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Abstract
This paper introduces a modified version of a genetic algorithm with aggressive 
mutation (GAAM), one of the genetic algorithms (GAs) used for feature selection. 
The modification proposed in this study expands the original GAAM’s capabili-
ties by allowing not only feature selection but also feature reduction. To obtain this 
effect, we applied the concept of ranks used in the non-dominated sorting genetic 
algorithm (NSGA) and the concept of penalty term used in the Holland genetic 
algorithm. With those two concepts, we managed to balance the importance of two 
competing criteria in the GAAM fitness function: classification accuracy and the 
feature subset’s size. To assess the algorithm’s effectiveness, we evaluated it on 
eleven datasets with different characteristics and compared the results with eight 
reference methods: GAAM, Melting GAAM, Holland GA with a penalty term, 
NSGA-II, Correlation-based Feature Selection, Lasso, Sequential Forward Selec-
tion, and IniPG (an algorithm for particle swarm optimisation). The main conclu-
sion drawn from this study is that the genetic algorithm with aggressive mutation 
and decreasing feature set (GAAMmf) introduced in this paper returned feature sets 
with a significantly smaller number of features than almost all reference methods. 
Furthermore, GAAMmf outperformed most of the methods in terms of classifica-
tion accuracy (except the original GAAM). In contrast to Holland GA and NSGA-II, 
GAAMmf was able to perform the feature reduction task for all datasets, regardless 
of the initial number of features.
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1 Introduction

The algorithms used for classification, regression, or clustering typically do not 
perform well on high-dimensional data [1]. Therefore, a traditional approach in 
machine learning is to implement procedures to reduce the number of features 
used by those algorithms. The goal of all feature selection procedures is to find 
a small subset of features that provide a high value of the implemented perfor-
mance measure.

In many areas, the actual feature reduction rate is not a critical parameter. For 
example, when the algorithm’s task is to identify cancer areas in medical images 
in offline mode, additional features may be acceptable if they enhance recogni-
tion. However, there are areas where we cannot afford any additional features. 
The need for the smallest possible feature set is particularly crucial when the 
classifier is used for real-time decision-making, and the time needed to extract 
each feature from the current stream of data is considerably high. In such a situ-
ation, each additional feature that must be extracted from the data stream is an 
unnecessary burden that can disrupt the real-time classification or even make it 
impossible.

There are many traditional feature selection approaches, including filters such 
as ReliefF [2], Correlation-based Feature Selection [3], and Consistency-based 
Feature Selection, as well as wrappers like step-wise selection [4, 5], random 
selection [6], and Recursive Feature Elimination [7]. Additionally, embedded 
methods such as Lasso [8] can also be used. Besides classic approaches, heuristic 
approaches inspired by nature are becoming increasingly popular. A comprehen-
sive review of these approaches is provided in [9], which reports dozens of algo-
rithms inspired by the behaviour of insects, reptiles, birds, and animals.

Among all nature-inspired feature selection algorithms, the most popular and 
commonly used are those based on swarm intelligence (SI) and genetic algo-
rithms (GA). Some of the well-known algorithms from the first category are par-
ticle swarm optimization (PSO) [10–14], ant colony optimization (ACO) [15–17], 
and artificial bee colony optimization (ABC) [18–20]. Many studies have shown 
that SI algorithms are efficient feature selection techniques [21–23]. However, 
according to [1], most SI-based feature selection algorithms suffer from the poor 
scalability of representation, which usually makes them unsuitable for applica-
tions where thousands or millions of features are possible. Furthermore, although 
SI-inspired feature selection algorithms use different types of representation 
(either binary or continuous), they do not directly support the search process 
among feature sets containing a fixed and very small portion of all the possible 
features. Hence, when the smallest possible feature subset is needed, GA-based 
approaches might be a better option [24–31].

One advantage of using a GA as a feature selector is that it evaluates the 
entire set of solutions simultaneously, instead of sequentially [24]. Therefore, 
it can explore different parts of the search space in the same generation, rather 
than focusing on one particular area and potentially getting stuck in a local min-
imum. Additionally, even if it falls into a local minimum, it can escape on its 
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own. Another feature of GA that is critical for the feature selection process is 
that it does not assume any interactions among features existing in the feature 
set [32–34]. However, the main disadvantage of using GAs as feature selectors is 
their long processing time, which is a consequence of wrapping the feature selec-
tion process around a classification scheme [6, 35].

Several GA approaches have been proposed to solve the feature selection prob-
lem, with one of the most popular being based on the classic Holland GA [27, 
31, 32, 34, 36–38]. In this approach, features are coded into genes using a binary 
scheme, wherein a gene possessing a value of 1 denotes that the feature is included 
into an individual, while a gene possessing a value of 0 indicates its absence. With 
this scheme, the number of genes in an individual is equal to the total number of 
features in the feature space. However, a high number of genes in an individual has 
two disadvantages. First, when the GA fitness function is based solely on classifica-
tion accuracy, as in the classic Holland GA, the classifiers are trained with a mas-
sive number of features, which is a time-consuming process. Second, although the 
classifiers’ accuracy is often approximately 100% at the very first algorithm itera-
tion, most have limited application due to their limited generalization capabilities. 
Both problems can be resolved by introducing a penalty term into the classic Hol-
land GA’s fitness function, penalizing individuals with too many features [24, 39, 
40]. This solution generally achieves this task, but the feature reduction process is 
slow since the individuals in the initial population start with approximately half of 
all available features.

Another well-known feature selection approach based on a genetic algorithm is 
the non-dominated sorting genetic algorithm (NSGA), and its modification, NSGA-
II [24, 25, 40–45]. The NSGA algorithm encodes features into individuals using 
a binary scheme, as in the classic Holland GA. The main difference between the 
algorithms is the optimization criterion. While the Holland GA optimises only the 
classification accuracy (maximization), the NSGA algorithm optimizes two criteria 
simultaneously: classification accuracy (maximization) and the number of features 
encoded in an individual (minimization). To perform this simultaneous optimiza-
tion, the NSGA fitness function uses the domination principle, where individuals 
are assigned different ranks based on their level of dominance. The problem with the 
NSGA algorithm is similar to that with the Holland GA. Both algorithms start with 
a random population of individuals containing approximately 50% of the possible 
features (a result of a binary coding scheme) and then try to find a balance between 
the individuals’ accuracy and their number of features, which is a time-consuming 
process.

In [40], we proposed another GA dedicated to feature selection, a genetic algo-
rithm with aggressive mutation (GAAM). This algorithm was designed to address 
one of the problems of the Holland approach, which emerged in datasets composed 
of thousands of features—the huge size of individuals. To overcome this issue, we 
changed the coding scheme from binary to integer, with genes encoding the feature 
indexes. We also designed a new mutation operator and adjusted other GA steps. 
These changes allowed us to use the algorithm with individuals of arbitrary length, 
from individuals containing only one gene to individuals coding all the features 
from the feature space. However, we encountered a subsequent problem.
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The classic version of GAAM works with individuals of a fixed number of 
genes (features) set as a parameter. This highly restricts the possibility of training 
over-sized classifiers, but also limits the algorithm’s ability to search for subsets of 
features smaller than the initially chosen size. The only chance for decreasing the 
number of features is when an individual with repeated features is born in the repro-
duction process. When such a situation occurs, one of the redundant features is dis-
carded, and the individual shrinks. Unfortunately, this is a sporadic event. Hence, 
although GAAM works well in terms of accuracy, classifier generalisation capabili-
ties, and computation time, as compared to other approaches [40, 46–49], there is 
still room for improvement in changing individuals’ length. Although we can set the 
number of individuals’ genes to a reasonable value for the given task, we cannot pre-
dict if this value is optimal. Therefore, from the beginning of our work with GAAM, 
we have tried to adjust the algorithm so it could reduce the initial number of genes. 
To address this problem, we proposed a second version of the algorithm: Melting 
GAAM [24].

Melting GAAM uses an iterative approach to reduce the number of genes in indi-
viduals. It begins with the number of genes set by the user and attempts to improve 
classification accuracy to the specified level (also set by the user) during a given 
number of iterations. If the desired level is achieved, one random gene is removed 
from all individuals in the current population, and the optimization process restarts. 
The algorithm stops when it cannot surpass the accuracy threshold within the given 
number of iterations. While this approach works well, it is not flawless. Firstly, the 
process of optimising the classification accuracy is repeated numerous times for 
each number of genes. Although the process restarts from individuals highly similar 
to those from the previous iteration (with only one gene discarded), it requires some 
time for the algorithm to stabilize. Secondly, setting the accuracy threshold correctly 
is challenging: too high threshold quickly halts the feature reduction process, while 
too low threshold removes many features but yields individuals with low accuracy.

In this paper, we propose an alternative solution to decrease the number of indi-
viduals’ genes. The proposed solution utilizes both, the penalty term employed in 
Holland GA and the ranks assigned to individuals in the NSGA algorithm. The 
paper presents a detailed algorithm of our approach, called Genetic Algorithm with 
Aggressive Mutation and Minimum Features (GAAMmf), and the results of experi-
ments comparing its performance to four other GAs (GAAM, Melting GAAM, 
Holland with a penalty term, and NSGA-II) and four non-genetic feature selection 
methods (Correlation-based Feature Selection (CFS), Lasso, Sequential Forward 
Selection (SFS) [4] and IniPG [11]—one of PSO algorithms) conducted on eleven 
datasets with different characteristics. The experiments demonstrate that GAAMmf 
produces individuals encoding feature sets of comparable accuracy but containing a 
significantly smaller number of features. Furthermore, in addition to returning the 
final solution, the algorithm also generates individuals with the highest accuracy 
for each analyzed number of features. Due to this feature, the algorithm’s user can 
decide by himself which feature subset is preferable, larger but more precise or less 
precise but containing a smaller number of features.

The paper’s structure is as follows. The subsequent section describes the main 
concepts of GAAM and provides a detailed explanation of GAAMmf. The following 
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two sections discuss the experimental setup used to compare the algorithm’s perfor-
mance and report the results. Finally, the last section concludes the paper.

2  Methods

The algorithm described in this manuscript is a modification of the GAAM algo-
rithm introduced in [25]. The proposed modification involves altering the fitness 
function used to evaluate individuals in subsequent generations. While in the orig-
inal GAAM, the individuals are ordered exclusively according to their classifica-
tion accuracy, GAAMmf combines two criteria in the fitness function, classification 
accuracy and the number of features encoded in an individual. This change allows 
for a gradual decrease in the number of features in successive generations, which is 
unattainable with the original GAAM algorithm.

2.1  The original GAAM

The pseudocode of the original GAAM is presented in Algorithm 1. The algorithm 
begins by setting four parameters: N, M, T, and tourN. Parameters N and M represent 
the initial population size, where N denotes the number of genes (features) encoded 
in each individual, and M denotes the number of individuals in the population. 
Parameter T determines the stopping condition for the algorithm, i.e., the number of 
generations to perform. Lastly, parameter tourN indicates the number of individuals 
used in the tournament selection procedure.

After setting the algorithm’s parameters, the initial mother population motherP) 
is drawn (function: DrawInitialPopulation). The population is composed of M ran-
domly selected individuals, where each individual contains N genes. The genes are 
integer values corresponding to the indexes of features in the set of possible features 
1,..., P}.
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The main algorithm loop commences with two reproduction operations exe-
cuted on the individuals from the initial population (motherP): a traditional one-
point crossover (function: OnePointCrossover) and the aggressive mutation (func-
tion: AggressiveMutation). The latter is a GAAM-specific concept, performed 
individually on each gene of each individual, in accordance with the pseudocode 
presented in Algorithm  2. The two populations created during the reproduction 
operations are concatenated with the mother population, forming the final popula-
tion (finalP).

Subsequently, each individual is assessed based on the classification accuracy 
attained by the classifier utilizing the features encoded in the individual’s genes. Fol-
lowing evaluation, the M best individuals are selected from the current population 
using the tournament selection procedure. The algorithm terminates after achieving 
the predefined number of iterations.

2.2  The GAAMmf

As mentioned previously, the primary motivation for developing a new version of 
GAAM was to further reduce the number of features returned by the algorithm. To 
achieve this goal, we designed the GAAMmf fitness function to incorporate two cri-
teria: classification accuracy, as in the original GAAM, and the number of features 
encoded in an individual. This new fitness function required several modifications in 
the GAAMmf algorithm, which are described below and presented in pseudocode 
in Algorithm  3. The three functions—DrawInitialPopulation, OnePointCrossover, 
and AggressiveMutation—remain unchanged and perform the same operations as 
described in Sect. 2.1.
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First, we had to ensure that the algorithm’s individuals would be composed of 
a variable number of genes. We achieved this goal by using a redundant number 
of genes at the beginning of the algorithm. Second, we had to ensure the compa-
rability of both criteria used in the evaluation function. To deal with this task, we 
employed the concept of ranks from the NSGA-II algorithm and assigned a set of 
ranks to different levels of accuracy and another set of ranks to different numbers 
of features. Third, we had to ensure that the original (unranked) values of both 
criteria would be passed between successive populations. To this end, we divided 
the algorithm evaluation function into two parts. The first part (function: accFit-
ness) evaluated each individual’s accuracy. The second part counted the individu-
als’ features, ranked them individually according to both criteria, and calculated 
the final fitness of each individual (function: GAAMmfFitness). While we used 
the accFitness function twice in the algorithm body, first to evaluate the initial 
population and then in the main algorithm loop to evaluate each new population, 
the GAAMmfFitness function was used only once: in the main loop, after concat-
enating mother and child population.

Finally, to ensure an equal contribution of both criteria in the total fitness 
value, we added two algorithm constants, accFactor and fsFactor, which were cal-
culated based on the number of possible accuracy levels and the number of possi-
ble features in an individual. We assumed that the accuracy levels range from 0 to 
100% (100 integer levels) and the number of features, from 1 to N (N−1 levels). 
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Under these assumptions, the accFactor and fsFactor constants were calculated 
as shown in Formulas (1) and (2), respectively.

In GAAMmf, the fitness of individuals is calculated within the GAAMmfFitness 
function (Algorithm  4). The function takes two input parameters: the final popu-
lation of individuals, which includes individuals from the mother population and 
all off-springs born during the crossover and mutation operations, and the accuracy 
vector containing the classification accuracy of all individuals from the final popula-
tion. Inside the function, a sequence of seven operations is performed.

First, the individuals from the final population are sorted according to their increas-
ing accuracy. Then, they are ranked based on the rule that individuals with the same 
accuracy (rounded to integer values) are assigned the same rank. Rank 1 is assigned to 
individuals with the worst accuracy. Since the range of ranks can differ for both crite-
ria, the ranks are normalized using a pseudo min-max normalization (3) after assign-
ing accuracy ranks to all individuals. We refer to this as "pseudo min–max normaliza-
tion" to indicate that accuracy values are normalized based on fixed boundaries set to 
0 and 100 for the accuracy criterion, rather than the minimum and maximum accuracy 
obtained in the current population.

where accNorm(i)—accuracy rank of individual i after normalisation, and acc(i)—
accuracy rank of individual i.

The three steps described for the accuracy criterion are repeated for the number 
of features criterion, with two subtle changes. First, since the worst rank (Rank 1) for 
this criterion should be assigned to individuals with the largest number of features, 
individuals are sorted in descending order. Second, the pseudo min–max normaliza-
tion boundaries are set to 1 and N, indicating that the normalized ranks are calculated 
according to Formula (4).

where fsNorm(i)—number-of-feature rank of individual i after normalisation, fs(i)—
number-of-feature rank of individual i, and N—number of genes in an individual.

Finally, the normalized ranks are multiplied by the corresponding weights and added 
together, as shown in (5):

(1)accFactor = 100
100

N − 1

(2)fsFactor = (N − 1)
100

N − 1
= 100

(3)accNorm(i) =
acc(i)

100

(4)fsNorm(i) =
fs(i) − 1

N − 1

(5)
fitness(i) = accWeight ∗ accFactor ∗ accNorm(i)

+ fsWeight ∗ fsFactor ∗ fsNorm(i)
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where fitness(i)—the final fitness of individual i, accNorm(i) and fsNorm(i)—the 
normalized ranks of individual i with respect to the accuracy (accNorm) and the 
number of features (fsNorm) criteria, accFactor and fsFactor—factors that ensure 
an equal contribution of both criteria to the total fitness, accWeight and fsWeight—
weights that allow the importance of both criteria to be regulated.

Since the algorithm simultaneously explores subsets of features of different sizes, 
its output is not a single individual with the best characteristics, but a set of indi-
viduals. Each individual in the final set of bestIndividuals represents the solution of 
the highest accuracy obtained for the feature set of the given number of features. As 
a result, the algorithm user might decide which solution better suits their needs: that 
with slightly lower accuracy but a smaller number of features or that with slightly 
higher accuracy but a higher number of features.

Apart from the change in the fitness function, we introduced the two other sub-
tle modifications that we had tested previously in other papers on GAAM [25, 50]. 
Firstly, we introduced a new algorithm parameter probM (probability of mutation) 
to control the intensity of the mutation process. This parameter enhanced the algo-
rithm’s scalability and enabled its application for problems described in a high-
dimensional feature space.

Secondly, we changed the selection procedure from tournament selection to rank 
selection. This alteration resulted in a significant reduction of the computational bur-
den imposed by the algorithm. By employing aggressive mutation, the GAAMmf 
explores various regions within the problem space during each iteration. Conse-
quently, it requires only a limited number of iterations to attain the final results, 
although each of these iterations is computationally intensive. The transition from 
tournament selection to rank selection facilitated a decrease in the number of itera-
tions needed (as the best individuals consistently prevail in rank selection), thereby 
leading to a significant reduction in the overall processing time of the algorithm.

3  Experiment setup

To evaluate the effectiveness of GAAMmf, we conducted a study using eleven data-
sets, namely Pima-Indians-diabetes, Orlraws10P, Dermatology, Adult, Gisette, 
Humanactivity, Coil100, Gli_85, Orl_32×32, WarpAR10P, and Yale_32×32, 
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downloaded from sources cited in Table  1. The datasets differed in terms of the 
number of features, classes, and examples. The aim of our study was to demonstrate 
that regardless of the dataset characteristics, GAAMmf produces individuals with 
classification accuracy comparable to reference methods but containing significantly 
fewer genes. The results of GAAMmf were compared with those of the original 
GAAM and three other genetic approaches that allow for changes in the number of 
individuals’ genes, namely Melting GAAM, Holland GA with a penalty term, and 
NSGA-II. In addition to genetic algorithms, we compared the GAAMmf results with 
results returned by four non-genetic feature selection methods (CFS, Lasso, SFS, 
and IniPG).

Before using the datasets in the study, we applied the following preprocessing 
procedures: (i) removal of all records containing NaN values, (ii) removal of redun-
dant features (features that had the same value for each record), and (iii) identifica-
tion of pairs of features whose linear correlation exceeded 99%, and discarding one 
feature from each pair. The detailed demography of the datasets before and after 
applying the preprocessing procedures is presented in Table 1.

For all datasets, the main GAAMmf parameters were set at the same levels: M 
(number of individuals in the mother population) was set to 10, probM (mutation 
probability) to 1, and T (number of algorithm iterations) to 100 (for the first two 
experiments) or 1000 (for the last experiment). The value of the N parameter, denot-
ing the initial number of individual’s genes, was also standardized for most datasets 
and was set to 20. Only for two datasets, namely Adult and Prima-Indians-diabetes, 
which contained 14 and 8 potential features, respectively, the N parameter was set to 
the total number of features.

The accuracy of individuals was evaluated using a linear discriminant analy-
sis (LDA) classifier. Our decision to employ the LDA classifier was motivated by 
two key factors. Firstly, the adoption of a linear classification procedure allows 
for the generation of a classification model with a minimal number of parameters. 

Table 1  The characteristics of the datasets used in the survey

Values in bold refer to the number of features, classes, and examples that remained in the datasets after 
the preprocessing stage

Dataset No. of features No. of classes No. of examples References

Pima-Indians-diabetes 8 2 768 [51]
Orlraws10P 10304 10 100 [52]
Dermatology 34 6 366/358 [53]
Adult 14 2 48,842/45,222 [54]
Gisette 5000/4891 23 7000 [55]
Humanactivity 60/57 5 24,075 [56, 57]
Coil100 1024 100 7200 [58]
Gli_85 22,283/22,259 2 85 [59]
Orl_32×32 1024/1023 40 400 [60]
WarpAR10P 2420/2251 10 210 [61]
Yale_32×32 1024 15 165 [62]
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Consequently, this choice mitigates the potential impact of variations that may occur 
in each training instance on the outcomes produced by the feature selection proce-
dures. Another advantage of the LDA classifier is that it does not require a numerical 
procedure to estimate the model parameters. As a result, the estimation process of 
the LDA model is significantly faster compared to classifiers, whose parameters are 
estimated under the training process. The parameters of each LDA classifier were 
estimated according to the 10-fold cross-validation procedure on 80% of data chosen 
randomly from the dataset. The remaining 20% of data was used to test the gener-
alisation capabilities of the final classification model returned by the algorithm. The 
LDA classifier was employed in all algorithms tested in the paper.

In the case of GAAM and Melting GAAM, the three parameters shared by both 
algorithms (M, N, and T) were set at the same levels as in GAAMmf. In addition, 
for Melting GAAM, an extra parameter needed to be set: the accuracy threshold. 
This parameter informs the algorithm that the current number of genes has achieved 
satisfactory accuracy, and the algorithm should proceed with N = N−1 genes. We 
assumed that we would be satisfied with the classifier of 90% accuracy, and hence 
we set the accuracy threshold at 90%. Unfortunately, setting the accuracy threshold 
beforehand can be challenging as it depends on the characteristics of the dataset. As 
discussed in the Sect. 4, our threshold was too high for some datasets, resulting in 
no feature reduction, and too low for others, leading to the convergence of the algo-
rithm to individuals with low classification accuracy.

For Holland GA, the classic scheme was employed, utilizing the two most popular 
genetic operations, flip mutation (with a probability of 0.1) and one-point crossover 
(with a probability of 1). The selection process was performed with the tournament 
method (the tourN parameter was set to 2). The two primary algorithm parameters, 
the number of individuals in the mother population and the number of iterations, 
were set to the same levels as in GAAMmf. The fitness function was composed of 
accuracy and penalty terms, where the penalty term was introduced to penalise indi-
viduals for having too many genes. Both terms were assigned equal importance (6).

where fitness(i)—the fitness of individual i, acc(i)—accuracy of the classifier 
equipped with features encoded in individual i, P—number of all features in the fea-
ture set, and features(i)—number of features encoded in individual i.

The primary parameters of NSGA-II, the last GA employed in the experiments 
(number of individuals in the population, mutation and crossover probability, and 
number of iterations), were set to the same levels as those for the Holland algorithm. 
Binary coding of features was applied, and the algorithm scheme proposed in [43] 
was implemented.

In addition to the four GAs, the set of reference methods employed in the 
experiments also included four non-genetic feature selection techniques: one fil-
ter (CFS), one embedded method (Lasso), and two wrappers (SFS and IniPG). To 
ensure comparability with the genetic algorithms, the upper boundary of the fea-
ture set size was set for all four methods at the same level as that for all GAs (8 for 

(6)fitness(i) = 0.5 ∗ acc(i) + 0.5 ∗
P − features(i)

P
,
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Pima-Indians-diabetes, 14 for Adult, and 20 for the remaining datasets). All param-
eters required to run IniPG algorithm were set at the levels reported in [11].

The experiments were conducted on a machine with the following specifica-
tion: Processor AMD Ryzen 5 1400 Quad-Core Processor CPU @ 3.20 GHz, 16GB 
RAM, Windows 10 Pro x64.

4  Results and discussion

In order to showcase the features of the proposed algorithm, we conducted a series 
of experiments. The first experiment aimed to demonstrate the impact of the two 
parameters incorporated in the algorithm for controlling the significance of the two 
competing criteria, namely classification accuracy (accWeight) and the number of 
features (fsWeight). Subsequently, we compared GAAMmf with four other genetic 
algorithms (GAs) capable of performing feature selection, namely GAAM, Melting 
GAAM, Holland with a penalty term, and NSGA-II. To facilitate the visual presen-
tation of the results obtained from the first two experiments, both were executed on 
a single dataset only (Gisette in the first experiment; Humanactivity in the second 
experiment). Finally, we compared the performance of GAAMmf with all eight ref-
erence algorithms across the eleven datasets described in Sect. 3.

4.1  GAAMmf parameters (Gisette dataset)

This subsection provides an overview of GAAMmf’s performance on the Gisette 
dataset, described in Sect. 3. To showcase the impact of the accWeight and fsWeight 
parameters on the algorithm’s results, we executed the algorithm three times, each 
time with different values of both parameters. For the initial run, we set both param-
eters to 1 (accWeight = 1, fsWeight = 1). For the second and third runs, we dou-
bled the significance of one of the fitness criteria, the number of features criterion 
(accWeight = 1, fsWeight = 2) in run 2 and the accuracy criterion (accWeight = 2, 
fsWeight = 1) in run 3. Each run was conducted over a period of 100 iterations. Fig-
ure 1 illustrates the average validation accuracy and the number of features encoded 
in the best individual returned by the algorithm for each iteration of each run. Addi-
tionally, Table 2 shows the average accuracy of the best individual found for differ-
ent numbers of features.

As presented in Table  2, the algorithm produced comparable results across all 
three levels of accWeight and fsWeight. The highest classification accuracy was 
equal to 93.15% for an equal value of both parameters, 92.04% for the doubled sig-
nificance of the number-of-features criterion (fsWeight = 2), and 94.03% for the dou-
bled importance of the accuracy criterion (accWeight = 2). Regarding the second 
criterion, the algorithm attained the smallest number of features (i.e., 10) with a dou-
bled fsWeight parameter. The other algorithm runs returned feature sets composed of 
15 features. Upon comparing the three sets of results, the algorithm obtained the 
most promising outcomes with a doubled accuracy weight. As demonstrated in the 
last two columns of Table 2, by applying greater pressure on the accuracy criterion, 
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Fig. 1  The GAAMmf performance for the Gisette dataset; the plots on the left present the average valida-
tion accuracy of the best individual returned in each iteration, the plots on the right present the number 
of features encoded in that individual; the rows of plots present results for different levels of accWeight 
and fsWeight parameters: a accWeight = 1, fsWeight = 1; b accWeight = 1, fsWeight = 2; c accWeight = 
2, fsWeight = 1

Table 2  The highest accuracy obtained for different numbers of features for the Gisette dataset

The values in brackets present the accuracy calculated over the test set. The results come from three runs 
of GAAMmf performed with different levels of accWeight and fsWeight parameters

accWeight = 1, fsWeight = 1 accWeight = 1, fsWeight = 2 accWeight = 2, fsWeight = 1

Acc (%) No. of features Acc (%) No. of features Acc (%) No. of features

92.81 (90.57) 15 91.17 (90.07) 10 93.91 (92.64) 15
93.15 (90.86) 16 91.29 (90.00) 11 94.03 (92.61) 16
91.81 (90.36) 17 91.81 (90.36) 12 93.04 (91.93) 17
92.68 (91.57) 18 91.73 (90.36) 13 93.10 (91.50) 18
92.04 (91.93) 19 91.99 (90.64) 14 92.83 (90.36) 19
91.05 (90.07) 20 92.04 (90.71) 15 91.81 (89.07) 20

90.90 (89.29) 16
90.72 (89.57) 17
89.83 (87.79) 18
88.84 (87.50) 19
88.70 (87.79) 20
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we forced the algorithm to conduct a more thorough search amongst the individuals 
with the same number of features. Consequently, the algorithm returned individu-
als of greater accuracy for each number of features in comparison to the other two 
cases. Since we were interested in high accuracy in the two following experiments, 
we utilized the variant with accWeight = 2 and fsWeight = 1 in both.

As illustrated in Fig. 1, the performance of the algorithm was consistent across 
all levels of the parameters accWeight and fsWeight, leading to individuals with high 
accuracy and a small number of features. The convergence rate varied across runs 
and was dependent on the parameter levels, with higher values of fsWeight result-
ing in a more rapid reduction of features but with some fluctuations in accuracy 
(Fig. 1b). Conversely, for higher values of accWeight (Fig. 1c), the algorithm dem-
onstrated a highly stable accuracy performance, albeit with a slower rate of feature 
reduction.

4.2  Comparison of GAAMmf with genetic reference methods (Humanactivity 
dataset)

The second experiment aimed to compare the performance of GAAMmf with four 
other GAs (GAAM, Melting GAAM, Holland with a penalty term, and NSGA-II) on 
the Humanactivity dataset. Results are presented in Tables 3, 4 and Fig. 2. Table 3 
shows the average validation accuracy of the best individuals identified for various 
numbers of features, Table 4 presents the processing time required to complete 100 
iterations, and Fig.  2 compares the performance of all five algorithms across 100 
iterations.

Table  3 demonstrates that the highest accuracy obtained by all four reference 
algorithms was similar, approximately 96–97%. The best accuracy of 97.80% was 
obtained with GAAM, followed by Melting GAAM with 97.30%, NSGA-II with 
97.22%, and finally Holland with 96.98%. The accuracy of the best individual pro-
vided by the GAAMmf algorithm was slightly lower (96.99%) than the accuracy of 
the reference algorithms, but the difference was tiny, ranging from 0.23 to 0.81%.

Although the accuracy obtained with all five algorithms was similar, the num-
ber of features in individuals with the highest accuracy varied significantly. For the 
algorithms using a binary coding scheme (NSGA-II and Holland), the feature reduc-
tion was relatively small, with the best individuals containing 22 features (NSGA-
II). In the case of GAAM, there was no feature reduction at all; the change from 
an initial 20 to 19 genes was caused only by a duplicated feature in the individual. 
The highest reduction was achieved for GAAMmf and Melting GAAM. In the case 
of GAAMmf, an individual with only 7 features had an accuracy (96.54%) of only 
1.26% lower than the best individual in the table (20 features, 97.80%).

When comparing the feature reduction plots (the plots on the right-hand side 
of Fig. 2), it can be observed that the reduction process for GAAMmf and Melt-
ing GAAM remained relatively stable over time, gradually decreasing until the 
final number of features was reached. In contrast, the number of features in indi-
viduals produced by the two other algorithms designed for feature reduction 
(Holland and NSGA-II) slightly fluctuated during the initial period. Since the 
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goal of the last algorithm (GAAM) was not feature reduction, the number of 
features in individuals produced by this algorithm remained largely consistent 
across all 100 iterations.

Finally, regarding the processing time, it can be observed (Table  4) that 
GAAMmf required a significant amount of time to complete the required number 
of iterations (1 h 57 min), especially when compared to Holland (18 min), Melt-
ing GAAM (24 min) and NSGA-II (1 h 02 min). One of the reasons for such a 
long processing time was a significantly higher number of individuals evaluated 
by GAAMmf in each iteration. While Holland and NSGA-II evaluated only 10 
individuals per iteration, i.e., 1000 individuals in 100 iterations, GAAMmf eval-
uated between 94 and 190 individuals in each iteration (10 mother individuals, 
10 crossed-over, and from 70 to 170 mutated, depending on the average number 
of features in individuals in the current population). Although Melting GAAM 
started with the same number of individuals as GAAMmf, it quickly reduced the 
number of individuals needing evaluation to only one per iteration. Neverthe-
less, regardless of the reason, the long processing time should be considered a 
limitation of the proposed algorithm.

Table 3  The highest accuracy returned by five GAs for different numbers of features (Humanactivity 
dataset)

Acc average classification accuracy, F number of features
The values in brackets present the accuracy calculated over the test set

GAAMmf GAAM Melting NSGA-II Holland

Acc (%) F Acc (%) F Acc (%) F Acc (%) F Acc (%) F

96.54 (96.03) 7 97.65 (97.51) 19 84.35 (84.67) 1 96.55 (96.43) 22 96.98 (96.95) 27
96.58 (96.12) 8 97.80 (97.59) 20 94.85 (94.50) 2 96.99 (97.26) 24 96.95 (96.93) 28
96.62 (96.24) 9 95.36 (94.56) 3 96.98 (97.23) 25 96.93 (97.03) 32
96.76 (96.24) 10 95.52 (94.75) 4 96.88 (96.68) 26 96.66 (96.66) 33
96.81 (96.28) 11 95.89 (95.06) 5 97.09 (96.93) 27
96.62 (96.22) 12 96.28 (95.78) 6 96.61 (96.81) 28
96.93 (96.78) 13 96.49 (95.93) 7 97.22 (97.05) 29
96.98 (96.78) 14 96.66 (96.37) 8
96.99 (96.68) 15 96.76 (96.32) 9
96.95 (96.74) 16 96.90 (96.51) 10
95.40 (95.04) 17 96.90 (96.39) 11

96.90 (96.41) 12
96.98 (96.39) 13
97.30 (96.49) 14
96.88 (96.45) 15
96.91 (96.51) 16
96.71 (96.59) 17
96.63 (96.55) 18
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4.3  Comparison of GAAMmf with reference methods (all datasets)

In the previous subsection, we demonstrated that the individuals returned by 
GAAMmf for the Humanactivity dataset had slightly lower accuracy but were com-
posed of a significantly smaller number of features compared to those produced by 
most other GAs (with the exception of Melting GAAM). The objective of the experi-
ment reported in this section was to determine whether this observation is consistent 

Fig. 2  The algorithms’ performance for the Humanactivity dataset; the plots on the left present the aver-
age validation accuracy of the best individual returned in each iteration, the plots on the right present the 
number of features encoded in that individual; the rows of plots present results for different algorithms: a 
GAAMmf; b GAAM; c Melting GAAM; d NSGA-II; e Holland

Table 4  The processing time needed to complete 100 iterations by each GA (results for Humanactivity 
dataset)

GAAMmf GAAM Melting NSGA-II Holland

1 h 57 min 5 h 14 min 24 min 1 h 02 min 18 min
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across datasets of different numbers of features, classes, and examples. Unlike in the 
two previous sections, we do not present here the detailed results obtained in indi-
vidual iterations. Instead, for each method and dataset, we report the characteristics 
of the feature set with the best classification accuracy. The comparison of results 
achieved by GAAMmf and eight reference methods (GAAM, Melting GAAM, Hol-
land, NSGA-II, CFS, Lasso, SFS, IniPG) for eleven datasets described in Sect.  3 
(Table 1) is presented in Table 5.

To test the statistical significance of GAAMmf’s results against those obtained 
with the reference methods, we conducted a series of one-sample tests with a signifi-
cance level ( � ) set to 0.05. Each test tested the hypothesis H0: the difference between 
the accuracy (or number of features) of individuals returned by GAAMmf and one 
of the reference methods is equal to zero against the alternative hypothesis H1: the 
difference between the accuracy (or number of features) of individuals returned by 
GAAMmf and one of the reference methods is not equal to zero.

To verify this set of hypotheses, we first calculated the differences between the 
results obtained by GAAMmf and each of the reference methods. This process 
yielded a set of 12 samples, consisting of 6 samples for differences in accuracy and 
6 samples for differences in the number of features. Subsequently, we assessed the 
normality condition for each sample using the one-sample Lilliefors test with � set 
to 0.05. Finally, since not all samples met the normality condition, we applied a one-
sample Wilcoxon signed-rank test to test the differences significance. The results of 
the Wilcoxon test are presented in Fig. 3, which shows the mean differences in accu-
racy (Fig. 3a) and the number of features (Fig. 3b) calculated between GAAMmf 
and each of the reference methods (the actual p-value is provided for all statistically 
significant results).

As shown in Table 5, not all methods produced results for all datasets. The Hol-
land and NSGA-II algorithms encountered problems in the classifiers’ training pro-
cess for the individuals from seven datasets (Orlraws10P, Gisette, Coil100, Gli_85, 
Orl_32×32, WarpAR10P, and Yale_32×32). For all of those datasets, due to the 
unfavourable ratio of the number of features to the number of examples, the clas-
sification process could not be completed because the covariance matrices did not 
meet the positive definiteness condition. Since only four valid results were possible 
to obtain for the Holland and NSGA-II algorithms, they were excluded from the sta-
tistical tests. At first, a similar problem was encountered with IniPG. However, we 
managed to overcome it by slightly changing the parameters proposed in [11]. Our 
modification was to initialize all the particles with a small number of features (the 
same as was used for other algorithms) instead of using particles with sparse and 
dense initialization.

When analysing the classification accuracy of the algorithms presented in 
Table 5, GAAM outperformed the other methods for almost all datasets. Only for 
three datasets, Adult, Gisette, and Orl_32×32, other algorithms returned classifiers 
with marginally higher accuracy. The second place was shared between GAAMmf 
(eight datasets), Holland (two datasets), and CFS (one dataset). Comparing the 
accuracy differences averaged over eleven datasets (Fig. 3a), it can be noticed that 
GAAMmf exhibited superior performance compared to the five reference methods: 
Melting GAAM, Lasso, CFS, IniPG, and SFS. In the case of all of those methods, 
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Table 5  The algorithms’ results across all datasets

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Classification accuracy (validation phase) [%]
Pima-Indians-

diabetes
78.12 78.28 77.36 77.87 72.77 77.19 73.13 77.36 77.17

Orlraws10P 98.75 100.00 89.79 – – 80.00 57.50 97.50 96.26
Dermatology 97.91 98.79 89.19 97.90 98.35 96.15 88.10 94.97 96.17
Adult 79.04 78.78 78.88 79.53 79.06 78.73 78.75 77.92 77.88
Gisette 93.91 92.31 89.97 – – 91.20 89.02 83.15 94.04
Humanactivity 96.54 97.65 84.35 96.55 96.98 90.76 95.21 93.59 93.25
Coil100 73.67 74.02 73.18 – – 51.67 40.47 68.53 71.23
Gli_85 94.29 100.00 79.06 – – 92.38 95.48 93.45 94.20
Orl_32×32 95.37 95.35 89.86 – – 66.56 55.31 96.25 90.94
WarpAR10P 95.57 99.55 88.66 – – 78.82 40.64 94.51 92.36
Yale_32×32 92.17 94.25 89.48 – – 52.2 35.55 84.2 75.16
Mean 90.48 91.73 84.53 – – 77.79 68.11 87.40 87.15

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Classification accuracy (test phase) [%]
Pima-Indians-

diabetes
78.57 75.32 75.97 72.73 78.57 74.68 79.87 77.27 77.27

Orlraws10P 95.00 85.00 75.00 – – 70.00 70.00 85.00 85.00
Dermatology 97.22 93.06 87.50 91.67 93.06 90.28 83.33 94.44 91.67
Adult 79.14 78.89 78.53 79.39 79.13 78.53 78.88 77.26 77.67
Gisette 92.64 90.57 87.21 – – 90.29 88.86 83.79 92.57
Humanactivity 96.03 97.51 84.67 96.43 96.95 90.80 95.18 93.31 93.31
Coil100 72.50 71.60 69.93 – – 49.65 41.04 67.87 68.82
Gli_85 82.35 76.47 58.82 – – 82.35 88.24 76.47 76.47
Orl_32×32 91.25 83.75 77.50 – – 67.50 52.50 96.05 80.00
WarpAR10P 84.62 84.62 61.54 – – 65.38 61.54 88.46 69.23
Yale_32×32 75.70 69.70 75.76 – – 36.36 33.33 66.67 57.58
Mean 85.91 82.41 75.68 – – 72.35 70.25 82.42 79.05

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Number of features
Pima-Indians-

diabetes
5 5 7 5 2 8 8 5 5

Orlraws10P 6 20 3 – – 20 20 39 7
Dermatology 8 19 4 17 11 20 20 19 9
Adult 3 13 14 7 3 14 14 2 3
Gisette 15 20 8 – – 18 20 20 20
Humanactivity 7 19 1 22 27 20 20 8 14
Coil100 20 20 20 – – 20 20 20 20
Gli_85 2 19 1 – – 18 20 40 2
Orl_32×32 16 20 11 – – 19 20 78 16
WarpAR10P 13 19 7 – – 20 20 40 9
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the difference in accuracy was statistically significant. In fact, the only algorithm 
that performed better than GAAMmf in terms of accuracy was the original GAAM. 
However, the difference in accuracy between those two algorithms was insignificant.

As shown in Table 5, although Holland and NSGA-II returned individuals with 
accuracies comparable to those generated by GAAM-based algorithms, their appli-
cation can sometimes be challenging. This is due to the fact that both algorithms 
employ a binary coding scheme, which begins the search process with roughly half 

Table 5  (continued)

GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Yale_32×32 15 19 12 – – 20 20 59 15
Mean 10 18 8 – – 18 18 30 11

Dataset GAAMmf GAAM Melting NSGA-II Holland Lasso CFS IniPG SFS

Processing time
Pima-Indians-

diabetes
18′ 28′ 24′ 44′ 13′ 2″ 1″ 12′ 3″

Orlraws10P 17′ 15′ 9′ – – 15″ 2″ 10′ 23′
Dermatology 24′ 16′ 9′ 1 h 19′ 9′ 2″ 1″ 11′ 10″
Adult 5 h 18′ 2 h 56′ 4 h 23′ 9 h 10′ 2 h 37′ 13″ 1″ 42′ 10″
Gisette 6 h 54′ 4 h 11′ 41′ – – 2′ 6″ 3 h 47″ 2 h 38′
Humanactivity 8 h 47′ 5 h 31′ 24′ 49 h 12′ 14 h 11′ 15″ 1″ 4 h 3′ 5′
Coil100 68 h 55′ 19 h 32′ 65 h 17′ – – 22″ 1″ 5 h 56′ 4 h 11′
Gli_85 57′ 1 h 15′ 9′ – – 30″ 8″ 7′ 29′
Orl_32×32 3 h 17′ 3 h 53′ 1 h 49′ – – 5″ 1″ 21′ 16′
WarpAR10P 1 h 21′ 1 h 37′ 29′ – – 6″ 1″ 9′ 10′
Yale_32×32 1 h 28′ 1 h 57′ 9′ – – 3″ 1″ 12′ 7′
Mean 8 h 54′ 3 h 48′ 6 h 43′ – – 0.01′ 0.01′ 1 h 21′ 45′

Fig. 3  The statistical significance of differences calculated between GAAMmf and other methods in 
terms of a classification accuracy, b number of features; p value for each significant difference is pre-
sented over the corresponding bar
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of the total number of features. As a result, their individuals can be difficult to evalu-
ate in terms of classification accuracy when applied to datasets with an unfavorable 
ratio between the number of features and the number of examples (e.g., Gisette and 
Orlaws10P). In contrast, all three GAAM-based algorithms permit the initial selec-
tion of the number of genes (i.e., features) in individuals. Consequently, they are not 
affected by the dimensionality ’curse’ and can be applied to datasets with arbitrary 
characteristics.

Moreover, it is worth noting that some non-genetic feature selection meth-
ods exhibited significantly poorer performance when confronted with multiclass 
problems. For example, as can be noticed in Table  5, Lasso and CFS performed 
much worse in the case of most multiclass datasets (apart from Dermatology and 
Gisette (analysed by Lasso)). The most extreme drop in accuracy measured between 
GAAMmf and the aforementioned methods could be observed for Orlraws10P, 
Coil100, Orl_32×32, WarpAR10P, and Yale_32×32.

The second section of Table  5 displays the accuracy of the final classification 
model estimated for each algorithm using the 20% of data that was not utilized in the 
parameters estimation process. We marked with bold font all the cases where the test 
accuracy was 10% lower than the corresponding validation accuracy reported in the 
first part of the table. Analysis of the table reveals that the parameters of most clas-
sifiers were correctly estimated, with the test accuracy being only slightly lower or, 
in some cases, slightly higher than the validation accuracy. Additionally, it is evident 
that the occurrence of overfitting behaviour primarily depended on the characteris-
tics of the datasets rather than the algorithms themselves. Notably, for four datasets 
(Orlaws10P, Gli_85, WarpAR10P, and Yale_32×32), almost all classifiers exhibited 
overfitting behaviour, while for the remaining datasets, overfitting was not observed.

Regarding the average accuracy calculated across all eleven datasets, the clas-
sic GAAM outperformed other algorithms in terms of average validation accuracy, 
achieving a score of 91.73%. However, it displayed the poorest generalization capa-
bilities among the estimated classifiers. On the other hand, GAAMmf demonstrated 
slightly lower average validation accuracy (90.48%) compared to GAAM, but it 
emerged as the winner in terms of test accuracy and generalization capabilities.

Concerning the third section of Table 5, which presents the number of features 
encoded in individuals with the highest accuracy, the outcomes significantly differ 
from those presented in the first section of the table. Here, Melting GAAM returned 
individuals with the fewest features, averaging at 8 features. GAAMmf followed 
closely with 10 features, while SFS obtained the third-best performance with 11 fea-
tures. Other algorithms yielded significantly larger feature sets (Fig. 3b).

The comparison across different datasets presents one undesirable feature of 
Melting GAAM that motivated us to seek an approach to balance the accuracy 
and number of feature criteria in the feature selection process. By fixing the accu-
racy, the algorithm might halt the search process with individuals that are far from 
optimal, either in terms of accuracy or the number of features. When the accuracy 
threshold is underestimated, the algorithm terminates with individuals of a much 
worse accuracy than optimal (for Orlraws10P, the accuracy of Melting GAAM was 
over 10% worse than that of GAAM). Conversely, when the accuracy threshold 
exceeds the accuracy that can be achieved in the given dataset, the algorithm focuses 
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entirely on the accuracy criterion, and no feature reduction is achieved. This situa-
tion was observed for Adult dataset, where Melting GAAM stopped with 14 features, 
although the individual composed of only three features returned by GAAMmf pro-
vided even better accuracy.

In the final part of Table 5, the total processing time required by all algorithms to 
complete the task was compared. The ranking of the methods in this section of the 
table was consistent with expectations. The quickest method was CFS, followed by 
Lasso. All wrappers required significantly longer time to fulfil the task. Among the 
wrappers, the SFS method was at the forefront, followed by IniPG, GAAM, Melt-
ing GAAM, and GAAMmf. The two least time-efficient methods were Holland and 
NSGA-II, respectively.

5  Conclusions

This study developed and evaluated a genetic algorithm for feature selection 
(GAAMmf), which is a modified version of a genetic algorithm with aggressive muta-
tion. The new version of the algorithm was developed to overcome the limitations of 
both preceding GAAM-based algorithms, the original GAAM and Melting GAAM. 
The original GAAM is focused on feature subsets of a fixed size. Hence, it optimises 
the feature set in terms of classification accuracy but not the number of features. Con-
versely, Melting GAAM fixes the classification accuracy and optimises only the size 
of the feature space. GAAMmf combines both criteria and, at the same time, optimises 
the classification accuracy and the size of the feature set, similar to Holland with a 
penalty term and NSGA-II. One distinguishing feature of GAAMmf is its ability to 
start the feature reduction process from either the entire feature set or an arbitrarily 
chosen number of features, which is impossible with the direct binary coding scheme. 
This feature makes GAAMmf applicable to datasets of any characteristic.

In summary, the main benefit of GAAMmf is its ability to be run without tedious 
tuning of parameters. All parameters can be set to the levels used in the experiments 
described in the paper, which may not be optimal in terms of processing time but 
will produce a sufficiently small feature set of satisfactory classification accuracy for 
most datasets. On the other hand, the main limitation of GAAMmf is its processing 
time. The aggressive mutation used in the evolution process allows the algorithm to 
explore different subspaces of the search space, but also produces a large number 
of new individuals that must be evaluated. Attempts were made to overcome this 
problem by introducing the concept of mutation probability, but the processing time 
is still unsatisfactory. Hence, in future work, we plan to apply the concept of keeping 
track of previously evaluated individuals to avoid the cost of their reevaluation.
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