
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2018) 19:421–452
https://doi.org/10.1007/s10710-018-9329-0

1 3

Visualisation with treemaps and sunbursts
in many‑objective optimisation

David J. Walker1 

Received: 5 February 2018 / Revised: 6 July 2018 / Published online: 7 August 2018
© The Author(s) 2018

Abstract
Visualisation is an important aspect of evolutionary computation, enabling practi-
tioners to explore the operation of their algorithms in an intuitive way and provid-
ing a better means for displaying their results to problem owners. The presentation
of the complex data arising in many-objective evolutionary algorithms remains a
challenge, and this work examines the use of treemaps and sunbursts for visualising
such data. We present a novel algorithm for arranging a treemap so that it explic-
itly displays the dominance relations that characterise many-objective populations,
as well as considering approaches for creating trees with which to represent multi-
and many-objective solutions. We show that treemaps and sunbursts can be used
to display important aspects of evolutionary computation, such as the diversity and
convergence of a search population, and demonstrate the approaches on a range of
test problems and a real-world problem from the literature.

Keywords  Many-objective optimisation · Visualisation · Evolutionary computation

1  Introduction

Visualisation remains an important topic within evolutionary computation and, as
many-objective evolutionary algorithms (MaOEAs) continue to mature, the visuali-
sation of solutions to many-objective problems is an important aspect of this [31].
A many-objective optimisation problem comprises four or more competing objec-
tives, such that a solution � is quantified by an objective vector � with four or more
elements:

where M ≥ 4 . At various stages during the process of solving a many-objective
problem with a MaOEA it is desirable to visualise objective vectors. Visualising

(1)� = (f1(�),… , fM(�)),

 *	 David J. Walker
	 D.J.Walker@exeter.ac.uk

1	 University of Exeter, Exeter, UK

http://orcid.org/0000-0002-3168-2089
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-018-9329-0&domain=pdf

422	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

the objective vectors to such problems is a non-trivial problem because humans are
not able to comprehend more than three spatial dimensions. The main motivation
behind this work is to facilitate the decision maker’s selection of a final operating
solution. In this work the decision maker is considered to be the problem owner—
the person who wishes to solve the optimisation problem. They are likely from an
industrial or scientific background, and do not necessarily have a background in evo-
lutionary computation. Thus, visualisation is a vital part of the optimisation process
as it enables the non-expert user to better understand the results they are presented
with. In the case of any MaOEA the task of a decision maker is an important one as
the result of executing the algorithm is a set of solutions, which are usually incom-
parable according to measures such as Pareto dominance. Presented with the solu-
tion set, the decision maker must select a single solution that can be implemented
to solve the problem. The visualisation methods proposed herein are intended to aid
the decision maker in this task.

In the past decade, much work has been focussed on the development of meth-
ods that can visualise many-objectives. The information that can be extracted
from such methods varies depending on the type of visualisation. For example,
in some methods the number of dimensions to be visualised is reduced so that a
conventional visualisation can be employed (e.g., [7, 46]). Other methods avoid
this loss of information by presenting the objective vectors in terms of the full
set of objectives (e.g., [11, 12, 15, 20, 25, 36, 36, 46]) or visualising relationships
between solutions (for example, conveying which solutions are superior to others)
and are constructed in terms of the full objective set (e.g., [48]).

Hierarchies are a convenient structure within evolutionary computation. Exam-
ples include the use of trees to represent populations of solutions, such as the
dominated trees and non-dominated tree structures proposed by [19] and the non-
dominated tree structure proposed in [33]. The example used later in this work
builds on the notion of a quad tree [41]. Solutions are often represented as trees
in genetic programming, and a tree-based solution representation was used within
NSGA-II in [42]. A study [10, 11] used a tree structure to represent the objectives
comprising a many-objective problem in order to reduce the dimensionality of the
problem. In this paper we explore the use of treemaps [26] and sunbursts [40].
A pilot study [47] illustrated the potential of using treemaps to visualise many-
objective populations, however it identified two problems. First, the treemaps
presented therein were based on trees constructed in terms of dominance. It is
well known [16] that the dominance relation is poorly suited to comparing many-
objective solutions since, assuming an uniformly distributed objective space, the
solutions are likely to be mutually non-dominating and thus incomparable. The
result of constructing a treemap or sunburst with such a tree is that there is little
structure to present in the visualisation and the user does not obtain any signifi-
cant insight. The second problem involved the layout algorithm selected for the
visualisations. The treemaps presented in [47] used a standard square layout, and
the dominance relations that were present in the tree (for multi-objective exam-
ples) were difficult to observe. In this work, the initial study is extended to make
the following novel contributions:

423

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

•	 A new treemap layout algorithm is presented, specifically designed to visu-
alise many-objective populations with dominated solutions, and compared to
an existing approach proposed by [26].

•	 A quad tree from the literature [41] is used as the basis for a many-objective
visualisation.

•	 The well-known sunburst visualisation [40] is used to visualise many-objec-
tive populations; demonstrations show that they can be used to convey infor-
mation about the optimisation characteristics (e.g., convergence and diver-
sity) as well as the solution quality of a mutually non-dominating set.

Therefore, the principal contribution of this paper lies in the application of tree-
based visualisations to many-objective populations using datastructures already
used within MaOEAs. This work is the first to have considered the visualisation
of many-objective populations using treemaps and sunbursts.

Throughout the paper we present results for a selection of optimisation prob-
lems, including well known benchmark problems from the DTLZ problem
suite [14], benchmark approximation sets proposed in [43] and solutions to a
real-world test problem [24]. The remainder of this paper is organised as fol-
lows: Sect. 2 presents some relevant background material, describing existing
approaches to many-objective visualisation as well as introducing treemaps.
Section 4 presents many-objective sunbursts used for visualising mutually non-
dominating sets. Section 5 presents a short user experiment of the methods, and
Sect. 6 provides an analysis of the properties of the introduced visualisation
methods before concluding remarks are made in Sect. 7.

2 � Background

This section introduces a range of relevant background material, first describing
many-objective visualisation in more detail, before introducing treemaps. The
methods described throughout this paper are for visualising the solutions gener-
ated by MaOEA’s. The task of a MaOEA is to optimise a problem comprising a
set of M conflicting objectives to which there can be no solution that simultane-
ously optimises all M objectives. Solutions are compared using the dominance
relation, whereby solution i dominates solution j if it is no worse than j on any
objective and better on at least one. More formally, assuming a minimisation
problem without loss of generality:

If neither i dominates j or j dominates i then they are said to be mutually non-domi-
nating. A solution with no dominating solutions is called non-dominated. The goal
of a MaOEA is to identify the Pareto set, the set of feasible solutions that cannot be
dominated. Its objective space image is called the Pareto front.

(2)�i ≺ �j ⟺ ∀m(yim ≤ yjm) ∧ ∃m(yim < yjm).

424	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

2.1 � Many‑objective visualisation

As has been outlined, techniques for visualising many-objective populations fall into
three categories, all of which contain methods that are useful for visualising such
data while suffering from limitations. In the first, the dimensionality of the data is
reduced so that conventional visualisation tools can be applied, while in the second
novel methods that are capable of visualising the full data are used. The last, the
pairwise relationships are highlighted so that preferred solutions can be identified.
This paper is concerned with the latter, and we do not discuss visualisations from
the first two classes further.

A challenge with visualising data in terms of the full set of objectives is that the
visualisations are often too cluttered to observe useful information. Two examples of
this are parallel coordinate plots [15, 20, 25] and pairwise coordinate plots [12]. Par-
allel coordinate plots represent a solution as a line, with the ordinal axis representing
the problem objectives, and the abscissa conveying the objective value; an example
is shown in Fig. 1. While this is scalable to any number of objectives and solutions
the result is often too cluttered to allow a decision maker to extract useful infor-
mation from it. Pairwise coordinate plots present a population of solutions accord-
ing to each pair of objectives. This too is scalable, but relationships involving more
than two objectives cannot be represented. Heatmaps are also a scalable approach
to visualising all of the objectives within a population, and they can be enhanced to
better convey the information within the data; for example, the rows and columns
(representing solutions and objectives, respectively) can be rearranged to highlight
the trade-off between objectives [36, 46]. That said, one of the useful features of a
many-objective visualisation is the ability to observe dominance relations between
pairs of individuals. That is not easily done using a heatmap, and such information
is typically even more difficult to see using feature extraction techniques that have
been used to visualise many objective solutions (e.g., self-organising maps [28, 35],
generative topographic mappings [6, 18] and neuroscale [18, 32]). Presenting domi-
nance relationships is one of the key aspects of this work.

As a close relative of the tree, methods presenting populations in terms of a
graph are relevant to this work. One example of such a method is the Pareto shell

Fig. 1   An example parallel coordinate plot. The 50 solutions are mostly indistinguishable from each
other

425

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

visualisation demonstrated in [48]. Therein, a dominance graph is inferred on the
population by ranking the individuals with Pareto sorting. Edges are then placed
such that if a solution dominates an individual in the immediately inferior shell then
Wij indicates the probability of dominance, the number of objectives m for which
yim < yjm . That visualisation was enhanced with the use of colour, which is used to
convey additional rank information. Various ranking schemes are discussed, and it is
shown that the method can reveal useful structural information about the population,
for example highlighting poor solutions that are extremely good on one objective
and thus difficult to dominate. An extension of this method projected such a graph
into the plane for visualisation as a 2-dimensional scatter plot [17].

2.2 � Treemaps and sunbursts

A treemap is a 2-dimensional visualisation of hierarchical data constructed using a
space filling algorithm. They are particularly effective for displaying clusters within
data, and have been used in a variety of applications, such as visualising stock mar-
ket information for identifying fraudulent transactions [23], visualising gene expres-
sion data [5], and representing file system hierarchies graphically [44]. Though we
are aware of no cases in which treemaps have been used to visualise data arising
from evolutionary computation (aside from [47]), they have been used to visualise
the evolution of biological organisms [2] and biodiversity [22]. Hierarchies are com-
mon within evolutionary computation, examples being solutions to genetic program-
ming problems and hierarchies of solutions defined in terms of the solutions’ rela-
tive quality, and for these reasons they are a natural choice for visualisation within
evolutionary computation. We note that in their conventional square form treemaps
are visually similar to mosaic plots [27]. These are not designed to convey hierarchi-
cal information, so are not considered herein.

The underlying task in visualising data with a treemap is to convey a sense of
the scale or importance of a node by dividing the space within the treemap so that
those nodes with high importance are represented by large regions of space, and
those smaller or less important nodes receive less space. Various algorithms have
been proposed to partition a space in the construction of treemaps. One of the most
frequently used is the squarify algorithm, which divides a rectangular space into
elements as closely as possible have an aspect ratio of 1 [8]. That work suggests
that using square elements makes the comparison of pairwise elements’ size sim-
pler, as well as providing a more efficient use of space. Treemaps do not have to be
square or rectangular [45]; an alternative algorithm used in [3, 34] uses a Voronoi
tessellation to divide the space. This is done by placing seed points that control the
placement of irregular regions within the treemap. The regions are arranged so that
they correspond to the data being visualised. It is argued by [22] that this type of
treemap is more intuitive to a user, in that it is not constrained to fill a rectangular
shape and can take more memorable and representative geometries. In this work,
our main goal is to represent a multi- or many-objective population with a treemap
so that dominance relationships are directly visible in the visualisation. We present
two approaches for conveying this information, which are discussed in Sect. 3. An

426	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

alternative to using the treemaps proposed herein is to exploit the sunburst visuali-
sation [40], which divides space according to some quantified values in the way a
treemap does, but nodes emanate from the centre of the visualisation. For a compre-
hensive review of hierarchical visualisation methods see [38].

In addition to the partitioning of the space, additional degrees of freedom can be
employed to convey further information about the hierarchy. The obvious candidate
is the colour of the node; in their use as a method for visualising clusters of data,
treemaps are often coloured according to the cluster membership of a node [9]. The
treemap can be further enhanced by using alternative rendering techniques to clar-
ify aspects of the visualisation. An example is the use of “cushioned” nodes [44],
which are intended to better highlight the hierarchical aspects of the data being rep-
resented. In this work we make use of node colour to represent additional aspects,
such as solution quality, along with population convergence and diversity measures.

3 � Multi‑objective populations: treemaps

Before demonstrating how a space-dividing visualisations might be used to convey
multi- and many-objective populations we first consider the intended workflow in
which they will be incorporated. Two use cases are envisaged—one in which an
evolutionary computation practitioner wishes to inspect the solutions within their
algorithm’s search population, and the other in which the decision maker selects a
solution generated by a MaOEA for implementation. The first use case is an impor-
tant consideration, as visualising EA operation can enable better selection of algo-
rithm parameters; the state of the search population is an important aspect of the
algorithm’s operation. Additionally, interactive EAs are becoming more prevalent,
and simple light-weight visualisations of the search population are an important
inclusion into the user interface of such algorithms. This section considers the case
of search populations, which can (and do) contain dominated solutions, and the fol-
lowing section describes the second use case—those examples deal exclusively with
mutually non-dominating solutions.

In order to visualise a population of solutions with a treemap, the population
must first be represented as a tree, and we present a method for doing this. The first
step is to define a new individual, which we call �r , that will be the root node in the
tree. We constrain that this node must dominate the entire population, so we use the
global best point in the population to define it. This is the M-dimensional vector
comprising the minimising objective value on each objective [21]:

Having defined the tree’s root node, we order the population with Pareto
sorting [39]. Pareto sorting begins by identifying the non-dominated solutions,
which become the first shell. They are then temporarily discarded, leaving a new
non-dominated set. This becomes the second shell, and these solutions are also

(3)�
r =

(
min
i

yi1,… , min
i

yim

)
.

427

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

discarded. Over time, the entire population is assigned to a shell. In Fig. 2, the
first shell is comprised of A and B; the second shell has three members (C, D and
E); and the final shell contains individual F. This produces a partial ordering of
individuals, and as was done in [48] we infer a graph on the population by plac-
ing edges between the dominating and dominated individuals in adjacent shells.
Additional edges are placed to connect each of the non-dominated individuals
to the root. The resulting network is not yet a tree; as shown in Fig. 2, it is pos-
sible for an individual to be dominated by two individuals in the superior shell.
Using the nomenclature of trees, this means that a node can have two parents. In
order to convert the network into a tree, we use the dominance distance [46] to
identify which edges should be pruned. The dominance distance is a proper met-
ric, and computes a distance in terms of the number of dominance relations two
individuals share with the rest of the population. If the two individuals share most
dominance relations then the individuals are said to be close; if they differ on a
majority of the relations then they are distant. In order to prune an individual’s
excess parents, we compute the dominance distance between the individual and
all candidate parents in the superior shell, and retain the edge between it and the
parent with which it is closest. The resulting tree structure contains, according to
the dominance relation, the “best” solutions (those that are mutually non-domi-
nating) at the highest levels, and the “worst” solutions are the leaf nodes. In terms
of the task of a decision maker, this is the most important structural characteristic
of the tree as the solutions they are most likely to prefer are those that are mutu-
ally non-dominating. The solutions at the lowest levels of the tree are unlikely to
be of interest for a decision maker selecting an operating solution. We note that
all nodes in the trees in this paper are unweighted.

Fig. 2   The construction of a
tree using dominance. In the
top panel, the individuals have
been arranged into a graph using
Pareto sorting. Pareto sorting is
used to induce an ordering over
the individuals, edges are placed
between those individuals where
one dominates another in the
immediately inferior Pareto
shell. The dominance distance is
used to prune edges. All of the
parent–child relationships are
removed, with the exception of
that between which the pairwise
dominance distance is closest.
A root node �r is inserted to
represent the ideal point. Thus,
the network is reduced to N − 1
edges

A

B

C

D

E

F

(a)

nr

A

B

C

D

E

F

(b)

428	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

As discussed above, other algorithms for expressing the dominance relation-
ships between individuals with a tree have been proposed, and we note that the
treemap visualisation we now demonstrate is not dependent on the algorithm used
to create the tree itself. An approach to visualising a multi-objective population
with a treemap was proposed in [47]. Given a tree T of multi-objective individu-
als, we construct a treemap that represents T by partitioning a space according
to the importance of each node within the tree. Importance is defined in terms
of the number of child nodes that the current node has (hence, the number of
individuals that the node’s corresponding individual dominates) [47]. In addition
to the size of the node, information is conveyed to the decision maker by colour-
ing the nodes according to some relevant scale (the original study demonstrated
the use of average rank [4], to provide an additional measure of solution quality,
and crowding distance, to provide an indication of population diversity—both are
used later in this work).

Figure 3 illustrates a treemap which visualises an example population of 2-objec-
tive individuals. Following the scheme outlined above, a tree is defined over the
individuals; non-dominated individuals are child nodes of the artificial root node.
A region rc is defined to specify the extent of the treemap occupied by the current
node. The procedure by which the space is partitioned is based on the well-known
slice and dice method [26]. At the beginning of the partitioning procedure, the cur-
rent node is the root and rc = (0, 1, 0, 1) , defining the x origin, y origin, width and
height. We initialise the partitioning direction to be vertical, however this is an arbi-
trary choice.

The first step of partitioning the space is to insert the node corresponding to solu-
tion A. A is placed on the left-hand side of the treemap, and since it dominates no
solutions spans the entire vertical extent of rc . Given that there are no further chil-
dren to add for A the next step is to add node B to the visualisation. This node has
descendants, and rc is redefined to form the region that is to be occupied by B and
its descendants. Once B itself has been added, its descendants are added recursively.
At each layer of recursion (each layer corresponding to a deeper layer of the tree)
the partitioning direction is reversed to enhance the clarity of the visualisation. This
procedure continues until all of the nodes in T have been added to the treemap. We
note that in addition to defining the size of a rectangle representing an individual in
terms of its number of dominated individuals, we also scale the node according to
the Pareto shell to which an individual belongs. This has the effect of better high-
lighting the strongest individuals, which, from the point of view of a decision maker
selecting a final operating point or an individual to use as a parent in the next gen-
eration of an interactive optimisation procedure are the individuals likely to be of
interest.

Figure 4 illustrates a population of sample solutions to a 2-objective instance
of DTLZ2 [14] along with a corresponding treemap of the population in the cen-
tre panel (the bottom panel can be ignored for now). The population comprises 50
individuals generated from the feasible space ( xp ∈ (0, 1),∀p ∈ P , where each solu-
tion has P parameters). In both visualisations, the individuals have been coloured
according to average rank [4]; the population is ranked according to each objective,
to produce M rankings of the population such that rim indicates the rank of the i-th

429

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

0 2 4 6 8 10

f1

0

2

4

6

8

10

f 2

A

B

C

D

E

F

G

H

I

A

D

I E

F

B

G

H

C

A B C

Fig. 3   The partitioning of a test population into a treemap. Having constructed a tree, the root node has
children A, B and C (the population’s mutually non-dominating individuals). A has no children, B has
children D, E and F, and grandchild I, while C has children G and H 

430	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

individual on the m-th objective. From these, the average rank for individual i is
computed as follows:

A low average rank is shown by a light colour, and indicates a good solution. Poor
solutions are represented by high average ranks in red. Average rank values have
been normalised to the range (0, 1). There has been no effort to place the nodes
within the treemap in a particular order; this is discussed shortly. Good solutions
are easily observed, from their lighter colour and generally larger node size. We
note that there are several non-dominated individuals that do not dominate any other
members of the population. From inspecting the scatter plot in the left-hand panel
it can be seen that such solutions do not exist. This is an artefact of the edge prun-
ing procedure; these individuals were one of a set of candidate parent nodes for the
solutions they dominate, and have a greater dominance distance from the individual
than the individual which retained the relationship and became the dominated indi-
vidual’s parent.

In order to make the treemap clearer, the order in which nodes are added to the
visualisation can be controlled. Figure 5 shows three examples of ordered treemaps,
in which the individuals have been ordered according to their value on the first
objective. The left-hand panel shows the ordered version of the heatmap shown in
Fig. 4. The other two treemaps show comparable populations for 3-objective (cen-
tre) and 5-objective (right) instances of DTLZ2. These visualisations present the
individuals in a single visualisation, whereas multiple views are often required for
a many-objective visualisation using a conventional approach such as a scatter plot.
That said, particularly in the 5-objective case, there is an obvious lack of structure in
the visualisation. Many of the individuals are mutually non-dominating and do not
dominate other members of the population. This means that the majority of the pop-
ulation is a direct child of the root node; this is because of the aforementioned lack
of discrimination provided by dominance for many-objective individuals. Given a

(4)ri =
1

M

M∑

m=1

rim.

A

A

Fig. 4   DTLZ2 sample solutions. The left-hand panel shows the objective vectors corresponding to the
treemaps in the centre and right panels. Solutions are coloured according to average rank. Region A indi-
cates corresponding regions in the treemaps (Color figure online)

431

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

case in which the entire population was mutually non-dominating the treemap would
consist entirely of Pareto-optimal columns, and would impart very little information.
We consider an approach to ameliorate this later in this paper.

3.1 � Circular treemaps

Though the procedure outlined above produced treemaps with which it was possible
to view the relative quality of solutions, the arrangement of nodes made it difficult to
observe the dominance relationships between dominated and dominating nodes. In
this work, we propose a new treemap layout algorithm that addresses this issue. As
noted in [45], there is no requirement for a treemap to follow the rectangular layout
that is often used. We therefore consider a layout in which Pareto shells are arranged
as layers within a circle. The outermost layer comprises the non-dominated indi-
viduals, the next layer comprises the second shell, and so on. As before, the space
allocated to a node reflects that node’s importance. In the case of the non-dominated
layer, this defines the proportion of the total layer that the solutions occupy. For
child nodes, it defines the amount of its parent’s extent that the child occupies. By
constraining child nodes to lie within their parent’s extent their dominance relation-
ships are much clearer. As in the case of square treemaps, information is conveyed
by the size of a rectangle representing a node; an individual with a large number of
child nodes is represented by a larger node than one with a small number of dom-
inating individuals, and the thickness of each layer decreases to show the dimin-
ishing importance of each subsequent Pareto shell. We note that the construction
of these visualisations is similar to the icicle plot [29], which arranges clusters of
nodes together so that they descend, in a similar way to how nodes here are arranged
inwards. Both methods provide a similar view on the data; the circular design used
herein is preferred as it keeps the extent of the visualisation constrained to a smaller
space.

The right-hand panel of Fig. 4 illustrates the sample DTLZ2 population shown
in the other two panels, as discussed earlier, with a circular treemap. The tree rep-
resentation of the individuals is the same, only the arrangement of the visualisation
has changed. Using this visualisation of the population it is much easier to observe

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Fig. 5   Treemaps showing populations of 50 solutions to the same 2-objective population (left), as well
as populations of solutions to 3-objective (centre) and 5-objective (right) DTLZ2 problem instances. The
solutions are ordered according to the first objective. a M = 2 , b M = 3 , c M = 5

432	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

the dominance relationships. For example, considering the highlighted region A, it
is clear to see that the non-dominated individual shown in the outer ring dominates
two individuals, one of which dominates another one individuals in the third Pareto
shell while the second dominates two shell-3 solutions. While this information was
presented in the square treemap, it is much more readily observed in the circular
version. This is primarily because the Pareto shells have their own layer, and as such
it is much easier to see which nodes are parents and which are the children of that
node. There are examples in Fig. 5 where this information is not clear at all because
there are two or more similar nodes in a region of the treemap describing a node and
its children.

Figure 6 shows circular treemaps for the 2-, 3- and 5-objective DTLZ2 popu-
lations. Again, these visualisations clearly display the relationships between indi-
viduals and those that they dominate, however the effect of increasing numbers of
objectives can be seen in the 5-objective case. The number of dominated individuals
within the population is reducing, and as such the number of non-dominated indi-
viduals residing in the outer ring is increasing. As was the case with the square tree-
maps, this greatly reduces the usefulness of the treemap as a visualisation method.
Given the prevalence of many-objective optimisation problems and the continually
increasing interest in many-objective optimisation algorithms, it is important to con-
sider methods by which treemaps can be used to visualise the data arising from such
problems and algorithms.

4 � Many‑objective mutually non‑dominating sets: sunbursts

The treemaps demonstrated in the section above are suitable for representing pop-
ulations of solutions in which some of the solutions are dominated, such as the
search population of a MaOEA. Another common use case is to visualise the solu-
tions resulting from the execution of such an algorithm. Generally, these solutions
represent the best approximation to a given problem’s Pareto front, and as such are
mutually non-dominated. Two problems occur when trying to visualise mutually
non-dominating objective vectors with the scheme outlined above. First, the tree
construction procedure begins by performing non-dominated sorting on the popula-
tion. If all of the solutions are mutually non-dominating, then they will all belong to

Fig. 6   DTLZ2 sample solutions; the populations shown are for M = 2 objectives (left panel), M = 3
objectives (centre panel) and M = 5 objective (right panel)

433

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

the first Pareto shell, and the resulting treemap will comprise a single ring. This is
not very informative to a decision maker, as it does not assist them with differentiat-
ing between the solutions in their approximated Pareto front. The second issue is
that some of the solutions are given substantially smaller regions within the treemap,
to indicate that they are less significant and concentrate the decision maker’s atten-
tion on the solutions of higher quality. This is an advantage of the proposed tree-
maps when dealing with dominated solutions, as typically a decision maker will be
primarily interested in those residing in the superior Pareto shells, whose individuals
are represented more prominently in the treemap. In the case of a mutually non-
dominated set, these “inferior” solutions do not exist. Such containment methods are
not suitable in situations such as this where the deeper nodes are important to the
visualisation (as opposed to the case described earlier, in which the outer rings were
the most important).

4.1 � Producing sunbursts from quad trees

The first of these issues, representing a mutually non-dominating population with a
tree, has been tackled within the evolutionary optimisation literature—though not
from the standpoint of visualisation. A potentially computationally expensive task
within a MaOEA is identifying whether a newly evolved solution is dominated by,
or dominates members of the current Pareto front approximation. A naive approach
is to compare each solution of the archive and check the dominance relationships
between them and the new solution. Various attempts have been made to leverage
the lower complexity of lookup within a tree. Two examples of non-dominated trees
are [19, 33].

The algorithm used in this work constructs a quad tree from a many-objective
mutually non-dominating tree and was proposed in [41]. The process relies on the
notion that one individual is the successor to another—which aligns well with the
requirement for each node to have one parent, as already been discussed herein. One
solution �i is called the �-successor of �j , where � is computed as follows:

Having computed a �m value for each objective, the overall value � is computed
with:

The tree begins with the first member of the population being added as the root
node. Then, as each new solution is added, a check is made to see if there is already
a �-successor in the tree. If there is not, then the solution is added to the tree as a
child of the root. Otherwise, the same check between the new solution and the root’s

(5)�m =

{
1 if yim ≤ yjm
0 otherwise .

(6)� =

M∑

m=1

(�m)2
M−m

434	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

existing �-successor to see if the new solution can be that node’s child, and so on
until a node is found for which there is no �-successor and the solution is added to
the tree.

The second issue, relating to the difficulty in seeing the inner-most nodes of a cir-
cular treemap, is addressed by using a slightly different visualisation. The sunburst
[40] operates in the same way as a circular treemap, representing a node’s children
within the extent of the parent, however it places the root node at the centre and
child nodes emanate from it. This allows all of the nodes to be visible, and as such
no part of the the tree is implicitly less important than any other. The size of the
node is again determined by the number of child nodes beneath it, as was done in
the treemaps earlier. This work introduces the use of sunbursts for visualising many-
objective populations.

4.2 � Sunburst examples

Several demonstrations of sunburst plots representing mutually non-dominating
sets follow. The examples are drawn from a number of sources, including 3- and
10-objective benchmark approximation sets [43], samples from the discontinuous
Pareto front of a test problem from the literature [14] and the solution set gener-
ated by using a MaOEA to optimise a real-world benchmark problem comprising 9
objectives, identifying good designs of radar waveforms [24].

4.2.1 � 3‑objective BAS & DTLZ6 plots

As with the treemap visualisations of dominated populations, the mutually non-
dominating sets to be visualised with sunburst plots are demonstrated using solu-
tions to a known test problem (DTLZ6 [14]). In addition, two benchmark approxi-
mation sets (BASs) are used. BASs were introduced by [43] in order to facilitate
more systematic analysis of visualisation methods. They propose two BASs, one of
which is linear and is used in this work. It provides known distributions of points
across a mutually non-dominating set and its solutions within are distributed uni-
formly. The left-hand panel in Fig. 7 shows the distribution of the two BASs, each
of which comprises 500 points. The points are coloured according to their average
rank, with white indicating a good rank and dark red a poor rank. Highly ranked
points are clustered in the corners. The right-hand visualisation shows the quad tree
representation of the linear BAS. As can be seen, there is a strong degree of correla-
tion among the rank of the nodes, with regions of very poor solutions and regions of
stronger solutions. Displaying the population in this way is a useful way of guiding
the decision maker towards those more highly ranked regions of an estimated Pareto
front without providing them with a specific solution to select, encouraging them to
explore interesting regions of the solution set.

An important aspect of visualisation is interaction, and one of the strengths of this
approach is that it lends itself to updating to show different properties of the popula-
tion. Assuming a preference on the part of the decision maker for one or more objec-
tive, having undertaken the computational expense of arranging the sunburst the nodes

435

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

can be quickly recoloured. Figure 8 shows three more versions of the same sunburst
plot, with each showing the solutions’ rank according to one of the objectives (the left-
hand plot shows the solutions ranked according to their value on the first objective;
the second shows the rank according to objective two, and the right-hand plot shows
objective three). In each case, a different region of the sunburst is shown to have the
highest rank for a given objective, demonstrating the trade-off between the objectives.

Fig. 7   The objective vectors of a 3-objective linear BAS (left) and the corresponding sunburst plot
(right). Colour indicates average rank, normalised to (0,1). a Objective vectors, b sunburst (Color figure
online)

Fig. 8   Sunburst plots of the 3-objective linear BAS along with the population. Each pair of plots is col-
oured according to a different objective (1, 2 and 3) to show the trade-off between the objectives and
demonstrate how this is viewed in the sunburst. a Objective 1, b objective 2, c objective 3 (Color figure
online)

436	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

The final 3-objective example is drawn from the DTLZ6 test problem. This prob-
lem features a discontinuous Pareto front, with the number of discontinuous regions
depending on the number of objectives forming an instance of the problem. In the
3-objective case the problem has four disconnected regions, shown in the left-hand
plot of Fig. 9; each region is shown in a different colour. The disconnected regions
are clearly visible in the sunburst plot, with a small degree of overlap (a small num-
ber of yellow and blue nodes appear amongst the nodes belonging to other discon-
nected regions). This further demonstrates the ability to identify regions of the
Pareto front, beyond that demonstrated in the BAS examples above. As well as dem-
onstrating that the tree construction proposed herein preserves the spatial character-
istics of the Pareto front, the information provided to a user by colouring according
to a cluster or disconnected region is of use to a decision maker. While there has
been no effort to weight objectives in this work, the decision maker will have prefer-
ences that guide their selection of a solution. By categorising objectives in this way,
they are guided towards regions of interest and can further explore solutions in those
regions more thoroughly while ignoring solutions in areas of the Pareto front that
are not of interest.

4.2.2 � 10‑objective BAS plots

Having demonstrated the potential for using the sunburst visualisation of a quad tree
to identify regions of interest within a mutually non-dominated set, it is important
to consider how well the method scales to larger number of objectives. The methods
used to generate BASs are scalable to any number of objectives, and a 10-objective

Fig. 9   A sunburst showing 500 solutions drawn from the Pareto front of DTLZ6. Each disconnected
region is coloured differently, and regions are clearly visible within the sunburst. a Objective vectors, b
sunburst (Color figure online)

437

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

linear BAS is constructed. The set consists of 500 solutions. Two instances of a sun-
burst representing the BAS are shown in Fig. 10. In each case, the solutions are col-
oured according to their score on two of the objectives (objective 1, left, and objec-
tive 3, right). In both cases, regions (marked A) have been highlighted that indicate
a cluster of solutions with a lower score on that objective than is found elsewhere
in that sunburst. Though the clustering is less clear than it was in the case of the
3-objective populations, especially in the right-hand case, it is important to note that
these populations are more complex given the higher number of objectives. Despite
this it is possible to observe this relationship in the high-dimensional space, which
indicates that the sunburst is a useful many-objective visualisation tool. As noted
above, it is a trivial matter to recolour the nodes of the sunburst, and thus the visu-
alisation could easily be incorporated into an interactive tool where it would be used
to explore a high dimensional population such as this.

4.2.3 � 9‑objective radar plots

The final demonstration of mutually non-dominating treemaps is for a real world
test case. Proposed by Hughes [24], this population of mutually non-dominating
solutions optimises a 9-objective radar waveform design problem. A solution to the
problem comprises 12 pulse repetition intervals, and the problem is described by
nine objectives; four optimise the range at which objects can be detected, another
four optimise the velocity at which objects can be detected, and the final objective
minimises the transmission time of the complete waveform. Details of the optimisa-
tion procedure can be found in [24]. Figure 11 presents two versions of a sunburst. In
the first, the solutions are coloured according to average rank. As has been the case
in earlier examples, those solutions with the best rank are clustered together—the

A

A

(a) (b)

Fig. 10   Two views of the same 10-objective linear BAS. In the left-hand example, node’s are coloured
according to their corresponding solutions normalised score on the first objective. The right-hand exam-
ple shows the same information, with nodes coloured according to objective 4. In both cases, solutions
minimising the respective objectives, shown by lighter nodes, are clustered within the region A. a Objec-
tive 1, b objective 3 (Color figure online)

438	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

lower-right segment of the plot comprises predominantly light coloured nodes. The
second colours the solution according to the type of objective it best optimises. The
solutions were converted to rank coordinates, placing each objective on the scale
1,… ,N , and the best rank for each solution was identified. This information was
used to colour the solutions according to the class of objective they best optimise,
so that those best optimising range objectives are coloured red, velocity objectives
are green, and the transmission time objective is shown in blue. The visualisation
illustrates a known correlation between the objectives. The range objectives are anti-
correlated with the velocity objectives, and in the sunburst plot they are placed away
from each other, with the exception of a few range nodes within the velocity region.
The transmission time objective is correlated with the velocity objectives, and the
blue nodes are within the green velocity region. With this information, the trade-off
between objectives can be seen. It is not possible to have a solution that simulta-
neously optimises range, velocity and transmission time objectives. Those optimis-
ing range objectives well are gathered away from those optimising the velocity and
transmission time objectives, and offer poor performance on those other objectives.
As was the case with the DTLZ6 example, this information will be used in combina-
tion with the user’s preferences, and will better inform their identification of regions
of interest within the Pareto front.

4.3 � Visualising diversity and convergence

Beyond the visualisation of solution quality, aspects of evolutionary optimisa-
tion such as population diversity and convergence are an important considera-
tion. We consider an approach in which solution diversity is evaluated in objective
space using the crowding distance measure employed within the selection opera-
tor of NSGA-II [13]. Crowding distance identifies the distance between a solution
and its next nearest neighbour on each objective. In Ref. [47] demonstrated the use

Fig. 11   Two sunbursts visualising the radar archive. The left-hand plot colours solutions according to
average rank, while the right-hand plot shows the objective class on which each individual has the best
rank. Red indicates a range objective; green indicates a velocity objective, while blue represents the
transmission time. The vast majority of the range objectives are contained within their own cluster, while
the velocity and transmission time are intermingled—they are known to be well correlated. a Ranks, b
objective class (Color figure online)

439

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

of evaluating Euclidean distances between parameter values to consider diversity
in solution space. We note that this is a sensible alternative to the approach taken
herein, and that a range of measures might be appropriate in order to consider differ-
ent solution representations (e.g., permutation-based approaches).

Figure 12 illustrates this approach on a sample population comprising two Pareto
shells arranged on the plane. In both shells, the distribution of points is uneven,
so that the points in the centre of the shells are spread out and those at the edges
are closer together. The effect of this is to give those central individuals a larger
crowding distance than those at the edge, and that can be clearly seen in the treemap
shown in the lower panel of Fig. 12. The individuals in the centre of the shells are
those on the left-hand side of the treemap, coloured dark blue in both shells. The
edges of the population are located on the right-hand side of the visualisation. A
second sample population is shown in Fig. 13. This data was generated by sam-
pling from the true Pareto front of DTLZ2. In a P-dimensional chromosome, the
first M − 1 parameters control the position of a solution on the true Pareto front and
the rest control the distance of the solution from the front. The sampled solutions
were moved away from the Pareto front by adding a small amount of random noise
to these distance parameters, to create a population with dominated solutions. Two
variants of this population are shown. In the first, shown on the left-hand side of
Fig. 13’s top panel, a large discontinuity has been induced by placing the individuals
at the extreme edges of the population, essentially forming two clusters of solutions.
The individuals on the inner edges of these clusters have a large crowding distance,
and these individuals are clearly visible in the corresponding treemap, shown in the
centre panel; they are the dark blue individuals. Conversely, the second population
contains no such discontinuity, and the solutions are all much closer together. That
population’s treemap, shown in the bottom panel of Fig. 13, has a much more uni-
form distribution of colours, and the colours are much lighter.

In addition to visualising diversity, it is also important to present an idea of the
extent to which the population has converged. Here we use the age of the archive

0 2 4 6 8 10 12 14 16

f1

0

2

4

6

8

10

12

14

16

18

f 2

Fig. 12   Visualising population diversity using a treemap. Those individuals in the centre of the popu-
lation with a larger crowding distance are shown in the centre of the treemap. Individuals are ordered
according to their objective value for the first objective (Color figure online)

440	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

to demonstrate the extent to which the algorithm has converged, based on the idea
that once an algorithm has converged it will contain solutions that are no longer
replaced, and the presence of such “older” solutions can be highlighted in the
treemap. In order to demonstrate that a treemap can be used to show the conver-
gence of a population we optimise a 3-objective instance of DTLZ2 with a series
of MaOEAs designed to show different convergence characteristics. In each case,
the underlying algorithm is a simple ( � + �)—evolution strategy (ES). The exact
operation of the base algorithm is outlined in Algorithm 1. The algorithm initial-
ises a random population of N solutions, which are evaluated and used to initial-
ise an elite archive to represent the current approximation of the Pareto front. At
each generation, the population is copied and each individual is mutated with an
additive Gaussian mutation drawn from  (0, 0.1) . The solutions are evaluated
and the archive updated (any that the new child dominates are removed, and if
the child is not dominated by the archive then it is added) before elitist selection
is performed on the combined parent and child populations. The first ES employs
uniform random selection, designed to show very slow convergence with rea-
sonable diversity. The second employs Pareto sorting, which is designed to offer
better convergence and maintain the diversity of the population, while the final

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

f1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f 2

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

f1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f 2

Fig. 13   Two circular treemaps showing coverage of the Pareto front according to crowding distance for
two sets of samples drawn from an instance of DTLZ2. The top treemap shows the discontinuity in the
solutions by the dark solutions. The lower population contains no such discontinuity, and solutions are
more evenly coloured (Color figure online)

441

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

optimiser uses average rank selection, retaining the top N solutions in combined
parent and child populations. This is a selection strategy known to promote pre-
mature convergence to a small region of the Pareto front [21].

Figures 14, 15, 16 illustrate sunbursts of the results of these optimisation experi-
ments. Each figure refers to a different selection mechanisim—Fig. 14 shows the

Fig. 14   Optimisation result using random selection. a Solutions, b rank, c diversity, d convergence
(Color figure online)

442	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

random selection case; Fig. 15 shows the Pareto sorting example, and Fig. 16 shows
the average rank results. The top-left panel shows the objective space image of the
objective vectors. The solutions in all three final archives were ordered using average
rank, and this information was used to colour the individuals in the population view
as well as the sunburst visualisation next to it. The bottom row shows the same sun-
burst representation of the archive; the left-hand plot is coloured according to crowd-
ing distance to show diversity, while the right-hand shows the age of the solution to
indicate convergence. In the case of the diversity, the best results were achieved by the
Pareto sorting algorithm. That algorithm’s sunburst has the lightest colouring, indicat-
ing that the crowding distance values are much more uniform and the solutions are
better spread across the Pareto front. In both of the other cases, the treemaps feature
dark blue colouring more, meaning that those Pareto front estimations contain more
distant solutions. This is particularly the case for the average rank optimiser, which has
explored very little of the Pareto front. This is supported by the convergence sunbursts,

Fig. 15   Optimisation results using Pareto sorting selection. a Solutions, b rank, c diversity, d conver-
gence (Color figure online)

443

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

which, again, display the (normalised) age of the solutions in the archive. The age is
specified by the generation number in which the solution was archived, so a low num-
ber indicates an old solution that was generated early on in the optimisation process.
The premature convergence exhibited by this algorithm is shown clearly by the large
group of solutions, shown in dark brown at the top of the sunburst, which have been
in the archive since the beginning of the optimisation procedure. These correspond
to the random solutions scattered at the bottom of the top panel’s scatter plot and are
shown in region A. They correspond to the solutions with the largest crowding dis-
tance in the diversity sunburst. Beyond examining the colouring of the visualisations,
these sunbursts convey more information through their structure than has been seen
before. From examining all three it can be seen that the number of layers provide an
indication of the degree to which the population has converged—the random selection
algorithm has 10 layers, compared to 12 in the Pareto sorting example and 20 in the

A A

(a) (b)

(c) (d)

Fig. 16   Optimisation results using average rank selection. The extreme convergence of some solu-
tions has caused a deeper tree than was seen for either the random selection or Pareto sorting examples.
Region A within the sunburst indicates a group of poorly converged solutions from early on in the opti-
misation. a Solutions, b rank, c diversity, d convergence (Color figure online)

444	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

prematurely-converged average rank case. There are also fewer missing regions in the
sunburst representing the “ideal” case, using Pareto sorting, with the visualisation tend-
ing more towards the full circle shape seen in earlier examples sampled from the Pareto
front and in the BAS examples.

5 � Validation

As well as discussing the topological features that the treemaps and sunbursts allow the
user to observe, it is important to quantify how useful the proposed methods are. To
do this, a small user experiment was conducted to assess the extent to which the user
can identify solutions of interest, as well as examining the accuracy of their selection.
Using the nomenclature from [30], a controlled experiment was carried out. Sunburst
plots were pit against three other many-objective visualisation methods drawn from the
literature. These are seriated heatmaps [46], parallel coordinate plots [25] and multidi-
mensional scaling (MDS) [37] constructed using the dominance distance [46]. These
methods were chosen as a cross-section of existing methods from the evolutionary
computation visualisation literature, and include a method that shows the actual objec-
tive values (parallel coordinate plots); a method based on all M objectives (heatmaps);
and a dimension reduction method (MDS). Three sets of 50 mutually non-dominat-
ing solutions were constructed from datasets seen previously herein—the linear BAS,
spherical BAS and samples drawn uniformly at random from the radar waveform opti-
misation solutions (giving different types of Pareto front geometry and different num-
bers of objectives (10, 3 and 9 objectives, respectively)). The 50 samples were gener-
ated at the start of the experiment, meaning that each user saw different datasets. That
set of 50 samples was then displayed with each of the four visualisation types.

Nine users were shown each dataset using all four visualisations. The users were
Computer Science researchers, and all had prior knowledge about mutually non-domi-
nating sets. No other prior selection of user was performed, and participants were from
a range of ages, and were both male and female. The experiment was conducted in a
lab, and users were presented with visualisations on a screen. Their task was to identify
the best solution, according to the average rank measure, in each case. The visualisa-
tions were benchmarked in two ways: the amount of time taken for the user to make
their selection (recorded automatically by the visualisation software), and the distance
in rank space between their selected solution and the best solution they could have cho-
sen. Assuming the user selects the solution �i , this distance is calculated as follows.
First, the solution is converted to rank-coordinates to produce a vector of ranks �i:

where rim is again the rank of the i-th solution on the m-th objective. Then, assum-
ing the best solution (identified with the average rank procedure, outlined earlier) is
represented by the rank vector �̂ , an error term is computed with:

(7)�i = (ri1,… , riM),

(8)E =

M∑

m=1

|rim − r̂im|.

445

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

In the ideal scenario, the user selects the best solution and E is 0. The further away
from the ideal the user is, the worse their score will be.

Figure 17 illustrates the timing results for each user. As can be seen, the maxi-
mum response time was just over one minute, with most decisions being made
within twenty seconds. It took users considerably longer to identify the best solu-
tion, and users were slightly faster with the sunburst than the MDS. Anecdotally,
one user commented that the extra information provided by the size of the node in
the sunburst made it easier to use than the MDS projection, in which each solu-
tion was represented with a circle of equal size. Further anecdotal evidence from
users suggested that they found the additional information available from viewing
the exact objective values in the parallel coordinate plots and heatmaps confusing,
which is supported from the time taken shown here. It is important to note that the
visualisations were presented in the same order, and therefore some learning may
have taken place on the part of the user that enabled them to use later visualisations
more effectively. The accuracy results shown in Fig. 18 show a similar trend. Again,
the heatmaps are the hardest for users to identify the best solution with, but here par-
allel coordinates plots are shown to be less distinguishable from MDS and sunbursts
than they were considering time taken. MDS is the most accurate way of identifying
the most highly ranked solution. Though this result shows that more accurate results
can be obtained with MDS than with the sunburst visualisations, we note that MDS
requires the potentially expensive step of computing pairwise distances between the
solutions before the 2-dimensional projection can be constructed. Were a MaOEA
using a tree-based archive to store its approximation of the Pareto front to be used to

Fig. 17   User response times for the four visualisations compared

Fig. 18   Accuracy scores for the four visualisations compared

446	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

generate the solution set, the visualisation task with in the sunburst case would sim-
ply be partitioning the space and colouring the nodes.

6 � Discussion

The sections above demonstrate that both treemaps and sunburst plots can be used to
convey useful information within evolutionary computation. In order to contextual-
ise the methods with others used in the field, they are evaluated using the framework
proposed by Tusar and Filipić [43]. They characterise nine properties of a popula-
tion visualisation: the preservation of (1) dominance relations, (2) front shape, (3)
objective range, and (4) the distribution of vectors; (5) robustness; (6) the ability to
handle large sets; (7) the simultaneous visualisation of two or more populations; (8)
scalability; and (9) simplicity. The visualisations proposed in this work are formed
of two components—the treemap or sunburst visualisation itself and the underlying
tree structure. The proposed methods are discussed with respect to the approaches
taken herein, and may not apply to other tree structures.

The treemap visualisations preserve some dominance relations by including the
dominated child within the extent of its parent solution. Those that are discarded
in the tree construction process are lost, however care is taken to preserve the rela-
tion between the child and the dominating solution with which it is closest using
the dominance distance. The sunburst visualisations were used to show mutually
non-dominating sets, so in terms of dominance all of the solutions are incompa-
rable. Both visualisations are capable of preserving dominance relations, depend-
ing on the type of tree structure used to store the individuals. It is also possible to
illustrate distribution of objective ranges can be included with colour. In this work
the objective ranges have been normalised, however as has been discussed it is
computationally cheap to update the colour of nodes. The distribution of vectors
is shown both through the arrangement of nodes and by applying a colour indicat-
ing distances between points. In the mutually non-dominating sets generated by the
three MaOEAs different distributions of solutions were obtained; the well converged
diverse population had a rounded arrangement, while the other two (showing poor
convergence and premature convergence) had gaps. Both visualisations are capable
of supporting large populations, both in terms of the number of solutions and the
number of objectives; hence, they meet both the criteria relating to handling of large
sets and scalability. In terms of simplicity, the treemaps and sunbursts are both con-
structed with a recursive function that is called linearly with the number of individu-
als in the population. The complexity of tree construction is also a consideration;
the original purpose of storing mutually non-dominating sets in tree structures was
to enable fast lookup for checking dominance relations, which means the computa-
tionally expensive operations are carried out during tree construction. That said, the
algorithm used herein completes tree construction in polynomial time. Thus, both
treemaps and sunbursts meet the simplicity criterion, with the proviso that addi-
tional complexity can be introduced depending on the desired colour scheme.

Three of the characteristics are not observed in treemaps or sunbursts. The shape
of the Pareto front is not conveyed in either the treemap or sunburst visualisations.

447

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

According to [43], robustness refers to the ability to add solutions without changing
the existing population. The visualisations herein are not robust because an addi-
tional solution will change the structure of the population. Finally, both treemaps
and sunbursts represent a single population, therefore they are not suitable for com-
paring between different solution sets.

Beyond contextualising the methods in terms of the properties of a population
visualisation, it is important to compare them to other methods in terms of the tasks
they will be used to perform. A taxonomy of visualisation tasks was proposed [1]
and we evaluate treemaps and sunbursts according to those tasks and compare them
to other visualisation methods. The taxonomy provides ten tasks, some of which are
not relevant to the general goal of identifying good solutions using the visualisation,
but most of which are. The tasks defined by the taxonomy are: (1) retrieve value;
(2) filter; (3) compute derived value; (4) find extreme values; (5) sort; (6) deter-
mine range; (7) characterise distribution; (8) find anomalies; (9) cluster; and (10)
correlate.

Probably the most relevant to the overall goal are identifying extreme values and
sorting. In both cases, both treemaps and sunbursts facilitate this through the col-
ouring of nodes. In the examples demonstrated, we have shown that the nodes can
easily be coloured according to the overall quality of a solution, or by the solutions’
value on an individual objective. In each case, the decision maker can look for the
extreme colour to identify the best solution (as well as the worst), and can use the
colour gradient between the maximum and minimum to infer an ordering of solu-
tions. In a similar fashion the range of each objective can be identified by colouring
the solutions by the relevant objectives. We note that in this paper the visualisations
have shown normalised objective values—to identify the range of the objectives it
would be necessary to visualise the objective range. A similar task is evaluating the
distribution of objective values. This can be done, again, by considering the solu-
tions’ colour. The authors’ description of distribution analysis [1] discusses the com-
parison of different classes—this relates to the comparison of different objectives,
which in turn leads to trade-off analysis. While it is possible to observe the trade-off
between different objectives, it relies on changing the node colouring between the
objectives being compared, and in the methods’ current form it is not possible to
visualise this without interaction. We do not feel that this is too much of a defi-
ciency, however it is worth considering in future work. The ability to identify clus-
ters within the data has been demonstrated within the examples shown earlier. In
those examples, the data were coloured using a priori information—which region
of the Pareto front the solutions belong to in Fig. 9 and which class of objective the
solutions achieved the best rank on in Fig. 11. Clusters were also visible in the visu-
alisations coloured according to average rank, in which regions of good and poor
solutions could be observed, and in those coloured according to a specific objective.
Again, regions of good performance on the objective at hand were easily discerned.

Of the remaining five tasks that are not immediately facilitated by the treemaps
or sunbursts, value retrieval, filtering, anomaly detection and correlation observa-
tion might easily be facilitated through interaction. The individual objective val-
ues are not present in the basic visualisation (though the visualisation is based on
them), however they could be easily displayed for a selected solution alongside the

448	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

visualisation. Likewise, additional work would be required to implement filtering of
objective values, but this would be possible through the addition of a user interface.
This feature could be extended to observe correlations by allowing composite filter-
ing, however users are likely to be better served by providing a heatmap or parallel
coordinate plot in such tasks. The same is true of anomaly detection. The computa-
tion of derived values is not something that a user engaged in tasks defined would
use such a visualisation for, though, again, in theory it could be incorporated within
the user interface.

7 � Conclusion

Hierarchical information is common within evolutionary computation. This paper
has presented treemaps and sunbursts for visualising data in evolutionary computa-
tion, focussing on populations of solutions to many-objective problems. The visu-
alisation of such data is an important task, as decision makers find comprehending
solutions described by a large number of objectives difficult. Treemaps are a good
choice of visualisation tool because of their flexibility. They have various degrees
of freedom that can be exploited to convey the structure of a population. Though
the standard form of a treemap is a square grid in which nodes are represented by
rectangles, we have presented an alternative layout algorithm that is better suited to
displaying the dominance relationships that characterise a many-objective popula-
tion. By using circular treemaps, the parent–child (and therefore dominance) rela-
tionships are much easier to observe. In addition to showing individual quality, we
demonstrated that treemaps can be used to convey other information relevant to the
operation of an MaOEA, such as the diversity within the search population and how
well converged the solutions are.

We have presented a novel algorithm for building a tree of multi-objective solu-
tions so that a treemap can be rendered. Based on dominance, the algorithm is
shown to be suitable for multi-objective populations, but does not scale well to deal
with many-objective populations. This is because many-objective individuals are
generally incomparable under dominance, so instead a tree construction algorithm
from the literature was employed. Whereas circular treemaps give most promi-
nence to those individuals in a population that are non-dominated, with less sig-
nificance given to dominated solutions, a mutually non-dominating set does not have
such preferential individuals. As such, a sunburst visualisation is used instead of a
treemap, which sees nodes radiating out from the centre rather than inwards as is the
case with circular treemaps. Both of the methods result in graphs that convey useful
information. We acknowledge that, unlike some of the other methods for construct-
ing multi-objective trees in the literature, the purpose of these trees is to be used
as a basis for visualisation. Were they to be used within an optimisation process,
the computational complexity would likely be an issue. That said, for the construc-
tion of a one-off visualisation this is not an issue, and we believe that they are fast
enough to be used within an interactive visualisation too.

The main advantage offered by the approaches described herein are their flex-
ibility. We have used three visualisation methods in combination with two tree

449

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

representations of data arising within evolutionary computation to visualise
aspects of that data, however the use of these methods is far from restricted to the
approaches we have taken. As discussed in Sect. 2, other approaches to represent-
ing data as trees have been taken in evolutionary computation, and any of these
tree representations could form the basis of a treemap visualisation. Likewise, the
visualisation literature contains a plethora of approaches to arranging treemaps.
Though the circular treemap proposed here is designed specifically for use in evo-
lutionary computation, to illustrate dominance relationships between multi- and
many-objective individuals, the selection of layout algorithm is largely problem
specific. An aspect of future work is to consider other areas of evolutionary com-
putation in which treemaps might be productively used, and design new ways of
illustrating this hierarchical information.

In addition to considering other applications of treemaps and sunbursts, sev-
eral aspects of future work are worthy of consideration. In terms of the mechanics
of the visualisation, these fall into two groups. In the first, the tree used as the
basis of the visualisation would be enhanced. As has been discussed, one of the
benefits of the proposed method is that the visualisation is completely decoupled
from the underlying tree, so it would be useful to consider whether there are char-
acteristics of mutually non-dominating sets that can be more effectively repre-
sented by using a strategy other than the successor-based quad tree demonstrated
herein. Beyond this, there may be other data structures in use within MaOEAs
that might inform or inspire a visualisation in the same way that this work was
inspired by research into the use of trees to represent populations with a treemap.
The second area of future work would consider alternative layout algorithms.
This work has shown useful visualisations of solution sets, however some of the
characteristics of the sets were lost, such as their shape. Mutually non-dominat-
ing sets are characterised by their shape; this can be, for example, linear, convex
or non-convex, and is a piece of information that this work does not consider.
Though it was possible to observe the trade-off between objectives by updating
node colourings to show different objective values, an ideal visualisation would
incorporate this within a single visualisation without needing multiple views. We
feel that the potential of presenting evolutionary computation data in this way is
an exciting prospect, and likely to be extremely useful to evolutionary computa-
tion practitioners.

A final extension that we are currently exploring is how the visualisation can be
more thoroughly evaluated. Elsewhere in evolutionary computation, such as algo-
rithm development, rigorous benchmarking of methods is employed. In the realm of
visualisation this has not historically been the case, and we are currently investigat-
ing how evaluation methods within the visualisation field might be applied within
evolutionary computation to facilitate a more scientific investigation of methods
such as those proposed herein, beyond examples such as the small user experiment
used to gather quantifiable data used in this work. The study included herein would
benefit from a random ordering of the visualisations, in order to eliminate the poten-
tial for visualisations presented later in the study to benefit from greater understand-
ing on the part of the user. We feel that such investigation will lead to the develop-
ment of much better visualisations for the wider evolutionary computing field.

450	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

Acknowledgements  The author would like to thank Prof. Ed Keedwell for his valuable comments on a
draft of this paper, and was supported by EPSRC Grant EP/P009441/1 for some of this work.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

	 1.	 R. Amar, J. Eagan, J. Stasko, Low-level components of analytic activity in information visualiza-
tion, in IEEE Symposium on Information Visualization (INVOVIS’05) (2005)

	 2.	 A. Arvelakis, M. Reczko, A. Stamatakis, A. Symeonidis, I.G. Tollis, in Proceedings of Inter-
national Symposium on Biological and Medical Data Analysis (ISBMDA) (Springer, 2005), pp.
283–293

	 3.	 M. Balzer, O. Deussen, Voronoi treemaps, in IEEE Symposium on Information Visualization
(INVOVIS’05) (2005), pp. 49–56. https​://doi.org/10.1109/INFVI​S.2005.15321​28

	 4.	 P.J. Bentley, J.P. Wakefield, Finding acceptable solutions in the Pareto-optimal range using mul-
tiobjective genetic algorithms, in Soft Computing in Engineering Design and Manufacturing
(1998), pp. 231–240

	 5.	 J. Bernhardt, S. Funke, M. Hecker, J. Siebourg, Visualizing gene expression data via voronoi
treemaps, in Sixth International Symposium on Voronoi Diagrams, 2009. ISVD ’09 (2009), pp.
233–241

	 6.	 C. Bishop, M. Svensén, C. Williams, GTM: the generative topographic mapping, Neural Com-
put. 10, 215–235 (1998)

	 7.	 D. Brockhoff, D.K. Saxena, K. Deb, E. Zitzler, On handling a large number of objectives a poste-
riori and during optimization, in Multiobjective Problem Solving from Nature: From Concepts to
Applications, ed. by J. Knowles, D. Corne, K. Deb (Springer, Berlin, 2007), pp. 377–403

	 8.	 M. Bruls, K. Huizing, J. van Wijk, Squarified treemaps, in In Proceedings of the Joint Euro-
graphics and IEEE TCVG Symposium on Visualization (Press, 1999), pp. 33–42

	 9.	 Y. Chen, X. Zhang, Y. Feng, J. Liang, H. Chen, Sunburst with ordered nodes based on hierarchi-
cal clustering: a visual analyzing method for associated hierarchical pesticide residue data. J.
Vis. 18(2), 237–254 (2015)

	10.	 A.R.R. de Freitas, P.J. Fleming, F.G. Guimaraes, Aggregation trees for visualization and dimen-
sion reduction in many-objective optimization. Inf. Sci. 298, 288–314 (2015)

	11.	 A.R.R. de Freitas, P.J. Fleming, F.G. Guimaraes, Aggregation trees for visualization and dimen-
sion reduction in many-objective optimization. Inf. Sci. 298, 288–314 (2015)

	12.	 K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley-Interscience Series
in Systems and Optimization (Wiley, Chichester, 2001)

	13.	 K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

	14.	 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems,
in Proceedings of IEEE Congress on Evolutionary Computation, vol 1, (2002), pp. 825–830

	15.	 M. D’Ocagane, Coordonnées parallles et axiales: Méthode de transformation géométrique et
procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèlles
(Gauthier-Villars, 1885) reprinted by Kessinger Publishing

	16.	 M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems,
in 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceed-
ings (2002), pp. 233–238

	17.	 J. Fieldsend, R. Everson, Visualising high-dimensional Pareto relationships in two-dimensional
scatterplots, in Evolutionary Multi-criterion Optimization (EMO 2013) (2013), pp. 558–572

	18.	 J.E. Fieldsend, R.M. Everson, Visualisation of multi-class ROC surfaces, in Proceedings of the
ICML 2005 Workshop on ROC Analysis in Machine Learning (2005), pp. 49–56

	19.	 J.E. Fieldsend, R.M. Everson, S. Singh, Using unconstrained elite archives for multiobjective
optimization. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/INFVIS.2005.1532128

451

1 3

Genetic Programming and Evolvable Machines (2018) 19:421–452	

	20.	 C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective optimization: formulation,
discussion and generalization, in Proceedings of the Fifth International Conference on Genetic
Algorithms (Morgan Kauffman, 1993), pp. 416–423

	21.	 M. Garza-Fabre, G. Toscano-Pulido, C.A.C. Coello, Two novel approaches for many-objective
optimization, in Proceedings of the IEEE Congress on Evolutionary Computation (2010), pp.
4480–4487

	22.	 M.S. Horn, M. Tobiasz, C. Shen, Visualizing biodiversity with voronoi treemaps, in Sixth Inter-
national Symposium on Voronoi Diagrams, ISVD 2009, Copenhagen, Denmark, June 23–26,
2009 (2009), pp. 265–270

	23.	 M.L. Huang, J. Liang, Q.V. Nguyen, A visualization approach for frauds detection in financial
market, in Proceedings of the 2009 13th International Conference Information Visualisation
(2009), pp. 197–202

	24.	 E.J. Hughes, Radar waveform optimisation as a many-objective application benchmark, in Pro-
ceedings of the 4th International Conference on Evolutionary Multi-criterion Optimization,
EMO’07 (Springer, Berlin, 2007), pp. 700–714

	25.	 A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and Its Applications
(Springer, Berlin, 2009)

	26.	 B. Johnson, B. Shneiderman, Tree-maps: a space-filling approach to the visualization, in Pro-
ceedings of the 2nd International IEEE Visualization Conference (1991), pp. 284–291

	27.	 B. Kleiner, J.A. Hartigan, Representing points in many dimensions by trees and castles. J. Am.
Stat. Assoc. 76(374), 260–269 (1981)

	28.	 T. Kohonen, Self-Organising Maps (Springer, Berlin, 1995)
	29.	 J.B. Kruskal, J.M. Landwehr, Icicle plots: better displays for hierarchical clustering. Am. Stat.

37(2), 162–168 (1983)
	30.	 H. Lam, E. Bertini, P. Isenberg, C. Plaisant, S. Carpendale, Empirical studies in information

visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph. 18(9), 1520–1536 (2012)
	31.	 B. Li, J. Li, K. Tang, X. Yao, Many-objective evolutionary algorithms: a survey. ACM Comput.

Surv. 48(1), 13 (2015). https​://doi.org/10.1145/27929​84
	32.	 D. Lowe, M.E. Tipping, NeuroScale: novel topographic feature extraction using RBF networks,

in NIPS (1996), pp. 543–549
	33.	 J.B. Mendes, J.A. de Vasconcelos, Using an adaptation of a binary search tree to improve the

NSGA-II nondominated sorting procedure, in Simulated Evolution and Learning (Springer,
2010), pp. 558–562

	34.	 A. Nocaj, U. Brandes, Computing voronoi treemaps: faster, simpler, and resolution-independent.
Comput. Graph. Forum 31(3pt1), 855–864 (2012)

	35.	 S. Obayashi, Pareto solutions of multipoint design of supersonic wings using evolutionary algo-
rithms, in Adaptive Computing in Design and Manufacture V, ed. by I.C. Parmee (Springer, Lon-
don, 2002), pp. 3–15

	36.	 A. Pryke, S. Mostaghim, A. Nazemi, Heatmap visualization of population based multi objective
algorithms, in Evolutionary Multi-criterion Optimization (EMO 2006) (2006), pp. 361–375

	37.	 J.W. Sammon, A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18(5),
401–409 (1969)

	38.	 H.-J. Schulz, S. Hadlak, H. Schumann, The design space of implicit hierarchy visualization: a
survey. IEEE Trans. Vis. Comput. Graph. 17(4), 393–411 (2011)

	39.	 N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algo-
rithms. Evol. Comput. 2(3), 221–248 (1994)

	40.	 J. Stasko, R. Catrambone, M. Guzdial, K. McDonald, An evaluation of space-filling informa-
tion visualizations for depicting hierarhcical structures. Int. J. Hum. Comput. Stud. 53, 663–694
(2000)

	41.	 M. Sun, R.E. Steuer, Interquad: an interactive quad tree based procedure for solving the discrete
alternative multiple criteria problem. Eur. J. Oper. Res. 89, 462–472 (1996)

	42.	 S. Tiwari, N. Chakraborti, Multi-objective optimization of a two-dimensional cutting problem
using genetic algorithms. J. Mater. Process. Technol. 173, 384–393 (2006)

	43.	 T. Tušar, B. Filipič, Visualization of Pareto front approximations in evolutionary multiobjective
optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2),
225–245 (2015)

https://doi.org/10.1145/2792984

452	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

	44.	 J.J. Van Wijk, H. van de Wetering, Cushion treemaps: visualization of hierarchical information,
in Proceedings of the 1999 IEEE Symposium on Information Visualization, INFOVIS ’99 (1999),
pp. 73–78

	45.	 R. Vliegen, J.J. van Wijk, E.-J. van der Linden, Visualizing business data with generalized tree-
maps. IEEE Trans. Vis. Comput. Graph. 12(5), 789–796 (2006)

	46.	 D.J. Walker, R.M. Everson, J.E. Fieldsend, Visualising mutually non-dominating solution sets in
many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)

	47.	 D.J. Walker, Visualising many-objective populations, in Proceedings of the 2015 Genetic and
Evolutionary Computation Conference (2015), pp. 451–458

	48.	 D.J. Walker, R.M. Everson, J.E. Fieldsend, Visualising and ordering of many-objective populations,
in 2010 Congress on Evolutionary Computation (2010), pp. 3664–3671

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Visualisation with treemaps and sunbursts in many-objective optimisation
	Abstract
	1 Introduction
	2 Background
	2.1 Many-objective visualisation
	2.2 Treemaps and sunbursts

	3 Multi-objective populations: treemaps
	3.1 Circular treemaps

	4 Many-objective mutually non-dominating sets: sunbursts
	4.1 Producing sunbursts from quad trees
	4.2 Sunburst examples
	4.2.1 3-objective BAS & DTLZ6 plots
	4.2.2 10-objective BAS plots
	4.2.3 9-objective radar plots

	4.3 Visualising diversity and convergence

	5 Validation
	6 Discussion
	7 Conclusion
	Acknowledgements
	References

