
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:4
https://doi.org/10.1007/s10710-023-09448-0

1 3

Matchmaker, matchmaker, make me a match: geometric,
variational, and evolutionary implications of criteria for tag
affinity

Matthew Andres Moreno1 · Alexander Lalejini2 · Charles Ofria1

Received: 15 December 2021 / Revised: 22 September 2022 / Accepted: 18 November 2022 /
Published online: 24 March 2023
© The Author(s) 2023

Abstract
Genetic programming and artificial life systems commonly use tag matching to
decide interactions between system components. However, the implications of cri-
teria used to determine affinity between tags with respect evolutionary dynamics
have not been directly studied. We investigate differences between tag-matching cri-
teria with respect to geometric constraint and variation generated under mutation.
In experiments, we find that tag-matching criteria can influence the rate of adaptive
evolution and the quality of evolved solutions. Better understanding of the geomet-
ric, variational, and evolutionary properties of tag-matching criteria will facilitate
more effective incorporation of tag matching into genetic programming and artificial
life systems. By showing that tag-matching criteria influence connectivity patterns
and evolutionary dynamics, our findings also raise fundamental questions about the
properties of tag-matching systems in nature.

Keywords Genetic programming · Event-driven genetic programming · Tag-based
referencing · Module-based genetic programming · Artificial gene regulatory
networks

1 Introduction

Computer programs ultimately translate into sequences of individual operations.
These operations must specify the identities of registers and memory addresses
they read from and write to. Most modern programming languages introduce a

 * Matthew Andres Moreno
 mmore500@msu.edu

1 BEACON Center for the Study of Evolution in Action Department of Computer Science
and Engineering Program in Ecology, Evolutionary Biology, and Behavior, Michigan State
University, East Lansing, MI, USA

2 University of Michigan, Ann Arbor, MI, USA

http://orcid.org/0000-0003-4726-4479
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09448-0&domain=pdf

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 2 of 42

layer of abstraction that specifies operands indirectly in terms of named varia-
bles and unnamed literal values. As instances of computer programs by their very
nature, genetic programs and digital artificial life systems must also specify com-
putational operands on which to act. These computational operands include

– program modules in genetic programs [35],
– virtual hardware analogs like registers, memory addresses, stacks, or jump

addresses in genetic programs [20, 26, 28],
– molecules in artificial chemistries [2],
– genes in artificial gene regulatory networks [3],
– individual neurons or neural modules in neuroevolution [29], and
– agents in agent-based models of complex systems [30].

In genetic programming, it is often essential for operations to undergo evolution-
ary adjustment to which computational elements they act on. This capability can
tweak the semantics of existing evolved code, critical in particular for duplication
and divergence processes commonly highlighted in discussions of evolvability
[1]. This capability also allows for incorporation of new computational elements
and for removal of existing computational elements. In genetic programming,
dynamic reorganization of code modules can facilitate hierarchical problem-
solving in genetic programming [16]. Similarly, reorganization and extension of
existing computational elements is critical in the context of artificial life, where
novelty and change are often of key interest [37].

Tag-based referencing, sometimes also termed “pattern matching” or “inexact
referencing,” provides a practical solution for deciding computational operands.
This approach attaches a tag to each computational operand that may be selected
and a tag for each querying operation. Operand(s) are then selected for each query
through a tag-matching process. A querying operation’s tag is compared to avail-
able operand tags. Then, typically, either:

– the best-matching operand is selected (e.g., [33]),
– all operands with match quality exceeding a threshold are selected (e.g., [30]),
– operands are activated to continuously-varying degrees based on match quali-

ties (e.g., [3]), or
– operands are selected probabilistically based on match quality (e.g., [32]).

Inexact referencing facilitates orderly growth, shrinkage, and reconfiguration
of a system’s sets of operands and operations. If an operand is deleted, it does
not invalidate any existing operations, as other well-matching operands will fill
its place. Likewise, new operations can be created or existing operations can be
altered freely without concern for potentially invalid operands.

Indeed, inexact referencing techniques find common use in agent-based mod-
eling [30], neuroevolution [29], artificial gene regulatory networks [3], genetic
programming [19, 35], artificial chemistry [5], and artificial immunology [38].
These systems typically either use tagging schemes based on

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 3 of 42 4

– Hamming distance between bitstrings (e.g., [3, 19]) or
– differences between real-valued scalars (e.g., [30, 35]).

However, other nonlinear tag-matching systems, such as Downing’s streak metric
[7] and de Boer’s adjacency match metric [4], have been proposed. More exotic tag-
matching extensions have explored, too, such as incorporation of a wildcard “match-
any” character into tag alphabets [14] or automatic generation of operand tags based
on the underlying functional behavior of each particular tagged component [23].

Although some efforts have been made to distinguish certain tag-matching cri-
teria in terms of narrative explanations of their evolutionary properties and appeals
to biological analogy [7, 31], no work has yet provided systematic, quantitative, and
empirical insight into the ramifications of commonly used tag-matching criteria.

We hypothesize that properties of tag-matching criteria could affect evolvabil-
ity through mechanisms including

– bias of certain queries or operands against tight-affinity matches (i.e., tunable
specificity)

– bias to the stability of certain connections under mutation (i.e., tunable robust-
ness),

– bias to the likelihood of connections arising between subsets of queries and
operands (i.e., modularity), and

– mitigation of disruption under duplication of queries and operands (i.e., gene
duplication [22, 27]).

In this work, we survey five tag-matching schemes: two based on integer repre-
sentations, one based on Hamming distance, a “streak” metric based on the maxi-
mum length of identical substrings, and a control metric that uses a hashing algo-
rithm to compute completely arbitrary match distances.

We explore how these tag-matching schemes differ with respect to

1. geometric structure that biases or limits the patterns of connectivity that form
among queries and operands (Sect. 3),

2. variational properties that influence changes to connectivity observed under muta-
tion (Sect. 4), and

3. evolutionary consequences such as the rate of adaptive evolution and the quality
of evolved solutions (Sect. 5).

Across several geometric analyses, we found the geometric structure of the integer
metrics to be most restrictive, followed by the Hamming and then streak metrics. We
observed large-effect one step mutations under the integer metrics and streak met-
rics, but not under the Hamming metric. Except for the control hash metric, match
affinity decayed most rapidly along mutational walks under the integer metrics.
Match affinity decayed slowest along mutational walks under the Hamming metric.

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 4 of 42

Evolutionary experiments also showed significant differences between tag-
matching schemes. We found that rigid, one-dimensional geometric structure of
the integer metrics impeded satisfaction of multiple simultaneous tag-matching
requirements in scenarios where a query tag was required to closely match to
more than one operand. Integer metrics also fared poorly in genetic programming
experiments, even when the selected-for tag-matching scenario only involved
matching queries to a single operand. Evolutionary conditions in these experi-
ments were configured to emphasize duplication and divergence by restricting
sources of variation, namely initial tag variation and ongoing insertion of ran-
domly-generated tags. The Hamming and streak metrics generally fared best, with
the streak metric outperforming the Hamming metric in some scenarios.

Although the Hamming and streak metrics generally matched or outperformed
the integer metrics, confirming the extent to which these findings generalize across
tag-matching application domains beyond those surveyed—particularly with respect
to mutation operator used—necessitates further research. Improved understanding
of the implications of tag-matching rules will directly enable more effective genetic
programming practice. To a more theoretical bent, this work also provides a foun-
dation for inquiry into the properties and mechanisms of tag-matching systems in
nature.

In support of further investigations, all tag-matching techniques compared here
were incorporated into the open-source Empirical C++ library [25] as interchange-
able components of the MatchBin tool suite.

2 Tags and tag‑matching metrics

Rigorous comparison of disparate tag-matching schemes required careful standardi-
zation of tag representation, mutation, and match quality calculation. This section
summarizes the tag representation, mutation, and match quality calculation proce-
dures used in our experiments and provides formal definitions for each of the sur-
veyed tag-matching schemes within that framework.

In all experiments, we used 32-bit bitstrings as tags.1 Formally, we define a tag t
as a fixed-length binary vector,

where

In experiments where mutations were applied to tags, individual bits were toggled
stochastically at a uniform per-bit rate.

t = ⟨t0, t1, t2,… , tn−2, tn−1⟩

∀i, ti ∈ {0, 1} and n = 32.

1 Many other tag representations are possible, including higher-cardinality alphabets [13] and floating
point values. Although for tractability and consistency we do not explore them in this initial work, we
do include some commentary in Supplementary Section A on how behavior of alternate representations
might differ from the bitstring tags used in this work.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 5 of 42 4

We call the algorithm used to calculate match quality between two tags a
tag-matching metric. A tag-matching metric takes two tags as operands and cal-
culates a match distance between them. Low match distance indicates a “good”
or “strong” match. High match distance indicates a “poor” or “weak” match.
For consistency between metrics, we bound all match distances so that a dis-
tance of 0 is the “best” possible match and a distance of 1 is the “worst” pos-
sible match.

Occasionally, it is convenient to discuss match quality in terms of close-
ness instead of distance. So, we also employ a closeness terminology (which is
inverse to the distance terminology). Low match closeness corresponds a “poor”
or “weak” match. High match closeness corresponds to a “good” or “strong”
match. Again, for consistency, we restrict closeness values between 0 and 1. A
closeness of 0 corresponds to the “worst” possible match. A closeness of 1 cor-
responds to the “best” possible match.

We compared five tag-matching metrics: Hamming, hash, integer, bidirec-
tional integer, and streak. The Hamming and bidirectional integer metrics are
included because of their ubiquity in genetic programming and artificial life sys-
tems. The integer metric is included due to its use in seminal work exploring
tag-matching in genetic programs [33–35]. The streak metric was proposed to
model large-effect mutations observed in biology but, to our knowledge, has not
yet been formally studied in an evolving system. The hash metric is introduced

Table 1 Surveyed tag-matching metrics. A matching metric is commutative if d(tag_0, tag_1) =
d(tag_1, tag_0) for all tags. A matching metric is considered multidimensional if position within
matching space is not represented by a scalar value

Metric Description

Hash SHA1 cryptographic hash of concatenation of tag_0 and tag_1 [9]
Hamming Fraction of positions within tag_0 and tag_1 with mismatching bits
Integer Value added to the unsigned integer representation of tag_0 to reach representa-

tion of tag_1, wrapping around if necessary
Bidirectional Integer Lesser of integer metric distances d(tag_0, tag_1) and d(tag_1,

tag_0)

Streak Ratio of lengths of contiguously matching and mismatching substrings

Metric Commutative? Multidimensional?

Hash No Yes
Hamming Yes Yes
Streak Yes Yes
Integer No No
Bidirectional Integer Yes No

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 6 of 42

in this work as a control due to its completely geometrically-unstructured tag-
matching scheme. Table 1 compares summary descriptions for each metric.

Sections 2.1, 2.2, 2.3, 2.4, and 2.5 provide formal definitions for each metric.

2.1 Hash metric

To our knowledge, the hash metric is original to this work. The metric produces
an arbitrary, but deterministic, match distance between any two tags. In other
words, the tag matching space is completely unstructured. We include it primarily
to serve as a control.

The hash metric calculates match distance via a SHA1 cryptographic hash of
tags t and u [9]. First, we concatenate t and u into a double-width bitstring v such
that

Then, we use the OpenSSL library to generate a std::string digest of v. We
then apply std::hash to map this digest to a std::size_t, v′ . Finally, we per-
form a floating point division to compute the matching distance as d(t, u) = v�∕V̂
where V̂ denotes the maximum representable std::size_t value.

Note that this metric is not commutative. As noted above, however, tag-match-
ing systems inherently distinguish queries and operands. So, an ordering within
each pair of tags processed in a tag-matching system will be well-defined. We use
the convention of ordering the operand tag after the query tag when concatenat-
ing the tags’ bit representations.

Take as an example the two eight bit tags t = ⟨1, 0, 0, 1, 0, 0, 1, 1⟩ and
u = ⟨0, 0, 1, 0, 0, 0, 1, 1⟩ . The intricacy of the SHA1 algorithm precludes work-
ing through an example in full detail, but these two tags will have an arbitrary
match distance — suppose it as 0.24. Changing any bit in either of the tags t or
u will completely scramble match distance. For example, with the first bit of t
flipped match distance might instead be computed as 0.89. Flipping the second
bit instead could yield a totally different result.

2.2 Hamming metric

The Hamming metric computes match distance as the fraction of positions
between tags t and u with mismatching bits. Formally, for n-bit bitstring tags,

As an example, consider eight bit tags t = ⟨1, 0, 0, 1, 0, 0, 1, 1⟩ and
u = ⟨0, 0, 1, 0, 0, 0, 1, 1⟩ . Sites 1, 4, 5, 6, 7, and 8 match. Sites 0, 2, and 3 mismatch.

v = ⟨t0, t1, t2,… , tn−2, tn−1, u0, u1, u2,… , un−2, un−1⟩

d(t, u) =
#{i ∶ ti ≠ ui, i = 0,… , n − 1}

n
.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 7 of 42 4

Because 3 sites mismatch, the Hamming metric would compute match distance as
3∕8 = 0.375.

This metric is based on [21], originally after [11].

2.3 Streak metric

The streak metric computes match distance between bitstring tags t and u as a
ratio of lengths of contiguously matching and mismatching substrings within
those tags.

Formally, we can compute the greatest contiguously-matching length of n-long
bitstrings t and u as,

Likewise, the greatest contiguously-mismatching length can be computed as,

As proposed in [7], the streak metric computes distance between n-bit bitstring tags
t and u as,

where p(k) approximates the probability of a contiguous match at least k bits long
between two randomly sampled bitstring tags.

[7] derives

However, this formula is subtly flawed. For instance, the probability of a 0-bit match
according to this formula would be computed as p�(0) = (n − 0 + 1)∕20 = n + 1 .
This is clearly impossible—it would imply p�(0) > 1∀n > 0.

Although correct probabilities can be calculated via dynamic programming, p′
provides a useful approximation. For computational efficiency and consistency
with the existing literature, we use the math proposed in [7] but clamp edge cases
between 0.0 and 1.0. Additionally, because Downing uses the match closeness
convention where a perfect match is scored 1.0, we subtract from 1 to convert to
match distance. This yields the corrected streak metric d used in this work,

Downing motivates the streak metric by analogy to the biochemistry of enzyme-
ligand binding. In motivating the metric, Downing reports mutational walk experi-
ments that show it to exhibit greater robustness compared to integer and Hamming

m(t, u) = max

(
{i − j∀i, j ∈ 0..n − 1 ∣ ∀q ∈ i..j, tq = uq}

)
.

n(t, u) = max

(
{i − j∀i, j ∈ 0..n − 1 ∣ ∀q ∈ i..j, tq ≠ uq}

)
.

d�(t, u) =
p�(n(t, u))

p�(m(t, u)) + p�(n(t, u))
.

p�(k) =
n − k + 1

2k
.

d(t, u) = 1 −max

(
min(d�(t, u), 1), 0

)
.

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 8 of 42

metrics. However, it is not demonstrated in an evolving system. To our knowledge,
no further work on this metric has been published. (Although, through personal
communication, we learned of some unpublished work applying the metric in a neu-
roevolution system.)

As an example, consider the eight bit tags t = ⟨1, 0, 0, 1, 0, 0, 1, 1⟩ and
u = ⟨0, 0, 1, 0, 0, 0, 1, 1⟩ . Sites 1, 4, 5, 6, 7, and 8 match. Sites 0, 2, and 3 mismatch.
For these two tags, 5 conscecutive bits match: sites 4 through 8. Likewise, the long-
est streak of mismatching bits is 2 bits long: sites 2 and 3. Plugging these values into
Downing’s formulas gives a match distance of

2.4 Integer metric

The integer metric computes match distance between tags t and u by counting
upwards from t until u is reached. If necessary, the counting process wraps around
at 2n.

To accomplish this, the integer metric must interpret bitstring tags t and u as
unsigned integers. We use a standard representation,

Formally, the integer metric computes distance between n-bit bitstring tags as,

Inclusion of this metric is motivated by [35], who used positive integers between 0
and 100 to name referents. Queries matched to the referent that had the next-larger
value, wrapping around from 100 back to 0.

Like the hash metric, this metric is not commutative. We adopt the convention of
using the query tag as t and the operand tag as u.

As an example, consider eight bit tags t = ⟨1, 0, 0, 1, 0, 0, 1, 1⟩ and
u = ⟨0, 0, 1, 0, 0, 0, 1, 1⟩ . The tag t encodes the integer value 147. The tag u encodes
the integer value 35. Computing the difference between these integers mod 256
yields 144. This is equivalent to starting at 147 then counting up by 109 to reach
256, wrapping around to 0, then counting up a further 35. Dividing by 256 to nor-
malize gives the match distance 0.5625.

1 −
(8 − 2 + 1)∕22

(8 − 2 + 1)∕22 + (8 − 5 + 1)∕25
≈ 0.06.

f (t) =

n−1∑

i=0

ti × 2i.

d(t, u) =

(
f (u) − f (t)

)
mod 2n

2n
.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 9 of 42 4

2.5 Bidirectional integer metric

The bidirectional integer metric computes match distance between tags t and u by
counting from t to u. The count from t to u may ascend or descend, whichever option
is shorter. If necessary, the count wraps around at 0 and 2n.

The bidirectional integer metric interprets bitstring tags t and u as unsigned inte-
gers using the same mapping, f, as the integer metric.

Formally, the bidirectional integer metric computes distance between n-bit bit-
string tags as,

We included this metric to contrast with the integer metric. In particular, we wished
to shed light on any consequences of its asymmetry and discontinuity. In figure axes
and legends with tight space constraint, we refer to this metric as “Integer (bi).”

As an example, consider again the eight bit tags t = ⟨1, 0, 0, 1, 0, 0, 1, 1⟩ and
u = ⟨0, 0, 1, 0, 0, 0, 1, 1⟩ . As before, the tag t encodes the integer value 147 and
the tag u encodes the integer value 35. We already found that counting from t to u
mod 256 takes 144 steps. Counting from u to t mod 256 takes only 112 steps (i.e.,
147 − 35). So, we pick the shorter route and normalize by 256 to give the match dis-
tance 0.4375.

2.6 Match distance uniformification

For consistency of implementation and interpretation, all metrics output tag-match-
ing distances between 0.0 (a “perfect” match) and 1.0 (a “worst” match)2.

However, the distribution of tag-match distances within this range varies sub-
stantially between metrics. For example, the probability of a match distance < 1∕32
between two randomly-sampled bitstring tags is 1/32 under the hash metric but
1∕232 under the Hamming metric.

In order to ensure an intuitive interpretation of match distances that was consist-
ent across all tag-matching metrics, we normalized metrics’ match distances so that
the distances between pairs of randomly generated tags would follow a uniform dis-
tribution between 0.0 and 1.0. We call this process “uniformification.” In this dis-
cussion, we refer to match distance before uniformification as “raw.”

For example, two tags with a 0.01 uniformified match distance would be better-
matched than 99% of randomly-generated tag pairs. Additionally, in situations where

d(t, u) =
min

(
f (u) − f (t) mod 2n, f (t) − f (u) mod 2n

)

2n
.

2 The uniformified score for the Hamming metric’s median matching case falls into the slightly leftern
31st bin instead of the central 32nd bin. This true median value for the Hamming metric was approxi-
mated to a match distance of 0.4901. This outcome falls within the outer extreme, but still plausible,
error of the Monte Carlo approximation, at p = 0.024 under a double-tailed exact binomial test. Given
the five uniformifications performed (one for each metric), this result is less surprising still. See main
text for detailed discussion of expected error under the Monte Carlo approximation method.

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 10 of 42

raw match distance plays a mechanistic role (for example, probabilistic matching or
threshold-based cutoffs), this transformation ensures consistency across metrics.

We performed this uniformification independently for each tag-matching metric
using the following Monte Carlo approximation method.

1. We sampled 10,000 pairs of randomly-generated tags.
2. We calculated raw match distance between each pair of generated tags using the

chosen tag-matching metric.
3. We organized these 10,000 sampled raw match distances into a list in ascending

order.
4. To ensure coverage of the entire [0.0, 1.0] interval of valid tag match scores, we

bookended the sorted list of raw match distances with 0.0 and 1.0.
5. We associated each list entry with its percentile ranking within the list.

(a) i.e., the best-matching 0.0 match distance was associated with the percentile
ranking 0.0,

(b) the median match distance was associated with the percentile ranking 0.5,
and

(c) the worst-matching 1.0 match distance was associated with the percentile
ranking 1.0.

6. For subsequent tag match distance calculations during the experiment, we per-
formed a lookup on this list.

– If a single exactly-identical raw match distance existed in the list, we
returned its percentile ranking as the uniformified match distance.

– If two or more exactly-identical raw match distances existed in the list, we
returned the mean percentile ranking of these entries as the uniformified
match distance.

– If no exactly-identical raw match distance existed in the list, we linearly
interpolated between the next-largest and next-smallest list entries’ per-
centile rankings.

Figure 1 compares the distribution of match distances between randomly-sam-
pled tags before and after this uniformification process across tag-matching
metrics.

Error in the Monte Carlo approximation of the percentile for any raw match
score is distributed binomially. With 10,000 samples, absolute error at the 50th
percentile (0.5 match distance) can be bounded below 0.01 match distance units
with 95% confidence and below 0.012 match distance units with 99% confidence.
Absolute error at the 1st percentile (0.01 match distance) can be bounded below
0.0017 match distance units with 95% confidence and below 0.0024 match dis-
tance units with 99% confidence. (With five independent uniformification pro-
cesses, 99% confidence per metric translates to 95% confidence over all metrics
under Bonferroni correction.)

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 11 of 42 4

[24]

[15]

Fig. 1 Distance distributions of metrics before and after uniformification. A sample of 5,000 distances
between randomly-generated tag pairs was used for each plot. a emphasizes the discretization artifacts
in the Hamming and streak metrics present before and remaining after uniformification. (E.g., for 32-bit
tags under the Hamming metric only 33 distinguishable match distance values are possible.) b masks
distribution granularity to more intuitively depict the corrected metrics’ approximation of a uniform dis-
tribution. Supplementary Figure 14 visualizes the cumulative distribution of all 5,000 sampled distances
for each metric before and after uniformification

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 12 of 42

All work reported here employed match distance uniformification. A single
match distance lookup table was used across all experiments with each metric.
Note that match distance uniformification has no effect in experiments where
tag-matching derives exclusively from relative ordering with no absolute match
distance effect (i.e., evolutionary experiments with the graph-matching and
changing-signal tasks introduced later on).

3 Geometric analyses

In this section, we consider the geometry that tag matching metrics impose over bit-
string tag space. These geometries may affect the patterns of connectivity between
tagged components that tend to arise, or are even possible at all.

As an illustrative example of potential geometric constraint, consider the bitstring
tags t = ⟨0, 0,… , 0⟩ and u = ⟨1, 1,… , 1⟩ under the Hamming metric. No third tag v
could simultaneously exhibit a tag match distance < 0.5 to both tags. Stated more gen-
erally, geometric constraint within a metric may enable tag pairs such that no single
third tag can simultaneously exhibit a close affinity to both.

As another example of potential geometric constraint, consider the bitstring tags
t = ⟨0, 0,… , 0⟩ and u = ⟨0, 0,… , 1, 0⟩ under the bidirectional integer metric. (Here,
the tag t would correspond to the integer 0 and the tag u would correspond to the inte-
ger 2.) No third tag v could simultaneously exhibit a match distance > 0.9 to t and < 0.1
to u. Stated more generally, geometric constraint may also enable tag pairs such that
any third tag must either match both closely or match neither closely.

Geometric constraint varies by metric. For example, under the hash metric no pair
of tags exists with either aspect of geometric constraint described above—how well a
third tag v matches to t and how well it matches to u is always entirely independent.

Geometric constraint cannot be circumvented by mutation operator design. In both
the Hamming metric and bidirectional integer metric examples above, the nonexistence
of any tag v satisfying the given match distance criteria holds no matter how mutation
is performed. The mutation operator only affects how tags in a genome move through
bitstring space between generations and not how they match to other tags at a particular
generation.

Geometric constraint seems likely to profoundly influence evolution in tag-matching
systems. However, it is not obvious how to predict a priori how these implications ulti-
mately play out. Geometric constraint might prove useful to facilitate modularity by
allowing subsets of tag space to correspond to associated functionality [12]. However,
it may also hinder generation of variation.

To study geometric constraint, we begin by comparing distributions of two statis-
tics measuring constraint across our five tag-matching metrics: similarity constraint and
dissimilarity constraint. Similarity constraint, presented in Sect. 3.1 quantifies the ques-
tion, “If two tags both match closely to a third tag, will they necessarily match closely
with each other?” In contrast, dissimilarity constraint in Sect. 3.2 quantifies the ques-
tion, “If a certain tag matches a second tag closely and a third tag very poorly, will the
second and third tag tend to match very poorly?” Finally, detour difference in Sect. 3.3
broadens beyond strong-match and strong-mismatch contexts to quantify the question,

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 13 of 42 4

Fig. 2 Similarity constraint of tag-matching metrics. a Summarizes the sampling process used to meas-
ure similarity constraint. b, c Compare distributions of similarity constraint across metrics. Supplemen-
tary Figure 15 visualizes the cumulative distribution of all sampled dissimilarity constraint values for
each metric

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 14 of 42

“How does a randomly-chosen waypoint affect distance between a pre-existing start
and end tag?”

3.1 Similarity constraint

To characterize similarity constraint for a metric m, we randomly sampled 5,000
target tags. Then, for each target tag R we randomly sampled tags until we found
two secondarily-sampled tags S1 and S2 that were within a 0.01 match distance
radius from the target. That is, we chose S1 and S2 such that m(R, S1) < 0.01 and
m(R, S2) < 0.01 . Finally, we computed the match distance d = m(S1, S2) between the
pair of secondarily-sampled tags. Figure 2a summarizes this process.

Figure 2b provides our estimate of the similarity constraint statistic for each met-
ric, with error bars representing a 95% confidence interval. Figure 2c shows the dis-
tribution of the similarity constraint statistic values among the 5,000 replicate sam-
ples in greater detail.

In a Euclidean space, similarity constraint corresponds to the average distance
between points uniformly sampled from inside a ball (e.g., in two dimensions a cir-
cle, in three dimensions a sphere, etc.). In Euclidean space, this average distance
increases with dimensionality. For reference, in a one-dimensional Euclidean space
similarity constraint would measure approximately 0.0067. In a two dimensional
Euclidean space, it would measure approximately 0.0091. In 32 dimensions, it
would measure 0.0137 [8]. So, in some sense, this similarity constraint metric can
be interpreted as an indirect measure of dimensionality. However, as we’ll see in
Sect. 3.3, the Hamming, hash, and streak metric impose a decidedly non-Euclidean
geometry.

3.1.1 Hash metric

The hash metric exhibits a very loose similarity constraint of 0.5083 in the mean
case. Secondarily-sampled match distances are uniformly distributed between 0 and
1. This is unsurprising: given any particular set of operands, a well-behaved hash
function should yield a uniform distribution of hash results. As expected, the hash
metric exhibits no geometric structure.

3.1.2 Hamming metric

The Hamming metric exhibits a tighter range of sampled similarity constraint val-
ues. We estimated mean similarity constraint as 0.1627. As shown in Fig. 2c, many
secondarily-sampled tag pairs are biased towards low match distances. However,
secondarily-sampled tag pairs that break this constraint are also not uncommon.
Among our 5,000 trials, we observed distances between secondarily-sampled tags as
high as 0.7499.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 15 of 42 4

Why is our estimate of the Hamming metric similarity constraint so much higher
than the expected value of 0.0137 in a 32-dimensional Euclidean space? This phe-
nomenon appears to be due to the uniformification process we applied to map raw
match distances to a uniform distribution. We also calculated this statistic for the
raw Hamming metric without uniformification, increasing the radius of our sam-
pling ball to 0.25. (Only the exact target 32-bit tag itself falls within a sampling
radius of 0.01.) The a priori expected distance between sampled points within a
32-dimensional ball with radius 0.25 is 0.3415. Our estimate of similarity constraint
for the raw Hamming metric falls nearly in line with expectation at 0.3312.

3.1.3 Streak metric

The streak metric exhibited the second-loosest similarity constraint statistic with
a mean value sampled at 0.2813. For this metric, we observed distances between
secondarily-sampled tags as high as 0.9993. The streak metric retains some geomet-
ric constraint in the mean case, but allows for outliers that strongly break similarity
constraint.

3.1.4 Integer metric

The integer metric exhibits loose similarity constraint in the mean case. We esti-
mated this value as 0.5092. However, this looser mean similarity constraint appears
to be an artifact of averaging between two very tight constraints: a tight constraint to
0 in one case and a tight constraint to 1 in the other. Figure 2c confirms that all sam-
pled match distances fall under one of these cases. Because of the asymmetrical def-
inition of the integer metric, half of pairs of similar scalar values will be in ascend-
ing order (resulting in a match distance close to 0) and half will be in descending
order (resulting in wraparound search and a match distance close to 1). The integer
metric appears to allow for a pair of tags closely related to a third tag either very
strongly match or very weakly match, but permits no intermediate outcomes.

3.1.5 Bidirectional integer metric

For the bidirectional integer metric, we measured the similarity constraint statistic
as 0.0068. This falls in line with expectation: this metric is essentially identical to
a one-dimensional Euclidean space. As shown in Fig. 2c, the secondarily-sampled
match distances are entirely bounded by the diameter of 0.02. This metric not only
exhibits tight similarity constraint in the mean case, but also permits no outlying
similarity constraint outcomes.

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 16 of 42

Fig. 3 Dissimilarity constraint of tag-matching metrics. a summarizes the sampling process used to
measure similarity constraint. Figure c and b compare distributions of similarity constraint across met-
rics. Supplementary Figure 16 visualizes the cumulative distribution of all sampled dissimilarity con-
straint values for each metric

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 17 of 42 4

3.2 Dissimilarity constraint

To characterize dissimilarity constraint for each metric m, we randomly sam-
pled 5,000 target tags. Then, for each target tag R we randomly sampled tags
until we found a secondarily-sampled tag S1 that was within a 0.01 match distance
radius from R and a secondarily-sampled tag S2 that was outside a 0.99 match
distance radius from the R. That is, we chose S1 and S2 such that m(R, S1) < 0.01
and m(R, S2) > 0.99 . Finally, we computed the match distance between S2 and S1 ,
d = m(S2, S1) . Figure 3a summarizes this process.

Figure 2b provides our estimate of the dissimilarity constraint statistic for each
metric, with error bars representing a 95% confidence interval. Figure 2c shows the
distribution of the dissimilarity constraint statistic values among the 5,000 replicate
samples in greater detail.

These results tell a similar story to our similarity constraint findings.

3.2.1 Hash metric

The hash metric exhibited no geometric structure—S1 and S2 were uniformly likely
to exhibit any match distance between 0 and 1.

3.2.2 Hamming metric

The Hamming metric exhibited stronger geometric structure in the mean case
than the streak metric. Mean secondarily-sampled distance was 0.8248. The Ham-
ming metric also exhibited less extreme tail-end outcomes than the streak metric.
We observed match distances between the secondarily-sampled tags only as low as
0.2355.

3.2.3 Streak metric

The streak metric exhibited some geometric structure in the mean case. We observed
a mean secondarily-sampled distance 0.7127, significantly greater than the mean
distance of 0.5 expected between arbitrarily-sampled tags.

However, outcomes that strongly broke geometric constraints also occurred. We
observed distances between secondarily-sampled tags as low as 0.0002.

3.2.4 Integer metric

Again, the unidirectional integer metric exhibited a quirky result due to its noncom-
mutative nature. The mean distance between secondarily-sampled tags was 0.0100.
That is, instead of observing poor matches as we would expect, secondarily-sampled
tags were much closer together than expected under arbitrary sampling. As shown in
Fig. 2c, all secondarily-sampled distances observed with this metric were extremely

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 18 of 42

small. So, although in the opposite way from what we would expect, match distances
were still tightly constrained.

The mechanism behind this result stems from the metric’s asymmetrical nature.
Under this metric, if you sample a tag that is close to a target it will be numerically
slightly larger than the target. Likewise, if you sample a tag that is very far from a
target, it will be numerically slightly smaller than the target (due to wraparound).
Then, explaining this counterintuitive result, the distance from the slightly smaller
to the slightly larger tag will be small.

3.2.5 Bidirectional integer metric

The bidirectional integer metric was highly constrained in both the mean and tail-
end cases. The smallest distance between secondarily-sampled tags observed was
0.9802.

3.3 Detour difference

Similarity constraint and dissimilarity constraint quantify the geometric constraint
imposed under preexisting strong matches and strong mismatches, respectively. To
complement these measures, we set out to characterize the regularity, in a loose
sense, of each space more broadly. This led us to our “detour difference” measure,
which quantifies tag matching spaces’ respect for the triangle inequality.

Intuitively, detour difference is a measure of how adding a randomly-chosen way-
point affects total distance between pre-existing start and end points. Under the tri-
angle inequality, the direct route is always shortest. So, if the triangle inequality is
respected, detour difference should always be non-negative.

To measure detour difference, we uniformly sampled 5,000 triplets of tags A, B,
and C. Then, for each metric m we calculated the m(A,B) + m(B,C) − m(A,C) . Fig-
ure 4a provides a schematic of this process.

Figure 4b plots the distribution of the detour difference statistic for each met-
ric. The Hamming, hash, and streak metrics show evidence of “shortcuts” that vio-
late the triangle inequality.3 For the Hamming, streak, and hash metrics the most
extreme shortening detours observed were -0.76, -0.91, and -0.94, respectively.
The integer and bidirectional integer metrics only exhibited shortening detours up
to -0.02, which were due to minor stochastic imperfections of the uniformification
process. As would be expected given their Euclidean basis, shortening detours were
otherwise nonexistent for the integer metrics.

Surprisingly, given divergent results from the similarity and dissimilarity con-
straint measures, the distributions of detour difference for these three metrics appear
similar. This suggests that geometric differences between these metrics are specially
accentuated in contexts of preexisting strong matching and mismatching constraint.

3 The raw Hamming metric does respect the triangle inequality, so presumably this result is due to the
uniformification.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 19 of 42 4

4 Variational analysis

In Sect. 3 we investigated how existing tag-match relationships to a common tag
influenced the distribution of match distances. This section, in contrast, focuses on
how individual mutations and cumulative sequences of mutations affect a single tag-
matching relationship.

In this work, we use a bit flip mutation operator. This approach enables
straightforward, direct comparison between metrics. However, as a result,
these analyses do not explore alternate, more semantic approaches to muta-
tion—especially pertinent for integer tagging schemes where a tag’s inte-
ger value can be directly manipulated, for example by adding or subtracting a

Fig. 4 Detour difference of tag-matching metrics. Supplementary Figure 14 shows the cumulative distri-
bution of all sampled detour difference values for each metric

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 20 of 42

normally-distributed amount.4 Any extrapolation of these results to systems with
different mutation operators should be made with careful consideration, and may
merit additional experimentation or analysis.

In Sect. 4.1, we report two single-step mutational analyses: one that examines
the local mutational neighborhoods of loosely-affiliated tag pairs and a second
that examines the local mutational neighborhoods of tightly-affiliated tag pairs.
In Sect. 4.2, we perform mutational walk analysis to survey the broader muta-
tional landscape.

4.1 Single‑step mutations

We performed single-step mutational analyses to characterize the local muta-
tional neighborhoods induced by each tag-matching metric.

To measure the effect of mutation on loosely-affiliated tag pairs, for each met-
ric m we

– randomly sampled a target tag R,
– randomly sampled candidate tags until we found a second tag S with a match

distance m(R, S) > 0.5,
– recorded match distance between R and S, d = m(R, S),
– applied a one-bit mutation to the secondary tag S, yielding a mutated variant

S′,
– measured the match distance between R and S′ , d� = m(R, S�),
– and then calculated change in match distance under mutation p = d� − d.

We repeated this procedure to generate 5,000 samples.
To suit the instinct that positive change should correspond to an increase in

match quality and negative change should correspond to a decrease in match
quality, we pose all further discussion in terms of match cloesness change rather
than match distance change.

The top panel of Fig. 5 visualizes the distribution of match closeness change
under mutation of loosely-affiliated tags. Negative match closeness change—
falling on left side of x-axes in Fig. 5—corresponds to a decrease in match qual-
ity. Conversly, positive match closeness change falls on the right side of x-axes
in Fig. 5 and denotes an increase in match quality.

We used a similar procedure to measure the distribution of mutational per-
turbations on tightly-matched tag pairs, except that we uniformly sampled until

4 Although not universal, use of bit flip mutation operators with integer representations is not entirely
uncommon. See e.g., [7].
 Additionally, in a supplementary experiment we found that the bitwise mutational operator outperforms
a simple Gaussian mutation operator on the 32-vertex graph-matching task discussed in Sect. 5.1. This
simple operator applies Gaussian noise to the integer value of all tags in a genome every generation; addi-
tion of an additional “mutation probability” parameter may yield better results. Supplementary Section
B provides details on this experiment. This finding further motivates our limitation of scope to bitwise
mutations in this initial work.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 21 of 42 4

we found a second tag S with match distance < 0.01 . The bottom panel of Fig. 5
visualizes the distribution of match distance change under mutation of tightly-
affiliated tags. This distribution reflects the effects of one-step mutations on tags
with pre-existing affinity.

4.1.1 Hash metric

The hash metric exhibits the thickest tails of mutational magnitude of all metrics.
Extreme-effect one-step mutations are plentiful under this metric. Interestingly,
compared to other metrics, the hash metric exhibits a greater fraction of mutations
that reduce affinity between tightly-affiliated tags and a greater fraction of mutations
that increase affinity between loosely-affiliated tags. This result can be attributed to
the hash metric’s lack of geometric structure. Because all one-step mutations uni-
formly sample a new match distance, 99.5% of one-step mutations on tightly-affili-
ated tags will result in a looser coupling. Similarly, approximately 75% of one-step
mutations on loosely-affiliated tags will result in a tighter coupling.

Fig. 5 Distributions of mutation effects on match distance for loosely matched (pre-mutation match dis-
tance > 0.5) and tightly matched (pre-mutation match distance < 0.01) tag pairs. Note that match close-
ness change (rather than mast distance change) is plotted so that better-matching mutational outcomes
fall to the right and worse-matching mutational outcomes fall to the left. Error bars are 95% confidence
intervals calculated using the Wilson score method with continuity correction [24]. Supplementary Fig-
ure 18 shows the cumulative distribution of all sampled match distance changes for each metric

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 22 of 42

4.1.2 Hamming metric

The Hamming metric consistently exhibits small-magnitude match-closeness
changes under mutation. High-magnitude one-step mutations do not occur under
this metric. (Without normalizing match distance to a uniform distribution for ran-
domly-sampled tags, all Hamming metric mutations would be of exactly the same
magnitude, either increasing or decreasing the count of matching bits by 1.)

4.1.3 Streak metric

Unlike all other metrics, the streak metric frequently yields perfectly neutral out-
comes under mutation. With loose affinity, 56% of all mutations were perfectly neu-
tral. With tight affinity, 45% of all mutations were perfectly neutral. These perfectly-
neutral mutations presumably affect regions of the bitstring involved in neither
the longest-matching streak nor the longest-mismatching streak. The streak metric
exhibits a thicker tail of mutational magnitude for mutations that couple loosely-
affiliated tags than the integer metrics. In addition, the most extreme mutational
outcomes that couple loosely-affiliated tags appear to be of a comparable magni-
tude to those under the integer metrics and the Hamming metric. Mechanistically,
this might be due to mutations that disrupt longest-mismatching streaks. However,
one-step mutations that decouple tightly-affiliated tags do not appear as potent. This
might be because achieving a very poor match requires both increasing longest-mis-
matching streak length and decreasing longest-matching streak length.

4.1.4 Integer and bidirectional integer metrics

For both tightly- and loosely-affiliated tag pairs under the integer and bidirectional
integer metrics, most mutations caused very small changes in match closeness.
These mutations toggle less-significant bits of the tag’s integer representation. How-
ever, under these metrics, a small fraction of mutations affecting more-significant
bits of the integer representation have a much stronger effect. Single-step mutations
occasionally occurred that conspicuously couple loosely-affiliated tag pairs or con-
spicuously decouple tightly-affiliated tag pairs. For instance, under the integer met-
ric 3.6% of mutations increased loosely-affiliated match closeness by at least 0.25
units and and 10.6% decreased tightly-affiliated match closeness by at least 0.25
units. Under the bidirectional integer metric, these percentages were 3.3% and 3.9%,
respectively. Notably, the unidirectional integer metric exhibits more frequent strong
decoupling mutations than the bidirectional integer metric, presumably due to its
non-commutative quirks.

4.2 Mutational walks

We performed multi-step mutational analyses to characterize the broader muta-
tional landscapes induced by each tag-matching metric. To conduct these mutational
walks, for each metric m we

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 23 of 42 4

– randomly generated a starting tag t(0),
– then sequentially applied randomly-chosen one-step bit flip mutations to that tag

until a mutational saturation threshold (yielding a sequence of tags t(1), t(2), ...),
– while recording match distance from the original starting tag m(t(0), t(i)) at each

step i along the walk.

Fig. 6 Match distance along 5,000 sampled mutational walks from initially identical tags. Note that,
unlike other metrics where tags always exhibit 0.0 self-match distance (i.e., at mutational step 0), the
hash metric exhibits arbitrary self-match distance by construction (see Sect. 2.1)

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 24 of 42

Back mutation was allowed in these experiments. We performed 65 step mutational
walks, which allowed us to cover one binary order of magnitude past one expected
mutation per site at 32 steps. We analyzed 1,000 replicate mutational walks for each
metric, which was sufficient to distinguish metrics with bootstrapped 95% confi-
dence intervals

Figure 6 shows how match distance increases along mutational walks for each
tag-matching metric.

4.2.1 Hash metric

Due to the hash metric’s lack of geometric structure, bitwise equivalent tags do not
exhibit low match distance. So, as expected, throughout the entire mutational walk
this metric maintains a constant mean match distance of 0.5.

4.2.2 Hamming metric

The Hamming metric’s match distance diffuses upward slowest. The Hamming met-
ric’s mutational walk is significantly slower to diverge than the streak metric’s at 16
and 32 steps (non-overlapping 95% CI). It is significantly slower to diverge than the
integer metrics and the hash metric between steps 1 and 32, as well (non-overlap-
ping 95% CI).

4.2.3 Streak metric

The streak metric diffuses away from zero match distance second-slowest, trailed
only by the Hamming metric.

Interestingly, this result contradicts Downing’s presentation of the streak met-
ric in [7], in which he suggests that the streak metric exhibits greater robustness
because its match distance diverges more slowly under a mutational walk. This dis-
crepancy presumably arises due to our uniformification to ensure a uniform distri-
bution of raw match scores between 0 and 1 (Sect. 2.6). We believe that our result
under uniformification is more representative because match distance corresponds
to the probability that arbitrary tags would match more strongly by chance — which
directly relates to how effectively a operand tag competes to be the “best” match for
a query.

To compare mutational landscapes between the streak and integer metrics
under more realistic circumstances (i.e., where tags do not begin exactly perfectly-
matched), we performed a secondary mutational walk experiment. This experiment
was conducted exactly as before, except instead of starting with exactly-identical
tags it started with a pair of tags that was randomly sampled for match distance
< 0.01.

As shown in Supplementary Figure 28a, this experiment confirmed greater
robustness of the Hamming metric under mutation. The streak metric’s match

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 25 of 42 4

distance was significantly greater than the Hamming metric between mutational
steps 2 and 16 (non-overlapping 95% CI). Our result remained consistent when rep-
licating the experiment with 64-bit tags (Supplementary Figure 29a).

4.2.4 Integer metric and bidirectional integer metric

The binary representation of the integer and bidirectional integer metrics (Sect. 2.4)
induces a long-tailed distribution of mutational effect sizes. Under this distribution,
value changes of each binary order of magnitude are equally likely (corresponding
to toggling the bit at each position). Occasional large-effect mutations provide plau-
sible explanation for the bidirectional integer metric’s rapid increase in match dis-
tance under mutation relative to the Hamming and streak metrics. The integer metric
experiences even more rapid dilation of match distance under mutation. Under this
metric, half of first mutational steps cause a wraparound effect, immediately spik-
ing the average match distance to 0.5. Supplementary Figure 27 shows match dis-
tance variance decreasing as the integer metric mutational walk proceeds away from
match distances biased to 0 or 1.

5 Evolutionary analysis

Sections 3 and 4 reported how each tag-matching metric induced constraints on tag
match affinities and the distribution of mutational outcomes. We now move on to
investigate whether—and how—these geometric and variational properties affect
evolution of tag-mediated connectivity in evolutionary scenarios.

We begin with a toy problem, presented in Sect. 5.1, which allowed us to sys-
tematically vary the level of network constraint selected for. That is, these experi-
ments compared scenarios where individual tags needed to ensure simultaneously
tight affinity with several other tags (more constrained) and where individual tags
only needed to ensure tight affinity with one other tag (less constrained). In this toy
problem, we define a target connection topology between tagged queries and oper-
ands then select for sets of tags that exhibit high-affinity pairings between connected
topology elements.

In order to investigate potential consequences of tag-matching metrics in a more
complex, applied setting, we also evolved full-fledged SignalGP programs that use
tag matching to mediate module activation.

The SignalGP genetic programming representation employs tag-based referenc-
ing to facilitate event-driven program execution [19]. In SignalGP, programs are
segmented into modules (functions) that may be automatically triggered by exog-
enously- or endogenously-generated signals. Tags specify the relationship between
signals and signal-handlers (program modules), triggering the module with the clos-
est matching tag to run its linear sequence of instructions.

The SignalGP instruction set, in addition to including traditional GP operations,
allows programs to generate arbitrarily-tagged internal signals and broadcast arbi-
trarily-tagged external signals. SignalGP also supports genetic regulation with pro-
moter and repressor instructions that, when executed, allow programs to adjust how

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 26 of 42

well subsequent signals match with a target function (specified with tag-based refer-
encing) [17]. See [19] for a more detailed description of SignalGP.

To ensure a broad survey of tag-matching functionality, we performed experi-
ments with a complementary pair of SignalGP problems:

– the Changing-signal Task (Section 5.2), which is known to select for sparse
tag interactions (i.e., low constraint), and

– the Directional-signal Task (Section 5.3), which is known to select for more
dense tag interactions (i.e., high constraint).

These experiments used bit flip mutation operators across all metrics. Note again
that generalization to systems with alternate mutation operators (i.e., especially
with respect to integer-based tags) should be made carefully.

5.1 Graph‑matching task

The graph-matching task provides a barebones experimental system to isolate tag
matching evolutionary dynamics. Genomes in this domain consisted solely of a
set of 32 tags, partitioned evenly as 16 query tags and 16 operand tags. Operand
tags serve as available tag-matching targets and query tags are used as tag-match-
ing lookups. The goal of the graph-matching task is to establish of an arbitrary,
fixed pattern of tag-matching connectivity between query tags and operands.

Each experiment with this task selected for a distinct, randomly-determined
pattern of connectivity between query tags and operand tags. Formally, we used
randomly-generated bipartite graphs to specify this target connectivity. Each bit-
string tag in the genome corresponded directly to a vertex in the target graph; one
partition of the bipartite graph contained all query tags and the other contained
all operand tags. Figure 8 shows example target graph layouts.

To evaluate the fitness of a genome, we harvested its operand tags and placed
them into a tag-matching data structure. This data structure allowed us to rank
operand tags in terms of match distance from each particular query tag. In order
to compare tag-encoded connectivity against the target graph, we had to decide
whether or not each operand was “connected to” by a query tag. For each query,
we considered only the top n best-matching operands as “connected to.” This rank
cutoff n was determined independently for each query tag. We used the degree of
a query’s corresponding vertex as its rank cutoff n. So, for example, if a vertex
had three outgoing edges then we would consider the three best-matching oper-
ands of the corresponding tag as “connected to.”

For the purposes of fitness evaluation, we considered all “connected to”
matches equivalent. So, with respect to a particular query tag, we took fitness as
the fraction of the “connected to” operands that shared an edge with the query in
the target bipartite graph. Along these lines, we took overall fitness as the frac-
tion of established connections that correctly corresponded to edges in the target
graph. Figure 7 summarizes the evaluation process for the graph-matching task.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 27 of 42 4

We controlled the degree of tag-matching constraint imposed by the target
graph by manipulating:

1. mean degree—the number of edges between queries and operands, and
2. structure—whether edges were assigned evenly such that all vertices had identi-

cal degree (regular structure) or were assigned at random, likely causing some
vertices to have high degree (irregular structure).

We tested target graphs with mean degree 1 and 2 and both regular and irregular
construction.

Irregular, degree 2 graphs imposed the most tag-matching constraint. High-
degree vertices in these graphs were strongly constrained by many simultaneous
connection criteria. Figure 8b shows an example irregular, degree 2 graph.

Regular, degree 1 graphs imposed the least tag-matching constraint. Every vertex
participates in exactly one connection. Figure 8c shows an example regular, degree
1 graph.

For each target graph configuration, we surveyed metrics’ performance over ten
per-bit mutation rates ranging from 0.75 expected bit mutations per genome to 16.0
expected bit mutations per genome. For each combination of metric and target graph
configuration, we report results from the most favorable mutation rate (as defined

Fig. 7 Cartoon summary of graph-matching task evaluation

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 28 of 42

by sum population-maximum fitness across evolutionary generations).5 Table 2 pro-
vides the best-performing mutation rate for each metric across target graph configu-
rations. Best-performing mutation rates varied greatly, ranging from as low as 0.75
expected mutations per genome for the hash metric to as high as 8.0 for the integer
metrics. The Hamming and streak metrics had intermediate best-performing muta-
tion rates between 1.5 and 4.0 expected mutations per genome.

Fig. 8 Example target graph layouts used in 32-vertex graph-matching evolutionary experiments. Blue
dots represent tagged vertices. Black lines represent selected-for tight affinity relationships. Layouts dif-
fer in total number of selected-for affinities (“mean degree”) and whether selected-for affinities were
evenly or randomly distributed between vertices (“structure”)

5 Supplementary Figure 21 shows the rate each metric’s rate of adaptive evolution across surveyed muta-
tion rates for each target graph configurations. All treatments’ optimal mutation rates fall within the
range of mutation rates surveyed, except for the hash metric on the regular target graphs. In this case,
peak performance was observed on the lowest sampled mutation rate.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 29 of 42 4

We ran 100 replicate 512-generation evolutionary runs for each mutation rate/
target graph/tag-matching metric combination. Populations were initialized with
genomes comprising randomly-generated tags. These runs had a well-mixed
population of size 500 and used tournament selection with tournament size 7.
The population was initialized with randomly-generated genomes. Figure 9 plots
population-maximum fitness over the course of these evolutionary runs. We per-
formed the same evolutionary experiment with larger 64-vertex target graphs
and observed qualitatively similar results (Supplementary Figures 22 and 23).

5.1.1 Hash metric

Surprisingly, the hash metric enables faster adaptive evolution than all other
metrics on the least-constrained target graph (Fig. 9; non-overlapping 95%
CI). On more-constrained target graphs with mean degree 2, the hash metric’s

Fig. 9 Trajectories of adaptive evolution for each tag-matching metric on the 32-vertex graph-matching
task. Maximum fitness is the best fitness value for any individual within a population. Reported results
use each metric’s best-performing per-bit mutation rate. (See Supplementary Figure 21 for survey of how
mutation rate affects adaptive evolution under each metric.) Note logarithmic x-axes. Shaded area repre-
sents bootstrapped 95% confidence intervals across 50 replicate observations

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 30 of 42

advantage in rapid adaptive evolution disappears. In fact, on the most-con-
strained target graph (irregular structure with mean degree 2) the hash metric
yields significantly lower-quality solutions at the end of evolutionary runs than
the streak and Hamming metrics (Fig. 9; non-overlapping 95% CI).

5.1.2 Hamming and streak metrics

The streak metric facilitates slightly faster adaptive evolution than the Hamming
metric, especially on mean degree 2 regularly configured target graphs (Fig. 9;
non-overlapping 95% CI).

Table 2 Best-performing per-bit mutation rates for 32-vertex graph matching tasks with randomly-ini-
tialized genomes. See Supplementary Figure 21 for performance across surveyed mutation rates

Metric Target structure Target degree Best-performing per-
genome bit mutation
rate

Hash Regular 1 0.75
Hash Regular 2 0.75
Hash Irregular 1 1.0
Hash Irregular 2 0.75
Hamming Regular 1 4.0
Hamming Regular 2 2.0
Hamming Irregular 1 4.0
Hamming Irregular 2 2.0
Streak Regular 1 3.0
Streak Regular 2 1.5
Streak Irregular 1 4.0
Streak Irregular 2 2.0
Integer Regular 1 6.0
Integer Regular 2 6.0
Integer Irregular 1 8.0
Integer Irregular 2 8.0
Bidirectional Integer Regular 1 4.0
Bidirectional Integer Regular 2 6.0
Bidirectional Integer Irregular 1 8.0
Bidirectional Integer Irregular 2 8.0

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 31 of 42 4

5.1.3 Integer metrics

The integer and bidirectional integer metrics successfully match the least-con-
strained target graph (regular structure with mean degree 1) but yield lower-qual-
ity solutions than other metrics on more constrained target graphs (Fig. 9; non-
overlapping 95% CI).

5.1.4 Identical initialization experiment

In a follow-up experiment to diagnose metrics’ capabilities to generate variation,
we initialized populations with an all-identical set of initial tags (instead of ran-
dom initial tags). Figure 10 shows trajectories of adaptive evolution across tag-
matching metrics and target graph configurations.

Fig. 10 Trajectories of adaptive evolution for each tag-matching metric on the 32-vertex graph-matching
task with identically-initialized initial genomes. Maximum fitness is the best fitness value for any indi-
vidual within a population. Reported results use each metric’s best-performing per-bit mutation rate. (See
Supplementary Figure 23 for survey of how mutation rate affects adaptive evolution under each metric.)
Note logarithmic x-axes. Shaded area represents bootstrapped 95% confidence intervals across 100 repli-
cate observations

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 32 of 42

Surprisingly, integer metrics exhibited the fastest initial adaptive evolution—even
outperforming the volatile hash metric. However, this effect dissipated after about 10
generations and results at subsequent generations were generally the same as before.

5.2 Changing‑signal task

The changing-signal task requires SignalGP programs to express a specific response
to each of K environmental signals. Environmental signals correspond to a unique
tagged event. Programs express a response by executing one of K response instruc-
tions. Successful programs can “hardcode” each response to the appropriate envi-
ronmental signal by ensuring that each tagged environmental signal best matches the
function containing its correct response. Thus, in this experiment SignalGP module
tags are minimally constrained—each needs to only match with a single environ-
mental signal.

During evaluation, we afford programs 64 virtual CPU cycles to express the
appropriate response after receiving a signal. Once a program expresses a response
or the allotted time expires, we reset the program’s virtual hardware (resetting all
executing threads and thread-local memory), and the environment produces the next
signal. Evaluation continues until the program correctly responds to each of the K
environmental signals or until the program expresses an incorrect response. During

Fig. 11 Evolutionary performance of tag-matching metrics on the changing signals task. Shows the num-
bers of replicates out of 200 that produced a complete task solution to the changing-signal and direc-
tional-signal task respectively. Results for each metric’s best-performing mutation rate are reported

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 33 of 42 4

each evaluation, programs experience environmental signals in a random order;
thus, the correct order of responses will vary and cannot be hardcoded.

For each tag-matching metric, we evolved 200 replicate populations (each with
a unique random number seed) of 500 asexually reproducing programs in an eight-
signal environment for 100 generations. We identified the most performant per-bit
tag mutation rates (from a range of possible mutation rates) for each metric on the
changing-signal task:

– 0.01 for the Hamming and streak metrics,
– 0.002 for the hash metric, and
– 0.02 for the integer and bidirectional integer metrics.

Aside from tag mutation rate, the overall configuration used for each metric was
identical.

We limited tag variation in offspring to tag mutation (bit flips) by initializing
populations with a common ancestor program in which all tags were identical and
by disallowing mutations that would insert instructions with random tags. Supple-
mental Section C gives the full configuration details for this experiment, including a
guide for replication.

Figure 11 gives the number of replicates that produced a successful SignalGP
program (i.e., capable of achieving maximum fitness) for each tag-matching met-
ric on the changing-signal task. We compared the number of successful replicates
across metrics using a pairwise Fisher’s exact test with a Holm correction for multi-
ple comparisons.

5.2.1 Hash metric

The hash metric significantly outperformed both integer metrics (p < 4 × 10−10).
We suspect that the hash metric performed well because it maximizes generation

of phenotypic variation (i.e., signal-function relationships). Even a single bit flip in a
tag is likely to completely re-order which other tags it best matches with. The capac-
ity to quickly generate large amounts of phenotypic variation allows evolution to
explore large swaths of the fitness landscape from generation to generation, which is
particularly useful in this low-constraint problem. However, as evidenced by better
performance of the Hamming and streak metrics, this capacity to generate pheno-
typic variation trades off with tag-matching robustness—under this metric, a single
bit mutation may also scramble established relationships with other tags.

5.2.2 Hamming and streak metrics

The Hamming and streak metrics performed significantly better than all other met-
rics (p < 5 × 10−11); however, there was no significant difference in performance
between the Hamming and streak metrics. To assess whether the streak metric pro-
duced solutions in fewer generations than the Hamming metric, we ran 200 new

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 34 of 42

replicates of each condition until 100 replicates produced a solution and recorded
the number of generations that elapsed (Supplementary Figure 19). We found no dif-
ference in generations elapsed between the Hamming and streak metrics.

5.2.3 Integer metrics

Among surveyed tag-match metrics, the integer metrics performed worst. We
observed no adaptive difference between the integer and bidirectional integer
metrics.

5.3 Directional‑signal task

As in the changing-signal task, the directional-signal task requires that programs
respond to a sequence of environmental cues. In the directional-signal task, however,
the correct response to signal depends on the history of previously experienced sig-
nals. In the directional-signal task, there are two possible environmental signals—a
“forward signal” and a “backward signal” (each with a distinct tag)—and a cycle of
four possible responses. If a program receives the forward-signal, it should express
the next response in the cycle. Conversely, a program should express the previous
response in the cycle if it receives the backward signal. For example, if response
three is currently required, a subsequent forward signal indicates that response four
is required next, while a backward signal would instead indicate that response two is
required next. Because the appropriate response to both the backward and forward
signals change over time, successful programs must regulate which functions these
signals trigger (rather than hardcode each response to a particular signal).

SignalGP module tags are more constrained than in the changing-signal task,
potentially needing to match to queries by genetic regulation instructions in addition
to several tagged events (e.g., environmental signals or internally-generated signals)
depending on internal regulatory state. Indeed, in other work, we have observed that
the directional-signal task yields significantly more interconnected regulatory net-
works than the changing-signal task [18].

We evaluated programs on all possible four-signal sequences of forward and
backward signals (sixteen total). For each program, we evaluated each sequence of
signals independently, and a program’s fitness was taken as its aggregate perfor-
mance. Otherwise, evaluation on a single sequence of signals mirrors that of the
changing-signal task.

We used an identical experimental design for the directional-signal task as in the
changing-signal task. However, we evolved programs for 5,000 generations (instead
of 100) and re-parameterized each metric’s tag mutation rate:

– 0.001 for the Hamming and hash metrics,
– 0.002 for the integer and streak metrics, and
– 0.0001 for the bidirectional integer metric.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 35 of 42 4

Fig. 12 Evolutionary performance of tag-matching metrics on the directional signals. All show each met-
ric’s best-performing mutation rate

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 36 of 42

Full configuration details for this experiment, including a guide for replication,
appears in Supplemental Section C.

Figure 12a gives the number of replicates that produced a successful SignalGP
program for each tag-matching metric on the directional-signal task.

5.3.1 Hamming and streak metrics

Again, the Hamming and streak metrics performed significantly better than all
other metrics (Fisher’s exact with a Holm correction for multiple comparisons,
p < 0.0008). We observed no significant difference in solution count between the
Hamming and streak metrics, however.

As in the changing-signal task, we assessed whether the streak metric produced
solutions in fewer generations than the Hamming metric, running 200 new replicates
of each condition until 100 replicates produced a solution and recorded the number
of generations that elapsed (Fig. 12b). Among this subset of replicates, we found
significantly faster generations-to-solution under the streak metric compared to the
Hamming metric (Wilcoxon rank-sum test, p < 0.0016).

5.3.2 Integer and hash metrics

As in the changing-signal task, we observed no difference in success between the
integer and bidirectional integer metrics on the directional-signal task. Again, the
hash metric outperformed both the integer metrics (p < 3 × 10−5).

6 Discussion

Evolutionary experiments in Sect. 5 showed that choice of tag-matching metric
significantly shaped adaptive evolution. In all experiments, adaptive evolution pro-
gressed more slowly under some metrics and more quickly under others. In most
experiments, final solution quality was also affected by tag-matching metric choice.

We found that network constraint (the number of tags a query or operand needs
to simultaneously establish affinity with) influenced the relative performance of
tag-matching metrics. In target-matching evolutionary experiments, we found that
the hash metric enabled rapid adaptive evolution toward targets with low network
constraint. Under high network constraint, however, the hash metric yielded poor-
quality solutions. The integer metrics also yielded poor-quality solutions for target
graphs with network constraint. In some more-constrained cases, the streak metric
enabled more rapid adaptive evolution than the Hamming metric.

Geometrical analyses of how tag-matching metrics constrain patterns of connec-
tivity between tags helps to explain the interplay between metrics and problem net-
work constraint. When problems require tag-matching configurations involving more
than a single query-operand tag pair (e.g., a particular query tag matching closely to
two different operand tags), these geometric constraints can make certain configu-
rations unlikely or even impossible. The bidirectional integer metric exhibited the

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 37 of 42 4

tightest geometrical constraint in our analyses. The unidirectional integer metric also
exhibited tight geometrical constraint, but quirks of its non-commutative construc-
tion allowed that constraint to split across perfect- and worst-matching extremes.
Hamming and streak metrics exhibited looser geometric constraint, with the streak
metric allowing for edge cases that very strongly break constraints. Finally, the hash
metric exhibited no geometrical constraint because it had no geometrical structure.

Geometrical constraint explains with poor performance of the integer metrics on
problems with high network constraint. However, it is surprising that the geometri-
cally unconstrained hash metric performed best on problems with low network con-
straint and worst on problems with high network constraint—the opposite of what
may otherwise be expected. Analysis of metrics’ mutational properties provides an
explanation.

Analysis of the effect of bitwise mutation on match distance score revealed
significant differences between metrics. Under the Hamming metric, all mutations
have small effects on match distance score. In contrast, under the integer metrics,
rare mutations can have strong effects on match distance score. The streak met-
ric also exhibited strong-effect mutations, particularly with respect to coupling
loosely-affiliated tags. The hash metric exhibited the fattest tails of mutational
magnitude, with strong-effect mutations occurring frequently. Interestingly, the
hash metric also exhibited sign-outcome frequencies that differed from the other
metrics: mutations that decoupled tightly-matching tags and mutations that cou-
pled loosely-matching tags were more frequent compared to other metrics.

The Hamming metric exhibited the greatest robustness to mutation along muta-
tional walks, followed by the streak metric. The integer metrics, in particular the
unidirectional integer metric, exhibited less robustness. The hash metric, where
all one-step mutations scramble match distance, exhibited the least robustness.

The hash metric’s volatility under mutation may explain how it facilitates rapid
adaptive evolution in unconstrained problem domains: this rapid evolution may
be due to the hash metric’s ability to rapidly generate variation. Likewise, the
hash metric’s poor performance on high-constraint problem domains may also
be explained by mutational volatility. If tags are selected for to simultaneously
satisfy two matching requirements (e.g., to match closely to two other tags), it

Fig. 13 A conceptual schematic
of the tag-matching metrics’
geometric properties

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 38 of 42

makes sense that adaptive evolution would be stymied if any change to the focal
tag necessarily scrambled behavior on both requirements. This would prevent
satisfaction of a single tag-matching requirement from being used as a stepping
stone towards satisfaction of both.

Results from evolution experiments with a full-fledged genetic programming
system suggest that additional mechanisms may influence tag-matching metric
performance.

In SignalGP experiments, we found that the Hamming and streak metrics
yielded successful solutions the most frequently. On the directional-signal task,
which tends to require denser (more constrained) interaction networks, we found
evidence that the streak metric enabled more rapid adaptive evolution than the
Hamming metric. The hash metric had the next-best performance in SignalGP
experiments, yielding more solutions than the integer metrics, which both per-
formed comparably poorly.

Although the hash metric performed best in low-constraint target-matching
experiments, it was outperformed in low-constraint SignalGP experiments by the
streak and Hamming metrics. Likewise, the integer metrics were outperformed
by the streak and Hamming metrics in low-constraint SignalGP experiments even
though they had not been in the low-constraint target-matching experiments.

The mechanisms driving degradation of hash and integer metric performance in
the GP experiments remain unclear. The degradation may be due to better streak and
Hash support for duplication and differentiation processes along SignalGP lineages,
in which instruction and module count can grow over time. However, altering the
graph-matching task to emphasize generation of variation and tag differentiation by
disallowing initial tag variation did not reproduce degraded hash and integer met-
ric performance. Another possible causal difference could be fitness landscape rug-
gedness. Within the target-matching experiments, the fitness benefit of a particular
query-operand match does not depend on other query-operand matches In the Sign-
alGP experiments, where modules can form arbitrary interweaving call chains, this
is likely not the case. Further experiments are needed to understand the evolutionary
dynamics of non-trivial tag-matching systems and the interplay of those dynamics
with tag-matching metrics.

Relative to the other metrics, the streak metric appears to offer intermediate vari-
ational and geometric properties. Figure 13 depicts a schematic summary of this
observation. It exhibits some, but not strict, geometric constraint. Many mutations
are neutral or near-neutral (like the integer and Hamming metrics) but a fat tail of
extreme-effect mutations also occur (like the hash metric). The streak metric exhib-
its robustness under mutational walks that falls between the Hamming and integer
metrics. These mechanistic observations offer a potential explanation for the streak
metric’s strong performance facilitating adaptive evolution under high-constraint
conditions. However, whether these mechanistic explanations are sufficiently com-
plete—especially with respect to the streak metric’s outperformance of the Ham-
ming metric under high-constraint conditions—is unclear.

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 39 of 42 4

6.1 Practical recommendations

Our results highlight the dependence of tag-matching metrics’ performance on prob-
lem domain. So, consideration of properties of the problem domain at hand should
drive the decision of which tag-matching metric to use in a particular system.

A major practical advantage of integer-based metrics is the possibility for log
time lookup of operands (i.e., via binary search). However, the integer metrics
performed competitively only within a particular class of problem domains. In all
high-constraint problem domains, the integer metrics performed poorly. Among
low-constraint problem domains, the integer metrics only performed well on the toy
graph-matching task—they did not perform well on the low-constraint GP chang-
ing signals task. At present, it is unclear what problem domain property stymied the
integer metrics in the low-constraint GP changing signals task—the potential for the
operand set to grow over time (e.g., duplication and divergence), fitness landscape
ruggedness (e.g., epistasis), or something else.

However, within the low-constraint target-matching problem domain where inte-
ger metrics performed well (i.e., a fixed-size problem with a smooth fitness land-
scape), the hash metric actually performed slightly better. So, under these condi-
tions, the hash metric may be preferable when log time lookup is not critical.

Besides the low-constraint target-matching problem domain, the Hamming and
streak metrics performed significantly better than the integer metrics. On the low-
constraint target-matching problem, both did evolve full solutions, (although the
Hamming metric was slightly slower than the streak and integer metrics). Of par-
ticular note, the Hamming and streak metrics performed best in our GP tests. So,
both metrics appear to be a robst choice across most contexts.

Choosing between the two will likely depend on implementation considerations:
the streak metric facilitated faster adaptive evolution in some experiments, but is
more computationally expensive to calculate than the Hamming metric. Future work
should investigate whether a streamlined version of the streak metric—for example,
ignoring mismatching streak length and only considering matching streak length—
suffices to capture its desirable properties.

A critical qualification on these recommendations must be noted: they assume
the bitwise mutation used in this work. Although in experiments reported in Sup-
plementary Section B we did not find that a simple Gaussian mutation operator
improved the performance of integer metrics on the graph-matching task, future
work should more thoroughly explore the extent to which our findings generalize
under alternate mutation operators.

7 Conclusion

Better understanding the mechanistic properties and functional implications of tag-
matching criteria will enable more effective incorporation of tag matching in evo-
lutionary systems. Within genetic programming, tuning tag-matching criteria could
facilitate faster evolution of higher-fitness solutions. In this domain, tag matching
approaches have been highlighted, particularly, for their potential to enable dynamic,

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 40 of 42

modular reconfiguration of evolved programs at runtime [17, 35]. Likewise, within
artificial life, tuning tag-matching criteria could enable more novelty and complex-
ity within evolving systems. There has been interest, in particular, in the potential
for tag-based referencing to facilitate inter-species interactions in digital ecologies
[6].

Our analyses suggests a key role of network constraint in the interaction between a
tag-matching scheme and problem domain. Applications where queries much match
tightly with multiple operands require high-dimensional tag-matching criteria.

The surprisingly strong performance of the hash metric on low constraint toy
problems highlights how tag-matching criteria can facilitate generation of pheno-
typic variation.

Important open questions remain with respect to tag-matching criteria. In par-
ticular, the relationships between tag-matching criteria and specificity, modular-
ity, robustness, and the process of duplication and divergence should be explored.
Evolvability or information-theoretical analyses may prove fruitful in this regard
[36]. How to systematically design new tag-matching metrics with desirable evolu-
tionary properties also remains an open problem. Mutation operator design should
also be considered. We also need algorithms capable of performing fast look ups
under high-dimensional or irregular tag-matching metrics, ideally achieving sublin-
ear time complexity on large sets of referents.

Tag-like mechanisms play a central role mediating interaction and function across
the spectrum of biological scale [14]. By shining light on previously-unexplored
mechanistic and evolutionary properties of tagging systems, we hope that insight
into artificial tag models can translate into a more nuanced appreciation—and algo-
rithmic mimicry—of natural systems.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10710- 023- 09448-0.

Acknowledgements Thanks to members of the DEVOLAB, in particular Nathan Rizik for help develop-
ing our tag-matching software infrastructure. This research was supported by Michigan State University
through the computational resources provided by the Institute for Cyber-Enabled Research. This mate-
rial is based upon work supported by the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1424871. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

Author Contributions MAM and AL contributed to the study conception and design. Material prepa-
ration, data collection and analysis of genetic programming benchmarks were performed by AL. Other
material preparation, data collection and analysis of genetic programming benchmarks were performed
by MAM. The first draft of the manuscript was written by MAM and AL and all authors commented on
previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This research was supported in part by NSF Grants DEB-1655715 and DBI-0939454. This
material is based upon work supported by the National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1424871.

Availability of data and material The code used to perform and analyze our experiments, our figures, and
data from our experiments is available via the Open Science Framework at https:// osf. io/ gw5mc/ [10].
Data and figures are also organized alongside related manuscript source files at https:// github. com/ mmore
500/ tag- olymp ics- write up.

https://doi.org/10.1007/s10710-023-09448-0
https://doi.org/10.1007/s10710-023-09448-0
https://osf.io/gw5mc/
https://github.com/mmore500/tag-olympics-writeup
https://github.com/mmore500/tag-olympics-writeup

1 3

Genetic Programming and Evolvable Machines (2023) 24:4 Page 41 of 42 4

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code availability We implemented our experimental systems using the Empirical library for scientific
software development in C++, available at https:// github. com/ devos oft/ Empir ical [25]. Software writ-
ten for these experiments is available at https:// github. com/ amlal ejini/ Explo ring- tag- match ing- metri cs- in-
Signa lGP/ tree/1.0 and https:// github. com/ mmore 500/ tag- olymp ics/ tree/ v1.1.1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. L. Altenberg et al., The evolution of evolvability in genetic programming. Adv. Genet. Program. 3,
47–74 (1994)

 2. R. J. Bagley, J. D. Farmer, Spontaneous emergence of a metabolism. Technical report, Los Alamos
National Lab., NM (USA) (1990)

 3. W. Banzhaf, Artificial regulatory networks and genetic programming, in Genetic Programming The-
ory and Practice. ed. by R. Riolo, B. Worzel (Springer, Cham, 2003), pp.43–61

 4. R.J. de Boer, A.S. Perelson, Size and connectivity as emergent properties of a developing immune
network. J. Theor. Biol. 149(3), 381–424 (1991)

 5. P. Dittrich, J. Ziegler, W. Banzhaf, Artificial chemistries-a review. Artif. Life 7(3), 225–275 (2001)
 6. E. Dolson, C. Ofria, Digital evolution for ecology research: a review. submitted (2021)
 7. K.L. Downing, Intelligence Emerging: Adaptivity and Search in Evolving Neural Systems (MIT

Press, London, 2015)
 8. S.R. Dunbar, The average distance between points in geometric figures. Coll. Math. J. 28(3), 187–

197 (1997)
 9. D. Eastlake, P. Jones, Us secure hash algorithm 1 (sha1) (2001)
 10. E.D. Foster, A. Deardorff, Open science framework (OSF). J. Med. Libr. Assoc. JMLA 105(2), 203

(2017)
 11. R.W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160

(1950)
 12. J.H. Holland, Concerning the emergence of tag-mediated lookahead in classifier systems. Phys. D

42(1–3), 188–201 (1990)
 13. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applica-

tions to Biology, Control, and Artificial Intelligence (MIT press, London, 1992)
 14. J.H. Holland, Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press,

London, 2012)
 15. M.C. Jones, Simple boundary correction for Kernel density estimation. Stat. Comput. 3(3), 135–146

(1993)
 16. J.R. Koza, Scalable learning in genetic programming using automatic function definition, in

Advances in Genetic Programming. ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, MA, USA,
1994), pp.99–117

 17. A. Lalejini, M. A. Moreno, C. Ofria, Tag-based regulation of modules in genetic programming
improves context-dependent problem solving. Genet. Program. Evol. Mach., pp. 1–31 (2021a)

 18. A. Lalejini, M.A. Moreno, C. Ofria, Tag-based regulation of modules in genetic programming
improves context-dependent problem solving. Genet. Progr. Evol. Mach. 22(3), 325–355 (2021)

https://github.com/devosoft/Empirical
https://github.com/amlalejini/Exploring-tag-matching-metrics-in-SignalGP/tree/1.0
https://github.com/amlalejini/Exploring-tag-matching-metrics-in-SignalGP/tree/1.0
https://github.com/mmore500/tag-olympics/tree/v1.1.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Genetic Programming and Evolvable Machines (2023) 24:4

1 3

4 Page 42 of 42

 19. A. Lalejini, C. Ofria, Evolving event-driven programs with signalgp. In: Proceedings of the genetic
and evolutionary computation conference, pp. 1135–1142 (2018)

 20. A. Lalejini, C. Ofria, Tag-accessed memory for genetic programming. In: Proceedings of the genetic
and evolutionary computation conference companion on - GECCO ’19, pp. 346–347, Prague, Czech
Republic. ACM Press (2019a)

 21. A. Lalejini, C. Ofria, What else is in an evolved name? exploring evolvable specificity with sig-
nalgp, in Genetic Programming Theory and Practice XVI. ed. by W. Banzhaf (Springer, Cham,
2019), pp.103–121

 22. E. B. Lewis, A gene complex controlling segmentation in drosophila. In: Genes, Development and
Cancer, pp. 205–217. Springer (1978)

 23. M.A. Lones, A.M. Tyrrell, Modelling biological evolvability: implicit context and variation filtering
in enzyme genetic programming. Biosystems 76(1–3), 229–238 (2004)

 24. R.G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven
methods. Stat. Med. 17(8), 857–872 (1998)

 25. C. Ofria, E. Dolson, A. Lalejini, J. Fenton, M. A. Moreno, S. Jorgensen, R. Miller, J. Stredwick, L.
Zaman, J. Schossau, L. Gillespie, N. C. G, A. Vostinar, Empirical (2019)

 26. C. Ofria, C.O. Wilke, Avida: a software platform for research in computational evolutionary biol-
ogy. Artif. Life 10(2), 191–229 (2004)

 27. S. Ohno, Evolution by Gene Duplication (Springer, Berlin, 2013)
 28. T.S. Ray, An approach to the synthesis of life. Artif. life II 11, 371–408 (1991)
 29. J. Reisinger, R. Miikkulainen, Acquiring evolvability through adaptive representations. In: Proceed-

ings of the 9th annual conference on Genetic and evolutionary computation, pp. 1045–1052 (2007)
 30. R.L. Riolo, M.D. Cohen, R. Axelrod, Evolution of cooperation without reciprocity. Nature

414(6862), 441–443 (2001)
 31. A. Scherer, A. Noest, R.J. de Boer, Activation-threshold tuning in an affinity model for the t-cell

repertoire. Proc. R. Soc. Lond. B 271(1539), 609–616 (2004)
 32. P.E. Seiden, F. Celada, A simulation of the humoral immune system, in Theoretical and Experimen-

tal Insights into Immunology. ed. by A.S. Perelson (Springer, Cham, 1992), pp.49–62
 33. L. Spector, K. Harrington, T. Helmuth, Tag-based modularity in tree-based genetic programming.

In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp. 815–
822. ACM (2012)

 34. L. Spector, K. Harrington, B. Martin, T. Helmuth, What’s in an evolved name? the evolution of
modularity via tag-based reference, in Genetic Programming Theory and Practice IX. ed. by R.
Riolo (Springer, Cham, 2011), pp.1–16

 35. L. Spector, B. Martin, K. Harrington, T. Helmuth, Tag-based modules in genetic programming. In:
Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp. 1419–
1426. ACM (2011b)

 36. D. Tarapore, J.-B. Mouret, Evolvability signatures of generative encodings: beyond standard perfor-
mance benchmarks. Inf. Sci. 313, 43–61 (2015)

 37. T. Taylor, M. Bedau, A. Channon, D. Ackley, W. Banzhaf, G. Beslon, E. Dolson, T. Froese, S. Hick-
inbotham, T. Ikegami et al., Open-ended evolution: perspectives from the OEE workshop in York.
Artif. Life 22(3), 408–423 (2016)

 38. J. Timmis, A. Hone, T. Stibor, E. Clark, Theoretical advances in artificial immune systems. Theoret.
Comput. Sci. 403(1), 11–32 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Matchmaker, matchmaker, make me a match: geometric, variational, and evolutionary implications of criteria for tag affinity
	Abstract
	1 Introduction
	2 Tags and tag-matching metrics
	2.1 Hash metric
	2.2 Hamming metric
	2.3 Streak metric
	2.4 Integer metric
	2.5 Bidirectional integer metric
	2.6 Match distance uniformification

	3 Geometric analyses
	3.1 Similarity constraint
	3.1.1 Hash metric
	3.1.2 Hamming metric
	3.1.3 Streak metric
	3.1.4 Integer metric
	3.1.5 Bidirectional integer metric

	3.2 Dissimilarity constraint
	3.2.1 Hash metric
	3.2.2 Hamming metric
	3.2.3 Streak metric
	3.2.4 Integer metric
	3.2.5 Bidirectional integer metric

	3.3 Detour difference

	4 Variational analysis
	4.1 Single-step mutations
	4.1.1 Hash metric
	4.1.2 Hamming metric
	4.1.3 Streak metric
	4.1.4 Integer and bidirectional integer metrics

	4.2 Mutational walks
	4.2.1 Hash metric
	4.2.2 Hamming metric
	4.2.3 Streak metric
	4.2.4 Integer metric and bidirectional integer metric

	5 Evolutionary analysis
	5.1 Graph-matching task
	5.1.1 Hash metric
	5.1.2 Hamming and streak metrics
	5.1.3 Integer metrics
	5.1.4 Identical initialization experiment

	5.2 Changing-signal task
	5.2.1 Hash metric
	5.2.2 Hamming and streak metrics
	5.2.3 Integer metrics

	5.3 Directional-signal task
	5.3.1 Hamming and streak metrics
	5.3.2 Integer and hash metrics

	6 Discussion
	6.1 Practical recommendations

	7 Conclusion
	Anchor 52
	Acknowledgements
	References

