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Abstract
Visualisation is an important aspect of evolutionary computation, enabling practi-
tioners to explore the operation of their algorithms in an intuitive way and provid-
ing a better means for displaying their results to problem owners. The presentation 
of the complex data arising in many-objective evolutionary algorithms remains a 
challenge, and this work examines the use of treemaps and sunbursts for visualising 
such data. We present a novel algorithm for arranging a treemap so that it explic-
itly displays the dominance relations that characterise many-objective populations, 
as well as considering approaches for creating trees with which to represent multi- 
and many-objective solutions. We show that treemaps and sunbursts can be used 
to display important aspects of evolutionary computation, such as the diversity and 
convergence of a search population, and demonstrate the approaches on a range of 
test problems and a real-world problem from the literature.

Keywords  Many-objective optimisation · Visualisation · Evolutionary computation

1  Introduction

Visualisation remains an important topic within evolutionary computation and, as 
many-objective evolutionary algorithms (MaOEAs) continue to mature, the visuali-
sation of solutions to many-objective problems is an important aspect of this [31]. 
A many-objective optimisation problem comprises four or more competing objec-
tives, such that a solution � is quantified by an objective vector � with four or more 
elements:

where M ≥ 4 . At various stages during the process of solving a many-objective 
problem with a MaOEA it is desirable to visualise objective vectors. Visualising 

(1)� = (f1(�),… , fM(�)),
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the objective vectors to such problems is a non-trivial problem because humans are 
not able to comprehend more than three spatial dimensions. The main motivation 
behind this work is to facilitate the decision maker’s selection of a final operating 
solution. In this work the decision maker is considered to be the problem owner—
the person who wishes to solve the optimisation problem. They are likely from an 
industrial or scientific background, and do not necessarily have a background in evo-
lutionary computation. Thus, visualisation is a vital part of the optimisation process 
as it enables the non-expert user to better understand the results they are presented 
with. In the case of any MaOEA the task of a decision maker is an important one as 
the result of executing the algorithm is a set of solutions, which are usually incom-
parable according to measures such as Pareto dominance. Presented with the solu-
tion set, the decision maker must select a single solution that can be implemented 
to solve the problem. The visualisation methods proposed herein are intended to aid 
the decision maker in this task.

In the past decade, much work has been focussed on the development of meth-
ods that can visualise many-objectives. The information that can be extracted 
from such methods varies depending on the type of visualisation. For example, 
in some methods the number of dimensions to be visualised is reduced so that a 
conventional visualisation can be employed (e.g., [7, 46]). Other methods avoid 
this loss of information by presenting the objective vectors in terms of the full 
set of objectives (e.g., [11, 12, 15, 20, 25, 36, 36, 46]) or visualising relationships 
between solutions (for example, conveying which solutions are superior to others) 
and are constructed in terms of the full objective set (e.g., [48]).

Hierarchies are a convenient structure within evolutionary computation. Exam-
ples include the use of trees to represent populations of solutions, such as the 
dominated trees and non-dominated tree structures proposed by [19] and the non-
dominated tree structure proposed in [33]. The example used later in this work 
builds on the notion of a quad tree [41]. Solutions are often represented as trees 
in genetic programming, and a tree-based solution representation was used within 
NSGA-II in [42]. A study [10, 11] used a tree structure to represent the objectives 
comprising a many-objective problem in order to reduce the dimensionality of the 
problem. In this paper we explore the use of treemaps [26] and sunbursts [40]. 
A pilot study [47] illustrated the potential of using treemaps to visualise many-
objective populations, however it identified two problems. First, the treemaps 
presented therein were based on trees constructed in terms of dominance. It is 
well known [16] that the dominance relation is poorly suited to comparing many-
objective solutions since, assuming an uniformly distributed objective space, the 
solutions are likely to be mutually non-dominating and thus incomparable. The 
result of constructing a treemap or sunburst with such a tree is that there is little 
structure to present in the visualisation and the user does not obtain any signifi-
cant insight. The second problem involved the layout algorithm selected for the 
visualisations. The treemaps presented in [47] used a standard square layout, and 
the dominance relations that were present in the tree (for multi-objective exam-
ples) were difficult to observe. In this work, the initial study is extended to make 
the following novel contributions:
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•	 A new treemap layout algorithm is presented, specifically designed to visu-
alise many-objective populations with dominated solutions, and compared to 
an existing approach proposed by [26].

•	 A quad tree from the literature [41] is used as the basis for a many-objective 
visualisation.

•	 The well-known sunburst visualisation [40] is used to visualise many-objec-
tive populations; demonstrations show that they can be used to convey infor-
mation about the optimisation characteristics (e.g., convergence and diver-
sity) as well as the solution quality of a mutually non-dominating set.

Therefore, the principal contribution of this paper lies in the application of tree-
based visualisations to many-objective populations using datastructures already 
used within MaOEAs. This work is the first to have considered the visualisation 
of many-objective populations using treemaps and sunbursts.

Throughout the paper we present results for a selection of optimisation prob-
lems, including well known benchmark problems from the DTLZ problem 
suite [14], benchmark approximation sets proposed in [43] and solutions to a 
real-world test problem [24]. The remainder of this paper is organised as fol-
lows: Sect.  2 presents some relevant background material, describing existing 
approaches to many-objective visualisation as well as introducing treemaps. 
Section 4 presents many-objective sunbursts used for visualising mutually non-
dominating sets. Section 5 presents a short user experiment of the methods, and 
Sect.  6 provides an analysis of the properties of the introduced visualisation 
methods before concluding remarks are made in Sect. 7.

2 � Background

This section introduces a range of relevant background material, first describing 
many-objective visualisation in more detail, before introducing treemaps. The 
methods described throughout this paper are for visualising the solutions gener-
ated by MaOEA’s. The task of a MaOEA is to optimise a problem comprising a 
set of M conflicting objectives to which there can be no solution that simultane-
ously optimises all M objectives. Solutions are compared using the dominance 
relation, whereby solution i dominates solution j if it is no worse than j on any 
objective and better on at least one. More formally, assuming a minimisation 
problem without loss of generality:

If neither i dominates j or j dominates i then they are said to be mutually non-domi-
nating. A solution with no dominating solutions is called non-dominated. The goal 
of a MaOEA is to identify the Pareto set, the set of feasible solutions that cannot be 
dominated. Its objective space image is called the Pareto front.

(2)�i ≺ �j ⟺ ∀m(yim ≤ yjm) ∧ ∃m(yim < yjm).
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2.1 � Many‑objective visualisation

As has been outlined, techniques for visualising many-objective populations fall into 
three categories, all of which contain methods that are useful for visualising such 
data while suffering from limitations. In the first, the dimensionality of the data is 
reduced so that conventional visualisation tools can be applied, while in the second 
novel methods that are capable of visualising the full data are used. The last, the 
pairwise relationships are highlighted so that preferred solutions can be identified. 
This paper is concerned with the latter, and we do not discuss visualisations from 
the first two classes further.

A challenge with visualising data in terms of the full set of objectives is that the 
visualisations are often too cluttered to observe useful information. Two examples of 
this are parallel coordinate plots [15, 20, 25] and pairwise coordinate plots [12]. Par-
allel coordinate plots represent a solution as a line, with the ordinal axis representing 
the problem objectives, and the abscissa conveying the objective value; an example 
is shown in Fig. 1. While this is scalable to any number of objectives and solutions 
the result is often too cluttered to allow a decision maker to extract useful infor-
mation from it. Pairwise coordinate plots present a population of solutions accord-
ing to each pair of objectives. This too is scalable, but relationships involving more 
than two objectives cannot be represented. Heatmaps are also a scalable approach 
to visualising all of the objectives within a population, and they can be enhanced to 
better convey the information within the data; for example, the rows and columns 
(representing solutions and objectives, respectively) can be rearranged to highlight 
the trade-off between objectives [36, 46]. That said, one of the useful features of a 
many-objective visualisation is the ability to observe dominance relations between 
pairs of individuals. That is not easily done using a heatmap, and such information 
is typically even more difficult to see using feature extraction techniques that have 
been used to visualise many objective solutions (e.g., self-organising maps [28, 35], 
generative topographic mappings [6, 18] and neuroscale [18, 32]). Presenting domi-
nance relationships is one of the key aspects of this work.

As a close relative of the tree, methods presenting populations in terms of a 
graph are relevant to this work. One example of such a method is the Pareto shell 

Fig. 1   An example parallel coordinate plot. The 50 solutions are mostly indistinguishable from each 
other
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visualisation demonstrated in [48]. Therein, a dominance graph is inferred on the 
population by ranking the individuals with Pareto sorting. Edges are then placed 
such that if a solution dominates an individual in the immediately inferior shell then 
Wij indicates the probability of dominance, the number of objectives m for which 
yim < yjm . That visualisation was enhanced with the use of colour, which is used to 
convey additional rank information. Various ranking schemes are discussed, and it is 
shown that the method can reveal useful structural information about the population, 
for example highlighting poor solutions that are extremely good on one objective 
and thus difficult to dominate. An extension of this method projected such a graph 
into the plane for visualisation as a 2-dimensional scatter plot [17].

2.2 � Treemaps and sunbursts

A treemap is a 2-dimensional visualisation of hierarchical data constructed using a 
space filling algorithm. They are particularly effective for displaying clusters within 
data, and have been used in a variety of applications, such as visualising stock mar-
ket information for identifying fraudulent transactions [23], visualising gene expres-
sion data [5], and representing file system hierarchies graphically [44]. Though we 
are aware of no cases in which treemaps have been used to visualise data arising 
from evolutionary computation (aside from [47]), they have been used to visualise 
the evolution of biological organisms [2] and biodiversity [22]. Hierarchies are com-
mon within evolutionary computation, examples being solutions to genetic program-
ming problems and hierarchies of solutions defined in terms of the solutions’ rela-
tive quality, and for these reasons they are a natural choice for visualisation within 
evolutionary computation. We note that in their conventional square form treemaps 
are visually similar to mosaic plots [27]. These are not designed to convey hierarchi-
cal information, so are not considered herein.

The underlying task in visualising data with a treemap is to convey a sense of 
the scale or importance of a node by dividing the space within the treemap so that 
those nodes with high importance are represented by large regions of space, and 
those smaller or less important nodes receive less space. Various algorithms have 
been proposed to partition a space in the construction of treemaps. One of the most 
frequently used is the squarify algorithm, which divides a rectangular space into 
elements as closely as possible have an aspect ratio of 1 [8]. That work suggests 
that using square elements makes the comparison of pairwise elements’ size sim-
pler, as well as providing a more efficient use of space. Treemaps do not have to be 
square or rectangular [45]; an alternative algorithm used in [3, 34] uses a Voronoi 
tessellation to divide the space. This is done by placing seed points that control the 
placement of irregular regions within the treemap. The regions are arranged so that 
they correspond to the data being visualised. It is argued by [22] that this type of 
treemap is more intuitive to a user, in that it is not constrained to fill a rectangular 
shape and can take more memorable and representative geometries. In this work, 
our main goal is to represent a multi- or many-objective population with a treemap 
so that dominance relationships are directly visible in the visualisation. We present 
two approaches for conveying this information, which are discussed in Sect. 3. An 
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alternative to using the treemaps proposed herein is to exploit the sunburst visuali-
sation [40], which divides space according to some quantified values in the way a 
treemap does, but nodes emanate from the centre of the visualisation. For a compre-
hensive review of hierarchical visualisation methods see [38].

In addition to the partitioning of the space, additional degrees of freedom can be 
employed to convey further information about the hierarchy. The obvious candidate 
is the colour of the node; in their use as a method for visualising clusters of data, 
treemaps are often coloured according to the cluster membership of a node [9]. The 
treemap can be further enhanced by using alternative rendering techniques to clar-
ify aspects of the visualisation. An example is the use of “cushioned” nodes [44], 
which are intended to better highlight the hierarchical aspects of the data being rep-
resented. In this work we make use of node colour to represent additional aspects, 
such as solution quality, along with population convergence and diversity measures.

3 � Multi‑objective populations: treemaps

Before demonstrating how a space-dividing visualisations might be used to convey 
multi- and many-objective populations we first consider the intended workflow in 
which they will be incorporated. Two use cases are envisaged—one in which an 
evolutionary computation practitioner wishes to inspect the solutions within their 
algorithm’s search population, and the other in which the decision maker selects a 
solution generated by a MaOEA for implementation. The first use case is an impor-
tant consideration, as visualising EA operation can enable better selection of algo-
rithm parameters; the state of the search population is an important aspect of the 
algorithm’s operation. Additionally, interactive EAs are becoming more prevalent, 
and simple light-weight visualisations of the search population are an important 
inclusion into the user interface of such algorithms. This section considers the case 
of search populations, which can (and do) contain dominated solutions, and the fol-
lowing section describes the second use case—those examples deal exclusively with 
mutually non-dominating solutions.

In order to visualise a population of solutions with a treemap, the population 
must first be represented as a tree, and we present a method for doing this. The first 
step is to define a new individual, which we call �r , that will be the root node in the 
tree. We constrain that this node must dominate the entire population, so we use the 
global best point in the population to define it. This is the M-dimensional vector 
comprising the minimising objective value on each objective [21]:

Having defined the tree’s root node, we order the population with Pareto 
sorting [39]. Pareto sorting begins by identifying the non-dominated solutions, 
which become the first shell. They are then temporarily discarded, leaving a new 
non-dominated set. This becomes the second shell, and these solutions are also 

(3)�
r =

(
min
i

yi1,… , min
i

yim

)
.
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discarded. Over time, the entire population is assigned to a shell. In Fig. 2, the 
first shell is comprised of A and B; the second shell has three members (C, D and 
E); and the final shell contains individual F. This produces a partial ordering of 
individuals, and as was done in [48] we infer a graph on the population by plac-
ing edges between the dominating and dominated individuals in adjacent shells. 
Additional edges are placed to connect each of the non-dominated individuals 
to the root. The resulting network is not yet a tree; as shown in Fig. 2, it is pos-
sible for an individual to be dominated by two individuals in the superior shell. 
Using the nomenclature of trees, this means that a node can have two parents. In 
order to convert the network into a tree, we use the dominance distance [46] to 
identify which edges should be pruned. The dominance distance is a proper met-
ric, and computes a distance in terms of the number of dominance relations two 
individuals share with the rest of the population. If the two individuals share most 
dominance relations then the individuals are said to be close; if they differ on a 
majority of the relations then they are distant. In order to prune an individual’s 
excess parents, we compute the dominance distance between the individual and 
all candidate parents in the superior shell, and retain the edge between it and the 
parent with which it is closest. The resulting tree structure contains, according to 
the dominance relation, the “best” solutions (those that are mutually non-domi-
nating) at the highest levels, and the “worst” solutions are the leaf nodes. In terms 
of the task of a decision maker, this is the most important structural characteristic 
of the tree as the solutions they are most likely to prefer are those that are mutu-
ally non-dominating. The solutions at the lowest levels of the tree are unlikely to 
be of interest for a decision maker selecting an operating solution. We note that 
all nodes in the trees in this paper are unweighted.

Fig. 2   The construction of a 
tree using dominance. In the 
top panel, the individuals have 
been arranged into a graph using 
Pareto sorting. Pareto sorting is 
used to induce an ordering over 
the individuals, edges are placed 
between those individuals where 
one dominates another in the 
immediately inferior Pareto 
shell. The dominance distance is 
used to prune edges. All of the 
parent–child relationships are 
removed, with the exception of 
that between which the pairwise 
dominance distance is closest. 
A root node �r is inserted to 
represent the ideal point. Thus, 
the network is reduced to N − 1 
edges

A

B

C

D

E

F

(a)

nr

A

B

C

D

E

F

(b)



428	 Genetic Programming and Evolvable Machines (2018) 19:421–452

1 3

As discussed above, other algorithms for expressing the dominance relation-
ships between individuals with a tree have been proposed, and we note that the 
treemap visualisation we now demonstrate is not dependent on the algorithm used 
to create the tree itself. An approach to visualising a multi-objective population 
with a treemap was proposed in [47]. Given a tree T of multi-objective individu-
als, we construct a treemap that represents T by partitioning a space according 
to the importance of each node within the tree. Importance is defined in terms 
of the number of child nodes that the current node has (hence, the number of 
individuals that the node’s corresponding individual dominates) [47]. In addition 
to the size of the node, information is conveyed to the decision maker by colour-
ing the nodes according to some relevant scale (the original study demonstrated 
the use of average rank [4], to provide an additional measure of solution quality, 
and crowding distance, to provide an indication of population diversity—both are 
used later in this work).

Figure 3 illustrates a treemap which visualises an example population of 2-objec-
tive individuals. Following the scheme outlined above, a tree is defined over the 
individuals; non-dominated individuals are child nodes of the artificial root node. 
A region rc is defined to specify the extent of the treemap occupied by the current 
node. The procedure by which the space is partitioned is based on the well-known 
slice and dice method [26]. At the beginning of the partitioning procedure, the cur-
rent node is the root and rc = (0, 1, 0, 1) , defining the x origin, y origin, width and 
height. We initialise the partitioning direction to be vertical, however this is an arbi-
trary choice.

The first step of partitioning the space is to insert the node corresponding to solu-
tion A. A is placed on the left-hand side of the treemap, and since it dominates no 
solutions spans the entire vertical extent of rc . Given that there are no further chil-
dren to add for A the next step is to add node B to the visualisation. This node has 
descendants, and rc is redefined to form the region that is to be occupied by B and 
its descendants. Once B itself has been added, its descendants are added recursively. 
At each layer of recursion (each layer corresponding to a deeper layer of the tree) 
the partitioning direction is reversed to enhance the clarity of the visualisation. This 
procedure continues until all of the nodes in T have been added to the treemap. We 
note that in addition to defining the size of a rectangle representing an individual in 
terms of its number of dominated individuals, we also scale the node according to 
the Pareto shell to which an individual belongs. This has the effect of better high-
lighting the strongest individuals, which, from the point of view of a decision maker 
selecting a final operating point or an individual to use as a parent in the next gen-
eration of an interactive optimisation procedure are the individuals likely to be of 
interest.

Figure  4 illustrates a population of sample solutions to a 2-objective instance 
of DTLZ2 [14] along with a corresponding treemap of the population in the cen-
tre panel (the bottom panel can be ignored for now). The population comprises 50 
individuals generated from the feasible space ( xp ∈ (0, 1),∀p ∈ P , where each solu-
tion has P parameters). In both visualisations, the individuals have been coloured 
according to average rank [4]; the population is ranked according to each objective, 
to produce M rankings of the population such that rim indicates the rank of the i-th 
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Fig. 3   The partitioning of a test population into a treemap. Having constructed a tree, the root node has 
children A, B and C (the population’s mutually non-dominating individuals). A has no children, B has 
children D, E and F, and grandchild I, while C has children G and H 
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individual on the m-th objective. From these, the average rank for individual i is 
computed as follows:

A low average rank is shown by a light colour, and indicates a good solution. Poor 
solutions are represented by high average ranks in red. Average rank values have 
been normalised to the range (0,  1). There has been no effort to place the nodes 
within the treemap in a particular order; this is discussed shortly. Good solutions 
are easily observed, from their lighter colour and generally larger node size. We 
note that there are several non-dominated individuals that do not dominate any other 
members of the population. From inspecting the scatter plot in the left-hand panel 
it can be seen that such solutions do not exist. This is an artefact of the edge prun-
ing procedure; these individuals were one of a set of candidate parent nodes for the 
solutions they dominate, and have a greater dominance distance from the individual 
than the individual which retained the relationship and became the dominated indi-
vidual’s parent.

In order to make the treemap clearer, the order in which nodes are added to the 
visualisation can be controlled. Figure 5 shows three examples of ordered treemaps, 
in which the individuals have been ordered according to their value on the first 
objective. The left-hand panel shows the ordered version of the heatmap shown in 
Fig. 4. The other two treemaps show comparable populations for 3-objective (cen-
tre) and 5-objective (right) instances of DTLZ2. These visualisations present the 
individuals in a single visualisation, whereas multiple views are often required for 
a many-objective visualisation using a conventional approach such as a scatter plot. 
That said, particularly in the 5-objective case, there is an obvious lack of structure in 
the visualisation. Many of the individuals are mutually non-dominating and do not 
dominate other members of the population. This means that the majority of the pop-
ulation is a direct child of the root node; this is because of the aforementioned lack 
of discrimination provided by dominance for many-objective individuals. Given a 

(4)ri =
1

M

M∑

m=1

rim.

A

A

Fig. 4   DTLZ2 sample solutions. The left-hand panel shows the objective vectors corresponding to the 
treemaps in the centre and right panels. Solutions are coloured according to average rank. Region A indi-
cates corresponding regions in the treemaps (Color figure online)
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case in which the entire population was mutually non-dominating the treemap would 
consist entirely of Pareto-optimal columns, and would impart very little information. 
We consider an approach to ameliorate this later in this paper.

3.1 � Circular treemaps

Though the procedure outlined above produced treemaps with which it was possible 
to view the relative quality of solutions, the arrangement of nodes made it difficult to 
observe the dominance relationships between dominated and dominating nodes. In 
this work, we propose a new treemap layout algorithm that addresses this issue. As 
noted in [45], there is no requirement for a treemap to follow the rectangular layout 
that is often used. We therefore consider a layout in which Pareto shells are arranged 
as layers within a circle. The outermost layer comprises the non-dominated indi-
viduals, the next layer comprises the second shell, and so on. As before, the space 
allocated to a node reflects that node’s importance. In the case of the non-dominated 
layer, this defines the proportion of the total layer that the solutions occupy. For 
child nodes, it defines the amount of its parent’s extent that the child occupies. By 
constraining child nodes to lie within their parent’s extent their dominance relation-
ships are much clearer. As in the case of square treemaps, information is conveyed 
by the size of a rectangle representing a node; an individual with a large number of 
child nodes is represented by a larger node than one with a small number of dom-
inating individuals, and the thickness of each layer decreases to show the dimin-
ishing importance of each subsequent Pareto shell. We note that the construction 
of these visualisations is similar to the icicle plot [29], which arranges clusters of 
nodes together so that they descend, in a similar way to how nodes here are arranged 
inwards. Both methods provide a similar view on the data; the circular design used 
herein is preferred as it keeps the extent of the visualisation constrained to a smaller 
space.

The right-hand panel of Fig. 4 illustrates the sample DTLZ2 population shown 
in the other two panels, as discussed earlier, with a circular treemap. The tree rep-
resentation of the individuals is the same, only the arrangement of the visualisation 
has changed. Using this visualisation of the population it is much easier to observe 
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Fig. 5   Treemaps showing populations of 50 solutions to the same 2-objective population (left), as well 
as populations of solutions to 3-objective (centre) and 5-objective (right) DTLZ2 problem instances. The 
solutions are ordered according to the first objective. a M = 2 , b M = 3 , c M = 5
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the dominance relationships. For example, considering the highlighted region A, it 
is clear to see that the non-dominated individual shown in the outer ring dominates 
two individuals, one of which dominates another one individuals in the third Pareto 
shell while the second dominates two shell-3 solutions. While this information was 
presented in the square treemap, it is much more readily observed in the circular 
version. This is primarily because the Pareto shells have their own layer, and as such 
it is much easier to see which nodes are parents and which are the children of that 
node. There are examples in Fig. 5 where this information is not clear at all because 
there are two or more similar nodes in a region of the treemap describing a node and 
its children.

Figure  6 shows circular treemaps for the 2-, 3- and 5-objective DTLZ2 popu-
lations. Again, these visualisations clearly display the relationships between indi-
viduals and those that they dominate, however the effect of increasing numbers of 
objectives can be seen in the 5-objective case. The number of dominated individuals 
within the population is reducing, and as such the number of non-dominated indi-
viduals residing in the outer ring is increasing. As was the case with the square tree-
maps, this greatly reduces the usefulness of the treemap as a visualisation method. 
Given the prevalence of many-objective optimisation problems and the continually 
increasing interest in many-objective optimisation algorithms, it is important to con-
sider methods by which treemaps can be used to visualise the data arising from such 
problems and algorithms.

4 � Many‑objective mutually non‑dominating sets: sunbursts

The treemaps demonstrated in the section above are suitable for representing pop-
ulations of solutions in which some of the solutions are dominated, such as the 
search population of a MaOEA. Another common use case is to visualise the solu-
tions resulting from the execution of such an algorithm. Generally, these solutions 
represent the best approximation to a given problem’s Pareto front, and as such are 
mutually non-dominated. Two problems occur when trying to visualise mutually 
non-dominating objective vectors with the scheme outlined above. First, the tree 
construction procedure begins by performing non-dominated sorting on the popula-
tion. If all of the solutions are mutually non-dominating, then they will all belong to 

Fig. 6   DTLZ2 sample solutions; the populations shown are for M = 2 objectives (left panel), M = 3 
objectives (centre panel) and M = 5 objective (right panel)
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the first Pareto shell, and the resulting treemap will comprise a single ring. This is 
not very informative to a decision maker, as it does not assist them with differentiat-
ing between the solutions in their approximated Pareto front. The second issue is 
that some of the solutions are given substantially smaller regions within the treemap, 
to indicate that they are less significant and concentrate the decision maker’s atten-
tion on the solutions of higher quality. This is an advantage of the proposed tree-
maps when dealing with dominated solutions, as typically a decision maker will be 
primarily interested in those residing in the superior Pareto shells, whose individuals 
are represented more prominently in the treemap. In the case of a mutually non-
dominated set, these “inferior” solutions do not exist. Such containment methods are 
not suitable in situations such as this where the deeper nodes are important to the 
visualisation (as opposed to the case described earlier, in which the outer rings were 
the most important).

4.1 � Producing sunbursts from quad trees

The first of these issues, representing a mutually non-dominating population with a 
tree, has been tackled within the evolutionary optimisation literature—though not 
from the standpoint of visualisation. A potentially computationally expensive task 
within a MaOEA is identifying whether a newly evolved solution is dominated by, 
or dominates members of the current Pareto front approximation. A naive approach 
is to compare each solution of the archive and check the dominance relationships 
between them and the new solution. Various attempts have been made to leverage 
the lower complexity of lookup within a tree. Two examples of non-dominated trees 
are [19, 33].

The algorithm used in this work constructs a quad tree from a many-objective 
mutually non-dominating tree and was proposed in [41]. The process relies on the 
notion that one individual is the successor to another—which aligns well with the 
requirement for each node to have one parent, as already been discussed herein. One 
solution �i is called the �-successor of �j , where � is computed as follows:

Having computed a �m value for each objective, the overall value � is computed 
with:

The tree begins with the first member of the population being added as the root 
node. Then, as each new solution is added, a check is made to see if there is already 
a �-successor in the tree. If there is not, then the solution is added to the tree as a 
child of the root. Otherwise, the same check between the new solution and the root’s 

(5)�m =

{
1 if yim ≤ yjm
0 otherwise .

(6)� =

M∑

m=1

(�m)2
M−m
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existing �-successor to see if the new solution can be that node’s child, and so on 
until a node is found for which there is no �-successor and the solution is added to 
the tree.

The second issue, relating to the difficulty in seeing the inner-most nodes of a cir-
cular treemap, is addressed by using a slightly different visualisation. The sunburst 
[40] operates in the same way as a circular treemap, representing a node’s children 
within the extent of the parent, however it places the root node at the centre and 
child nodes emanate from it. This allows all of the nodes to be visible, and as such 
no part of the the tree is implicitly less important than any other. The size of the 
node is again determined by the number of child nodes beneath it, as was done in 
the treemaps earlier. This work introduces the use of sunbursts for visualising many-
objective populations.

4.2 � Sunburst examples

Several demonstrations of sunburst plots representing mutually non-dominating 
sets follow. The examples are drawn from a number of sources, including 3- and 
10-objective benchmark approximation sets [43], samples from the discontinuous 
Pareto front of a test problem from the literature [14] and the solution set gener-
ated by using a MaOEA to optimise a real-world benchmark problem comprising 9 
objectives, identifying good designs of radar waveforms [24].

4.2.1 � 3‑objective BAS & DTLZ6 plots

As with the treemap visualisations of dominated populations, the mutually non-
dominating sets to be visualised with sunburst plots are demonstrated using solu-
tions to a known test problem (DTLZ6 [14]). In addition, two benchmark approxi-
mation sets (BASs) are used. BASs were introduced by [43] in order to facilitate 
more systematic analysis of visualisation methods. They propose two BASs, one of 
which is linear and is used in this work. It provides known distributions of points 
across a mutually non-dominating set and its solutions within are distributed uni-
formly. The left-hand panel in Fig. 7 shows the distribution of the two BASs, each 
of which comprises 500 points. The points are coloured according to their average 
rank, with white indicating a good rank and dark red a poor rank. Highly ranked 
points are clustered in the corners. The right-hand visualisation shows the quad tree 
representation of the linear BAS. As can be seen, there is a strong degree of correla-
tion among the rank of the nodes, with regions of very poor solutions and regions of 
stronger solutions. Displaying the population in this way is a useful way of guiding 
the decision maker towards those more highly ranked regions of an estimated Pareto 
front without providing them with a specific solution to select, encouraging them to 
explore interesting regions of the solution set.

An important aspect of visualisation is interaction, and one of the strengths of this 
approach is that it lends itself to updating to show different properties of the popula-
tion. Assuming a preference on the part of the decision maker for one or more objec-
tive, having undertaken the computational expense of arranging the sunburst the nodes 
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can be quickly recoloured. Figure 8 shows three more versions of the same sunburst 
plot, with each showing the solutions’ rank according to one of the objectives (the left-
hand plot shows the solutions ranked according to their value on the first objective; 
the second shows the rank according to objective two, and the right-hand plot shows 
objective three). In each case, a different region of the sunburst is shown to have the 
highest rank for a given objective, demonstrating the trade-off between the objectives.

Fig. 7   The objective vectors of a 3-objective linear BAS (left) and the corresponding sunburst plot 
(right). Colour indicates average rank, normalised to (0,1). a Objective vectors, b sunburst (Color figure 
online)

Fig. 8   Sunburst plots of the 3-objective linear BAS along with the population. Each pair of plots is col-
oured according to a different objective (1, 2 and 3) to show the trade-off between the objectives and 
demonstrate how this is viewed in the sunburst. a Objective 1, b objective 2, c objective 3 (Color figure 
online)
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The final 3-objective example is drawn from the DTLZ6 test problem. This prob-
lem features a discontinuous Pareto front, with the number of discontinuous regions 
depending on the number of objectives forming an instance of the problem. In the 
3-objective case the problem has four disconnected regions, shown in the left-hand 
plot of Fig. 9; each region is shown in a different colour. The disconnected regions 
are clearly visible in the sunburst plot, with a small degree of overlap (a small num-
ber of yellow and blue nodes appear amongst the nodes belonging to other discon-
nected regions). This further demonstrates the ability to identify regions of the 
Pareto front, beyond that demonstrated in the BAS examples above. As well as dem-
onstrating that the tree construction proposed herein preserves the spatial character-
istics of the Pareto front, the information provided to a user by colouring according 
to a cluster or disconnected region is of use to a decision maker. While there has 
been no effort to weight objectives in this work, the decision maker will have prefer-
ences that guide their selection of a solution. By categorising objectives in this way, 
they are guided towards regions of interest and can further explore solutions in those 
regions more thoroughly while ignoring solutions in areas of the Pareto front that 
are not of interest.

4.2.2 � 10‑objective BAS plots

Having demonstrated the potential for using the sunburst visualisation of a quad tree 
to identify regions of interest within a mutually non-dominated set, it is important 
to consider how well the method scales to larger number of objectives. The methods 
used to generate BASs are scalable to any number of objectives, and a 10-objective 

Fig. 9   A sunburst showing 500 solutions drawn from the Pareto front of DTLZ6. Each disconnected 
region is coloured differently, and regions are clearly visible within the sunburst. a Objective vectors, b 
sunburst (Color figure online)
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linear BAS is constructed. The set consists of 500 solutions. Two instances of a sun-
burst representing the BAS are shown in Fig. 10. In each case, the solutions are col-
oured according to their score on two of the objectives (objective 1, left, and objec-
tive 3, right). In both cases, regions (marked A) have been highlighted that indicate 
a cluster of solutions with a lower score on that objective than is found elsewhere 
in that sunburst. Though the clustering is less clear than it was in the case of the 
3-objective populations, especially in the right-hand case, it is important to note that 
these populations are more complex given the higher number of objectives. Despite 
this it is possible to observe this relationship in the high-dimensional space, which 
indicates that the sunburst is a useful many-objective visualisation tool. As noted 
above, it is a trivial matter to recolour the nodes of the sunburst, and thus the visu-
alisation could easily be incorporated into an interactive tool where it would be used 
to explore a high dimensional population such as this.

4.2.3 � 9‑objective radar plots

The final demonstration of mutually non-dominating treemaps is for a real world 
test case. Proposed by Hughes [24], this population of mutually non-dominating 
solutions optimises a 9-objective radar waveform design problem. A solution to the 
problem comprises 12 pulse repetition intervals, and the problem is described by 
nine objectives; four optimise the range at which objects can be detected, another 
four optimise the velocity at which objects can be detected, and the final objective 
minimises the transmission time of the complete waveform. Details of the optimisa-
tion procedure can be found in [24]. Figure 11 presents two versions of a sunburst. In 
the first, the solutions are coloured according to average rank. As has been the case 
in earlier examples, those solutions with the best rank are clustered together—the 

A

A

(a) (b)

Fig. 10   Two views of the same 10-objective linear BAS. In the left-hand example, node’s are coloured 
according to their corresponding solutions normalised score on the first objective. The right-hand exam-
ple shows the same information, with nodes coloured according to objective 4. In both cases, solutions 
minimising the respective objectives, shown by lighter nodes, are clustered within the region A. a Objec-
tive 1, b objective 3 (Color figure online)
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lower-right segment of the plot comprises predominantly light coloured nodes. The 
second colours the solution according to the type of objective it best optimises. The 
solutions were converted to rank coordinates, placing each objective on the scale 
1,… ,N , and the best rank for each solution was identified. This information was 
used to colour the solutions according to the class of objective they best optimise, 
so that those best optimising range objectives are coloured red, velocity objectives 
are green, and the transmission time objective is shown in blue. The visualisation 
illustrates a known correlation between the objectives. The range objectives are anti-
correlated with the velocity objectives, and in the sunburst plot they are placed away 
from each other, with the exception of a few range nodes within the velocity region. 
The transmission time objective is correlated with the velocity objectives, and the 
blue nodes are within the green velocity region. With this information, the trade-off 
between objectives can be seen. It is not possible to have a solution that simulta-
neously optimises range, velocity and transmission time objectives. Those optimis-
ing range objectives well are gathered away from those optimising the velocity and 
transmission time objectives, and offer poor performance on those other objectives. 
As was the case with the DTLZ6 example, this information will be used in combina-
tion with the user’s preferences, and will better inform their identification of regions 
of interest within the Pareto front.

4.3 � Visualising diversity and convergence

Beyond the visualisation of solution quality, aspects of evolutionary optimisa-
tion such as population diversity and convergence are an important considera-
tion. We consider an approach in which solution diversity is evaluated in objective 
space using the crowding distance measure employed within the selection opera-
tor of NSGA-II [13]. Crowding distance identifies the distance between a solution 
and its next nearest neighbour on each objective. In Ref. [47] demonstrated the use 

Fig. 11   Two sunbursts visualising the radar archive. The left-hand plot colours solutions according to 
average rank, while the right-hand plot shows the objective class on which each individual has the best 
rank. Red indicates a range objective; green indicates a velocity objective, while blue represents the 
transmission time. The vast majority of the range objectives are contained within their own cluster, while 
the velocity and transmission time are intermingled—they are known to be well correlated. a Ranks, b 
objective class  (Color figure online)
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of evaluating Euclidean distances between parameter values to consider diversity 
in solution space. We note that this is a sensible alternative to the approach taken 
herein, and that a range of measures might be appropriate in order to consider differ-
ent solution representations (e.g., permutation-based approaches).

Figure 12 illustrates this approach on a sample population comprising two Pareto 
shells arranged on the plane. In both shells, the distribution of points is uneven, 
so that the points in the centre of the shells are spread out and those at the edges 
are closer together. The effect of this is to give those central individuals a larger 
crowding distance than those at the edge, and that can be clearly seen in the treemap 
shown in the lower panel of Fig. 12. The individuals in the centre of the shells are 
those on the left-hand side of the treemap, coloured dark blue in both shells. The 
edges of the population are located on the right-hand side of the visualisation. A 
second sample population is shown in Fig.  13. This data was generated by sam-
pling from the true Pareto front of DTLZ2. In a P-dimensional chromosome, the 
first M − 1 parameters control the position of a solution on the true Pareto front and 
the rest control the distance of the solution from the front. The sampled solutions 
were moved away from the Pareto front by adding a small amount of random noise 
to these distance parameters, to create a population with dominated solutions. Two 
variants of this population are shown. In the first, shown on the left-hand side of 
Fig. 13’s top panel, a large discontinuity has been induced by placing the individuals 
at the extreme edges of the population, essentially forming two clusters of solutions. 
The individuals on the inner edges of these clusters have a large crowding distance, 
and these individuals are clearly visible in the corresponding treemap, shown in the 
centre panel; they are the dark blue individuals. Conversely, the second population 
contains no such discontinuity, and the solutions are all much closer together. That 
population’s treemap, shown in the bottom panel of Fig. 13, has a much more uni-
form distribution of colours, and the colours are much lighter.

In addition to visualising diversity, it is also important to present an idea of the 
extent to which the population has converged. Here we use the age of the archive 
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Fig. 12   Visualising population diversity using a treemap. Those individuals in the centre of the popu-
lation with a larger crowding distance are shown in the centre of the treemap. Individuals are ordered 
according to their objective value for the first objective (Color figure online)
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to demonstrate the extent to which the algorithm has converged, based on the idea 
that once an algorithm has converged it will contain solutions that are no longer 
replaced, and the presence of such “older” solutions can be highlighted in the 
treemap. In order to demonstrate that a treemap can be used to show the conver-
gence of a population we optimise a 3-objective instance of DTLZ2 with a series 
of MaOEAs designed to show different convergence characteristics. In each case, 
the underlying algorithm is a simple ( � + �)—evolution strategy (ES). The exact 
operation of the base algorithm is outlined in Algorithm 1. The algorithm initial-
ises a random population of N solutions, which are evaluated and used to initial-
ise an elite archive to represent the current approximation of the Pareto front. At 
each generation, the population is copied and each individual is mutated with an 
additive Gaussian mutation drawn from  (0, 0.1) . The solutions are evaluated 
and the archive updated (any that the new child dominates are removed, and if 
the child is not dominated by the archive then it is added) before elitist selection 
is performed on the combined parent and child populations. The first ES employs 
uniform random selection, designed to show very slow convergence with rea-
sonable diversity. The second employs Pareto sorting, which is designed to offer 
better convergence and maintain the diversity of the population, while the final 
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Fig. 13   Two circular treemaps showing coverage of the Pareto front according to crowding distance for 
two sets of samples drawn from an instance of DTLZ2. The top treemap shows the discontinuity in the 
solutions by the dark solutions. The lower population contains no such discontinuity, and solutions are 
more evenly coloured (Color figure online)
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optimiser uses average rank selection, retaining the top N solutions in combined 
parent and child populations. This is a selection strategy known to promote pre-
mature convergence to a small region of the Pareto front [21]. 

Figures 14, 15, 16 illustrate sunbursts of the results of these optimisation experi-
ments. Each figure refers to a different selection mechanisim—Fig.  14 shows the 

Fig. 14   Optimisation result using random selection. a Solutions, b rank, c diversity, d convergence 
(Color figure online)
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random selection case; Fig. 15 shows the Pareto sorting example, and Fig. 16 shows 
the average rank results. The top-left panel shows the objective space image of the 
objective vectors. The solutions in all three final archives were ordered using average 
rank, and this information was used to colour the individuals in the population view 
as well as the sunburst visualisation next to it. The bottom row shows the same sun-
burst representation of the archive; the left-hand plot is coloured according to crowd-
ing distance to show diversity, while the right-hand shows the age of the solution to 
indicate convergence. In the case of the diversity, the best results were achieved by the 
Pareto sorting algorithm. That algorithm’s sunburst has the lightest colouring, indicat-
ing that the crowding distance values are much more uniform and the solutions are 
better spread across the Pareto front. In both of the other cases, the treemaps feature 
dark blue colouring more, meaning that those Pareto front estimations contain more 
distant solutions. This is particularly the case for the average rank optimiser, which has 
explored very little of the Pareto front. This is supported by the convergence sunbursts, 

Fig. 15   Optimisation results using Pareto sorting selection. a Solutions, b rank, c diversity, d conver-
gence (Color figure online)
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which, again, display the (normalised) age of the solutions in the archive. The age is 
specified by the generation number in which the solution was archived, so a low num-
ber indicates an old solution that was generated early on in the optimisation process. 
The premature convergence exhibited by this algorithm is shown clearly by the large 
group of solutions, shown in dark brown at the top of the sunburst, which have been 
in the archive since the beginning of the optimisation procedure. These correspond 
to the random solutions scattered at the bottom of the top panel’s scatter plot and are 
shown in region A. They correspond to the solutions with the largest crowding dis-
tance in the diversity sunburst. Beyond examining the colouring of the visualisations, 
these sunbursts convey more information through their structure than has been seen 
before. From examining all three it can be seen that the number of layers provide an 
indication of the degree to which the population has converged—the random selection 
algorithm has 10 layers, compared to 12 in the Pareto sorting example and 20 in the 

A A

(a) (b)

(c) (d)

Fig. 16   Optimisation results using average rank selection. The extreme convergence of some solu-
tions has caused a deeper tree than was seen for either the random selection or Pareto sorting examples. 
Region A within the sunburst indicates a group of poorly converged solutions from early on in the opti-
misation. a Solutions, b rank, c diversity, d convergence (Color figure online)
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prematurely-converged average rank case. There are also fewer missing regions in the 
sunburst representing the “ideal” case, using Pareto sorting, with the visualisation tend-
ing more towards the full circle shape seen in earlier examples sampled from the Pareto 
front and in the BAS examples.

5 � Validation

As well as discussing the topological features that the treemaps and sunbursts allow the 
user to observe, it is important to quantify how useful the proposed methods are. To 
do this, a small user experiment was conducted to assess the extent to which the user 
can identify solutions of interest, as well as examining the accuracy of their selection. 
Using the nomenclature from [30], a controlled experiment was carried out. Sunburst 
plots were pit against three other many-objective visualisation methods drawn from the 
literature. These are seriated heatmaps [46], parallel coordinate plots [25] and multidi-
mensional scaling (MDS) [37] constructed using the dominance distance [46]. These 
methods were chosen as a cross-section of existing methods from the evolutionary 
computation visualisation literature, and include a method that shows the actual objec-
tive values (parallel coordinate plots); a method based on all M objectives (heatmaps); 
and a dimension reduction method (MDS). Three sets of 50 mutually non-dominat-
ing solutions were constructed from datasets seen previously herein—the linear BAS, 
spherical BAS and samples drawn uniformly at random from the radar waveform opti-
misation solutions (giving different types of Pareto front geometry and different num-
bers of objectives (10, 3 and 9 objectives, respectively)). The 50 samples were gener-
ated at the start of the experiment, meaning that each user saw different datasets. That 
set of 50 samples was then displayed with each of the four visualisation types.

Nine users were shown each dataset using all four visualisations. The users were 
Computer Science researchers, and all had prior knowledge about mutually non-domi-
nating sets. No other prior selection of user was performed, and participants were from 
a range of ages, and were both male and female. The experiment was conducted in a 
lab, and users were presented with visualisations on a screen. Their task was to identify 
the best solution, according to the average rank measure, in each case. The visualisa-
tions were benchmarked in two ways: the amount of time taken for the user to make 
their selection (recorded automatically by the visualisation software), and the distance 
in rank space between their selected solution and the best solution they could have cho-
sen. Assuming the user selects the solution �i , this distance is calculated as follows. 
First, the solution is converted to rank-coordinates to produce a vector of ranks �i:

where rim is again the rank of the i-th solution on the m-th objective. Then, assum-
ing the best solution (identified with the average rank procedure, outlined earlier) is 
represented by the rank vector �̂ , an error term is computed with:

(7)�i = (ri1,… , riM),

(8)E =

M∑

m=1

|rim − r̂im|.
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In the ideal scenario, the user selects the best solution and E is 0. The further away 
from the ideal the user is, the worse their score will be.

Figure 17 illustrates the timing results for each user. As can be seen, the maxi-
mum response time was just over one minute, with most decisions being made 
within twenty seconds. It took users considerably longer to identify the best solu-
tion, and users were slightly faster with the sunburst than the MDS. Anecdotally, 
one user commented that the extra information provided by the size of the node in 
the sunburst made it easier to use than the MDS projection, in which each solu-
tion was represented with a circle of equal size. Further anecdotal evidence from 
users suggested that they found the additional information available from viewing 
the exact objective values in the parallel coordinate plots and heatmaps confusing, 
which is supported from the time taken shown here. It is important to note that the 
visualisations were presented in the same order, and therefore some learning may 
have taken place on the part of the user that enabled them to use later visualisations 
more effectively. The accuracy results shown in Fig. 18 show a similar trend. Again, 
the heatmaps are the hardest for users to identify the best solution with, but here par-
allel coordinates plots are shown to be less distinguishable from MDS and sunbursts 
than they were considering time taken. MDS is the most accurate way of identifying 
the most highly ranked solution. Though this result shows that more accurate results 
can be obtained with MDS than with the sunburst visualisations, we note that MDS 
requires the potentially expensive step of computing pairwise distances between the 
solutions before the 2-dimensional projection can be constructed. Were a MaOEA 
using a tree-based archive to store its approximation of the Pareto front to be used to 

Fig. 17   User response times for the four visualisations compared

Fig. 18   Accuracy scores for the four visualisations compared
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generate the solution set, the visualisation task with in the sunburst case would sim-
ply be partitioning the space and colouring the nodes.

6 � Discussion

The sections above demonstrate that both treemaps and sunburst plots can be used to 
convey useful information within evolutionary computation. In order to contextual-
ise the methods with others used in the field, they are evaluated using the framework 
proposed by Tusar and Filipić [43]. They characterise nine properties of a popula-
tion visualisation: the preservation of (1) dominance relations, (2) front shape, (3) 
objective range, and (4) the distribution of vectors; (5) robustness; (6) the ability to 
handle large sets; (7) the simultaneous visualisation of two or more populations; (8) 
scalability; and (9) simplicity. The visualisations proposed in this work are formed 
of two components—the treemap or sunburst visualisation itself and the underlying 
tree structure. The proposed methods are discussed with respect to the approaches 
taken herein, and may not apply to other tree structures.

The treemap visualisations preserve some dominance relations by including the 
dominated child within the extent of its parent solution. Those that are discarded 
in the tree construction process are lost, however care is taken to preserve the rela-
tion between the child and the dominating solution with which it is closest using 
the dominance distance. The sunburst visualisations were used to show mutually 
non-dominating sets, so in terms of dominance all of the solutions are incompa-
rable. Both visualisations are capable of preserving dominance relations, depend-
ing on the type of tree structure used to store the individuals. It is also possible to 
illustrate distribution of objective ranges can be included with colour. In this work 
the objective ranges have been normalised, however as has been discussed it is 
computationally cheap to update the colour of nodes. The distribution of vectors 
is shown both through the arrangement of nodes and by applying a colour indicat-
ing distances between points. In the mutually non-dominating sets generated by the 
three MaOEAs different distributions of solutions were obtained; the well converged 
diverse population had a rounded arrangement, while the other two (showing poor 
convergence and premature convergence) had gaps. Both visualisations are capable 
of supporting large populations, both in terms of the number of solutions and the 
number of objectives; hence, they meet both the criteria relating to handling of large 
sets and scalability. In terms of simplicity, the treemaps and sunbursts are both con-
structed with a recursive function that is called linearly with the number of individu-
als in the population. The complexity of tree construction is also a consideration; 
the original purpose of storing mutually non-dominating sets in tree structures was 
to enable fast lookup for checking dominance relations, which means the computa-
tionally expensive operations are carried out during tree construction. That said, the 
algorithm used herein completes tree construction in polynomial time. Thus, both 
treemaps and sunbursts meet the simplicity criterion, with the proviso that addi-
tional complexity can be introduced depending on the desired colour scheme.

Three of the characteristics are not observed in treemaps or sunbursts. The shape 
of the Pareto front is not conveyed in either the treemap or sunburst visualisations. 
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According to [43], robustness refers to the ability to add solutions without changing 
the existing population. The visualisations herein are not robust because an addi-
tional solution will change the structure of the population. Finally, both treemaps 
and sunbursts represent a single population, therefore they are not suitable for com-
paring between different solution sets.

Beyond contextualising the methods in terms of the properties of a population 
visualisation, it is important to compare them to other methods in terms of the tasks 
they will be used to perform. A taxonomy of visualisation tasks was proposed [1] 
and we evaluate treemaps and sunbursts according to those tasks and compare them 
to other visualisation methods. The taxonomy provides ten tasks, some of which are 
not relevant to the general goal of identifying good solutions using the visualisation, 
but most of which are. The tasks defined by the taxonomy are: (1) retrieve value; 
(2) filter; (3) compute derived value; (4) find extreme values; (5) sort; (6) deter-
mine range; (7) characterise distribution; (8) find anomalies; (9) cluster; and (10) 
correlate.

Probably the most relevant to the overall goal are identifying extreme values and 
sorting. In both cases, both treemaps and sunbursts facilitate this through the col-
ouring of nodes. In the examples demonstrated, we have shown that the nodes can 
easily be coloured according to the overall quality of a solution, or by the solutions’ 
value on an individual objective. In each case, the decision maker can look for the 
extreme colour to identify the best solution (as well as the worst), and can use the 
colour gradient between the maximum and minimum to infer an ordering of solu-
tions. In a similar fashion the range of each objective can be identified by colouring 
the solutions by the relevant objectives. We note that in this paper the visualisations 
have shown normalised objective values—to identify the range of the objectives it 
would be necessary to visualise the objective range. A similar task is evaluating the 
distribution of objective values. This can be done, again, by considering the solu-
tions’ colour. The authors’ description of distribution analysis [1] discusses the com-
parison of different classes—this relates to the comparison of different objectives, 
which in turn leads to trade-off analysis. While it is possible to observe the trade-off 
between different objectives, it relies on changing the node colouring between the 
objectives being compared, and in the methods’ current form it is not possible to 
visualise this without interaction. We do not feel that this is too much of a defi-
ciency, however it is worth considering in future work. The ability to identify clus-
ters within the data has been demonstrated within the examples shown earlier. In 
those examples, the data were coloured using a priori information—which region 
of the Pareto front the solutions belong to in Fig. 9 and which class of objective the 
solutions achieved the best rank on in Fig. 11. Clusters were also visible in the visu-
alisations coloured according to average rank, in which regions of good and poor 
solutions could be observed, and in those coloured according to a specific objective. 
Again, regions of good performance on the objective at hand were easily discerned.

Of the remaining five tasks that are not immediately facilitated by the treemaps 
or sunbursts, value retrieval, filtering, anomaly detection and correlation observa-
tion might easily be facilitated through interaction. The individual objective val-
ues are not present in the basic visualisation (though the visualisation is based on 
them), however they could be easily displayed for a selected solution alongside the 
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visualisation. Likewise, additional work would be required to implement filtering of 
objective values, but this would be possible through the addition of a user interface. 
This feature could be extended to observe correlations by allowing composite filter-
ing, however users are likely to be better served by providing a heatmap or parallel 
coordinate plot in such tasks. The same is true of anomaly detection. The computa-
tion of derived values is not something that a user engaged in tasks defined would 
use such a visualisation for, though, again, in theory it could be incorporated within 
the user interface.

7 � Conclusion

Hierarchical information is common within evolutionary computation. This paper 
has presented treemaps and sunbursts for visualising data in evolutionary computa-
tion, focussing on populations of solutions to many-objective problems. The visu-
alisation of such data is an important task, as decision makers find comprehending 
solutions described by a large number of objectives difficult. Treemaps are a good 
choice of visualisation tool because of their flexibility. They have various degrees 
of freedom that can be exploited to convey the structure of a population. Though 
the standard form of a treemap is a square grid in which nodes are represented by 
rectangles, we have presented an alternative layout algorithm that is better suited to 
displaying the dominance relationships that characterise a many-objective popula-
tion. By using circular treemaps, the parent–child (and therefore dominance) rela-
tionships are much easier to observe. In addition to showing individual quality, we 
demonstrated that treemaps can be used to convey other information relevant to the 
operation of an MaOEA, such as the diversity within the search population and how 
well converged the solutions are.

We have presented a novel algorithm for building a tree of multi-objective solu-
tions so that a treemap can be rendered. Based on dominance, the algorithm is 
shown to be suitable for multi-objective populations, but does not scale well to deal 
with many-objective populations. This is because many-objective individuals are 
generally incomparable under dominance, so instead a tree construction algorithm 
from the literature was employed. Whereas circular treemaps give most promi-
nence to those individuals in a population that are non-dominated, with less sig-
nificance given to dominated solutions, a mutually non-dominating set does not have 
such preferential individuals. As such, a sunburst visualisation is used instead of a 
treemap, which sees nodes radiating out from the centre rather than inwards as is the 
case with circular treemaps. Both of the methods result in graphs that convey useful 
information. We acknowledge that, unlike some of the other methods for construct-
ing multi-objective trees in the literature, the purpose of these trees is to be used 
as a basis for visualisation. Were they to be used within an optimisation process, 
the computational complexity would likely be an issue. That said, for the construc-
tion of a one-off visualisation this is not an issue, and we believe that they are fast 
enough to be used within an interactive visualisation too.

The main advantage offered by the approaches described herein are their flex-
ibility. We have used three visualisation methods in combination with two tree 
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representations of data arising within evolutionary computation to visualise 
aspects of that data, however the use of these methods is far from restricted to the 
approaches we have taken. As discussed in Sect. 2, other approaches to represent-
ing data as trees have been taken in evolutionary computation, and any of these 
tree representations could form the basis of a treemap visualisation. Likewise, the 
visualisation literature contains a plethora of approaches to arranging treemaps. 
Though the circular treemap proposed here is designed specifically for use in evo-
lutionary computation, to illustrate dominance relationships between multi- and 
many-objective individuals, the selection of layout algorithm is largely problem 
specific. An aspect of future work is to consider other areas of evolutionary com-
putation in which treemaps might be productively used, and design new ways of 
illustrating this hierarchical information.

In addition to considering other applications of treemaps and sunbursts, sev-
eral aspects of future work are worthy of consideration. In terms of the mechanics 
of the visualisation, these fall into two groups. In the first, the tree used as the 
basis of the visualisation would be enhanced. As has been discussed, one of the 
benefits of the proposed method is that the visualisation is completely decoupled 
from the underlying tree, so it would be useful to consider whether there are char-
acteristics of mutually non-dominating sets that can be more effectively repre-
sented by using a strategy other than the successor-based quad tree demonstrated 
herein. Beyond this, there may be other data structures in use within MaOEAs 
that might inform or inspire a visualisation in the same way that this work was 
inspired by research into the use of trees to represent populations with a treemap. 
The second area of future work would consider alternative layout algorithms. 
This work has shown useful visualisations of solution sets, however some of the 
characteristics of the sets were lost, such as their shape. Mutually non-dominat-
ing sets are characterised by their shape; this can be, for example, linear, convex 
or non-convex, and is a piece of information that this work does not consider. 
Though it was possible to observe the trade-off between objectives by updating 
node colourings to show different objective values, an ideal visualisation would 
incorporate this within a single visualisation without needing multiple views. We 
feel that the potential of presenting evolutionary computation data in this way is 
an exciting prospect, and likely to be extremely useful to evolutionary computa-
tion practitioners.

A final extension that we are currently exploring is how the visualisation can be 
more thoroughly evaluated. Elsewhere in evolutionary computation, such as algo-
rithm development, rigorous benchmarking of methods is employed. In the realm of 
visualisation this has not historically been the case, and we are currently investigat-
ing how evaluation methods within the visualisation field might be applied within 
evolutionary computation to facilitate a more scientific investigation of methods 
such as those proposed herein, beyond examples such as the small user experiment 
used to gather quantifiable data used in this work. The study included herein would 
benefit from a random ordering of the visualisations, in order to eliminate the poten-
tial for visualisations presented later in the study to benefit from greater understand-
ing on the part of the user. We feel that such investigation will lead to the develop-
ment of much better visualisations for the wider evolutionary computing field.
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