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Abstract
The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient 
derivative-free optimization algorithm. It optimizes a black-box objective function 
over a well-defined parameter space in which feature functions are often defined 
manually. Therefore, the performance of those techniques strongly depends on the 
quality of the chosen features or the underlying parametric function space. Hence, 
enabling CMA-ES to optimize on a more complex and general function class has 
long been desired. In this paper, we consider modeling the input spaces in black-
box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS). 
This modeling leads to a functional optimisation problem whose domain is a RKHS 
function space that enables optimisation in a very rich function class. We propose 
CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-
box functional optimisation in RKHS. A search distribution on non-parametric func-
tion spaces, represented as a Gaussian process, is adapted by updating both its mean 
function and covariance operator. Adaptive and sparse representation of the mean 
function and the covariance operator can be retained for efficient computation in 
the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We 
will also show how to apply our new black-box framework to search for an optimum 
policy in reinforcement learning in which policies are represented as functions in a 
RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and 
two bench-marking reinforcement learning domains.
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1  Introduction

The covariance matrix adaptation evolutionary strategy (CMA-ES) is a deriva-
tive-free method [12] which is a practical optimization tool for continuous opti-
mization problems. It is a general optimization framework that possesses many 
appealing characteristics, e.g. derivative-free, covariant, off-the-shelf, scalable 
etc. It is especially useful on problems that are non-convex, non-separable, ill-
conditioned, multi-modal, and with noisy evaluations. As the name indicates, 
CMA-ES belongs to Evolution Strategy (ES), hence it also works by operat-
ing three major steps: recombination, mutation and selection. In the context of 
robotics, CMA-ES has been widely used in many tasks: biped locomotion [43], 
whole-body locomotion optimization [8, 9], swimming by [34], skill learning 
via reinforcement learning [14, 15, 31], inverse reinforcement learning [5, 28], 
etc. Applying CMA-ES requires explicitly a finite-dimensional search space on 
which solution candidates live. In many domains, e.g. robotics, an optimization 
objective is often defined as a cost function of another parametric solution func-
tion. For instance, it might be an overall cost function depending on a robot con-
troller, e.g. applications CMA-ES in robot skill learning [31] and policy search 
[15], or a loss function in the context of inverse optimal control [5, 28], etc.. A 
robot controller is usually a parametric function of predefined feature maps, e.g. 
radial basis function (RBF) features. Though showing a lot of remarkable suc-
cesses, such parametric approaches as well as their black-box solver, the para-
metric CMA-ES, could not model a very rich and flexible solution space, e.g. a 
complex behavior space. The performance of CMA-ES is affected not only by a 
suboptimal choice of features, but also the amount of used features. Therefore, 
integrating the ability of adaptive feature selection or non-parametric techniques 
into CMA-ES has been desired and not yet investigated, though this integration 
have been seen very often in other machine learning algorithms.

In this work, we propose CMA-ES-RKHS that enables functional optimization 
over a non-parametric solution space. Specifically, we assume that the solution 
(domain) space is a reproducing kernel Hilbert space (RKHS). Each solution can-
didate is a function in RKHS. Modeling the solution space this way, CMA-ES-
RKHS is able to not only inherit full characteristics from CMA-ES, but enjoy 
other appealing properties of kernel methods as well. Firstly, CMA-ES-RKHS is 
able to optimize a functional objective whose domain consists of functions in a 
RKHS with an embedding kernel. That means the solution space does not need 
to depend on a set of predefined features that often has limited complexity, there-
fore our method can have richer representation power. Secondly, by modeling the 
solution space in RKHS, all update steps in CMA-ES-RKHS are handled analyti-
cally. We show that updated mean functionals, other intermediate terms, evolu-
tion path functionals or conjugate evolution path functionals are functions in the 
underlying RKHS. Moreover, the updated covariance is also an operator on the 
underlying RKHS. In other words, there is no additionally introduced computa-
tion when compared to the standard CMA-ES method. Thirdly, via sparsification 
techniques, a very complex search space can be represented compactly due to the 
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reproducing property of the RKHS. However we can still achieve a solution of 
guaranteed quality which is at least comparable to that of the standard CMA-ES 
method. Though the use of sparsification might lead to representation with only a 
finite number of features, it allows adaptive feature selection and offers compact 
representation that reduce the computation cost.

By employing CMA-ES-RKHS we propose a non-parametric direct policy search 
technique in which the policy space in RL is an RKHS. As demonstrated by [2, 
19, 36, 38, 40], the policy in RKHS is shown to be powerful and flexible in solv-
ing complex RL tasks. However their approaches use functional gradient ascent 
to update the policy functional that might have a problem with step-sizes or local 
optimality. It means the optimized policy does not fully exploit the flexible power 
of modeling in RKHS, which might consist of any complex policies including the 
global optimum one. As a global optimization method, our policy search via CMA-
ES-RKHS is expected to search for such globally optimal policies. This paper is an 
extension from our work published [39].

Recently, there have been similar efforts in proposing new machine learn-
ing frameworks for functional optimization, such as functional regression by [16], 
representing motion trajectories in RKHS by [6, 21], or finding geodesic shortest 
paths in physical systems by [17]. We demonstrate the proposed CMA-ES-RKHS 
and direct policy search via CMA-ES-RKHS in four experiments. The first two syn-
thetic domains demonstrate the advantages of functional optimization in RKHS. The 
last two experiments are two RL domains, inverted pendulum and double-pendulum 
swing-up. The experiments will evaluate how CMA-ES-RKHS can do adaptive fea-
ture selection in a non-parametric way.

Our paper is organized as follows. The Background section will briefly discuss 
necessary preliminaries that will be used in the rest of the paper. Section 3 will start 
with a problem statement of functional optimization and then we will present our 
proposed framework, CMA-ES-RKHS. Section  4 will describe an application of 
CMA-ES-RKHS to a policy search problem in reinforcement learning. Section  5 
will present experiment results on numerical and RL domains. Finally, we will con-
clude the paper with some remarks and future research directions.

2 � Background

We briefly present a background of the Covariance Matrix Adaptation - Evolution 
Strategy (CMA-ES), its application for direct policy search reinforcement learning, 
and the recently introduced policy search in RKHS.

2.1 � Covariance matrix adaptation‑evolution strategy

CMA-ES is a global optimisation method introduced by [12]. It works by forming 
a parametric distribution over the solution space, e.g. the space of policy param-
eter in policy search, or the space of parameters of the loss function in inverse opti-
mal control, etc. It iteratively samples a population of solution candidates from a 
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parametrized search distribution. These candidates are then evaluated by a black-box 
function. Tuples of candidate-evaluation make up a dataset in order for CMA-ES to 
update the search distribution, i.e. its mean and its covariance matrix. Specifically, a 
cost function f ∶ ℜn

↦ ℜ is parametrized by a parameter space � ∈ ℜn , f (�) . The 
target is to find an optimum parameter �∗ such that f (�∗) is minimum. It is common 
that a CMA-ES algorithm maintains a multivariate Gaussian distribution over the 
solution space as � ∼ N(�;�,�) , where � is a n-dim mean vector and � is a n × n 
covariance matrix. At each iteration k, it generates the kth population of � offsprings 
from the kth distribution as �i ∼ N(�;�k,�k) , i = 1,⋯ , � , where �k,�k denote the 
mean vector and the covariance matrix at iteration k (after � and � got updates k 
times). Then, the offsprings are sorted ascendingly according to their evaluations 
f (�i) . Only the first � ( < 𝜆 ) best candidates are selected for use in updates of �k and 
�k . Another parameter is the global step-size � ∈ ℜ that controls the convergence 
rate of the covariance matrix update. The parameter � is defined as a global standard 
deviation. Hence, a full set of parameters in CMA-ES is {�,�, �}.

In Algorithm 1, we give a full summary of the CMA-ES algorithm. Algorithm 1 
starts with an initialisation of the parameters in steps 1 and 2. As discussed above, 
the parameters {�,�, �} are updated iteratively as shown in steps from 4 to 13. Step 
4 is sampling from a normal distribution with mean � and covariance � . The evalu-
ations via query to the black-box function f (⋅) are in step 5. The updated mean is 
a weighted sum of the best � candidates as in step 7, in which the weights wi are 
set to 1∕� or to a better choice log(�∕2) − log(i) . The notation �i∶� means the best 
candidate out of �i,… , �� . The covariance matrix update in step 13 consists of three 
parts: (1) old information, (2) rank-1 update which computes the change of the mean 
over time as encoded in the evolution path �c , and (3) rank-� update which takes 
into account the good variations in the last population. Step 10 devotes to the step-
size control update that constrains the expected changes of the distribution. Thus, 
this step is based on the conjugate evolution path �� . It aims to accelerate conver-
gence to an optimum, and meanwhile prevents premature convergence. The other 
parameters: �w is the variance effective selection mass, c1, cc, c� are learning rates, 
and d� is a damping factor for � . The setting of these parameters is well studied and 
discussed in-depth in [10]. The termination can be set in various ways depending on 
the contracting covariance, or fitness functions (e.g. if the fitness functions of the 
population do not change for some iterations).
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The updates of CMA-ES can alternatively be derived using the information-geomet-
ric concept of a natural gradient as shown in [11], which shares the same insight with 
the natural evolution strategies (NES) [44].

There are less efficient but practically fast techniques that can also adapt the covari-
ance matrix: estimation of distribution algorithms (EDA) and the cross-entropy method 
(CEM). The major difference from CMA-ES is the choice of the reference mean value. 
EDA and CEM estimate the variance using the current population information, �1∶� , 
instead of exploiting old information as encoded in previous information of � and �c . 
Specifically, for the Gaussian search distribution, one can modify steps 9 and 13 in 
Algorithm 1 to receive new updates at iteration k for EDA and CEM [26, 27] as follows

The difference between EDA and CEM is: EDA updates C to the empirical covari-
ance matrix, meanwhile CEM updates C to the unbiased empirical covariance 
matrix

2.2 � Direct policy search in reinforcement learning

In this section, we describe the background of Markov decision process, reinforce-
ment learning and policy search techniques.

�(k) =
1

𝜇

𝜇∑

i=1

𝜃i,

�
(k)
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=
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𝜇
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2.2.1 � Markov decision process and reinforcement learning

A Markov Decision Process (MDP) is a mathematical framework often used to 
formulate sequential decision making problems that is understood as an interac-
tion process between an agent and an external environment. A MDP is defined 
as a 5-tuple {S,A, T,R, �} , where S is a state space of the environment. A is an 
action space that can be taken by the agent to interact with the environment. T  
is a transition function defined as T(s, a, s�) = p(s�|s, a) that tells a probability of 
next state s′ if at state s, action a is taken. R is a reward function, i.e. R(s, a) , 
that returns a scalar value if the environment at state s and action a is taken. 
� ∈ (0, 1] is a discount factor. The agent’s task is to find an optimal deterministic 
policy � ∶ S ↦ A , which is a mapping from states to actions, that maximizes an 
expected cumulative discounted return, denoted as J(�) a function of � which is 
defined as

where the expectation is with respect to the stochasticity of the transitions T  . The 
term inside expectation is the infinite-horizon sum of discounted rewards. Alterna-
tively, the policy � can be stochastic and written as � ∶ S ×A ↦ [0, 1] that defines 
the probability of selecting actions at a state. Finding optimal policies MDP can be 
handled by the use of dynamic programming, e.g. value iteration or policy iteration 
algorithms Puterman [24].

Reinforcement learning is a family of learning algorithms in MDP in which 
J(�) is optimised w.r.t � when the agent does not know the dynamics of the envi-
ronment, i.e. unknown T  and R . In unknown environment, planning techniques 
like value iteration or policy iteration can not be directly used. There are many 
different types of RL algorithms, but can often be categorized into two fashion: 
value-based and policy-based methods [32]. Value-based methods consist of 
Q-learning, SARSA, etc. that optimizes the policy by estimating intermediate 
terms, called value funcions or Q-value functions. Policy-based methods (direct 
policy search) optimize J(�) on the parametric policy space. The policy can be 
optimized using policy search techniques such as policy gradient [45], natural 
actor-critic [23], Bayesian policy gradient Ghavamzadeh et  al. [7], Vien et  al. 
[41], or black-box search such as CEM [20] and CMA-ES [15], etc. The first two 
techniques are local methods that can only look for locally optimal policies (more 
discussions over their differences can be found in [13]).

In the next sections, we first describe an application of CMA-ES for policy 
search as introduced in [15], then give a brief introduction of one policy gradient 
technique that models policies in reproducing kernel Hilbert space [19].

(1)J(�) = �T

[
∞∑

t=0

� trt

]
,
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2.2.2 � Direct policy search via CMA‑ES

As direct policy search would directly search on the space of policies using sto-
chastic optimization, one natural application of CMA-ES for direct policy search 
is to construct a search distribution on the policy space. Assuming that the policy 
space is parameterized by a function space H , in which each function h ∈ H is 
defined as h ∶ S ↦ ℜ . Specifically, each policy is written as a deterministic dis-
tribution as

where � ∈ A is an action, � ∈ S is a state. For parametric policy approaches, the 
function space H is parametrized by a parameter space � ∈ ℜn . For example, h 
might be a neural network (where n is the number of trainable parameters in the 
network), or be a linear function of predefined features (where n is the number of 
features) as

where �j denotes the jth coordinate of � , and �j(s) is the jth feature. Therefore, the 
objective in Eq. 1 as a function of policy can be re-written as a function of param-
eters � . The authors in [15] propose to use the CMA-ES algorithm in Algorithm 1 to 
optimize a cumulative reward objective function of �,

where the expectation is with respect to the stochasticity of the stochastic policy 
�(s, a;�) and the dynamics T  . For each candidate �i , its evaluation in Step 5 in Algo-
rithm 1 is J(�i) . Each J(�i) is computed using Monte-Carlo simulations. Specifically, 
a set of N trajectories are sampled by executing the policy �(�i) , then the evaluation 
is approximated as J(�i) ≈

1

N

∑N

j=1
R(�j) , where R(�j) is a return of trajectory j, �j . 

One advantage of CMA-ES is the ability to adapt the covariance matrix to control 
exploration, therefore it is considered to be more robust to noise and that is typically 
the case in robotics. The application of CMA-ES for direct policy search has shown 
many remarkable results in robotics Deisenrot et al. [4].

2.2.3 � Policy gradient in reproducing kernel Hilbert space

An alternative direct policy search is policy gradient which uses gradient ascent 
to find a local optimal policy � . In this section, we discuss how to use functional 
gradient ascent that would optimise the objective J(h) directly on a function space 
of h, instead of a parameterised function space through � . We start by describing 

(2)� = h(�;�),

(3)h(�) =

n∑

j=1

�j�j(�),

(4)J(�) = ��,T

(
∞∑

t=0

� trt

)
,
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how to represent a function space in a non-parametric way through a reproducing 
kernel Hilbert space.

A reproducing kernel Hilbert space is a Hilbert space of functions in which the eval-
uation functional is a continuous linear functional. Denote S a set (e.g. a state space in 
MDP) and H a Hilbert space of functions on S . An evaluation functional is defined as a 
linear functional that has an evaluation at each point � as

Essentially, the above definition means the linear functional L� evaluates f at a � to 
receive L�(f ) = f (�).

According to the Riesz representation theorem [18], for all �� ∈ S there exists a 
unique evaluation functional K(�, ⋅) ∈ H satisfying the reproducing property:

where ⟨⋅, ⋅⟩ denotes an inner product. The above result also means that we are evalu-
ating the function K(⋅, ��) using the evaluation functional K(�, ⋅) , and vice versa. We 
call the Hilbert space H with a reproducing kernel K, a reproducing kernel Hilbert 
space HK [29].

Recently, there have been efforts in integrating kernel methods with policy search in 
reinforcement learning. The work by [2, 19] suggest to represent policies in reproduc-
ing kernel Hilbert spaces in order to enjoy rich representation and flexible complexity, 
in which each function h(⋅) in the definition of policies in Eq. 2 is a vector-valued func-
tion in RKHS HK , and defined as

and K is a vector-valued kernel, K ∶ S × S ↦ L(A) [22], in which L(A) is the space 
of linear operators on A (an action space). In policy gradient, we often resort to 
stochastic policies in order to make gradients exist and promote exploration in RL, 
therefore Gaussian policies are commonly chosen and written as

where � is a covariance matrix that dictates the level of exploration. In all experi-
ments, we use a diagonal matrix � = �2� , where � starts with a large value (when 
exploration dominates) and decreases gradually (until exploitation dominates) Lever 
and Stafford [19]. A more sophisticated strategy can be used to adapt � , e.g. func-
tional gradient Vien et al. [40].

Using this functional policy parametrization, we can analytically derive the func-
tional gradient ∇hJ(�h) of the objective J(�h) w.r.t h by using the Fréchet derivative 
[18], and compute its approximate value given a set of sampled trajectories {�i}Ni=1 of 
length H at most,

L� ∶ f ↦ f (�), ∀f ∈ H.

K(�, ��) = ⟨K(�, ⋅),K(⋅, ��)⟩,

(5)h(⋅) =
∑

i

K(�i, ⋅)�i, where �i ∈ A,

(6)�(�, �;h) = p(�|�;h) ∼ N(h(�);�),
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where R(�) =
∑

t �
trt is the accumulated reward of the trajectory � , and P(�i) is 

the probability distribution of trajectories. In the third step, we use the log trick 
∇hP(�;h) = [∇h logP(�;h)]P(�;h) . The Monte-Carlo estimation step means that we 
sample N trajectories {�i}Ni=1 from the distribution P(�;h) . Q(�t, �t) is a sample of the 
Q-value function of (�t, �t) (this equality results from the Policy Gradient theorem 
[33]). Thus, the derivation in Eq. 7 results in ∇hJ(�h) as a function in HK as defined 
in Eq. 5. In addition, the functional gradient update at iteration k can be written as

where � is a step-size. As the representation of each policy hk+1 becomes more com-
plex after each iteration [19] (the number of linear evaluation functionals K(si, ⋅) 
involved in the representation of hk+1 ), a sparsification technique is often used to 
achieve a sparse and adaptive policy. A compatible kernel for Q-functions Q�(�, �) 
can simply be derived based on kernel K, that is Kh as

Kernel regression methods can be used to approximate Q easily via kernel matching 
pursuit [42], kernelized Least Square Temporal Difference Q-learning (k-LSTDQ) 
[46], etc. This framework is called the compatible RKHS Actor-Critic framework 
(RKHS-AC) by [19]. Though RKHS-AC has very excellent policy modeling, it 
would only result in locally optimal policies. A global policy search technique like 
CMA-ES which may be considered as a powerful off-the-shelf tool but has many 
drawbacks on its current form. For many applications of CMA-ES, a parametric 
objective function is often designed, which requires a set of predefined features. 
Hence, the choice of features plays a very important role. Recently, the authors 
in [40] propose a natural actor-critic in RKHS algorithm by computing the Fisher 

(7)

∇hJ(�h) = ∇h�

{
∑

t

� trt

}

= ∇h ∫ R(�)P(�;h)d�

= ∫
[
R(�)∇h logP(�;h)

]
P(�;h)d�

≈
1

N

N∑

i=1

∇h logP(�i;h)R(�i)

=
1

N

N∑

i=1

H∑

t=0

Q(�t, �t)K(�t, ⋅)�
−1(�t − h(�t)),

(8)hk+1 ← hk + �∇hJ(�hk ),

(9)Kh

(
(�, �), (��, ��)

)
=
(
K(�, ��)𝛴−1(� − h(�))

)⊤

𝛴−1(�� − h(��)).
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information operator, which is analogue to the Fisher information matrix for para-
metric policies.

3 � CMA‑ES in reproducing kernel Hilbert space

3.1 � Problem statement

We consider a black-box functional optimisation problem [37] that finds the maxi-
mum of an unknown functional f ∶ H ↦ ℜ , where H = {h ∶ X ↦ Y} is a separable 
Hilbert space of vector-valued functions h with a domain X  and output space Y . For 
each queried function h ∈ H , an evaluation y = f (h) is returned. The goal is to find 
an optimal function h∗ = argmaxh∈H f (h) such that the functional f (h∗) is maximum 
with least queries, i.e. f (h∗) ≥ f (h),∀h ∈ H . For example, we might want to find tra-
jectories of minimum cost for a mobile robot to move from one location to a desired 
destination. A trajectory is represented by a function h ∶ [0, 1] ↦ C , that maps time 
t ∈ [0, 1] to robot configuration h(t) ∈ C where C denotes the configuration space of 
a robot. A configuration is the positions of all robot points as represented relatively 
in a fixed coordinate system. The cost functional f(h) maps each trajectory h to a 
scalar cost in ℜ . The cost might measure the efficiency of the trajectory (energy effi-
ciency) and the proximity to obstacles (obstacle avoidance).

3.2 � The CMA‑ES‑RKHS framework

We propose a new general-purpose CMA-ES-RKHS framework, a generalized 
CMA-ES variant in RKHS, that solves the above problem. We explicitly assume 
the function space H as a reproducing kernel Hilbert space (RKHS) associated 
with a kernel K. Each h ∈ H is defined as a mapping from an arbitrary space X  
to Y , h ∶ X ↦ Y . The function space H may be a vector-valued RKHS [22], 
denoted as HK , with the kernel K ∶ X × X ↦ L(Y) , where L(Y) is the space of lin-
ear operators on Y . For example, when X = ℜn the simplest choice of K might be 
K(x, x�) = �(x, x�)In , where In is an n × n identity matrix, and � is a scalar-valued 
kernel [29]. Each function h ∈ H is then represented approximately as a linear span 
of finite elements {xi, yi} as

Now we define a search distribution over H . A direct extension of parametric CMA-
ES is to use a Gaussian process over the solution function h, h ∼ GP(m, �2C) , 
where m is a mean function in HK , C is a covariance operator on HK , and � is a 
scalar global step-size. We discuss now how to update the functionals {m,C} and 
the parameter � in our CMA-ES-RKHS framework, which is also summarised in 
Algorithm 2. Basically, one might think of the difference between CMA-ES versus 
CMA-ES-RKHS as: (1) the parameterization is a finite parameter space of � ∈ ℜn 
versus a potentially infinite space of h ∈ RKHS, (2) the search distribution is a 

(10)h(⋅) =
∑

i

K(xi, ⋅)yi.
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multi-variate Normal distribution versus a Gaussian process, (3) each sample from 
the search distribution is a finite parameter vector �i versus a function hi . We now 
describe the CMA-ES-RKHS framework in more detail.

3.2.1 � Mean function update in RKHS

Assuming that at iteration k, we can sample a set of � functions g̃i ∼ 𝔾ℙ(0,C) (Step 
4), where 𝔾ℙ(0,C) is a Gaussian process with mean function 0 and covariance C. 
Many techniques for sampling from a Gaussian process are basically described in 
[25]. It is commonly known that a sample from a Gaussian process is not in HK 
with probability of 1, as discussed in detail by [1]. For any sampling techniques of a 
Gaussian process, we receive g̃i in a form of data tuples (x(i), y(i)) . In order to receive 
a function in HK , we approximate g̃i by a function gi ∈ HK . One technique allows 
us to do this is kernel ridge regression whose kernel is the covariance operator C(⋅, ⋅) 
(Step 5). Hence, in our framework each function g̃i is approximated by a function 
gi ∈ HK . As a result, a new function candidate sampled from the function distribu-
tion is hi = m + �gi . The new mean function is updated as (Step 9),

where the normalized weights wi satisfy

(11)m = m + �

�∑

i=1

wigi∶� ∈ HK ,

𝜇∑

i=1

wi = 1, w1 ≥ w2 ≥ ⋯ ≥ w𝜇 > 0.
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As a result, after the update the new functional mean is an element in HK . We 
denote ḡ as

There are a number of settings for w that might inherit from that of CMA-ES, for 
example: wi = 1∕� , wi ∝ � − i + 1 ; or a better choice wi = log(� +

1

2
) − log(i) . In 

our experiment, we implement the latter as it performs consistently better in all 
domains.

3.2.2 � Covariance operator update

The covariance operator update (Steps 14–15) is based on the best selected candi-
date functions in terms of their evaluations f (hi) . Hence an empirical estimate of the 
covariance operator C on HK , called rank-� update, is

where c� is a learning rate of rank-� , and ⊗ denotes an outer product. Similar to 
parametric CMA-ES, we also consider the change of the mean function over time by 
estimating an evolution path function pc as (Step 14),

where �w is a variance-effectiveness constant, and cc is the backward time horizon 
for the evolution path function pc . This is low-pass filtered of chosen steps ḡ . As pc 
is just a linear combination of functions in HK , therefore pc is also an element in 
RKHS HK . As a result, a complete update of the covariance operator that combines 
both rank-1 and rank-� is computed as (Step 15),

where and c1, c� are learning rates of rank-1 and rank-� respectively. This reduces 
to a rank-1 update if c1 = 1, c� = 0 . Similarly, the update becomes a rank-� update 
when c1 = 0, c� = 1.

3.2.3 � Step‑size update

The global step-size � is adapted through the computation of a conjugate evolution 
path function p� as (Step 11),

ḡ =

𝜇∑

i=1

wigi∶𝜆.

C = (1 − c𝜇)C + c𝜇

𝜇∑

i=1

wigi∶𝜆 ⊗ gi∶𝜆,

(12)pc = (1 − cc)pc +
√
cc(2 − cc)𝜇wḡ ∈ HK ,

(13)C = (1 − c𝜇 − c1)C + c1pcp
⊤

c
+ c𝜇

𝜇∑

i=1

wigi∶𝜆 ⊗ gi∶𝜆,
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where c� is a backward time horizon for the conjugate evolution path function p� . 
According to the bounded inverse theorem in functional analysis [3], C as computed 
in Eq. 13 is a linear operator in the RKHS HK , hence it has a bounded inverse C−1 . 
Therefore, p� is updated in a way that renders it an element in HK . The volume and 
the correlation of the selected steps are compared to the expected value of the stand-
ard Gaussian process with a Dirac kernel. The fact that the former is larger than the 
latter makes � increased, otherwise decreased. The update formula of � (Step 12) is

where ‖ ⋅ ‖ is the L2-norm, and d� is a damping factor for � . The term �‖GP(0, �x)‖ is 
the expectation of all L2-norms of functions sampled from GP(0, �x) . This term can 
be computed in advance using Monte-Carlo simulations as

where gi(⋅) is a function in HK approximated (via kernel ridge regression) from a 
sample g̃i drawn from GP(0, �(⋅, ⋅)).

3.2.4 � Sparsification and adaptive representation

We now discuss implementation concerns of the CMA-ES-RKHS algorithm. Firstly, 
the most critical one is the representation issue of mean functions m and covariance 
operators C. Secondly, it follows with discussions of parameter setting in CMA-ES-
RKHS. Thirdly, we discuss how to deal with the update rule in Eq. 14 that involves 
finding the inverse operator C−

1

2.
Sparsification (Step 16): The updates of the mean function in Eq. 11 and covari-

ance operator in Eq. 13 make their representation complexity increase linearly on 
the number of iterations. Though we receive an adaptive, flexible and complex pol-
icy, this would result in an expensive evaluation cost, e.g. computing m(x) or C(h, h�) 
when needed, where x ∈ X  and m, h, h� ∈ HK . Sparsification is a technique that is 
able to keep these kernel-based representation sparse and approximately accurate. 
Assuming that after each iteration, m and C are re-written in the forms of

where N1,N2 are the numbers of functions in the representation of m, C respectively, 
xi ∈ X, hi ∈ HK , and �i, �i ∈ Y . Assuming that a sparsification algorithm would 
sparsify m and C to become

(14)p𝜎 = (1 − c𝜎)p𝜎 +
√
c𝜎(2 − c𝜎)𝜇wC

−
1

2 ḡ,

(15)� = � exp

�
c�

d�

� ‖p�‖
�‖GP(0, �(⋅, ⋅))‖ − 1

��
,

�‖GP(0, �(⋅, ⋅))‖HK
≈

1

N

N�

i=1

⟨gi(⋅), gi(⋅)⟩HK
,

(16)m =

N1∑

i

𝛽iK(xi, ⋅), C =

N2∑

i

𝜆ihi ⊗ hi,
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where x̃i ∈ X, h̃i ∈ HK and satisfying that n1 ≪ N1, n2 ≪ N2 . In our CMA-ES-
RKHS framework, we resort to two different sparsification techniques separately for 
m and C. We propose to use the kernel matching pursuit algorithm [42] to sparsify 
m. Its idea is to add kernel functions K(xi, ⋅) as features sequentially and greedily 
that maximally reduce the current approximation error. A tolerance constant is used 
to check the error reduction level before adding a new kernel feature. The use of tol-
erance also helps achieving more compact representation.

In general, we can use the kernel matching pursuit algorithm [42] to sparsify C. 
However, we aim to look for a method that will both sparsify C and together com-
pute the inverse square root operator C−

1

2 , because C−
1

2 is also used in Step 11 in 
Algorithm  2. Therefore, we propose to use the kernel PCA method (kPCA) from 
[30] for achieving efficiently and fast both a sparse and compact covariance operator 
and its inverse square root operator. Specifically, we rewrite C in Eq. 16 as

where H is a matrix whose ith column is hi , a N2 × N2 diagonal matrix � = diag(�i) , 
and � = H�

1

2 . Via kPCA, C can be decomposed through a decomposition of the 
N2 × N2 Gram matrix G = 𝛷⊤𝛷 , in which G(i, j) =

√
�i�j⟨hi, hj⟩HK

 . If a singular 
value decomposition (SVD) of G is G = UDU⊤ , the decomposition of C via kPCA 
is C = VDV⊤ , where V = �UD

−
1

2 are orthonormal eigenfunctions of C, hence 
V = H�

1

2UD
−

1

2 . One could easily show that each eigenfunction of C is a linear span 
of {hi}

N2

i=1
,

where wij is an element of a matrix W = �
1

2UD
−

1

2 . Hence vi is also an element in HK .

From the decomposition of C via kPCA, we are now able to sparsify C by choos-
ing only a small set of eigenfunctions of principal eigenvalues. Moreover, from the 
decomposition of C, the inverse square root operator C−

1

2 is derived as

which is also a linear operator in RKHS HK.
Parameter setting The mean function is represented by n1 adaptive kernel fea-

tures, hence it has n1 pivotal parameters. In CMA-ES, parameter setting is based on 
the number of free parameters, the dimensionality of the search space. Though it is 
not precise, we use the same setting of CMA-ES for CMA-ES-RKHS’s parameters, 
i.e. the parameters: c1, cc, c�, c� , d� based on n1 . We call n1 the effective dimensional-
ity on our CMA-ES-RKHS.

m =

n1∑

i

𝛽iK(x̃i, ⋅), C =

n2∑

i

𝜆̃ih̃i ⊗ h̃i,

C = H𝛬H⊤ = 𝛷𝛷⊤,

vi =
∑

i

wijhj(⋅),

(17)C
−

1

2 = VD
−

1

2V⊤,
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3.3 � EDA and CEM in RKHS

For a short notice, the derivations of CMA-ES-RKHS can easily be transferred 
to derive EDA–RKHS and CEM–RKHS algorithms which are EDA and CEM in 
RKHS. Specifically, the updates at iteration k for EDA–RKHS and CEM–RKHS 
change step 9 and 15 in Algorithm 2 as follows

Though the updates of C(k)

EDA–RKHS
 and C(k)

CEM–RKHS
 are simpler than C of CMA-ES-

RKHS, they result in similar covariance operators on HK . Hence the implementation 
technique of EDA–RKHS and CEM–RKHS is similar to that of CMA-ES-RKHS as 
discussed above. Therefore, we will not put them in comparisons due to their weaker 
performance when compared to CMA-ES-RKHS.

4 � Direct policy search via CMA‑ES‑RKHS

In RL literature, there is recent effort to model policies as functions in RKHS [2, 19, 
40]. Such RKHS policy gradient approaches suffer from a problem of step-size and 
local optima. Though one of the extended work, RKHS EM-based policy search 
(RKHS-PoWER) by [40], would overcome this issue, it can only converge to local 
optima. We propose a new black-box direct policy search in RKHS that is based on 
CMA-ES-RKHS (the extension to EDA–RKHS and CEM–RKHS is similar). We use 
deterministic policies where each policy is a function in RKHS with a kernel K as first 
introduced in Eq. 5. Different from the standard CMA-ES based direct policy search 
[15], our non-parametric modeling enables optimisation in a very rich policy space and 
allows to learn more complex policies that is able to avoid local optima, enjoy adaptive 
and compact representation and do not depend on pre-defined features.

Adaptive CMA-ES direct policy search There is a naive way that modifies the 
parametric CMA-ES direct policy search [15] to become adaptive in selecting features. 
This naively proposed modification is used as a base-line to compare to CMA-ES-
RKHS policy search. Assuming that we use a controller that is a linear span of RBF 
features �i(�) in which �i is a center,

m(k) =
1

𝜇

𝜇∑

i=1

hi ∈ HK ,

C
(k)

EDA–RKHS
=

1

𝜇

𝜇∑

i=1

(hi − m(k))⊗ (hi − m(k)),

C
(k)

CEM–RKHS
=

𝜇

𝜇 − 1
C
(k)

EDA–RKHS
.

(18)h(�) =

n∑

i=1

wi�i(�).
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where each �i(�) = K(�, �i) Thus, h becomes a parametric function whose param-
eters are � = {wi}

n
i=1

 . This renders policies �(a|�;w) a standard parametric policy. 
Therefore standard policy search algorithms like CMA-ES and policy gradient can 
be applied straightforwardly. Applying the CMA-ES based direct policy search 
method [15], the parameter space would be � = {wi} ∈ ℜn . We make a slight 
change to assume that the parameter space is {wi, �i} , called adaptive CMA-ES 
direct policy search (CMA-ES-A). This adaptive algorithm would search for both 
optimum weights and optimum RBF features. A clear problem of CMA-ES-A is in 
determining the scaling of these parameters. However it is in principle overcome by 
the RKHS norm on functions which is similar to the setting in our CMA-ES-RKHS 
algorithm.

5 � Experiments

In this section, we present experiment results to evaluate and compare our proposed 
framework to other state-of-the-art approaches. We first evaluate the advantages 
and general optimisation applications of CMA-ES-RKHS on two simple functional 
optimisation problems: 1-D and 2-D function spaces. We compare the behavior of 
CMA-ES-RKHS with other three other methods: the standard CMA-ES, the adap-
tive CMA-ES version (CMA-ES-A), and the functional gradient techniques. The 
next experiments are two RL tasks: inverted pendulum and double-pendulum. We 
compare our direct policy search via CMA-ES-RKHS to the standard CMA-ES 
policy search, the adaptive CMA-ES policy search, a parametric actor-critic, and 
the actor-critic in RKHS (RKHS-AC) methods. In all experiments, we use Gauss-
ian Radial Basis Function (RBF) as an embedding kernel of the RKHS in which 
the bandwidths are set using median-trick. In other words, the bandwidth is set to 
the median (of all pair-wise distances between sampled data points) divided by the 
number of features used in each function. These experiments aim to evaluate the 
proposed CMA-ES-RKHS for: (1) the quality of the returned compact solution func-
tion, (2) the flexibility and power of the proposed method in capturing a complex 
solution function that can not be found easily by existing methods, (3) the applica-
bility in practice, i.e. for direct policy search in reinforcement learning.

5.1 � Synthetic domains

We design two unknown 1-dimension (1-D) and 2-dimension (2-D) functions f ∗ . 
Each function is a mixture of two (multivariate in the case of 2-D) Gaussians, 
respectively. All optimizers are tasked to find a function h ∶ X ↦ ℜ , where h ∈ HK 
that minimizes the objective function as a square distance to the ground-truth. The 
objective is written as

(19)J(h) = ∫
xT

x0

(
f ∗(x) − h(x)

)2
dx,
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where x ∈ ℜk , k = 1, 2 correspondingly to the 1-D or 2-D domain. We limit the 
domain X  from x0 to xT for 1-D task and in the box [x0, xT ] × [x0, xT ] for 2-D task. 
This task is a simplified version of many similar problems in machine learning and 
robotics, e.g. regularized risk functional (J(h) is a least-square cost and (x, f ∗(x)) are 
data samples) [29], trajectory optimisation (where f ∗(x) is a reference trajectory w.r.t 
time x ∈ [x0, xT ] ) [35], path planning or trajectory optimisation in RKHS [21], loss 
minimization inverse optimal control (where f ∗(x) is a demonstration trajectory) [5], 
etc. For example, in the case of path planning a robot must find a shortest path from 
one location to a destination while avoiding collisions with obstacles. The cost func-
tion in Eq. 19 is computing an Euclidean distance between the current configuration 
h(x) and the destination configuration represented as f ∗(x) , together with a distance 
to the closest obstacle. However, most of the above work must rely on discretization 
and parametric modelling.

Functional gradient: Using functional gradient requires to know J and have 
access to the ground-truth function f ∗ (CMA-ES-RKHS only accesses evaluations 
J(h)) from which we are able to use discretization to approximate the objective J in 
Eq. 19 as

The functional gradient can be computed analytically as:

Thus, a functional gradient update is h ← h + �∇hJ(h) . A sparsification technique 
[42] can be used to achieve a compact representation of h which renders the func-
tional gradient approach an adaptive method too. That means the representation of 
h will be adapted to best approximate f ∗ . Hence, discretization is required to be fine 
enough (T is large enough, we used T ≫ N ) to guarantee accurate approximation.

CMA-ES: We assume that a parametric representation of h as a linear expan-
sion of N features: h(x) =

∑N

k=1
wk𝜙k(x) = �⊤𝜙(x) . We use RBF features 

�k(x) = exp(−‖x − �t‖2∕�2) in which N centers �t are regular intervals in the domain 
of � . Hence we apply CMA-ES to optimise J in a parameter space � ∈ ℜN . CMA-
ES-A would optimize over a search space of {�, {�t}Nt=1}.

Results: For all optimizers, we use the same number N of features in CMA-ES 
and CMA-ES-A, and centers after sparsification in CMA-ES-RKHS and functional 
gradient methods. We use N = 10 for 1-D task, and N = 100 for 2-D task. As men-
tioned in parameter setting section, we use a standard way of CMA-ES to initial-
ize other parameters in CMA-ES-RKHS. We set the same N to the effective dimen-
sionality in CMA-ES-RKHS. The results are averaged over 15 runs and report the 
averaged squared error w.r.t the number of evaluations, i.e queries to the objective 
function.

(20)J(h) ≈
1

T

T∑

k=0

(
f ∗(xk) − h(xk)

)2
.

∇hJ(h) =

T∑

k=0

2
(
h(xk) − f ∗(xk)

)
K(tk, ⋅).
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We report the squared error J and the solution function for the 1-D task in Fig. 1. 
The results for the 2-D task are reported in Figs. 2 and 3. We create two versions for 
CMA-ES-A, one with good initialization (initial values of xt are centers for CMA-
ES) and one with random initialization, called CMA-ES-A-R. In Fig. 1, the perfor-
mance of CMA-ES-A-R is not good in terms of error. As demonstrated on the right 
picture, it can detect only one mode of the optimal function. Hence we stop report-
ing results from CMA-ES-A-R in other domains. One remarkable note is that CMA-
ES initialization does not consist of two correct modes in its set of centers, hence it 
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gives poor approximation error. With adaptive ability, CMA-ES-A and CMA-ES-
RKHS are able to estimate the true modes correctly.

In the larger domain (2-D), CMA-ES-A performs much worse than our method. 
This is explained by the way our method approaches from a principled way, i.e ker-
nel methods, for the scaling of parameters. The functional gradient method per-
forms very well which also confirms that it can be very competitive when gradient 
information is known (in this case the form of J(h) is known). Fig. 2 shows very 
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interesting results where other methods like CMA-ES and CMA-ES-A are still 
struggling around the optimal regions to find the correct shapes of the Gaussians.

5.2 � Inverted pendulum

We use the same setting of the inverted pendulum domain as in [19]. This prob-
lem has an 1-dim action space [−3, 3] , a state space s = (�,�) , where � ∈ [−�,�] 
is angular position and � ∈ [−4�, 4�] is angular velocity. The system always starts 
at s0 = (−�, 0) (downward position). The reward function is r(s, a) = exp(−0.5�2) 
that requires to bring the pole to the upright position and keep it balanced there. The 
dynamics of the system is �� = � + 0.05� + � ; �� = � + 0.05a + 2� , � is a small 
Gaussian noise N(0, 0.022) . We use N = 50 centers or features for all algorithms. 
We set � = 0.99 and a horizon H = 400 . Each policy evaluation J(h) of policy h is 
averaged over 5 episodes.

The results of mean performance and its 95% confidence are computed over 15 
runs and reported in Fig. 4. In this task, CMA-ES performs better than CMA-ES-A 
and CMA-ES-RKHS. CMA-ES-A has a much bigger search space comparing to that 
of CMA-ES, 3N versus N parameters. We conjecture that CMA-ES-RKHS performs 
worse because we use N as the effective dimensionality to set its parameters. Theo-
retically, CMA-ES-RKHS optimizes over a potentially infinite dimensional space. 
We tried to increase its effective dimensionality to 2N, called Eff. CMA-ES-RKHS. 
This modification improves the performance significantly. CMA-ES-A-R performs 
slowly but keeps improving constantly. Local direct policy search algorithms, AC 
and RKHS-AC, do not perform comparably to the other global direct methods. This 
experiment shows that CMA-ES-RKHS is able to avoid local optima.
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5.3 � Double pendulum

This problem consists of two links and two under-actuated joints. The system 
state is 4-dimensional of joint position and velocities � = {𝜃1, 𝜃̇1, 𝜃2, 𝜃̇2} . Actions 
are motor torques � = [u1, u2] , which are limited in [−5N, 5N] . The dynam-
ics is simulated using second-order Runge-Kutta. We use a low sampling fre-
quency of 50Hz at which torques could be applied. The start state is {0,−�, 0, 0} . 
The reward function is r(�) = exp(−‖� − �∗‖W ) , where �∗ = {0, 0, 0, 0} and 
W = diag(0.25, 0.0025, 0.25, 0.0025) . Each episode is simulated in 6s, which is 
equivalent to a horizon of 300 steps. Each policy evaluation J(h) of policy h is aver-
aged over 5 episodes. We use N = 256 features or centers, and � = 0.99 . The opti-
mal policy returns 88. We only compare between global policy search methods via 
CMA-ES, CMA-ES-A, and CMA-ES-RKHS.

In this complex task, CMA-ES-RKHS has clearly outperformed other methods 
as seen in Fig. 5. Due to more expensive computation, we report an averaged per-
formance over only three runs. CMA-ES performs worse because it still depends 
on fixed and pre-defined features, therefore in a more complex task it can only find 
a policy whose performance is up to the power and quality of the selected features. 
CMA-ES-A uses a non-principled scaling on its parameter space which inherently 
consists of two parts: the weights {�} and the state information {�i} . This scaling 
does not capture correctly distances between points on the parameter space, hence it 
leads to a non-optimal solution.

6 � Conclusion

This paper proposes a CMA-ES-RKHS framework that generalises CMA-ES to han-
dle functional optimisation in which the search is handled over a function space. The 
fact that the function space is modeled in reproducing kernel Hilbert space results in 
analytic update rules for CMA-ES-RKHS. On the other hand, the solution function 
attains compactness and flexibility characteristics. We apply CMA-ES-RKHS for 
direct policy search in which the policy is modeled in RKHS. Our experiments show 
that both CMA-ES-RKHS and direct policy search via CMA-ES-RKHS are able to 
represent a complex solution function compactly and adaptively. The result shows 
many interesting aspects and results of CMA-ES-RKHS: (1) explicitly handling 
functional optimisation in principle; (2) overcoming the issue of hand-designed 
feature in many practical applications of CMA-ES. Though offering many advan-
tages, CMA-ES-RKHS is a kernel method therefore it also suffers from the problem 
of expensive computation. A study to investigate the way how to scale it will be a 
very promising research direction. There are also a number of other potential future 
research directions. A thorough study into hyperparameters of CMA-ES-RKHS 
will definitely be important to CMS-ES-RKHS. Moreover, more theoretical work 
and practical applications of CMA-ES-RKHS would be a very interesting future 
research direction.
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