than that of GAAM). Conversely, when the accuracy threshold
exceeds the accuracy that can be achieved in the given dataset, the algorithm focuses

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 21 of 25 10

entirely on the accuracy criterion, and no feature reduction is achieved. This situa-
tion was observed for Adult dataset, where Melting GAAM stopped with 14 features,
although the individual composed of only three features returned by GAAMmf pro-
vided even better accuracy.

In the final part of Table 5, the total processing time required by all algorithms to
complete the task was compared. The ranking of the methods in this section of the
table was consistent with expectations. The quickest method was CFS, followed by
Lasso. All wrappers required significantly longer time to fulfil the task. Among the
wrappers, the SFS method was at the forefront, followed by IniPG, GAAM, Melt-
ing GAAM, and GAAMmf. The two least time-efficient methods were Holland and
NSGA-II, respectively.

5 Conclusions

This study developed and evaluated a genetic algorithm for feature selection
(GAAMmf), which is a modified version of a genetic algorithm with aggressive muta-
tion. The new version of the algorithm was developed to overcome the limitations of
both preceding GAAM-based algorithms, the original GAAM and Melting GAAM.
The original GAAM is focused on feature subsets of a fixed size. Hence, it optimises
the feature set in terms of classification accuracy but not the number of features. Con-
versely, Melting GAAM fixes the classification accuracy and optimises only the size
of the feature space. GAAMmf combines both criteria and, at the same time, optimises
the classification accuracy and the size of the feature set, similar to Holland with a
penalty term and NSGA-II. One distinguishing feature of GAAMmf is its ability to
start the feature reduction process from either the entire feature set or an arbitrarily
chosen number of features, which is impossible with the direct binary coding scheme.
This feature makes GAAMmf applicable to datasets of any characteristic.

In summary, the main benefit of GAAMmf is its ability to be run without tedious
tuning of parameters. All parameters can be set to the levels used in the experiments
described in the paper, which may not be optimal in terms of processing time but
will produce a sufficiently small feature set of satisfactory classification accuracy for
most datasets. On the other hand, the main limitation of GAAMmf is its processing
time. The aggressive mutation used in the evolution process allows the algorithm to
explore different subspaces of the search space, but also produces a large number
of new individuals that must be evaluated. Attempts were made to overcome this
problem by introducing the concept of mutation probability, but the processing time
is still unsatisfactory. Hence, in future work, we plan to apply the concept of keeping
track of previously evaluated individuals to avoid the cost of their reevaluation.

Author contributions Conceptualization: IR; Literature review: KL; Methodology: IR, KL; Formal anal-
ysis IR; Investigation: KL; Writing—original draft preparation: IR, KL; Software preparation: KL; Writ-
ing—review and editing: IR; Supervision: IR.

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 22 of 25

Funding This research did not receive any specific grant from funding agencies in the public, commer-
cial, or not-for-profit sectors.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Consent for of publication The authors declare that the results/data/figures in this manuscript have
not been published elsewhere, nor are they under consideration (from you or one of your Contributing
Authors) by another publisher.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. H.N. Bach, X. Bing, Z. Mengjie, A survey on swarm intelligence approaches to feature selection in
data mining. Swarm Evol. Comput. 54, 100663 (2020)

 2. I. Kononenko, Estimating Attributes: Analysis and Extensions of Relief, in Machine Learning:
ECML-94. ed. by L. De Raedt, F. Bergadano (Springer Verlag, Berlin, 1994), pp.171–182

 3. M.A. Hall, Correlation-based feature selection for machine learning. The University of Waikato
(1999)

 4. J. Kittler, Feature set search algorithms. Pattern Recognit Signal Process 41–60 (1978)
 5. I. Rejer, EEG feature selection for BCI based on motor imaginary task. Found. Comput. Decis. Sci.

37(4), 283–292 (2012)
 6. R. Burduk, Recognition Task with Feature Selection and Weighted Majority Voting Based on Inter-

val-Valued Fuzzy Sets in Computational Collective Intelligence, in Technologies and Applications,
Lecture Notes in Computer Science. ed. by N.T. Nguyen, K. Hoang, P. Jedrzejowicz (Springer, Ber-
lin, 2012)

 7. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support
vector machines. Machine Learning 46(1–3), 389–422 (2002)

 8. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodologi-
cal) 58(1), 267–288 (1996)

 9. M. Sharma, P. Kaur, A comprehensive analysis of nature-inspired meta-heuristic techniques for fea-
ture selection problem. Arch. Comput. Methods Eng. (2020)

 10. B. Tran, B. Xue, M. Zhang, S. Nguyen, Investigation on particle swarm optimisation for feature
selection on high-dimensional data: local search and selection bias. Connect. Sci. 28, 270–294
(2016)

 11. B. Xue, M. Zhang, W. Browne, Novel Initialisation and Updating Mechanisms in PSO for Feature
Selection in Classification, in Applications of Evolutionary Computation. Lecture Notes in Com-
puter Science. (Springer, Berlin, 2013), pp.428–438

 12. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization (PSO). A tutorial. Swarm Intell. 1,
33–57 (2007)

 13. F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst.
149, 153–165 (2015)

 14. D. Wang, D. Tan, L. Liu, Particle swarm optimization. Soft. Comput. 22, 387–408 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 23 of 25 10

 15. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1(4),
28–39 (2006)

 16. S.G. Yaseen, N.M.A. Al-Slamy, Ant colony optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur.
8(6), 351 (2008)

 17. H.R. Kanan, K. Faez, S.M. Taheri, Feature selection using ant colony optimization (ACO): a new
method and comparative study in the application of face recognition system. Adv. Data Min. Theor.
Asp. Appl. 4597(6), 63–76 (2007)

 18. A.L. Bolaji, A.T. Khader, M.A. Al-Betar, M.A. Awadallah, Artificial bee colony algorithm, its vari-
ants and applications: a survey. J. Theor. Appl. Inf. Technol. 47(2), 434–459 (2013)

 19. D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving con-
strained optimization problems. Found. Fuzzy Logic Soft Comput. 4529, 789–798 (2007)

 20. W.-F. Gao, S.-Y. Liuy, A modified artificial bee colony algorithm. Comput. Oper. Res. 39, 687–697
(2012)

 21. A. Madasu, S. Elango, Efficient feature selection techniques for sentiment analysis. Multimed. Tools
Appl. 79, 6313–6335 (2020)

 22. M. Devaney, A. Ram, Efficient feature selection in conceptual clustering, in Machine Learning: Pro-
ceedings of the Fourteenth International Conference, vol. 79 (1997), pp. 6313–6335

 23. H. Shi, H. Li, D. Zhang, C. Cheng, X. Cao, An efficient feature generation approach based on deep
learning and feature selection techniques for traffic classification. Comput. Netw. 132, 81–98 (2018)

 24. I. Rejer, Genetic algorithms for feature selection for brain computer interface. J. Artif. Intell. Res. 1,
1–15 (2015)

 25. I. Rejer, K. Lorenz, Feature selection with NSGA and GAAM in EEG signals domain, in 8th Inter-
national Conference on Human System Interaction (HSI) (2015), pp. 94–98

 26. K. Lorenz, Przeglad algorytmow genetycznych stosowanych w procesie selekcji cech wyekstrahow-
anych z sygnału eeg. Młodzi naukowcy dla polskiej nauki (2013)

 27. D.A. Peterson, J.N. Knight, M.J. Kirby, C.W. Anderson, M.H. Thaut, Feature selection and blind
source separation in an EEG-based brain-computer interface. EURASIP J. Adv. Signal Process.
2005(19), 1–13 (2005)

 28. M. Sewell, Feature selection. https:// pdfs. seman ticsc holar. org/ aacd/ 187f3 33a60 71838 7d4f4 2a189
29d18 203e0e. pdf. Accessed 22 May 2022

 29. M. Kołodziej, A. Majakowski, J.R. Rak, A new method of EEG classification for BCI with feature
extraction based on higher order statistics of wavelet components and selection with genetic algo-
rithms, in ICANNGA (2011), pp. 280–289

 30. E.B. Garrett, D. Baum, C. Boneh, Where genetic algorithms excel. Evol. Comput. 9(1), 93–124
(2001)

 31. D. Garrett, D.A. Peterson, C. Anderson, M.H. Thaut, Comparison of linear, nonlinear, and feature
selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–
145 (2003)

 32. H. Lakany, B.A. Conway, Understanding intention of movement from electroencephalograms.
Expert Syst. 24(5), 295–304 (2007)

 33. D. Whitley, J.R. Beveridge, C. Guerra-Salcedo, C. Graves, Messy genetic algorithms for subset fea-
ture selection, in Proceedings of the 7th International Conference on Genetic Algorithms (1997)

 34. J. Yang, V. Honavar, Feature subset selection using genetic algorithm, in feature extraction, con-
struction and selection. Springer Int. Ser. Eng. Comput. Sci. 453, 117–136 (1998)

 35. I. Koprinska, Feature selection for brain-computer interfaces. J. Artif. Intell. Res. 100–111 (2010)
 36. M. Bereta, P. Jarosz, Algorytmy genetyczne. https:// micha lbere ta. pl/ dydak tyka/ ae/ lab_ genet yczne/

labor atori um_ genet yczne. pdf. Accessed 22 May 2022
 37. Z. Mingyuan, F. Chong, J. Luping, K. Tang, M. Zhou, Feature selection and parameter optimization

for support vector machines: a new approach based on genetic algorithm with feature chromosomes.
Expert Syst. Appl. 38, 5197–5204 (2011)

 38. R. Leardi, Application of genetic algorithm-pls for feature selection in spectral data sets. J. Chemo-
metrics 1, 643–655 (2000)

 39. I.P. Benitez, A.M. Sison, R.P. Medina, An improved genetic algorithm for feature selection in the
classification of disaster-related twitter messages, in 2018 IEEE Symposium on Computer Applica-
tions & Industrial Electronics (ISCAIE). IEEE (2018), pp. 238–243

 40. I. Rejer, K. Lorenz, Classic genetic algorithm vs. genetic algorithm with aggressive mutation for
feature selection for brain-computer interface. Prz. Elektrotech. 91(2), 98–102 (2015)

https://pdfs.semanticscholar.org/aacd/187f333a60718387d4f42a18929d18203e0e.pdf
https://pdfs.semanticscholar.org/aacd/187f333a60718387d4f42a18929d18203e0e.pdf
https://michalbereta.pl/dydaktyka/ae/lab_genetyczne/laboratorium_genetyczne.pdf
https://michalbereta.pl/dydaktyka/ae/lab_genetyczne/laboratorium_genetyczne.pdf

 Genetic Programming and Evolvable Machines (2023) 24:10

1 3

10 Page 24 of 25

 41. B. Huang, B. Buckley, T.M. Kechadi, Multi-objective feature selection by using NSGA-II for cus-
tomer churn prediction in telecommunications. Expert Syst. Appl. 37(5), 3638–3646 (2010)

 42. U. Tekguc, H. Soyel, H. Demirel, Feature selection for person independent 3d facial expression rec-
ognition using NSGA-II, in 24th International Symposium on Computer and Information Sciences,
vol. 1, (2009), pp. 35–38

 43. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

 44. T.M. Hamdani, J.M. Won, A.M. Alimi, F. Karray, Multi-objective feature selection with NSGA-II.
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2007), pp. 240–247

 45. H. Soyel, U. Tekguc, H. Demirel, Application of NSGA-II to feature selection for facial expression
recognition. Comput. Electr. Eng. 37(6), 1232–1240 (2011)

 46. I. Rejer, K. Lorenz, Feature selection with NSGA and GAAM in EEG signals domain, in 8th Inter-
national Conference on Human System Interaction (HSI) (2015)

 47. I. Rejer, M. Twardochleb, Gamers involvement detection from EEG data with cGAAM—a method
for feature selection for clustering. Expert Syst. Appl. 101, 196–204 (2018)

 48. M.J. Pontiveros, G.A. Solano, J.M. Diaz, J.D. Caro, Feature subset selection using genetic algorithm
with aggressive mutation for classification problem, in TENCON 2021–2021 IEEE Region 10 Con-
ference (TENCON) (2021)

 49. Y.A. Baysal, S. Ketenci, I.H. Altas, T. Kayikcioglu, Multi-objective symbiotic organism search
algorithm for optimal feature selection in brain computer interfaces. Expert Syst. Appl. 165, 113907
(2021)

 50. Rejer, I., Jankowski, J. fGAAM: a fast and resizable genetic algorithm with aggressive mutation for
feature selection. Pattern Anal. Appl. (2021)

 51. Pima-indians-diabetes dataset. https:// www. kaggle. com/ datas ets/ uciml/ pima- india ns- diabe tes- datab
ase. Accessed 22 May 2022

 52. Orlraws10P dataset. https:// jundo ngl. github. io/ scikit- featu re/ datas ets. html. Accessed 22 May 2022
 53. Dermatology dataset. https:// archi ve. ics. uci. edu/ ml/ datas ets/ Derma tology. Accessed 22 May 2022
 54. Adult dataset. https:// archi ve. ics. uci. edu/ ml/ datas ets/ Adult. Accessed 22 May 2022
 55. Gisette dataset. http:// archi ve. ics. uci. edu/ ml/ datas ets/ Giset te. Accessed 22 May 2022
 56. Humanactivity dataset (2019). https:// www. mathw orks. com/ produ cts/ new_ produ cts/ relea se201 9b.

html. Accessed 22 May 2022
 57. Sensor HAR recognition App (2019), MATLAB Central File Exchange. https:// www. mathw orks.

com/ matla bcent ral/ filee xchan ge/ 54138- sensor- har- recog nition- app. Accessed 22 May 2022
 58. Coil100 dataset. https:// www. cs. colum bia. edu/ CAVE/ softw are/ softl ib/ coil- 100. php. Accessed 20

Feb 2023
 59. GLI85 dataset. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE44 12. Accessed 20 Feb

2023
 60. ORL dataset. http:// www. cad. zju. edu. cn/ home/ dengc ai/ Data/ FaceD ata. html. Accessed 20 Feb 2023
 61. Dermatology dataset. https:// jundo ngl. github. io/ scikit- featu re/ datas ets. html. Accessed 20 Feb 2023
 62. Yale32x32 dataset. http:// www. cad. zju. edu. cn/ home/ dengc ai/ Data/ FaceD ata. html. Accessed 20 Feb

2023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Rejer Izabela1 · Lorenz Krzysztof1

 * Lorenz Krzysztof
 klorenz@zut.edu.pl

 Rejer Izabela
 irejer@zut.edu.pl

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://jundongl.github.io/scikit-feature/datasets.html
https://archive.ics.uci.edu/ml/datasets/Dermatology
https://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Gisette
https://www.mathworks.com/products/new_products/release2019b.html
https://www.mathworks.com/products/new_products/release2019b.html
https://www.mathworks.com/matlabcentral/fileexchange/54138-sensor-har-recognition-app
https://www.mathworks.com/matlabcentral/fileexchange/54138-sensor-har-recognition-app
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4412
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
https://jundongl.github.io/scikit-feature/datasets.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

1 3

Genetic Programming and Evolvable Machines (2023) 24:10 Page 25 of 25 10

1 Faculty of Computer Science, West Pomeranian University of Technology in Szczecin,
Żołnierska 49, Szczecin 71-210, Szczecin, Poland

	GAAMmf: genetic algorithm with aggressive mutation and decreasing feature set for feature selection
	Abstract
	1 Introduction
	2 Methods
	2.1 The original GAAM
	2.2 The GAAMmf

	3 Experiment setup
	4 Results and discussion
	4.1 GAAMmf parameters (Gisette dataset)
	4.2 Comparison of GAAMmf with genetic reference methods (Humanactivity dataset)
	4.3 Comparison of GAAMmf with reference methods (all datasets)

	5 Conclusions
	References

