
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2019) 20:479–501
https://doi.org/10.1007/s10710-019-09357-1

1 3

A covariance matrix adaptation evolution strategy
in reproducing kernel Hilbert space

Viet‑Hung Dang1 · Ngo Anh Vien2 · TaeChoong Chung3

Received: 22 August 2018 / Revised: 15 May 2019 / Published online: 19 June 2019
© The Author(s) 2019

Abstract
The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient
derivative-free optimization algorithm. It optimizes a black-box objective function
over a well-defined parameter space in which feature functions are often defined
manually. Therefore, the performance of those techniques strongly depends on the
quality of the chosen features or the underlying parametric function space. Hence,
enabling CMA-ES to optimize on a more complex and general function class has
long been desired. In this paper, we consider modeling the input spaces in black-
box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS).
This modeling leads to a functional optimisation problem whose domain is a RKHS
function space that enables optimisation in a very rich function class. We propose
CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-
box functional optimisation in RKHS. A search distribution on non-parametric func-
tion spaces, represented as a Gaussian process, is adapted by updating both its mean
function and covariance operator. Adaptive and sparse representation of the mean
function and the covariance operator can be retained for efficient computation in
the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We
will also show how to apply our new black-box framework to search for an optimum
policy in reinforcement learning in which policies are represented as functions in a
RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and
two bench-marking reinforcement learning domains.

Keywords  Covariance matrix adaptation-evolution strategies (CMA-ES) ·
Functional optimization · Policy search · Reinforcement learning · Robot learning ·
Kernel methods · Reproducing kernel Hilbert space

Area Editor: U.-M. O’Reilly.

 *	 Ngo Anh Vien
	 v.ngo@qub.ac.uk

1	 Department of Computer Science, Duy Tan University, Da Nang, Vietnam
2	 School of EEECS, Queen’s University Belfast, Belfast, UK
3	 Department of Computer Engineering, Kyung Hee University, Seoul, Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09357-1&domain=pdf

480	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

1  Introduction

The covariance matrix adaptation evolutionary strategy (CMA-ES) is a deriva-
tive-free method [12] which is a practical optimization tool for continuous opti-
mization problems. It is a general optimization framework that possesses many
appealing characteristics, e.g. derivative-free, covariant, off-the-shelf, scalable
etc. It is especially useful on problems that are non-convex, non-separable, ill-
conditioned, multi-modal, and with noisy evaluations. As the name indicates,
CMA-ES belongs to Evolution Strategy (ES), hence it also works by operat-
ing three major steps: recombination, mutation and selection. In the context of
robotics, CMA-ES has been widely used in many tasks: biped locomotion [43],
whole-body locomotion optimization [8, 9], swimming by [34], skill learning
via reinforcement learning [14, 15, 31], inverse reinforcement learning [5, 28],
etc. Applying CMA-ES requires explicitly a finite-dimensional search space on
which solution candidates live. In many domains, e.g. robotics, an optimization
objective is often defined as a cost function of another parametric solution func-
tion. For instance, it might be an overall cost function depending on a robot con-
troller, e.g. applications CMA-ES in robot skill learning [31] and policy search
[15], or a loss function in the context of inverse optimal control [5, 28], etc.. A
robot controller is usually a parametric function of predefined feature maps, e.g.
radial basis function (RBF) features. Though showing a lot of remarkable suc-
cesses, such parametric approaches as well as their black-box solver, the para-
metric CMA-ES, could not model a very rich and flexible solution space, e.g. a
complex behavior space. The performance of CMA-ES is affected not only by a
suboptimal choice of features, but also the amount of used features. Therefore,
integrating the ability of adaptive feature selection or non-parametric techniques
into CMA-ES has been desired and not yet investigated, though this integration
have been seen very often in other machine learning algorithms.

In this work, we propose CMA-ES-RKHS that enables functional optimization
over a non-parametric solution space. Specifically, we assume that the solution
(domain) space is a reproducing kernel Hilbert space (RKHS). Each solution can-
didate is a function in RKHS. Modeling the solution space this way, CMA-ES-
RKHS is able to not only inherit full characteristics from CMA-ES, but enjoy
other appealing properties of kernel methods as well. Firstly, CMA-ES-RKHS is
able to optimize a functional objective whose domain consists of functions in a
RKHS with an embedding kernel. That means the solution space does not need
to depend on a set of predefined features that often has limited complexity, there-
fore our method can have richer representation power. Secondly, by modeling the
solution space in RKHS, all update steps in CMA-ES-RKHS are handled analyti-
cally. We show that updated mean functionals, other intermediate terms, evolu-
tion path functionals or conjugate evolution path functionals are functions in the
underlying RKHS. Moreover, the updated covariance is also an operator on the
underlying RKHS. In other words, there is no additionally introduced computa-
tion when compared to the standard CMA-ES method. Thirdly, via sparsification
techniques, a very complex search space can be represented compactly due to the

481

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

reproducing property of the RKHS. However we can still achieve a solution of
guaranteed quality which is at least comparable to that of the standard CMA-ES
method. Though the use of sparsification might lead to representation with only a
finite number of features, it allows adaptive feature selection and offers compact
representation that reduce the computation cost.

By employing CMA-ES-RKHS we propose a non-parametric direct policy search
technique in which the policy space in RL is an RKHS. As demonstrated by [2,
19, 36, 38, 40], the policy in RKHS is shown to be powerful and flexible in solv-
ing complex RL tasks. However their approaches use functional gradient ascent
to update the policy functional that might have a problem with step-sizes or local
optimality. It means the optimized policy does not fully exploit the flexible power
of modeling in RKHS, which might consist of any complex policies including the
global optimum one. As a global optimization method, our policy search via CMA-
ES-RKHS is expected to search for such globally optimal policies. This paper is an
extension from our work published [39].

Recently, there have been similar efforts in proposing new machine learn-
ing frameworks for functional optimization, such as functional regression by [16],
representing motion trajectories in RKHS by [6, 21], or finding geodesic shortest
paths in physical systems by [17]. We demonstrate the proposed CMA-ES-RKHS
and direct policy search via CMA-ES-RKHS in four experiments. The first two syn-
thetic domains demonstrate the advantages of functional optimization in RKHS. The
last two experiments are two RL domains, inverted pendulum and double-pendulum
swing-up. The experiments will evaluate how CMA-ES-RKHS can do adaptive fea-
ture selection in a non-parametric way.

Our paper is organized as follows. The Background section will briefly discuss
necessary preliminaries that will be used in the rest of the paper. Section 3 will start
with a problem statement of functional optimization and then we will present our
proposed framework, CMA-ES-RKHS. Section 4 will describe an application of
CMA-ES-RKHS to a policy search problem in reinforcement learning. Section 5
will present experiment results on numerical and RL domains. Finally, we will con-
clude the paper with some remarks and future research directions.

2 � Background

We briefly present a background of the Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES), its application for direct policy search reinforcement learning,
and the recently introduced policy search in RKHS.

2.1 � Covariance matrix adaptation‑evolution strategy

CMA-ES is a global optimisation method introduced by [12]. It works by forming
a parametric distribution over the solution space, e.g. the space of policy param-
eter in policy search, or the space of parameters of the loss function in inverse opti-
mal control, etc. It iteratively samples a population of solution candidates from a

482	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

parametrized search distribution. These candidates are then evaluated by a black-box
function. Tuples of candidate-evaluation make up a dataset in order for CMA-ES to
update the search distribution, i.e. its mean and its covariance matrix. Specifically, a
cost function f ∶ ℜn

↦ ℜ is parametrized by a parameter space � ∈ ℜn , f (�) . The
target is to find an optimum parameter �∗ such that f (�∗) is minimum. It is common
that a CMA-ES algorithm maintains a multivariate Gaussian distribution over the
solution space as � ∼ N(�;�,�) , where � is a n-dim mean vector and � is a n × n
covariance matrix. At each iteration k, it generates the kth population of � offsprings
from the kth distribution as �i ∼ N(�;�k,�k) , i = 1,⋯ , � , where �k,�k denote the
mean vector and the covariance matrix at iteration k (after � and � got updates k
times). Then, the offsprings are sorted ascendingly according to their evaluations
f (�i) . Only the first � ( < 𝜆 ) best candidates are selected for use in updates of �k and
�k . Another parameter is the global step-size � ∈ ℜ that controls the convergence
rate of the covariance matrix update. The parameter � is defined as a global standard
deviation. Hence, a full set of parameters in CMA-ES is {�,�, �}.

In Algorithm 1, we give a full summary of the CMA-ES algorithm. Algorithm 1
starts with an initialisation of the parameters in steps 1 and 2. As discussed above,
the parameters {�,�, �} are updated iteratively as shown in steps from 4 to 13. Step
4 is sampling from a normal distribution with mean � and covariance � . The evalu-
ations via query to the black-box function f (⋅) are in step 5. The updated mean is
a weighted sum of the best � candidates as in step 7, in which the weights wi are
set to 1∕� or to a better choice log(�∕2) − log(i) . The notation �i∶� means the best
candidate out of �i,… , �� . The covariance matrix update in step 13 consists of three
parts: (1) old information, (2) rank-1 update which computes the change of the mean
over time as encoded in the evolution path �c , and (3) rank-� update which takes
into account the good variations in the last population. Step 10 devotes to the step-
size control update that constrains the expected changes of the distribution. Thus,
this step is based on the conjugate evolution path �� . It aims to accelerate conver-
gence to an optimum, and meanwhile prevents premature convergence. The other
parameters: �w is the variance effective selection mass, c1, cc, c� are learning rates,
and d� is a damping factor for � . The setting of these parameters is well studied and
discussed in-depth in [10]. The termination can be set in various ways depending on
the contracting covariance, or fitness functions (e.g. if the fitness functions of the
population do not change for some iterations).

483

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

The updates of CMA-ES can alternatively be derived using the information-geomet-
ric concept of a natural gradient as shown in [11], which shares the same insight with
the natural evolution strategies (NES) [44].

There are less efficient but practically fast techniques that can also adapt the covari-
ance matrix: estimation of distribution algorithms (EDA) and the cross-entropy method
(CEM). The major difference from CMA-ES is the choice of the reference mean value.
EDA and CEM estimate the variance using the current population information, �1∶� ,
instead of exploiting old information as encoded in previous information of � and �c .
Specifically, for the Gaussian search distribution, one can modify steps 9 and 13 in
Algorithm 1 to receive new updates at iteration k for EDA and CEM [26, 27] as follows

The difference between EDA and CEM is: EDA updates C to the empirical covari-
ance matrix, meanwhile CEM updates C to the unbiased empirical covariance
matrix

2.2 � Direct policy search in reinforcement learning

In this section, we describe the background of Markov decision process, reinforce-
ment learning and policy search techniques.

�(k) =
1

𝜇

𝜇∑

i=1

𝜃i,

�
(k)

EDA
=

1

𝜇

𝜇∑

i=1

(
𝜃i −�(k)

)(
𝜃i −�(k)

)⊤
,

�
(k)

CEM
=

𝜇

𝜇 − 1
�

(k)

EDA
.

484	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

2.2.1 � Markov decision process and reinforcement learning

A Markov Decision Process (MDP) is a mathematical framework often used to
formulate sequential decision making problems that is understood as an interac-
tion process between an agent and an external environment. A MDP is defined
as a 5-tuple {S,A, T,R, �} , where S is a state space of the environment. A is an
action space that can be taken by the agent to interact with the environment. T
is a transition function defined as T(s, a, s�) = p(s�|s, a) that tells a probability of
next state s′ if at state s, action a is taken. R is a reward function, i.e. R(s, a) ,
that returns a scalar value if the environment at state s and action a is taken.
� ∈ (0, 1] is a discount factor. The agent’s task is to find an optimal deterministic
policy � ∶ S ↦ A , which is a mapping from states to actions, that maximizes an
expected cumulative discounted return, denoted as J(�) a function of � which is
defined as

where the expectation is with respect to the stochasticity of the transitions T  . The
term inside expectation is the infinite-horizon sum of discounted rewards. Alterna-
tively, the policy � can be stochastic and written as � ∶ S ×A ↦ [0, 1] that defines
the probability of selecting actions at a state. Finding optimal policies MDP can be
handled by the use of dynamic programming, e.g. value iteration or policy iteration
algorithms Puterman [24].

Reinforcement learning is a family of learning algorithms in MDP in which
J(�) is optimised w.r.t � when the agent does not know the dynamics of the envi-
ronment, i.e. unknown T and R . In unknown environment, planning techniques
like value iteration or policy iteration can not be directly used. There are many
different types of RL algorithms, but can often be categorized into two fashion:
value-based and policy-based methods [32]. Value-based methods consist of
Q-learning, SARSA, etc. that optimizes the policy by estimating intermediate
terms, called value funcions or Q-value functions. Policy-based methods (direct
policy search) optimize J(�) on the parametric policy space. The policy can be
optimized using policy search techniques such as policy gradient [45], natural
actor-critic [23], Bayesian policy gradient Ghavamzadeh et al. [7], Vien et al.
[41], or black-box search such as CEM [20] and CMA-ES [15], etc. The first two
techniques are local methods that can only look for locally optimal policies (more
discussions over their differences can be found in [13]).

In the next sections, we first describe an application of CMA-ES for policy
search as introduced in [15], then give a brief introduction of one policy gradient
technique that models policies in reproducing kernel Hilbert space [19].

(1)J(�) = �T

[
∞∑

t=0

� trt

]
,

485

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

2.2.2 � Direct policy search via CMA‑ES

As direct policy search would directly search on the space of policies using sto-
chastic optimization, one natural application of CMA-ES for direct policy search
is to construct a search distribution on the policy space. Assuming that the policy
space is parameterized by a function space H , in which each function h ∈ H is
defined as h ∶ S ↦ ℜ . Specifically, each policy is written as a deterministic dis-
tribution as

where � ∈ A is an action, � ∈ S is a state. For parametric policy approaches, the
function space H is parametrized by a parameter space � ∈ ℜn . For example, h
might be a neural network (where n is the number of trainable parameters in the
network), or be a linear function of predefined features (where n is the number of
features) as

where �j denotes the jth coordinate of � , and �j(s) is the jth feature. Therefore, the
objective in Eq. 1 as a function of policy can be re-written as a function of param-
eters � . The authors in [15] propose to use the CMA-ES algorithm in Algorithm 1 to
optimize a cumulative reward objective function of �,

where the expectation is with respect to the stochasticity of the stochastic policy
�(s, a;�) and the dynamics T  . For each candidate �i , its evaluation in Step 5 in Algo-
rithm 1 is J(�i) . Each J(�i) is computed using Monte-Carlo simulations. Specifically,
a set of N trajectories are sampled by executing the policy �(�i) , then the evaluation
is approximated as J(�i) ≈

1

N

∑N

j=1
R(�j) , where R(�j) is a return of trajectory j, �j .

One advantage of CMA-ES is the ability to adapt the covariance matrix to control
exploration, therefore it is considered to be more robust to noise and that is typically
the case in robotics. The application of CMA-ES for direct policy search has shown
many remarkable results in robotics Deisenrot et al. [4].

2.2.3 � Policy gradient in reproducing kernel Hilbert space

An alternative direct policy search is policy gradient which uses gradient ascent
to find a local optimal policy � . In this section, we discuss how to use functional
gradient ascent that would optimise the objective J(h) directly on a function space
of h, instead of a parameterised function space through � . We start by describing

(2)� = h(�;�),

(3)h(�) =

n∑

j=1

�j�j(�),

(4)J(�) = ��,T

(
∞∑

t=0

� trt

)
,

486	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

how to represent a function space in a non-parametric way through a reproducing
kernel Hilbert space.

A reproducing kernel Hilbert space is a Hilbert space of functions in which the eval-
uation functional is a continuous linear functional. Denote S a set (e.g. a state space in
MDP) and H a Hilbert space of functions on S . An evaluation functional is defined as a
linear functional that has an evaluation at each point � as

Essentially, the above definition means the linear functional L� evaluates f at a � to
receive L�(f) = f (�).

According to the Riesz representation theorem [18], for all �� ∈ S there exists a
unique evaluation functional K(�, ⋅) ∈ H satisfying the reproducing property:

where ⟨⋅, ⋅⟩ denotes an inner product. The above result also means that we are evalu-
ating the function K(⋅, ��) using the evaluation functional K(�, ⋅) , and vice versa. We
call the Hilbert space H with a reproducing kernel K, a reproducing kernel Hilbert
space HK [29].

Recently, there have been efforts in integrating kernel methods with policy search in
reinforcement learning. The work by [2, 19] suggest to represent policies in reproduc-
ing kernel Hilbert spaces in order to enjoy rich representation and flexible complexity,
in which each function h(⋅) in the definition of policies in Eq. 2 is a vector-valued func-
tion in RKHS HK , and defined as

and K is a vector-valued kernel, K ∶ S × S ↦ L(A) [22], in which L(A) is the space
of linear operators on A (an action space). In policy gradient, we often resort to
stochastic policies in order to make gradients exist and promote exploration in RL,
therefore Gaussian policies are commonly chosen and written as

where � is a covariance matrix that dictates the level of exploration. In all experi-
ments, we use a diagonal matrix � = �2� , where � starts with a large value (when
exploration dominates) and decreases gradually (until exploitation dominates) Lever
and Stafford [19]. A more sophisticated strategy can be used to adapt � , e.g. func-
tional gradient Vien et al. [40].

Using this functional policy parametrization, we can analytically derive the func-
tional gradient ∇hJ(�h) of the objective J(�h) w.r.t h by using the Fréchet derivative
[18], and compute its approximate value given a set of sampled trajectories {�i}Ni=1 of
length H at most,

L� ∶ f ↦ f (�), ∀f ∈ H.

K(�, ��) = ⟨K(�, ⋅),K(⋅, ��)⟩,

(5)h(⋅) =
∑

i

K(�i, ⋅)�i, where �i ∈ A,

(6)�(�, �;h) = p(�|�;h) ∼ N(h(�);�),

487

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

where R(�) =
∑

t �
trt is the accumulated reward of the trajectory � , and P(�i) is

the probability distribution of trajectories. In the third step, we use the log trick
∇hP(�;h) = [∇h logP(�;h)]P(�;h) . The Monte-Carlo estimation step means that we
sample N trajectories {�i}Ni=1 from the distribution P(�;h) . Q(�t, �t) is a sample of the
Q-value function of (�t, �t) (this equality results from the Policy Gradient theorem
[33]). Thus, the derivation in Eq. 7 results in ∇hJ(�h) as a function in HK as defined
in Eq. 5. In addition, the functional gradient update at iteration k can be written as

where � is a step-size. As the representation of each policy hk+1 becomes more com-
plex after each iteration [19] (the number of linear evaluation functionals K(si, ⋅)
involved in the representation of hk+1 ), a sparsification technique is often used to
achieve a sparse and adaptive policy. A compatible kernel for Q-functions Q�(�, �)
can simply be derived based on kernel K, that is Kh as

Kernel regression methods can be used to approximate Q easily via kernel matching
pursuit [42], kernelized Least Square Temporal Difference Q-learning (k-LSTDQ)
[46], etc. This framework is called the compatible RKHS Actor-Critic framework
(RKHS-AC) by [19]. Though RKHS-AC has very excellent policy modeling, it
would only result in locally optimal policies. A global policy search technique like
CMA-ES which may be considered as a powerful off-the-shelf tool but has many
drawbacks on its current form. For many applications of CMA-ES, a parametric
objective function is often designed, which requires a set of predefined features.
Hence, the choice of features plays a very important role. Recently, the authors
in [40] propose a natural actor-critic in RKHS algorithm by computing the Fisher

(7)

∇hJ(�h) = ∇h�

{
∑

t

� trt

}

= ∇h ∫ R(�)P(�;h)d�

= ∫
[
R(�)∇h logP(�;h)

]
P(�;h)d�

≈
1

N

N∑

i=1

∇h logP(�i;h)R(�i)

=
1

N

N∑

i=1

H∑

t=0

Q(�t, �t)K(�t, ⋅)�
−1(�t − h(�t)),

(8)hk+1 ← hk + �∇hJ(�hk),

(9)Kh

(
(�, �), (��, ��)

)
=
(
K(�, ��)𝛴−1(� − h(�))

)⊤

𝛴−1(�� − h(��)).

488	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

information operator, which is analogue to the Fisher information matrix for para-
metric policies.

3 � CMA‑ES in reproducing kernel Hilbert space

3.1 � Problem statement

We consider a black-box functional optimisation problem [37] that finds the maxi-
mum of an unknown functional f ∶ H ↦ ℜ , where H = {h ∶ X ↦ Y} is a separable
Hilbert space of vector-valued functions h with a domain X and output space Y . For
each queried function h ∈ H , an evaluation y = f (h) is returned. The goal is to find
an optimal function h∗ = argmaxh∈H f (h) such that the functional f (h∗) is maximum
with least queries, i.e. f (h∗) ≥ f (h),∀h ∈ H . For example, we might want to find tra-
jectories of minimum cost for a mobile robot to move from one location to a desired
destination. A trajectory is represented by a function h ∶ [0, 1] ↦ C , that maps time
t ∈ [0, 1] to robot configuration h(t) ∈ C where C denotes the configuration space of
a robot. A configuration is the positions of all robot points as represented relatively
in a fixed coordinate system. The cost functional f(h) maps each trajectory h to a
scalar cost in ℜ . The cost might measure the efficiency of the trajectory (energy effi-
ciency) and the proximity to obstacles (obstacle avoidance).

3.2 � The CMA‑ES‑RKHS framework

We propose a new general-purpose CMA-ES-RKHS framework, a generalized
CMA-ES variant in RKHS, that solves the above problem. We explicitly assume
the function space H as a reproducing kernel Hilbert space (RKHS) associated
with a kernel K. Each h ∈ H is defined as a mapping from an arbitrary space X
to Y , h ∶ X ↦ Y . The function space H may be a vector-valued RKHS [22],
denoted as HK , with the kernel K ∶ X × X ↦ L(Y) , where L(Y) is the space of lin-
ear operators on Y . For example, when X = ℜn the simplest choice of K might be
K(x, x�) = �(x, x�)In , where In is an n × n identity matrix, and � is a scalar-valued
kernel [29]. Each function h ∈ H is then represented approximately as a linear span
of finite elements {xi, yi} as

Now we define a search distribution over H . A direct extension of parametric CMA-
ES is to use a Gaussian process over the solution function h, h ∼ GP(m, �2C) ,
where m is a mean function in HK , C is a covariance operator on HK , and � is a
scalar global step-size. We discuss now how to update the functionals {m,C} and
the parameter � in our CMA-ES-RKHS framework, which is also summarised in
Algorithm 2. Basically, one might think of the difference between CMA-ES versus
CMA-ES-RKHS as: (1) the parameterization is a finite parameter space of � ∈ ℜn
versus a potentially infinite space of h ∈ RKHS, (2) the search distribution is a

(10)h(⋅) =
∑

i

K(xi, ⋅)yi.

489

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

multi-variate Normal distribution versus a Gaussian process, (3) each sample from
the search distribution is a finite parameter vector �i versus a function hi . We now
describe the CMA-ES-RKHS framework in more detail.

3.2.1 � Mean function update in RKHS

Assuming that at iteration k, we can sample a set of � functions g̃i ∼ 𝔾ℙ(0,C) (Step
4), where 𝔾ℙ(0,C) is a Gaussian process with mean function 0 and covariance C.
Many techniques for sampling from a Gaussian process are basically described in
[25]. It is commonly known that a sample from a Gaussian process is not in HK
with probability of 1, as discussed in detail by [1]. For any sampling techniques of a
Gaussian process, we receive g̃i in a form of data tuples (x(i), y(i)) . In order to receive
a function in HK , we approximate g̃i by a function gi ∈ HK . One technique allows
us to do this is kernel ridge regression whose kernel is the covariance operator C(⋅, ⋅)
(Step 5). Hence, in our framework each function g̃i is approximated by a function
gi ∈ HK . As a result, a new function candidate sampled from the function distribu-
tion is hi = m + �gi . The new mean function is updated as (Step 9),

where the normalized weights wi satisfy

(11)m = m + �

�∑

i=1

wigi∶� ∈ HK ,

𝜇∑

i=1

wi = 1, w1 ≥ w2 ≥ ⋯ ≥ w𝜇 > 0.

490	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

As a result, after the update the new functional mean is an element in HK . We
denote ḡ as

There are a number of settings for w that might inherit from that of CMA-ES, for
example: wi = 1∕� , wi ∝ � − i + 1 ; or a better choice wi = log(� +

1

2
) − log(i) . In

our experiment, we implement the latter as it performs consistently better in all
domains.

3.2.2 � Covariance operator update

The covariance operator update (Steps 14–15) is based on the best selected candi-
date functions in terms of their evaluations f (hi) . Hence an empirical estimate of the
covariance operator C on HK , called rank-� update, is

where c� is a learning rate of rank-� , and ⊗ denotes an outer product. Similar to
parametric CMA-ES, we also consider the change of the mean function over time by
estimating an evolution path function pc as (Step 14),

where �w is a variance-effectiveness constant, and cc is the backward time horizon
for the evolution path function pc . This is low-pass filtered of chosen steps ḡ . As pc
is just a linear combination of functions in HK , therefore pc is also an element in
RKHS HK . As a result, a complete update of the covariance operator that combines
both rank-1 and rank-� is computed as (Step 15),

where and c1, c� are learning rates of rank-1 and rank-� respectively. This reduces
to a rank-1 update if c1 = 1, c� = 0 . Similarly, the update becomes a rank-� update
when c1 = 0, c� = 1.

3.2.3 � Step‑size update

The global step-size � is adapted through the computation of a conjugate evolution
path function p� as (Step 11),

ḡ =

𝜇∑

i=1

wigi∶𝜆.

C = (1 − c𝜇)C + c𝜇

𝜇∑

i=1

wigi∶𝜆 ⊗ gi∶𝜆,

(12)pc = (1 − cc)pc +
√
cc(2 − cc)𝜇wḡ ∈ HK ,

(13)C = (1 − c𝜇 − c1)C + c1pcp
⊤

c
+ c𝜇

𝜇∑

i=1

wigi∶𝜆 ⊗ gi∶𝜆,

491

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

where c� is a backward time horizon for the conjugate evolution path function p� .
According to the bounded inverse theorem in functional analysis [3], C as computed
in Eq. 13 is a linear operator in the RKHS HK , hence it has a bounded inverse C−1 .
Therefore, p� is updated in a way that renders it an element in HK . The volume and
the correlation of the selected steps are compared to the expected value of the stand-
ard Gaussian process with a Dirac kernel. The fact that the former is larger than the
latter makes � increased, otherwise decreased. The update formula of � (Step 12) is

where ‖ ⋅ ‖ is the L2-norm, and d� is a damping factor for � . The term �‖GP(0, �x)‖ is
the expectation of all L2-norms of functions sampled from GP(0, �x) . This term can
be computed in advance using Monte-Carlo simulations as

where gi(⋅) is a function in HK approximated (via kernel ridge regression) from a
sample g̃i drawn from GP(0, �(⋅, ⋅)).

3.2.4 � Sparsification and adaptive representation

We now discuss implementation concerns of the CMA-ES-RKHS algorithm. Firstly,
the most critical one is the representation issue of mean functions m and covariance
operators C. Secondly, it follows with discussions of parameter setting in CMA-ES-
RKHS. Thirdly, we discuss how to deal with the update rule in Eq. 14 that involves
finding the inverse operator C−

1

2.
Sparsification (Step 16): The updates of the mean function in Eq. 11 and covari-

ance operator in Eq. 13 make their representation complexity increase linearly on
the number of iterations. Though we receive an adaptive, flexible and complex pol-
icy, this would result in an expensive evaluation cost, e.g. computing m(x) or C(h, h�)
when needed, where x ∈ X and m, h, h� ∈ HK . Sparsification is a technique that is
able to keep these kernel-based representation sparse and approximately accurate.
Assuming that after each iteration, m and C are re-written in the forms of

where N1,N2 are the numbers of functions in the representation of m, C respectively,
xi ∈ X, hi ∈ HK , and �i, �i ∈ Y . Assuming that a sparsification algorithm would
sparsify m and C to become

(14)p𝜎 = (1 − c𝜎)p𝜎 +
√
c𝜎(2 − c𝜎)𝜇wC

−
1

2 ḡ,

(15)� = � exp

�
c�

d�

� ‖p�‖
�‖GP(0, �(⋅, ⋅))‖ − 1

��
,

�‖GP(0, �(⋅, ⋅))‖HK
≈

1

N

N�

i=1

⟨gi(⋅), gi(⋅)⟩HK
,

(16)m =

N1∑

i

𝛽iK(xi, ⋅), C =

N2∑

i

𝜆ihi ⊗ hi,

492	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

where x̃i ∈ X, h̃i ∈ HK and satisfying that n1 ≪ N1, n2 ≪ N2 . In our CMA-ES-
RKHS framework, we resort to two different sparsification techniques separately for
m and C. We propose to use the kernel matching pursuit algorithm [42] to sparsify
m. Its idea is to add kernel functions K(xi, ⋅) as features sequentially and greedily
that maximally reduce the current approximation error. A tolerance constant is used
to check the error reduction level before adding a new kernel feature. The use of tol-
erance also helps achieving more compact representation.

In general, we can use the kernel matching pursuit algorithm [42] to sparsify C.
However, we aim to look for a method that will both sparsify C and together com-
pute the inverse square root operator C−

1

2 , because C−
1

2 is also used in Step 11 in
Algorithm 2. Therefore, we propose to use the kernel PCA method (kPCA) from
[30] for achieving efficiently and fast both a sparse and compact covariance operator
and its inverse square root operator. Specifically, we rewrite C in Eq. 16 as

where H is a matrix whose ith column is hi , a N2 × N2 diagonal matrix � = diag(�i) ,
and � = H�

1

2 . Via kPCA, C can be decomposed through a decomposition of the
N2 × N2 Gram matrix G = 𝛷⊤𝛷 , in which G(i, j) =

√
�i�j⟨hi, hj⟩HK

 . If a singular
value decomposition (SVD) of G is G = UDU⊤ , the decomposition of C via kPCA
is C = VDV⊤ , where V = �UD

−
1

2 are orthonormal eigenfunctions of C, hence
V = H�

1

2UD
−

1

2 . One could easily show that each eigenfunction of C is a linear span
of {hi}

N2

i=1
,

where wij is an element of a matrix W = �
1

2UD
−

1

2 . Hence vi is also an element in HK .

From the decomposition of C via kPCA, we are now able to sparsify C by choos-
ing only a small set of eigenfunctions of principal eigenvalues. Moreover, from the
decomposition of C, the inverse square root operator C−

1

2 is derived as

which is also a linear operator in RKHS HK.
Parameter setting The mean function is represented by n1 adaptive kernel fea-

tures, hence it has n1 pivotal parameters. In CMA-ES, parameter setting is based on
the number of free parameters, the dimensionality of the search space. Though it is
not precise, we use the same setting of CMA-ES for CMA-ES-RKHS’s parameters,
i.e. the parameters: c1, cc, c�, c� , d� based on n1 . We call n1 the effective dimensional-
ity on our CMA-ES-RKHS.

m =

n1∑

i

𝛽iK(x̃i, ⋅), C =

n2∑

i

𝜆̃ih̃i ⊗ h̃i,

C = H𝛬H⊤ = 𝛷𝛷⊤,

vi =
∑

i

wijhj(⋅),

(17)C
−

1

2 = VD
−

1

2V⊤,

493

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

3.3 � EDA and CEM in RKHS

For a short notice, the derivations of CMA-ES-RKHS can easily be transferred
to derive EDA–RKHS and CEM–RKHS algorithms which are EDA and CEM in
RKHS. Specifically, the updates at iteration k for EDA–RKHS and CEM–RKHS
change step 9 and 15 in Algorithm 2 as follows

Though the updates of C(k)

EDA–RKHS
 and C(k)

CEM–RKHS
 are simpler than C of CMA-ES-

RKHS, they result in similar covariance operators on HK . Hence the implementation
technique of EDA–RKHS and CEM–RKHS is similar to that of CMA-ES-RKHS as
discussed above. Therefore, we will not put them in comparisons due to their weaker
performance when compared to CMA-ES-RKHS.

4 � Direct policy search via CMA‑ES‑RKHS

In RL literature, there is recent effort to model policies as functions in RKHS [2, 19,
40]. Such RKHS policy gradient approaches suffer from a problem of step-size and
local optima. Though one of the extended work, RKHS EM-based policy search
(RKHS-PoWER) by [40], would overcome this issue, it can only converge to local
optima. We propose a new black-box direct policy search in RKHS that is based on
CMA-ES-RKHS (the extension to EDA–RKHS and CEM–RKHS is similar). We use
deterministic policies where each policy is a function in RKHS with a kernel K as first
introduced in Eq. 5. Different from the standard CMA-ES based direct policy search
[15], our non-parametric modeling enables optimisation in a very rich policy space and
allows to learn more complex policies that is able to avoid local optima, enjoy adaptive
and compact representation and do not depend on pre-defined features.

Adaptive CMA-ES direct policy search There is a naive way that modifies the
parametric CMA-ES direct policy search [15] to become adaptive in selecting features.
This naively proposed modification is used as a base-line to compare to CMA-ES-
RKHS policy search. Assuming that we use a controller that is a linear span of RBF
features �i(�) in which �i is a center,

m(k) =
1

𝜇

𝜇∑

i=1

hi ∈ HK ,

C
(k)

EDA–RKHS
=

1

𝜇

𝜇∑

i=1

(hi − m(k))⊗ (hi − m(k)),

C
(k)

CEM–RKHS
=

𝜇

𝜇 − 1
C
(k)

EDA–RKHS
.

(18)h(�) =

n∑

i=1

wi�i(�).

494	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

where each �i(�) = K(�, �i) Thus, h becomes a parametric function whose param-
eters are � = {wi}

n
i=1

 . This renders policies �(a|�;w) a standard parametric policy.
Therefore standard policy search algorithms like CMA-ES and policy gradient can
be applied straightforwardly. Applying the CMA-ES based direct policy search
method [15], the parameter space would be � = {wi} ∈ ℜn . We make a slight
change to assume that the parameter space is {wi, �i} , called adaptive CMA-ES
direct policy search (CMA-ES-A). This adaptive algorithm would search for both
optimum weights and optimum RBF features. A clear problem of CMA-ES-A is in
determining the scaling of these parameters. However it is in principle overcome by
the RKHS norm on functions which is similar to the setting in our CMA-ES-RKHS
algorithm.

5 � Experiments

In this section, we present experiment results to evaluate and compare our proposed
framework to other state-of-the-art approaches. We first evaluate the advantages
and general optimisation applications of CMA-ES-RKHS on two simple functional
optimisation problems: 1-D and 2-D function spaces. We compare the behavior of
CMA-ES-RKHS with other three other methods: the standard CMA-ES, the adap-
tive CMA-ES version (CMA-ES-A), and the functional gradient techniques. The
next experiments are two RL tasks: inverted pendulum and double-pendulum. We
compare our direct policy search via CMA-ES-RKHS to the standard CMA-ES
policy search, the adaptive CMA-ES policy search, a parametric actor-critic, and
the actor-critic in RKHS (RKHS-AC) methods. In all experiments, we use Gauss-
ian Radial Basis Function (RBF) as an embedding kernel of the RKHS in which
the bandwidths are set using median-trick. In other words, the bandwidth is set to
the median (of all pair-wise distances between sampled data points) divided by the
number of features used in each function. These experiments aim to evaluate the
proposed CMA-ES-RKHS for: (1) the quality of the returned compact solution func-
tion, (2) the flexibility and power of the proposed method in capturing a complex
solution function that can not be found easily by existing methods, (3) the applica-
bility in practice, i.e. for direct policy search in reinforcement learning.

5.1 � Synthetic domains

We design two unknown 1-dimension (1-D) and 2-dimension (2-D) functions f ∗ .
Each function is a mixture of two (multivariate in the case of 2-D) Gaussians,
respectively. All optimizers are tasked to find a function h ∶ X ↦ ℜ , where h ∈ HK
that minimizes the objective function as a square distance to the ground-truth. The
objective is written as

(19)J(h) = ∫
xT

x0

(
f ∗(x) − h(x)

)2
dx,

495

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

where x ∈ ℜk , k = 1, 2 correspondingly to the 1-D or 2-D domain. We limit the
domain X from x0 to xT for 1-D task and in the box [x0, xT] × [x0, xT] for 2-D task.
This task is a simplified version of many similar problems in machine learning and
robotics, e.g. regularized risk functional (J(h) is a least-square cost and (x, f ∗(x)) are
data samples) [29], trajectory optimisation (where f ∗(x) is a reference trajectory w.r.t
time x ∈ [x0, xT] ) [35], path planning or trajectory optimisation in RKHS [21], loss
minimization inverse optimal control (where f ∗(x) is a demonstration trajectory) [5],
etc. For example, in the case of path planning a robot must find a shortest path from
one location to a destination while avoiding collisions with obstacles. The cost func-
tion in Eq. 19 is computing an Euclidean distance between the current configuration
h(x) and the destination configuration represented as f ∗(x) , together with a distance
to the closest obstacle. However, most of the above work must rely on discretization
and parametric modelling.

Functional gradient: Using functional gradient requires to know J and have
access to the ground-truth function f ∗ (CMA-ES-RKHS only accesses evaluations
J(h)) from which we are able to use discretization to approximate the objective J in
Eq. 19 as

The functional gradient can be computed analytically as:

Thus, a functional gradient update is h ← h + �∇hJ(h) . A sparsification technique
[42] can be used to achieve a compact representation of h which renders the func-
tional gradient approach an adaptive method too. That means the representation of
h will be adapted to best approximate f ∗ . Hence, discretization is required to be fine
enough (T is large enough, we used T ≫ N ) to guarantee accurate approximation.

CMA-ES: We assume that a parametric representation of h as a linear expan-
sion of N features: h(x) =

∑N

k=1
wk𝜙k(x) = �⊤𝜙(x) . We use RBF features

�k(x) = exp(−‖x − �t‖2∕�2) in which N centers �t are regular intervals in the domain
of � . Hence we apply CMA-ES to optimise J in a parameter space � ∈ ℜN . CMA-
ES-A would optimize over a search space of {�, {�t}Nt=1}.

Results: For all optimizers, we use the same number N of features in CMA-ES
and CMA-ES-A, and centers after sparsification in CMA-ES-RKHS and functional
gradient methods. We use N = 10 for 1-D task, and N = 100 for 2-D task. As men-
tioned in parameter setting section, we use a standard way of CMA-ES to initial-
ize other parameters in CMA-ES-RKHS. We set the same N to the effective dimen-
sionality in CMA-ES-RKHS. The results are averaged over 15 runs and report the
averaged squared error w.r.t the number of evaluations, i.e queries to the objective
function.

(20)J(h) ≈
1

T

T∑

k=0

(
f ∗(xk) − h(xk)

)2
.

∇hJ(h) =

T∑

k=0

2
(
h(xk) − f ∗(xk)

)
K(tk, ⋅).

496	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

We report the squared error J and the solution function for the 1-D task in Fig. 1.
The results for the 2-D task are reported in Figs. 2 and 3. We create two versions for
CMA-ES-A, one with good initialization (initial values of xt are centers for CMA-
ES) and one with random initialization, called CMA-ES-A-R. In Fig. 1, the perfor-
mance of CMA-ES-A-R is not good in terms of error. As demonstrated on the right
picture, it can detect only one mode of the optimal function. Hence we stop report-
ing results from CMA-ES-A-R in other domains. One remarkable note is that CMA-
ES initialization does not consist of two correct modes in its set of centers, hence it

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600

S
qu

ar
ed

 E
rr

or

Evaluations

CMA-ES
CMA-ES-A

CMA-ES-A-R
Func-Grad

CMA-ES-RKHS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

y

x

Ground truth
CMA-ES

CMA-ES-A
CMA-ES-A-Random
Functional gradient

CMA-ES-RKHS

Fig. 1   1D synthetic domain: (left) squared error, (right) solution functions

Ground-truth
CMA-ES

Ground-truth
CMA-ES-A

Ground-truth
Func-gradient

Ground-truth
CMA-ES-RKHS

Fig. 2   2D synthetic domain: contours of levels equivalent to the first and second deviations

497

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

gives poor approximation error. With adaptive ability, CMA-ES-A and CMA-ES-
RKHS are able to estimate the true modes correctly.

In the larger domain (2-D), CMA-ES-A performs much worse than our method.
This is explained by the way our method approaches from a principled way, i.e ker-
nel methods, for the scaling of parameters. The functional gradient method per-
forms very well which also confirms that it can be very competitive when gradient
information is known (in this case the form of J(h) is known). Fig. 2 shows very

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
rr

or

Evaluations

CMA-ES
CMA-ES-A

Functional gradient
CMA-ES-RKHS

Fig. 3   Comparison results for 2D synthetic domain

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Episodes

Actor-Critic
RKHS-AC

CMA-ES
CMA-ES-A

CMA-ES-A-Rand
CMA-ES-RKHS

 Eff. CMA-ES-RKHS

Fig. 4   Comparison results for the inverted pendulum domain

498	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

interesting results where other methods like CMA-ES and CMA-ES-A are still
struggling around the optimal regions to find the correct shapes of the Gaussians.

5.2 � Inverted pendulum

We use the same setting of the inverted pendulum domain as in [19]. This prob-
lem has an 1-dim action space [−3, 3] , a state space s = (�,�) , where � ∈ [−�,�]
is angular position and � ∈ [−4�, 4�] is angular velocity. The system always starts
at s0 = (−�, 0) (downward position). The reward function is r(s, a) = exp(−0.5�2)
that requires to bring the pole to the upright position and keep it balanced there. The
dynamics of the system is �� = � + 0.05� + � ; �� = � + 0.05a + 2� , � is a small
Gaussian noise N(0, 0.022) . We use N = 50 centers or features for all algorithms.
We set � = 0.99 and a horizon H = 400 . Each policy evaluation J(h) of policy h is
averaged over 5 episodes.

The results of mean performance and its 95% confidence are computed over 15
runs and reported in Fig. 4. In this task, CMA-ES performs better than CMA-ES-A
and CMA-ES-RKHS. CMA-ES-A has a much bigger search space comparing to that
of CMA-ES, 3N versus N parameters. We conjecture that CMA-ES-RKHS performs
worse because we use N as the effective dimensionality to set its parameters. Theo-
retically, CMA-ES-RKHS optimizes over a potentially infinite dimensional space.
We tried to increase its effective dimensionality to 2N, called Eff. CMA-ES-RKHS.
This modification improves the performance significantly. CMA-ES-A-R performs
slowly but keeps improving constantly. Local direct policy search algorithms, AC
and RKHS-AC, do not perform comparably to the other global direct methods. This
experiment shows that CMA-ES-RKHS is able to avoid local optima.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Episodes

CMA-ES
CMA-ES-A

CMA-ES-RKHS

Fig. 5   Comparison results the double-link domain

499

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

5.3 � Double pendulum

This problem consists of two links and two under-actuated joints. The system
state is 4-dimensional of joint position and velocities � = {𝜃1, 𝜃̇1, 𝜃2, 𝜃̇2} . Actions
are motor torques � = [u1, u2] , which are limited in [−5N, 5N] . The dynam-
ics is simulated using second-order Runge-Kutta. We use a low sampling fre-
quency of 50Hz at which torques could be applied. The start state is {0,−�, 0, 0} .
The reward function is r(�) = exp(−‖� − �∗‖W) , where �∗ = {0, 0, 0, 0} and
W = diag(0.25, 0.0025, 0.25, 0.0025) . Each episode is simulated in 6s, which is
equivalent to a horizon of 300 steps. Each policy evaluation J(h) of policy h is aver-
aged over 5 episodes. We use N = 256 features or centers, and � = 0.99 . The opti-
mal policy returns 88. We only compare between global policy search methods via
CMA-ES, CMA-ES-A, and CMA-ES-RKHS.

In this complex task, CMA-ES-RKHS has clearly outperformed other methods
as seen in Fig. 5. Due to more expensive computation, we report an averaged per-
formance over only three runs. CMA-ES performs worse because it still depends
on fixed and pre-defined features, therefore in a more complex task it can only find
a policy whose performance is up to the power and quality of the selected features.
CMA-ES-A uses a non-principled scaling on its parameter space which inherently
consists of two parts: the weights {�} and the state information {�i} . This scaling
does not capture correctly distances between points on the parameter space, hence it
leads to a non-optimal solution.

6 � Conclusion

This paper proposes a CMA-ES-RKHS framework that generalises CMA-ES to han-
dle functional optimisation in which the search is handled over a function space. The
fact that the function space is modeled in reproducing kernel Hilbert space results in
analytic update rules for CMA-ES-RKHS. On the other hand, the solution function
attains compactness and flexibility characteristics. We apply CMA-ES-RKHS for
direct policy search in which the policy is modeled in RKHS. Our experiments show
that both CMA-ES-RKHS and direct policy search via CMA-ES-RKHS are able to
represent a complex solution function compactly and adaptively. The result shows
many interesting aspects and results of CMA-ES-RKHS: (1) explicitly handling
functional optimisation in principle; (2) overcoming the issue of hand-designed
feature in many practical applications of CMA-ES. Though offering many advan-
tages, CMA-ES-RKHS is a kernel method therefore it also suffers from the problem
of expensive computation. A study to investigate the way how to scale it will be a
very promising research direction. There are also a number of other potential future
research directions. A thorough study into hyperparameters of CMA-ES-RKHS
will definitely be important to CMS-ES-RKHS. Moreover, more theoretical work
and practical applications of CMA-ES-RKHS would be a very interesting future
research direction.

500	 Genetic Programming and Evolvable Machines (2019) 20:479–501

1 3

Acknowledgements  This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under Grant No. 102.05-2016.18; and by the Basic Science Research Program
through National Research Foundation of Korea (NRF) of the Ministry of Education, Science, and Technology
under Grant No. NRF-2017R1D1A1B04036354 and Kyung Hee University under Grant No. KHU-20160601.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

	 1.	 R.J. Adler, The Geometry of Random Fields (Wiley, New York, 1981)
	 2.	 J.A.D. Bagnell, J. Schneider, Policy search in reproducing kernel Hilbert space. Technical Report

CMU-RI-TR-03-45, Robotics Institute, Pittsburgh, PA (2003)
	 3.	 J.B. Conway, A Course in Functional Analysis, vol. 96 (Springer, Berlin, 2013)
	 4.	 M.P. Deisenroth, G. Neumann, J. Peters et al., A survey on policy search for robotics. Found.

Trends® Robot. 2(1–2), 1–142 (2013)
	 5.	 A. Doerr, N.D. Ratliff, J. Bohg, M. Toussaint, S. Schaal, Direct loss minimization inverse optimal control,

in Robotics: Science and Systems XI, Sapienza University of Rome, Rome, Italy, July 13–17 (2015)
	 6.	 J. Dong, M. Mukadam, F. Dellaert, B. Boots, Motion planning as probabilistic inference using

Gaussian processes and factor graphs, in Robotics: Science and Systems XII, University of Michi-
gan, Ann Arbor, Michigan, USA, June 18–June 22 (2016)

	 7.	 M. Ghavamzadeh, Y. Engel, M. Valko, Bayesian policy gradient and actor-critic algorithms. J.
Mach. Learn. Res. 17(1), 2319–2371 (2016)

	 8.	 S. Ha, C.K. Liu, Iterative training of dynamic skills inspired by human coaching techniques.
ACM Trans. Graph. 34(1), :1–1:11 (2014)

	 9.	 S. Ha, C.K. Liu, Evolutionary optimization for parameterized whole-body dynamic motor skills,
in IEEE International Conference on Robotics and Automation (ICRA), pp. 1390–1397 (2016)

	10.	 N. Hansen, The CMA evolution strategy: a tutorial. CoRR arXiv​:1604.00772​ (2016)
	11.	 N. Hansen, A. Auger, Principled design of continuous stochastic search: from theory to prac-

tice, in Theory and principled methods for the design of metaheuristics, ed. by Y. Borenstein, A.
Moraglio, pp. 145–180 (Springer, Berlin, 2014)

	12.	 N. Hansen, S.D. Müller, P. Koumoutsakos, Reducing the time complexity of the derandomized evo-
lution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

	13.	 V. Heidrich-Meisner, C. Igel, Similarities and differences between policy gradient methods and
evolution strategies, in The European Symposium on Artificial Neural Networks (ESANN), pp.
149–154 (2008)

	14.	 V. Heidrich-Meisner, C. Igel, Hoeffding and Bernstein races for selecting policies in evolution-
ary direct policy search, in Proceedings of the International Conference on Machine Learning,
ICML, pp. 401–408 (2009)

	15.	 V. Heidrich-Meisner, C. Igel, Neuroevolution strategies for episodic reinforcement learning. J.
Algorithms 64(4), 152–168 (2009)

	16.	 H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, J. Audiffren, Operator-valued ker-
nels for learning from functional response data. J. Mach. Learn. Res. 16, 1–54 (2015)

	17.	 M.F. Kasim, P.A. Norreys, Infinite dimensional optimistic optimisation with applications on
physical systems. arXiv preprint arXiv​:1611.05845​ (2016)

	18.	 E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1989)
	19.	 G. Lever, R. Stafford, Modelling policies in mdps in reproducing kernel Hilbert space, in Pro-

ceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2015, San Diego, California, USA, May 9–12 (2015)

	20.	 S. Mannor, R.Y. Rubinstein, Y. Gat, The cross entropy method for fast policy search, in Machine
Learning, Proceedings of the Twentieth International Conference (ICML), pp. 512–519 (2003)

	21.	 Z. Marinho, B. Boots, A.D. Dragan, A. Byravan, G.J. Gordon, S. Srinivasa, Functional gradient
motion planning in reproducing kernel hilbert spaces, in Robotics: Science and Systems XII, Uni-
versity of Michigan, Ann Arbor, Michigan, USA, June 18–22 (2016)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/1604.00772
http://arxiv.org/abs/1611.05845

501

1 3

Genetic Programming and Evolvable Machines (2019) 20:479–501	

	22.	 C.A. Micchelli, M. Pontil, On learning vector-valued functions. Neural Comput. 17(1), 177–204
(2005)

	23.	 J. Peters, S. Schaal, Natural actor-critic. Neurocomputing 71(7), 1180–1190 (2008)
	24.	 M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley,

New York, 2014)
	25.	 C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press,

Cambridge, 2006)
	26.	 R. Rubinstein, The cross-entropy method for combinatorial and continuous optimization. Meth-

odol. Comput. Appl. Probab. 1(2), 127–190 (1999)
	27.	 R.Y. Rubinstein, D.P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial

Optimization, Monte-Carlo Simulation and Machine Learning (Springer, Berlin, 2013)
	28.	 E.A. Rückert, G. Neumann, M. Toussaint, W. Maass, Learned graphical models for probabilistic

planning provide a new class of movement primitives. Front. Comput. Neurosci. 6, 97 (2013)
	29.	 B. Schölkopf, A.J. Smola, Learning with Kernels Support Vector Machines, Regularization,

Optimization, and Beyond. Adaptive Computation and Machine Learning Series (MIT Press,
Cambridge, 2002)

	30.	 B. Schölkopf, A.J. Smola, K. Müller, Kernel principal component analysis, in The International
Conference on Artificial Neural Networks (ICANN), pp. 583–588 (1997)

	31.	 F. Stulp, O. Sigaud, Path integral policy improvement with covariance matrix adaptation, in Pro-
ceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26–July 1 (2012)

	32.	 R. Sutton, A. Barto, Reinforcement Learning: An Introduction (Cambridge University Press,
Cambridge, 1998)

	33.	 R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods for reinforcement
learning with function approximation, in Conference on Neural Information Processing Systems
(NIPS), pp. 1057–1063 (1999)

	34.	 J. Tan, Y. Gu, G. Turk, C.K. Liu, Articulated swimming creatures. ACM Trans. Graph. 30(4), 58 (2011)
	35.	 M. Toussaint, Newton methods for k-order Markov constrained motion problems. CoRR arXiv​

:abs/1407.0414 (2014)
	36.	 L.P. Tuyen, N.A. Vien, T. Chung, A deep hierarchical reinforcement learning algorithm in partially

observable markov decision processes. IEEE Access 6, 49089–49102 (2018)
	37.	 M. Ulbrich, Optimization methods in Banach spaces, in Optimization with PDE Constraints, ed. by

Y. Borenstein, A. Moraglio, pp. 97–156 (Springer, Berlin, 2009)
	38.	 H. van Hoof, J. Peters, G. Neumann, Learning of non-parametric control policies with high-dimen-

sional state features, in Proceedings of the Eighteenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9–12 (2015)

	39.	 N.A. Vien, V.-H. Dang, T. Chung, A covariance matrix adaptation evolution strategy for direct pol-
icy search in reproducing kernel Hilbert space, in The 9th Asian Conference on Machine Learning
(ACML) (2017)

	40.	 N.A. Vien, P. Englert, M. Toussaint, Policy search in reproducing kernel Hilbert space, in Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI), pp. 2089–2096 (2016)

	41.	 N.A. Vien, H. Yu, T. Chung, Hessian matrix distribution for bayesian policy gradient reinforcement
learning. Inf. Sci. 181(9), 1671–1685 (2011)

	42.	 P. Vincent, Y. Bengio, Kernel matching pursuit. Mach. Learn. 48(1–3), 165–187 (2002)
	43.	 J.M. Wang, S.R. Hamner, S.L. Delp, V. Koltun, Optimizing locomotion controllers using biologi-

cally-based actuators and objectives. ACM Trans. Graph. 31(4), 25:1–25:11 (2012)
	44.	 D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, J. Schmidhuber, Natural evolution strate-

gies. J. Mach. Learn. Res. 15(1), 949–980 (2014)
	45.	 R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Mach. Learn. 8(3–4), 229–256 (1992)
	46.	 X. Xu, D. Hu, X. Lu, Kernel-based least squares policy iteration for reinforcement learning. IEEE

Trans. Neural Netw. 18(4), 973–992 (2007)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/abs/1407.0414
http://arxiv.org/abs/abs/1407.0414

	A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space
	Abstract
	1 Introduction
	2 Background
	2.1 Covariance matrix adaptation-evolution strategy
	2.2 Direct policy search in reinforcement learning
	2.2.1 Markov decision process and reinforcement learning
	2.2.2 Direct policy search via CMA-ES
	2.2.3 Policy gradient in reproducing kernel Hilbert space

	3 CMA-ES in reproducing kernel Hilbert space
	3.1 Problem statement
	3.2 The CMA-ES-RKHS framework
	3.2.1 Mean function update in RKHS
	3.2.2 Covariance operator update
	3.2.3 Step-size update
	3.2.4 Sparsification and adaptive representation

	3.3 EDA and CEM in RKHS

	4 Direct policy search via CMA-ES-RKHS
	5 Experiments
	5.1 Synthetic domains
	5.2 Inverted pendulum
	5.3 Double pendulum

	6 Conclusion
	Acknowledgements
	References

