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Introduction

Evolution of chromosome number and chromosome mor-
phology may seem of little significance in the current 
-omics era, given the many thousands of whole-genome 
sequencing projects (WGS) already fulfilled or underway. 
However, in Animals, only a small fraction of these projects 
have reached the chromosome assembly level (1979 out 
of 10,337 reports, NCBI Genome Database, last accessed 
23/02/23). Paradoxically, in many respects, a similar situa-
tion was experienced during the first quarter of the 20th cen-
tury, which was described by M.J.D. White as “the heyday 
of atomistic genetics.“ This period ended when the evolu-
tionary importance of the physical basis of a species genetic 
system, i.e., its karyotype, was realized (White 1973).

Notwithstanding this apparent disregard for the study of 
karyotypes, there is a special kind of chromosomes whose 
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Abstract
This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta montic-
ola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative 
analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of 
Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic 
hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 
2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. 
Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean spe-
cies of this genus, which included several biarmed metacentrics and a Z1Z2W multiple sex-chromosome system. With the 
possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous 
Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that 
L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes 
in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-
chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome 
with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the 
W chromosome in Lacertini.
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evolution has received continuing attention over the years, 
namely animal sex-chromosomes. This is particularly so for 
squamate reptiles, since this group exhibits an astonishing 
diversity of sex-determining systems, which range from 
environmental sex determination to genotypic sex determi-
nation, including male heterogamety (XX/XY), female het-
erogamety (ZZ/ZW), and multiple sex chromosomes (Sarre 
et al. 2004; Pokorná and Kratochvíl 2009; Ezaz et al. 2010; 
Nielsen et al. 2020; Rovatsos et al. 2022). In reptiles, the 
study of sex-chromosomes during the last two decades has 
revealed that, contrary to previous claims of the overall high 
lability of their sex determination systems (Ezaz et al. 2010; 
Sarre et al. 2011; Matsubara 2019), and notwithstanding the 
independent origins of sex chromosomes in different fami-
lies (Nielsen et al. 2020; Rovatsos et al. 2022), many groups 
possess old, long-term stable sex-chromosomes (Rovatsos 
et al. 2014a, b, 2015; Augstenová et al. 2021; Thépot 2021). 
Furthermore, recent studies have shown that relatively 
recent turnovers of sex-chromosomes are restricted to just 
a few genera or families (Gamble et al. 2015; Patawang et 
al. 2017; Sidhom et al. 2020; Augstenová et al. 2021; Keat-
ing et al. 2021). A possible bias in this respect cannot be 
excluded, since the available information on squamate sex-
chromosomes is based on a relatively small fraction of the 
described species from this group (Mezzasalma et al. 2021). 
In any case, the Old World lizard family Lacertidae (Pyron 
et al. 2013) does not appear to be an exception to this pattern 
(Rovatsos et al. 2016), although the portrait of the evolu-
tion of their sex-chromosomes is still incomplete. With 370 
species grouped into 45 genera (Uetz et al. 2022), the Lac-
ertidae represents the predominant lizard group in Europe 
and a substantial component of the squamate reptile diver-
sity in Africa (Arnold et al. 2007; Hipsley et al. 2009). The 
family, whose diversification started roughly 87 Mya, in the 
Late Cretaceous Epoch (Garcia-Porta et al. 2019), contains 
two subfamilies, Gallotinae and Lacertinae, with the lat-
ter composed of two monophyletic clades or tribus (after 
Arnold et al. 2007), the Lacertini, mainly Palearctic, and the 
Eremiadni, restricted to Africa. Genetic analyses indicate 
a fast diversification and radiation of Lacertini in the late 
Eocene, roughly 37 Mya (Hipsley et al. 2009; Garcia-Porta 
et al. 2019). Most species of Lacertini (and Eremiadni, for 
that matter) possess a diploid number of 2n = 38, with 36 
acrocentric macrochromosomes and 2 microchromosomes 
(Arnold et al. 2007; Mezzasalma et al. 2021), with the most 
conspicuous exceptions to this karyotypic formula being 
the three Pyrenean species of the genus Iberolacerta, which 
include I. bonnali, I. aranica and I. aurelioi. The male 
karyotypes of these species consist of 2n = 24 (I. bonnali) 
and 2n = 26 (I. aranica and I. aurelioi) chromosomes. In 
addition, two of the species (I. bonnali and I. aurelioi) show 
a Z1Z2W multiple sex-chromosome system, which is very 

infrequent among Lacertidae (Odierna et al. 1996; Mezza-
salma et al. 2021).

Female heterogamety is the only sex-chromosome sys-
tem that has been found in Lacertidae (Mezzasalma et al. 
2021). Except for two discordant reports involving L. agilis 
(Srikulnath et al. 2014) and L. schreiberi (Rojo 2015), all 
tested species appear to share homologous Z chromosomes 
which date back to the last common ancestor of the whole 
group, thus supporting the long-term stability of their ZZ/
ZW chromosome systems (Rovatsos et al. 2019). The case 
for L. agilis has been strongly contested by Lisachov et al. 
(2020), while that for L. schreiberi must now be rejected 
on the basis of the evidence presented in this article. On 
the other hand, cytogenetic analyses, mainly accomplished 
through Giemsa staining, C-banding and G-banding (Olmo 
et al. 1986, 1987; Odierna et al. 1993; Rojo et al. 2014), 
revealed extensive variability in the morphology and degree 
of differentiation of the W chromosome across the family, 
spanning from those completely euchromatic and homo-
morphic with the Z, to others strongly heterochromatic and 
morphologically distinct. These cytological observations 
were complemented by fluorescence in situ hybridization 
(FISH) studies, whereby it was concluded that the extent 
of heterochromatinization of the W chromosome appears 
to be associated with independent, species-specific, exten-
sive accumulation of DNA repeats. Taking all this evidence 
together, the W chromosome thus appears to be the most 
dynamic component of Lacertidae genomes (Pokorná et 
al. 2011; Matsubara et al. 2014b; Mezzasalma et al. 2016; 
Giovannotti et al. 2018; Suwala et al. 2020).

When whole genome sequences are not available, chro-
mosome homology among species is best determined 
through molecular cytogenetic analyses, which can reveal 
the evolutionary complexity hidden under morphologically 
similar (using standard banding and staining techniques) 
chromosome patterns (Matsubara et al. 2014a). Here, we 
describe the preparation of flow-sorted chromosome paints 
from the Iberian Rock lizard I. monticola (BOULENGER, 
1905), and exemplify their subsequent use in cross-species 
chromosome painting to carry out comparative analyses 
of chromosome evolution. There are currently nine rec-
ognized species in Iberolacerta, a genus almost entirely 
confined to small widely separated mountain areas in the 
Iberian Peninsula and in the Balkan Peninsula (Arribas et 
al. 2014). Cytogenetic surveys based on conventional stain-
ing and banding techniques showed that, except for the 
three Pyrenean species, Iberolacerta species show a simi-
lar karyotypic macrostructure: 2n = 36 acrocentric chromo-
somes, no microchromosomes, and different degrees of W 
chromosome differentiation (Odierna et al. 1996; Arribas 
and Odierna 2004; Arribas et al. 2006; Rojo et al. 2014). 
The Pyrenean species, on the other hand, displayed reduced 
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diploid numbers and many biarmed chromosomes that 
probably evolved from the ancestral acrocentric chromo-
somal complement through a series of Robertsonian fusions 
(Odierna et al. 1996; Olmo et al. 2004). (Odierna et al. 1996; 
Arribas and Odierna 2004; Arribas et al. 2006; Rojo et al. 
2014).

To assess the use of flow-sorted chromosome paints for 
cross-species comparative analyses, we applied the I. monti-
cola chromosome paints to study the chromosome evolution 
in the following lacertid species: the congeneric I. galani 
(ARRIBAS, CARRANZA & ODIERNA 2006) (2n = 36), 
with ZW sex chromosomes (Arribas et al. 2006); I. bon-
nali (LANTZ, 1927) (2n = 24 in males, 2n = 23 in females), 
with 12 biarmed chromosomes and a multiple Z1Z2W chro-
mosome system (Odierna et al. 1996); Lacerta schreiberi 
(BEDRIAGA, 1878) (2n = 38), possessing the standard 
Lacertini karyotype (Mateo and Cano 1991); and Timon 
lepidus ibericus (LÓPEZ-SEOANE, 1885) (2n = 36), with 
a metacentric chromosome pair presumably produced by 
fusion of two large acrocentric chromosomes, a pair of 
microchromosomes, and a W sex microchromosome (de 
Smet 1981; Olmo et al. 1987; Mateo et al. 1999). Compar-
ison of sex chromosomes at the molecular level was fur-
ther extended through comparative genomic hybridization 
(CGH) between I. monticola, L. schreiberi and T. lepidus.

Materials and methods

Animal samples

Two adult females and one adult male of I. monticola were 
collected from the population of the fluvial valley of the river 
Eume (A Coruña, Spain). The tail tips from one adult female 
of L. schreiberi and another one of T. lepidus were collected 
at the Natural Park Montes do Invernadeiro (Ourense, 
Spain); additionally, one adult female of L. schreiberi was 
collected at Aranga (A Coruña, Spain). Finally, two adult 
females of I. galani and the tail tip of one adult female of 
I. bonnali were collected at the localities of A Ponte, Pena 
Trevinca (Ourense, Spain) and Pico de Urdiceto, Pirineos 
(Huesca, Spain), respectively. The sex of each animal was 
determined by examination of sexually dimorphic external 
morphology. All these samples were used to make meta-
phase chromosome spreads. Permissions for fieldwork and 
ethics approval of experimental procedures were issued by 
the competent authorities (Xunta de Galicia, Junta de Cas-
tilla-León and Gobierno de Aragón, in Spain) in accordance 
with Spanish legislation (Royal Decree 1201/2005 and Law 
32/2007, on the protection of animals used for experimenta-
tion and other scientific purposes). All the animal samples 

used in this study were generously supplied by Pedro Galán 
(Departamento de Bioloxía, Universidade da Coruña).

Metaphase chromosomes preparation

The tail tip collected from each specimen (approximately 
10 mm) was pre-treated before setting up the cell cultures 
as described in Ezaz et al. (2008), with slight modifications. 
Briefly, the surfaces of the tail tips were sterilized by wip-
ing with gauze soaked in 70% ethanol, clipped and incu-
bated at 30ºC for 24 h in Collection Medium [RPMI 1640 
Medium containing 25 mM HEPES (Sigma) with 1 mg/mL 
kanamycin (Sigma) and 1% antibiotic-antimycotic (Life 
Technologies-Gibco).

Fibroblast cell lines and metaphase chromosome spreads 
were prepared as described in Rojo et al. (2014). Cultures 
for flow-sorting were split up to 4 passages before the chro-
mosomes were harvested.

Probe preparation, karyotyping and C-banding

Chromosome paints from a female I. monticola were pre-
pared from chromosomes sorted with a dual laser cell sorter 
(Mo-Flo, Dako) at the Cambridge Resource Centre for 
Comparative Genomics, Department of Veterinary Medi-
cine, University of Cambridge, Cambridge, UK, as previ-
ously described (Yang et al. 1995). Sorted chromosomes 
were used as templates for DNA amplification by DOP-
PCR (Telenius et al. 1992). Primary DOP-PCR products 
were used as templates in a secondary DOP-PCR to incor-
porate biotin-16-dUTP (Roche).

TaqI sat DNA species-specific probes were prepared as 
described in Rojo et al. (2015).

For karyotyping, the slides were stained with DAPI 
(1.5 µg/mL) in anti-fade medium Vectashield (Vector Labo-
ratories). Sequential C-banding + CMA3 + DAPI staining 
was performed as described in Rojo et al. (2014).

Fluorescence in situ hybridization and signal 
detection

The chromosome content and purity of flow-sorted frac-
tions was first determined by FISH onto metaphase spreads 
of female I. monticola. Unidirectional chromosome paint-
ing with the probe containing the W sex chromosome of I. 
monticola was performed on I. galani, I. bonnali, L. sch-
reiberi and T. lepidus. Three additional probes were applied 
for the characterization of I. bonnali, whereas the full set 
of chromosome-specific probes of I. monticola was used in 
cross-species hybridization to metaphase spreads of L. sch-
reiberi and T. lepidus.
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Sensys and DS-Qi1Mc (Nikon Instruments), respectively]. 
The Leica CW4000 FISH and the NIS-Elements D 3.10 
(Nikon Instruments) softwares were used to capture 16-bit 
grey-scale images of DAPI, Cy3/TRITC and FITC signals, 
which were then normalized and merged to a 24-bit colour 
image. For karyotyping, the DAPI images were displayed 
in contrast-adjusted reversed greyscale images. The final 
composition of the images was performed with Adobe Pho-
toshop CS4 11.0.1 (Adobe Systems Inc.).

Results

Karyotyping and C-banding

DAPI-stained karyotypes of all the analyzed species are 
shown in Fig. 1. The karyotypes of I. monticola and I. galani 
(2n = 36) consisted exclusively of acrocentric chromosomes 
of gradually decreasing size. A similar heteromorphic sex 
chromosome pair was found in female specimens of both 
species, in which the W chromosome is distinctly smaller 
than the Z counterpart, and showed an intense fluorescent 
signal after DAPI staining.

The diplod chromosome number in the female I. bonnali 
was 2n = 23, and the karyotype comprised 13 biarmed and 
10 acrocentric chromosomes. In this species, the W chro-
mosome is a metacentric element, and its meiotic homo-
logues —Z1 and Z2— are two smaller acrocentric elements. 
A bright DAPI-positive region was observed in the q arm of 
the W chromosome.

The karyotype of L. schreiberi (2n = 38) was composed 
of 36 acrocentric chromosomes, gradually decreasing in 
size, and a pair of microchromosomes. The female speci-
men analyzed in the first instance for this study, from the 
population of Invernadeiro, showed a markedly heteromor-
phic pair formed by a very small, DAPI-positive element, 
and a medium-sized counterpart, tentatively identified as the 
Z in this species.

The karyotype of female T. lepidus (2n = 36) contained 
one large metacentric chromosome pair, 32 acrocentric 
chromosomes and two microchromosomes. The smallest 
acrocentric chromosome, barely larger than the microchro-
mome pair, was distinctively stained by DAPI and it is most 
likely to be the W sex chromosome, while the putative Z 
was identified as a medium-sized acrocentric element.

C-banding revealed similarities in the abundance and 
distribution of constitutive heterochromatin in the karyo-
types of these species, such as the presence of DAPI- and 
CMA3-positive centromeric and interstitial/pericentromeric 
blocks, and the occurrence of GC-rich, faint telomeric 

FISH was performed using the protocols described in 
Yang et al. (Yang et al. 1995); Rens et al. (2006), with sev-
eral modifications. Briefly, slides were dehydrated through 
ethanol series; aged at 65 °C for 1 h; denatured in 70% 
formamide/2x saline-sodium citrate (SSC) at 70 °C for 1 up 
to 3 min (time depending on species and metaphase prepara-
tion) and dehydrated again. One microliter of biotinylated 
probe was made up to 12 µL with hybridization buffer (50% 
deionized formamide (v/v), 10% dextran sulfate, 2x SSC, 
0.05 M phosphate buffer, pH 7.3). This mixture was dena-
tured at 75 °C for 10 min, preannealed at 37 °C for 30 min 
and applied to each slide. Hybridization was carried out at 
37 °C overnight, for the same species, and over 48 and 72 h, 
for congeneric and more distantly related species, respec-
tively. Posthybridization washes were performed in 50% 
formamide/2x SSC twice for 5 min each, followed by 2x 
SSC twice for 5 min each and 4x SSC with 0.05% Tween-
20 (4xT) once for 4 min. Washes were carried out at 42 °C. 
Probe detection was performed using 200 µL of diluted 
(1:500) Cy3-Streptavidin antibody (Amersham) per slide 
at 37 °C for 30 min. After detection, slides were washed 
in 4xT three times for 3 min each at 42 °C and mounted 
in with anti-fade medium Vectashield (Vector Laboratories) 
containing 1.5 µg/mL DAPI.

Interspecies comparative genomic hybridization 
(iCGH)

Total genomic DNA was extracted from ethanol preserved 
tissues of I. monticola, L. schreiberi and T. lepidus females 
using a commercial kit (RealPure Genomic DNA Extrac-
tion Kit, Durviz), following the manufacturer’s instructions. 
Total genomic DNA was labeled by random priming with 
the Prime-It Random Priming Labeling Kit (Agilent Tech-
nologies), according to the manufacturer’s specifications. 
Genomic DNAs of I. monticola, L. schreiberi and T. lepidus 
were labeled, respectively, with TRITC-dUTP, FITC-dUTP, 
and both TRITC-dUTP and FITC-dUTP. iCGH was per-
formed as described in Rojo et al. (2014). Reciprocal iCGH 
experiments were done between each pair of species. For 
each slide that was made, 250 ng of TRITC-labeled and 250 
ng of FITC-labeled DNA were ethanol-precipitated with 
20 µg of glycogen and 4 µg of unlabeled, sheared genomic 
DNA (as competitor) derived from a male of the same spe-
cies as the target metaphases.

Microscopy and data analyses

At least 20 metaphase spreads were examined after each 
hybridization. Images were captured using the epifluores-
cence microscopes Leica DMRXA and Nikon Microphot-
FXA, equipped with cooled CCD cameras [Photometrics 
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this chromosome among different metaphases, apparently 
brought about by differences in the extent of DNA dena-
turation and loss produced by the C-banding pretreatment 
of the preparations (see also Arribas et al. 2006; Rojo et al. 
2014). The submetacentric W chromosome of I. bonnali 
shows a prominent C-band in the distal region of the q-arm 
(Fig. 2d). In L. schreiberi, the smallest chromosome of the 

C-bands in at least the largest chromosomes of the karyo-
types (Fig. 2). Differences in the C-banding patterns of these 
species were mainly associated to the sex chromosomes. 
The W chromosomes of I. monticola and I. galani are almost 
completely heterochromatic, with only a small euchromatic 
region located in an interstitial position (Fig. 2a–c). There is 
considerable heterogeneity in size and overall appearance of 

Fig. 1 Karyotypes of female 
specimens of each of the species 
studied arranged from DAPI 
stained metaphases. Scale bars 
represent 5 μm

 

1 3

271



Genetica (2023) 151:267–279

and I. galani could be distinguished from the autosomes by 
bearing a brighter, CMA3-positive telomeric C-band, which 
is most clearly shown before DAPI staining (Fig. 2a–c).

Flow sorting of I. monticola chromosomes and 
characterization of painting probes

The 36 chromosomes of the karyotype of I. monticola were 
differentiated into 14 separate flow peaks (Fig. 3). Paint-
ing probes (pp) from each peak were hybridized onto I. 

heteromorphic pair (the putative W chromosome) is also 
easily recognizable after C-banding by bearing a prominent 
heterochromatin block in interstitial position (Fig. 2e). This 
same pattern is found in the W chromosome of T. lepidus, 
which, despite its small size, seems to be only partially 
heterochromatic with an interstitial C-positive region sur-
rounded by proximal and distal euchromatic areas (Fig. 2f). 
In all the cases, the heterochromatin of the W chromosomes 
resulted intensely stained after both DAPI and CMA3 stain-
ing. On the other hand, the Z chromosome of I. monticola 

Fig. 2  Metaphase plates of 
females of the different species 
studied in this paper. Metaphases 
were sequentially stained with 
C-banding + CMA3 (a) + DAPI 
(b-f). Species studied include I. 
monticola (a, b), I. galani (c), I. 
bonnali (d), L. schreiberi (e), and 
T. lepidus (f). Filled arrows point 
to W chromosomes, whereas 
empty arrows in a, b and c point 
to Z chromosomes. Asterisks in 
a indicate CMA3-positive signals 
associated with NORs in chromo-
some 6 of I. monticola. Scale 
bars represent 10 μm
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of T. lepidus, respectively (Fig. 4a, c), while being homolo-
gous to acrocentric chromosomes 2 and 4 of L. schreiberi 
(Fig. 4b, d). Arrows in Fig. 4c point to the p-arm of T. lepi-
dus chromosome 1, which was painted by the pp4,5 probe, 
but not by pp5,7 (Fig. 4e).

The probe pp11,12,Z painted an odd number of medium-
sized chromosomes in I. monticola (Fig. 4f). The unpaired 
chromosome —which, according to its size, could be the 
11th largest chromosome— is presumably the Z sex chro-
mosome. Chromosome painting with this probe on male I. 
monticola metaphases labeled an even number of chromo-
somes, thus confirming that this flow peak contains the Z 
chromosome (Fig. 4g). Similarly, pp11,12,Z hybridized to 
five medium-sized acrocentric chromosomes on female T. 
lepidus and L. schreiberi (two populations) metaphases, 
strongly suggesting the structural conservation of the Z, 
which could be the tenth and ninth largest element of the 
karyotype, respectively (Figs. 1 and 6 h–j). In addition, this 
probe clearly marked the microchromosome pair in both 
species (asterisks in Fig. 6 h–j), thus indicating that these 
elements were most likely fused to either chromosomes 11, 
12 or Z in the last common ancestor of Iberolacerta species.

The probe pp13,14,W, containing the I. monticola W sex 
chromosome together with autosomes 13 and 14, hybrid-
ized to the euchromatin of the W chromosome in I. galani 
(Fig. 4k), and to the euchromatin at the end of the q-arm of 
the submetacentric W chromosome in I. bonnali (Fig. 4l). 
It also painted two small, acrocentric chromosome pairs in 
both species. A screening with the remaining flow-sorted 
fractions of I. monticola showed that the p-arm of the W 
chromosome of I. bonnali was only marked by the probe 
pp14,15,16 (Fig. 4o), indicating that it must be homolo-
gous to either autosome 15 or 16 of I. monticola. When the 
probe pp13,14,W was used on T. lepidus and L. schreiberi, 
it painted a pair of small acrocentric chromosomes in each 
species (12 and 13 in T. lepidus; 14 and 15 in L. schreiberi), 
but no signal was detected on the W chromosome of either 
species (Fig. 4m, n).

In the screening of metaphase plates to determine the 
hybridization results described above, some metaphases 
with chromosomal mutations, such as trisomies (Fig. 4p, q) 
or segmental duplications (Fig. 4r-t), were detected, appar-
ently produced during the culture of the fibroblast cell lines.

Interspecies comparative genomic hybridization 
(iCGH) and FISH with a satDNA probe

Absence of hybridization signal with the pp13,14,W probe 
on the W chromosomes of L. schreiberi and T. lepidus led us 
to further investigate the differentiation of W chromosomes 
among the three species by carrying out iCGH. Reciprocal 

monticola metaphase chromosomes to determine the chro-
mosome content of these flow peaks (Fig. S1, Supplemen-
tary Information). Nine chromosome pairs were resolved 
separately, which provided chromosome-specific paint-
ing probes (pp1–pp3, pp6–pp10, and pp17). In addition, 
two peaks contained two chromosomes each (pp4,5 and 
pp5,7), and three peaks contained three chromosomes each 
(pp11,12,Z, pp13,14,W, and pp14,15,16). The presence of 
the same chromosome in adjacent flow peaks, as it is the 
case with chromosomes 5, 7 and 14 (see Fig. 3) could be an 
indication of the two homologues differing in their repeti-
tive DNA content, but the close similarity to the sizes and 
DAPI banding patterns of other chromosomes of the karyo-
type preclude our exploration of this interesting possibility 
with the available data.

Cross-species chromosome painting

The study of chromosome synteny with the whole set of I. 
monticola probes on L. schreiberi and T. lepidus revealed 
a high degree of karyotype conservation between the three 
species (see Figs. S2 and S3, Supplementary Information, 
for the complete results of chromosome painting on these 
species). Most I. monticola chromosomes were completely 
preserved —both in DNA content and morphology— in 
the other lacertids. One of the few rearrangements detected 
involved I. monticola chromosomes 2 and 4, which corre-
spond to the q and p-arms of the metacentric chromosome 1 

Fig. 3 Flow-sorted karyotype of Iberolacerta monticola. The x and y 
axes report fluorescence intensity for the corresponding fluorochrome. 
The painting probes derived from the different separate flow peaks are 
indicated
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Fig. 4 Cross-species chromosome painting of metaphase plates with 
different I. monticola flow-sorted chromosome probes (pp, see Fig. 3). 
All but one of the hybridizations (panel g)correspond to female speci-
mens. IBN, I. bonnali; IGA, I. galani; IMO, I. monticola; IMOm, I. 
monticola male; LSC, L. schreiberi Invernadeiro; LSC-Ara, L. sch-
reiberi Aranga; TLE, T. lepidus. Scale bars represent 10 μm. a, b: pp2 
on TLE and LSC; c, d: pp4,5 on TLE (arrows point to the p-arm of 
chromosome 1) and LSC; e: pp 5,7 on TLE; f–j: pp11,12,Z on IMO, 

IMOm, TLE, LSC, and LSC-Ara (asterisks mark the microchromo-
some pair); k–n: pp13,14,W on IGA, IBN, TLE and LSC (the arrow 
points to the W chromosome of each species); o: pp14,15,16 on IBN 
(the arrow points to the p-arm of the neo-W chromosome); p: trisomy 
3, pp3 on LSC; q: trisomy 5, pp4,5 on LSC; r–t: segmental duplication 
16, pp14,15,16 on LSC (r, merged; s, DAPI; t, CY3; arrows point to 
the heteromorphic pair)
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Discussion

Four main conclusions of evolutionary relevance can be 
drawn from the results of this work. The first refers to 
microchromosomes, or rather their absence. Squamates 
show a marked tendency towards reduction in the number 
of microchromosomes through lineage-specific fusions 
of microchromosomes to different macrochromosomes, 
and a concomitant increase in G-banding patterns, which 
may have a direct influence on recombination levels and 
chromosome mutation rates (Olmo 2008; Srikulnath et al. 
2021). This trend is particularly enhanced in Gekkota (Sri-
kulnath et al. 2015) and in lacertid lizards, whose karyo-
types generally show only one pair of microchromosomes 
and, in a few species, their complete disappearance (e.g., 
Zootoca vivipara and Atlantolacerta andreanskyi) (Olmo 
et al. 1991; Olmo and Signorino 2005). The lack of micro-
chromosomes in the genus Iberolacerta is therefore atypical 
among Lacertidae. We have determined that the ancestral 
microchromosomes in the I. monticola karyotype are most 
likely fused to either the Z sex chromosome or to one of 

iCGH experiments highlighted the accumulation of species-
specific sequences in the chromosomes previously identified 
as the W chromosome of each species (Fig. 5). For instance, 
the W chromosome of I. monticola was predominantly 
labeled by I. monticola genomic DNA when co-hybridized 
with genomic DNA of either L. schreiberi or T. lepidus 
(Fig. 5a, b). The same pattern was observed in metaphases 
of L. schreiberi and T. lepidus (Fig. 5c, d, e and f, respec-
tively). Due to the bright signals produced by the repetitive 
content of the W chromosomes, it was not possible to eluci-
date if the molecular composition of sex chromosomes dif-
fered only at the heterochromatic or also at the euchromatic 
regions. Additional evidence on the nucleotide divergence 
of W chromosomes was obtained after FISH with a satellite 
DNA probe, TaqI, which showed that although this satellite 
family is dispersed over several chromosomes of the karyo-
type of these three species, only the W chromosome of L. 
schreiberi harbored repeats (Fig. 6).

Fig. 5 Interspecies comparative genomic hybridization on female 
metaphases of I. monticola (a, b), L. schreiberi (c, d), and T. lepidus 
(e, f). Genomic DNA of I. monticola is stained with TRITC (IMO; 
red), genomic DNA of L. shcreiberi is stained with FITC (LSC; green), 

and genomic DNA of T. lepidus is stained with both FITC (b, e) and 
TRITC (d, f). Arrows point to W chromosomes. Scale bars represent 
10 μm
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microchromosomes have been independently lost in Zoot-
oca vivipara (Lichtenstein, 1823), the terrestrial reptile with 
the largest geographical and highest latitudinal distribu-
tion, inhabiting quite different biogeographic regions in the 
Northern Hemisphere (IUCN 2022), but exhibiting similar 
responses to glaciations than species from temperate zones 
(Horreo et al. 2018). Perhaps the most important ecological 
characteristic that all these three taxa have in common is 
their independent conquest of cold environments (Garcia-
Porta et al. 2019). Taking into consideration the evolution-
ary importance attributed to microchromosomes (Uno et al. 
2012; Deakin and Ezaz 2019; Srikulnath et al. 2021; Waters 
et al. 2021) and the apparently direct involvement of some 
of their gene contents in the differential adaptations of other 
sqamates (Bentley et al. 2023), we cannot discard the pos-
sibility that their loss has been due to selection. In fact, the 
loss of microchromosomes in three independent lineages 
may represent a case of evolutionary convergence.

The second a priori evolutionary relevant result reported 
in this paper refers to the origin of the Z1Z2W multiple sex-
chromosome system in two of the three Pyrenean species 
of Iberolacerta, I. bonnali and I. aurelioi. DNA phylog-
enies have not been able to resolve the splitting order of 
these species, probably because the time interval between 
their speciation events was too short (Mayer and Arribas 
2003; Arribas et al. 2014), but allozymes (Mayer and Arri-
bas 1996), and both karyological (Odierna et al. 1996) and 
osteological data (Arribas 1998) suggest that I. aranica has 
most likely diverged first, before the rearrangement that 
gave rise to the multiple sex chromosome system, which 
would represent a derived character shared by I. bonnali 
and I. aurelioi. According to our results, that rearrangement 
included a fusion between the ancestral W and one of the 
autosomes belonging to either pair 15 or 16, which gave 
rise to a biarmed neo-W, whereas the homologous chromo-
some in that pair became the Z2. This is interesting because 
W-autosome fusions or translocations are not the only pos-
sible ways to produce a Z1Z2W sex chromosome system. In 
insects, for example, it is far more common for such com-
plex sex chromosomes to appear due to Z fissions rather 
than W fusions with an autosome (Blackmon et al. 2016). In 

the autosomes labelled as 11 and 12. The possibility of 
the hybridization signals on the L. schreiberi and T. lepi-
dus microchromosomes being due to repetitive centromeric 
DNA shared by any of the I. monticola chromosomes in the 
pp11,12,Z is quite improbable. In previous works, we found 
that the HindIII satDNA repeats overlapped the centromeric 
heterochromatic blocks of all the chromosomes of the I. 
monticola karyotype (Giovannotti et al. 2014). Therefore, 
if the hybridization signals from the microchromosomes 
were due to the presence of centromeric repeats, we should 
have detected their signals with all our probes. Consider-
ing how rare the absence of microchromosomes is in Lac-
ertidae karyotypes, and since all the species of the genus 
Iberolacerta share this trait, it seems logical to assume that 
the fusion observed in I. monticola most likely constitutes 
a synapomorphy for Iberolacerta within the Lacertidae, i.e., 
a shared derived trait that should have been already pres-
ent in the last common ancestor of this small species group. 
Phylogenetic reconstructions indicate that Iberolacerta 
originated 22–30 mya, together with many other genera of 
Lacertini (Hipsley et al. 2009, additional file 1; Garcia-Porta 
et al. 2019, supplementary Fig. 11), well before the Pleisto-
cene glacial oscillations, with its now-recognizable species 
having been preserved in glacial refugia in Southern Euro-
pean mountains, thanks to its complex topography and his-
tory, that allowed their allopatric divergence (Carranza et al. 
2004; Crochet et al. 2004; Arribas et al. 2014). Population 
fragmentation was probably enhanced during the Messin-
ian Salinity Crisis (5.9–5.3 Mya), when the nearly complete 
desiccation of the Mediterranean Sea forced the retreat of 
mesic species, such as Iberolacerta spp., to the moister 
Atlantic-influenced areas and to the mountainous regions 
around the Mediterranean Basin. The same climatic events 
were experienced in much the same way by Atlantolacerta 
andreanskyi (Werner, 1929), another lacertid species show-
ing independent microchromosome loss. This species is a 
member of the subtribe Eremiadini endemic to the High 
Atlas Mountains in northern Africa, where their highly frag-
mented populations in different mountaintops could actu-
ally harbor at least six well differentiated species (Barata 
et al. 2012). Similarly to Iberolacerta and Atlantolacerta, 

Fig. 6 Hybridization pattern of the 
TaqI satellite DNA probe on female 
metaphase spreads of L. schreiberi 
(a), I. monticola (b), and T. lepidus 
(c). Arrows point to W chromo-
somes. Scale bars represent 10 μm
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