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Disease Surveillance Programme portal. From the 
receiver operating characteristic (ROC) curve analysis 
and the area under the ROC curve (AUC) values, it is 
proved that the F-AHP method (AUC value of 0.971) 
has comparatively more prediction capability than the 
AHP method (AUC value of 0.954) in demarcating 
the dengue risk zones. Also, based on the compari-
son of the risk zone map with actual case data, it was 
confirmed that around 82.87% of the dengue cases 
occurred in the very high and high-risk zones, thus 
proving the efficacy of the model. According to the 
dengue risk map prepared using the F-AHP model, 
9.09% of the area of Thiruvananthapuram district is 
categorized as very high risk. The prepared dengue 
risk maps will be helpful for decision-makers, staff 
with the health, and disaster management depart-
ments in adopting effective measures to prevent the 

Abstract Dengue fever, which is spread by Aedes 
mosquitoes, has claimed many lives in Kerala, with 
the Thiruvananthapuram district bearing the brunt of 
the toll. This study aims to demarcate the dengue risk 
zones in Thiruvananthapuram district using the ana-
lytical hierarchy process (AHP) and the fuzzy-AHP 
(F-AHP) methods. For the risk modelling, geo-envi-
ronmental factors (normalized difference vegetation 
index, land surface temperature, topographic wet-
ness index, land use/land cover types, elevation, nor-
malized difference built-up index) and demographic 
factors (household density, population density) have 
been utilized. The ArcGIS 10.8 and ERDAS Imagine 
8.4 software tools have been used to derive the risk 
zone maps. The area of the risk maps is classified into 
five zones. The dengue risk zone maps were validated 
using dengue case data collected from the Integrated 
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risks of dengue spread and thereby minimize loss of 
life.

Keywords Aedes mosquito · Analytical hierarchy 
process · Dengue outbreak · F-AHP · ROC

Introduction

Dengue fever is a mosquito-borne disease that affects 
about half of the global population (Messina et  al., 
2019). It is most common in tropical and sub-tropi-
cal countries’ urban and semi-urban areas (Balaji & 
Saravanabavan, 2020). Dengue fever has surged 30 
times in the last decade, with an estimated 390 mil-
lion infections each year (Pilot et al., 2020). Dengue 
fever is caused by four kinds of dengue virus that are 
serologically distinct (DENV-1, DENV-2, DENV-
3, and DENV-4) and it is transferred to people by 
Aedes mosquitoes, such as Aedes aegypti (L.) and 
Aedes albopictus (Skuse) (Kumar et  al., 2013). The 
fifth dengue virus serotype, DENV-5, was found by 
Mustafa et al., (2015). Infected female Aedes aegypti 
and Aedes albopictus mosquitoes may transmit the 
virus to the next generation by transovarial transmis-
sion (Getachew et al., 2015). Because it favours ani-
mals over humans, unlike Aedes aegypti, which has a 
strong preference for humans (L., 1762), it is widely 
assumed that Aedes albopictus serves as a secondary 
vector of human arboviruses such as dengue virus 
(DENV) (Hawley, 1988).

Aedes aegypti is of different polytypic forms, 
namely domestic (a light-coloured indoor type which 
breeds in water pots kept inside the houses), sylvan 
(a dark-coloured type which breeds in tree holes usu-
ally seen in forests adjacent to villages), and peri-
domestic (an intermediate type which breeds in dis-
turbed or modified areas such as coconut groves, 
farms, etc.) (Tabachnick et  al., 1979). Dengue fever, 
dengue haemorrhagic fever, and mild acute febrile ill-
ness can all be caused by the dengue virus (Chatur-
vedi et al., 2000). Patients may experience headaches, 
high temperatures, joint pain, vomiting, and myalgia 
during the initial febrile phase (Nakano, 2018). Den-
gue shock syndrome, which includes plasma leakage, 
coagulation problems, and enhanced vascular fragil-
ity, is one of the most significant clinical symptoms 
(Bhatt et al., 2021).

The World Health Organization (WHO) estimates 
that 50–100 million dengue infections occur each 
year (Bhatt et al., 2013). According to a recent study 
(Zeng et al., 2021), there were 104.77 million dengue 
cases worldwide in 2017, compared to 23.28 million 
cases in 1990. Asia bears the majority of the den-
gue disease’s worldwide burden (https:// www. who. 
int/). South-East Asia and the Western Pacific are 
the dengue-endemic regions, with developing coun-
tries being the most exposed (Lai, 2018). According 
to WHO (https:// www. who. int/), India is one of the 
30 nations with the highest dengue endemicity rates 
in the world. Also, on the list of the top ten nations 
with the largest number of viral disease deaths, India 
ranks first (with 436,343 fatalities between 1900 and 
2022) (https:// public. emdat. be/). The state of Kerala 
in India is hyperendemic and one of the leading states 
in dengue death reporting (Karunakaran et al., 2014). 
The dengue outbreak that occurred in Kerala in the 
year 2017 reported 21,993 confirmed cases and 165 
deaths (Kumar et al., 2019). Although all the 14 dis-
tricts in Kerala have recorded cases, more than 50% 
come from Thiruvananthapuram district (Kumar 
et al., 2019). According to Banerjee (2017), one pos-
sible reason was the drought, which caused people to 
store drinking water in large containers to deal with 
the water crisis, which resulted in mosquito breed-
ing. In Kerala, the first epidemic occurred in the year 
2003, with 3546 confirmed cases and 68 deaths, with 
the Thiruvananthapuram district being the worst 
affected (Nujum et  al., 2020). In 2006, 65% of the 
total dengue cases were reported in the Kerala district 
of Thiruvananthapuram (Samuel et al., 2014). Hence, 
there is a need to assess the risk in the Thiruvanan-
thapuram district to minimize the spread of dengue 
and thereby prevent the loss of lives.

This study compared two models (AHP and 
F-AHP) and factors like normalized difference vege-
tation index (NDVI), land surface temperature (LST), 
topographic wetness index (TWI), and normalized 
difference built-up index (NDBI), which have never 
been applied in any part of the world. The present 
study aimed to identify the dengue risk zones in the 
Thiruvananthapuram district using the AHP and the 
F-AHP methods and to compare the prediction accu-
racy of both methods. This study used factors such as 
NDVI, LST, TWI, LULC, elevation, NDBI, house-
hold density, and population density.

https://www.who.int/
https://www.who.int/
https://www.who.int/
https://public.emdat.be/
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Literature review

The study by Bhatt et  al., (2013) predicted dengue 
to be prevalent across the tropics, with local spatial 
differences in risk being substantially impacted by 
rainfall, temperature, and the level of urbanization, 
and estimated 390 million dengue infections per year, 
of which 96 million appear to be obvious. Fan et al., 
(2015) observed a significant increase in dengue risk 
between 22 and 29  °C. The study by Rogers et  al., 
(2014) conducted for Europe found very few parts of 
rural Europe are now suited for dengue, and several 
big cities appear to be at some level of risk, perhaps 
as a result of a combination of climatic conditions 
(precipitation and temperature) and dense population. 
According to a study done in Brazil by Lowe et  al., 
(2021), dengue risk is higher in more rural areas than 
in highly urbanized areas during periods of major 
flooding, while it is higher in highly urbanized areas 
than in rural areas during extremely drought condi-
tions. In a study in a Brazilian urban slum, Kikuti 
et al., (2015) found that the risk of dengue is higher in 
places where people are poor.

The research conducted by Koyadun et al., (2012) 
in Thailand found that in the areas that experienced 
historical dengue outbreaks, houses with window 
screens, people aged > 45, individuals with middle 
and higher degrees, households with more than 4 
members, and people engaged in clean-up campaigns 
were likely to experience a higher risk of dengue 
transmission. Another study conducted in Thailand 
identified the reason for higher dengue incidence and 
risk levels in Bangkok as being due to La Niña and 
El Niño impacts (Langkulsen et al., 2020). Wijayanti 
et  al., (2016) identified employment type and eco-
nomic status as the most influential factors on dengue 
risk in Banyumas regency, Central Java (Indonesia). 
The study conducted in Vietnam (Schmidt et  al., 
2011) observed a higher dengue risk in rural areas 
with a lack of piped water supply than in urban areas. 
Lack of access to tap water was identified as the 
major reason for dengue risk in Delhi (India) (Telle 
et al., 2021).

Many researchers (Ali & Ahmad, 2018; Dom 
et  al., 2016; Hassan et  al., 2012; Khormi & Kumar, 
2012; Latif & Mohamad, 2015; Ong et al., 2018; Pan-
hwer et al., 2017; Pathirana et al., 2009; Saravanaba-
van et  al., 2019; Shafie, 2011; Tariq & Zaidi, 2019; 
Tsheten et al., 2021; Withanage et al., 2021) identified 

the dengue risk zones using GIS techniques. Ali and 
Ahmad, (2018) demarcated the dengue risk zones in 
the Kolkata Municipal Corporation using the GIS and 
AHP method. They used factors such as population 
density, household density, land use and land cover 
(LULC), elevation, buffer from waterlogged areas, 
and land surface temperature. Dom et al., (2013) also 
identified dengue risk zones in Subang Jaya (Malay-
sia) using GIS techniques, where they found a higher 
distribution in residential areas due to higher popula-
tion density and favourable places for dengue breed-
ing. Ong et al., (2018) mapped the dengue risk zones 
in Singapore using the random forest model with a 
Kappa coefficient of more than 0.80. They utilized 
population, entomological, and environmental fac-
tors. Withanage et al., (2021) demarcated dengue risk 
zones in Gampaha district (Sri Lanka) using GIS-
based multivariate analysis. They selected factors 
such as breeding places, roads, total buildings, land 
use (home gardens, marshlands, urban areas), public 
places, and elevation, and found high-risk zones in 
the close proximity to roads. All these studies applied 
a single method for identifying the risk zones.

Materials and methods

Study area

The climate of Thiruvananthapuram district is typi-
cally hot-tropical, and the monsoon season extends 
from June to October (Nair & Aravind, 2020). The 
optimal environment for dengue breeding is one with 
high temperatures and humidity (Lai, 2018), which 
can make this district more exposed. The river basins 
in the district include Neyyar, Karamana, and Vaman-
apuram, and the major rivers are Neyyar, Karamana, 
Vamanapuram, Mamom, and Ayirur, and the average 
annual rainfall is 2035 mm (Rani, 2013). 73 panchay-
ats, four municipalities, and a corporation are part of 
the administrative divisions (Valson & Soman, 2017). 
According to the 2011 census data, the district had a 
population of 3,307,284 (https:// triva ndrum. nic. in/ 
en/; Rani, 2013). The total area of the district is 2192 
 km2 (https:// triva ndrum. nic. in/ en/). It has the high-
est population density in the state, with 1508 people/
sq.km., and the second-highest total population, after 
the Malappuram district (DCHB 2014). 11.3% of the 
population in this district belongs to the scheduled 

https://trivandrum.nic.in/en/
https://trivandrum.nic.in/en/
https://trivandrum.nic.in/en/
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caste, an unprivileged group in India, which is above 
the state average of 9.1% (https:// censu sindia. gov. in/; 
https:// scdd. kerala. gov. in/). Also, this district stands 
second (with 38.36%) in the state in terms of depriva-
tion rate, after Palakkad (42.33%) (https:// spb. kerala. 
gov. in). The location of the Thiruvananthapuram dis-
trict is depicted in Fig. 1.

Data used

The modelling process involves the following steps 
(Fig. 2):

 i. The data for the eight factors were derived from 
a variety of sources (Table 1). ERDAS Imagine 
8.4 (Leica Geosystems AG, Heerbrugg, Swit-
zerland) and ArcGIS 10.8 (ESRI Inc., Redlands, 
California, United States) software tools were 
used to create the thematic layers for these fac-
tors.

 ii. After obtaining the thematic layers, data on den-
gue cases for the period 2015–2018 was down-
loaded from the district level line list of daily 
dengue cases collected from the Directorate of 
Health Services (DHS)’s Integrated Disease 
Surveillance Programme (IDSP) portal (https:// 
dhs. kerala. gov. in/ idsp-2/).

 iii. For the validation, one location (point) was cho-
sen from each local self-government (LSG) hav-
ing dengue cases.

 iv. The natural breaks (Arabameri et  al., 2020; 
Pradeep et al., 2022; Vojteková & Vojtek, 2020) 
method was used to classify the thematic layers 
of factors such as NDVI, LST, TWI, elevation, 
NDBI, household density, and population den-
sity.

 v. The AHP and F-AHP methods were employed 
to create the dengue risk zone maps.

 vi. The ROC curve method was used to validate 
the risk maps. For the creation of ROC curves 

Fig. 1  The study area

https://censusindia.gov.in/
https://scdd.kerala.gov.in/
https://spb.kerala.gov.in
https://spb.kerala.gov.in
https://dhs.kerala.gov.in/idsp-2/
https://dhs.kerala.gov.in/idsp-2/
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and the estimation of AUC values, the SPSS 
(IBM Corporation, Armonk, New York, United 
States) software was utilized.

Derivation of factors selected for the risk modelling

The elevation of the Thiruvananthapuram district was 
extracted from the GDEM at 30  m (spatial) resolu-
tion. The spatial analyst (surface) tool available with 

the ArcGIS software was used to derive the elevation. 
The ERDAS Imagine software was used to classify 
the different land use/land types from the Landsat 
image acquired on 21st August 2020. The maximum 
likelihood (ML) classification (Alam et  al., 2020; 
Babitha et al., 2022; Reis, 2008) was adopted in this 
study. From the 2011 census data (DCHB 2014), the 
number of households in each panchayat, municipal-
ity, and corporation was gathered, and the density 
was computed using ArcGIS software (as in Ali & 

Fig. 2  Flowchart of the dengue risk modelling

Table 1  Data source

Data Source Thematic layers derived Spatial resolution

ASTER GDEM https:// earth explo rer. usgs. gov/ Elevation
TWI

30 m

Landsat 8 OLI image https:// earth explo rer. usgs. gov/ LULC
NDVI
NDBI

30 m

Landsat 8 TIRS image https:// earth explo rer. usgs. gov/ LST 100 m
2011 census data https:// censu sindia. gov. in/ Household density

Population density
–

Dengue cases data https:// dhs. kerala. gov. in/ idsp-2/ – –

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://censusindia.gov.in/
https://dhs.kerala.gov.in/idsp-2/
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Ahmad, 2018). The population data for each pan-
chayat, municipality, and corporation was collected 
from the 2011 Census data (DCHB 2014), and the 
population density layer was created using ArcGIS 
software (as in Ali & Ahmad, 2018). By dividing the 
sum of near-infrared (NIR) and red (Red) reflectance 
by their difference, the NDVI is computed (Gessesse 
& Melesse, 2019). NDVI was computed using Eq. 1 
(Rouse et  al., 1974) and ArcGIS raster calculator 
tool. NDBI was calculated using Eq.  2, and ranges 
between− 1 and + 1, where positive values represent 
built-up areas (Zha et  al., 2003). The topographic 
wetness index of the district was computed from the 
GDEM using ArcGIS raster calculator tool. TWI was 
computed using Eq. 3 (Beven & Kirkby, 1979).

where Red, NIR and SWIR denote spectral reflec-
tance measurements in the red, near-infrared, and 
short-wave infrared bands, respectively (Drisya et al., 
2018; Zha et al., 2003).

where α is the specific catchment area [α = A/L, 
catchment.

area (A) divided by contour length (L)] and β is 
the slope.

Land surface temperature The steps involved with 
the extraction of LST are mentioned below (as in 
Dang et al., 2020, and Kumar et al., 2021a):

Conversion of the digital number (DN) to spectral 
radiance (Lλ)

Spectral radiance (.L� .) was computed using Eq.  4 
(Landsat 8 Data Users Handbook, 2019).

where, gain = radiance slope/DN transformation 
function; DN = digital number; and offset = radiance 
intercept/ DN transformation function (Ghosh et  al., 
2020).

It can also be expressed as (Eq. 5):

(1)NDVI =
(NIR − Red)

(NIR + Red)

(2)NDBI =
(SWIR1 − NIR)

(SWIR1 + NIR)

(3)TWI = ln(�∕tan�)

(4)L� = gainxQCAL + offset

where, QCAL = DN of pixels; QCALMAX = 255; 
QCALMIN = 0; LMIN� = spectral radiance for ther-
mal band at DN = 0, LMAX� = spectral radiance for 
thermal band at DN = 255 (Ghosh et al., 2020).

Equation 5 will be more simplified when the cor-
responding values were replaced in Eq. 4 (Eq. 6)

Conversion of spectral radiance to At‑satellite 
brightness temperatures

Based on the type of land cover, emissivity (e) for 
radiant temperatures has been rectified. Vegetation 
areas were given a score of 0.95, while non-vegeta-
tion areas were given a score of 0.92. (Nichol, 1994). 
As mentioned in Artis and Carnahan (1982), the 
emissivity corrected LST was identified (Eq. 7).

where, L� is Spectral Radiance in W.m−2.sr−1.μm−1, 
and  K1 and  K2 are two constants of two pre-launch 
calibrations (Ghosh et al., 2020).

LST estimation

The spectral emissivity (ϵ) needs correction since 
the black body is denoted by the temperature values 
obtained from the above analyses. The rectification 
can be done by rendering the land cover type or by 
computing the corresponding NDVI emissivity val-
ues for the respective pixels (Snyder et al., 1998). The 
emissivity rectified LST was determined using Eq. 8 
(Artis & Carnahan, 1982).

where LST = LST in Kelvin, TB = At-sensor bright-
ness temperature, λ = TOA reflectance, Inϵ = Emissiv-
ity (Ghosh et al., 2020).

Land surface emissivity was computed using 
Eq. 9.

(5)

L� = LMIN� +

[
(LMAX� − LMIN�)

(QCALMAX − QCALMIN)
xQCAL

]

(6)L� = (0.037059 × DN) + 3.2

(7)TB =
K2

ln
(

k1

L�
+ 1

)

(8)LST = TB

/[
1 +

{(
�xTB

�

)
xln ∈

}]
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where pv is the vegetation proportion, which was cal-
culated using Eq. 10 (Ghosh et al., 2020).

Conversion of Kelvin to degree Celsius

The measurement unit of these predicted LSTs was 
transformed to a Kelvin scale using the calculation 
0 °C = 273.15 K to simplify the conceptualizing.

Modelling

This study employed methods such as AHP and 
F-AHP, which are effective in data-scarce condi-
tions (Kumar et al., 2021b; Ramkar & Yadav, 2021). 
AHP uses pair comparisons to break down complex 

(9)Land surface emissivity (∈) = 0.004xpv + 0.986

(10)pv −

(
NDVIjr − NDVImin

NDVImax − NDVImin

)2

issues into specific sub-issues, and the components 
are then prioritized after the hierarchical structure is 
built (Gompf et al., 2021). F-AHP is similar to AHP, 
but instead of using numbers, it uses triangular fuzzy 
numbers. Also, F-AHP can address the inadequacy 
of AHP to deal with imprecision and subjectivity in 
assessments (Carnero, 2017).

AHP modelling

AHP, developed by Thomas Saaty (Saaty, 1980), is 
a method for multi-criteria decision making. This 
method works to deconstruct complex problems into 
a hierarchy and identify the solution most suited to 
the objective (Qazi & Abushammala, 2020). The 
generation of the matrix for pair-wise comparisons, 
calculation of the eigen vector, weighting coefficient 
(Table  2), and consistency ratio (Table  3) are the 
essential procedures (Akshaya et  al., 2021; Senan 
et  al., 2022).where Elev. is the elevation, HD is the 
household density, and PD is the population density.

Table 2  Pairwise 
comparison matrix

NDVI LST TWI LULC Elev NDBI HD PD Vp Cp

NDVI 1 2 3 4 5 6 7 8 3.764 0.328
LST 1/2 1 2 3 4 5 6 7 2.662 0.232
TWI 1/3 1/2 1 2 3 4 5 6 1.819 0.159
LULC 1/4 1/3 1/2 1 2 3 4 5 1.223 0.107
Elev 1/5 1/4 1/3 1/2 1 2 3 4 0.818 0.071
NDBI 1/6 1/5 1/4 1/3 1/2 1 2 3 0.550 0.048
HD 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.376 0.033
PD 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.266 0.023
∑ 2.72 4.59 7.45 11.28 16.08 21.83 28.50 36.00 11.48 1.00

Table 3  Normalized matrix

NDVI LST TWI LULC Elev NDBI HD PD ∑ rank [C] [D] = 
[A]*[C]

[E] = 
[D]/[C]

λ max CI CR

NDVI 0.37 0.44 0.40 0.35 0.31 0.27 0.25 0.22 2.61 0.332 2.739 8.252 8.310 0.044 0.031
(3.14%)LST 0.18 0.22 0.27 0.27 0.25 0.23 0.21 0.19 1.87 0.238 1.905 8.011

TWI 0.12 0.11 0.13 0.18 0.19 0.18 0.18 0.17 1.24 0.157 1.300 8.262
LULC 0.09 0.07 0.07 0.09 0.12 0.14 0.14 0.14 0.78 0.099 0.881 8.936
Elev 0.07 0.05 0.04 0.04 0.06 0.09 0.11 0.11 0.52 0.066 0.595 8.976
NDBI 0.06 0.04 0.03 0.03 0.03 0.05 0.07 0.08 0.38 0.048 0.401 8.304
HD 0.05 0.04 0.03 0.02 0.02 0.02 0.04 0.06 0.27 0.035 0.274 7.920
PD 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.20 0.025 0.197 7.820
∑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7.88 1.000 66.481
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Using Eqs. 11 and 12, the eigen vector (Vp), and 
the weighting coefficient (Cp) were determined 
(Akshaya et  al., 2021; Amrutha et  al., 2022; Nikhil 
et al., 2021; Thomas et al., 2021).

where k = number of factors, and W = ratings.

The normalized matrix, priority vector [C], overall 
priority [D], and rational priority [E] were calculated 
as in Danumah et al., (2016).

Using Eqs. 13, 14, and 15, the eigen value (λmax), 
consistency index (CI), and consistency ratio (CR) 
were determined (Akshaya et  al., 2021; Amrutha 
et al., 2022; Nikhil et al., 2021; Thomas et al., 2021).

where RI = random index (Saaty, 1980).
Saaty (1980) accepts a consistency ratio (CR) of 

less than 0.1. If the CR is higher than 0.1, repeat the 
analysis until the CR is acceptable. An acceptable 
CR (0.031) is obtained in this model. Hence, the out-
comes are reliable.

The weights obtained using the AHP modelling 
are depicted in Eq. 16.

(11)Vp =
k
√
W1x…Wk

(12)Cp =
Vp

Vp1 +…Vpk

(13)�max =
[E]

k

(14)CI = (�max − k)∕(k − 1)

(15)CR =
CI

RI

F‑AHP modelling

To weight the factors in F-AHP model, an ensemble 
of AHP and fuzzy logic methods was used (Eskandari 
& Miesel, 2017). By allowing decision-makers to 
assess their preferences within an acceptable inter-
val, the Fuzzy-AHP model overcomes the constraints 
of the AHP model (Afolayan et  al., 2020). Buckley 
(1985) proposed a method for comparing fuzzy ratios 
defined as triangle membership functions, which 
was used in this research. Pair-wise comparison 
matrix creation (see Table  4), geometric mean cal-
culation (see Table 5), computation of relative fuzzy 
weights (see Table  6) and calculation of averaged 

(16)

DRZ =(0.328 × NDVI) + (0.232 × LST) + (0.159 × TWI)

+ (0.107 × LULC) + (0.071 × Elev.) + (0.048 × NDBI)

+ (0.033 × HD) + (0.023 × PD)

Table 4  Pair-wise comparisons of factors

NDVI LST TWI LULC Elev NDBI HD PD

NDVI (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (8,8,8)
LST (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8)
TWI (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7)
LULC (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6)
Elev (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5)
NDBI (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4)
HD (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3)
PD (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1)

Table 5  Geometric means of fuzzy comparison values

Fuzzy geometric mean value ( r̃
i
)

NDVI 2.952 3.764 4.477
LST 1.984 2.662 3.452
TWI 1.334 1.819 2.441
LULC 0.892 1.223 1.668
Elev 0.599 0.818 1.121
NDBI 0.410 0.550 0.750
HD 0.290 0.376 0.504
PD 0.223 0.266 0.339
∑ r̃

i
8.683 11.477 14.752

(∑ r̃
i
 ) ^-1 0.068 0.087 0.115
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and normalised relative weight are the essential pro-
cedures involved (see Table 7) (Akshaya et al., 2021; 
Senan et  al., 2022). The steps in F-AHP modelling 
are as follows:

Step 1 Comparison of the factors.
When factor 1 (P1) is less important than factor 2 

(P2), for example, the fuzzy triangular scale will be 
(2, 3, 4). The fuzzy triangle scale for the comparison 
matrix will be (1/4, 1/3, 1/2) (Ayhan, 2013).

The matrix is depicted in Eq. 17.

where,d̃k
ij
 indicates the kth decision maker’s prefer-

ence of ith factor over jth factor, by the way of fuzzy 
triangular numbers (Ayhan, 2013).

Step 2 d̃ij is calculated using Eq. 18, after averag-
ing the preferences ( ̃dk

ij
)

Step 3 Modification of the matrix using Eq. 19.

Step 4 Determination of the geometric average 
using Eq. 20 (Buckley, 1985).

(17)Ãk =

⎡
⎢⎢⎢⎣

d̃k
11

d̃k
12

... d̃k
1n

d̃k
21

... ... d̃k
2n

... ... ... ...

d̃k
n1

d̃k
n2

... d̃k
mn

⎤⎥⎥⎥⎦

(18)d̃ij =

∑K

k=1
d̃k
ij

K

(19)Ã =

⎡⎢⎢⎣

d̃11 ⋯ d̃1n
⋮ ⋱ ⋮

d̃n1 ⋯ d̃nn

⎤⎥⎥⎦

where r̃i = triangular values.
Step 5 The fuzzy weight was determined using the 

next three sub processes (5a, 5b, and 5c).
Step 5a Determination of vector summation of 

each r̃i.
Step 5b The summation vector’s (− 1) power was 

determined, then the fuzzy triangular number was 
replaced to convert it to an increasing order.

Step 5c Calculation of fuzzy weight of factors: To 
determine the fuzzy weight of factors, each  r̃i was 
multiplied with the reverse vector as in Eq. 21.

Step 6 Eq. 22 (Chou & Chang, 2008) was used for 
the de-fuzzification of the fuzzy weights.

Step 7 Eq. 23 was used for the standardization of 
Mi (Table 7).

The weights obtained using the F-AHP modelling 
are depicted in Eq. 24.

(20)r̃i =

(
n∏
j=1

d̃ij

)1∕n

, i = 1, 2, ...., n

(21)
w̃i =r̃i ⊗ (r̃1 ⊕ r̃2 ⊕ ...⊕ r̃n)

−1

= (lwi,mwi, uwi)

(22)Mi =
lwi,mwi, uwi

3

(23)Ni =
Mi∑n

i=1
Mi

Table 6  Relative fuzzy weights of each factor

Fuzzy weight ( w̃
i
)

NDVI 0.200 0.328 0.516
LST 0.134 0.232 0.398
TWI 0.090 0.159 0.281
LULC 0.060 0.107 0.192
Elev 0.041 0.071 0.129
NDBI 0.028 0.048 0.086
HD 0.020 0.033 0.058
PD 0.015 0.023 0.039

Table 7  Averaged and normalized relative weights of factor

Weight (Mi) Normalized 
weight (Ni)

NDVI 0.348 0.317
LST 0.255 0.232
TWI 0.177 0.161
LULC 0.120 0.109
Elev 0.080 0.073
NDBI 0.054 0.049
HD 0.037 0.034
PD 0.026 0.024
∑ 1.10 1.00
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Validation using the ROC curve method

The dengue case data (Fig.  3) collected from the 
DHS’s IDSP portal was used to validate the results, 
which are categorized into five classes (very low, 
low, moderate, high, and very high). AUC measures 
the capacity of the test to determine whether there 
is a specific condition or not (Hoo et al., 2017). The 
ROC curves were plotted and the AUC values were 
determined using the SPSS software. The AUC value 
is excellent for values ranging from 0.9 to 1, good for 
values ranging from 0.8 to 0.9, fair for values rang-
ing from 0.7 to 0.8, poor for values ranging from 0.6 

(24)

DRZ =(0.317 × NDVI) + (0.232 × LST) + (0.161 × TWI)

+ (0.109 × LULC) + (0.073 × Elev.) + (0.049 × NDBI)

+ (0.034 × HD) + (0.024 × PD)

to 0.7, and failed for values ranging from 0.5 to 0.6 
(Battolla et al., 2017). For the validation, one location 
(point) from each polygon (panchayat, municipality, 
and corporation) with dengue cases was selected, thus 
totaling 63 locations (Fig. 4).

Results and discussion

NDVI

The NDVI ranges from − 1 to 1 (Choubin et  al., 
2019), with values closer to zero and negative values 
indicating features such as barren land, water, snow, 
and so on (Saravanan et al., 2019), and positive val-
ues represent vegetated areas (Viana et  al., 2019). 
The high-density vegetation is usually an unaddressed 
area, and dengue can breed even in smaller water 
collection zones, like the case of water accumulated 
fallen leaves, water filled holes in the tree trunks, etc. 

Fig. 3  a NDVI, b LST, c TWI, d LULC



2459GeoJournal (2023) 88:2449–2470 

1 3
Vol.: (0123456789)

Aedes aegypti and Aedes albopictus had the largest 
relative abundance in containers of 50–100 mL vol-
ume, according to Dissanayake et al., (2021). Hence, 
the areas with higher NDVI values will have higher 
dengue spread, as these areas will have a higher num-
ber of sylvan Aedes mosquitoes. The NDVI of the dis-
trict ranges between − 0.21 and 1.00 (Fig. 5a).

LST

The Aedes aegypti mosquito exhibits shorter devel-
opmental times throughout all phases of its life cycle 
as temperature rises, which promotes faster popula-
tion growth (Lai, 2018). Shabbir et al., (2020) suggest 
that the suitable temperature for the breeding of lar-
vae is around 30 °C. The land surface temperature of 
the Thiruvananthapuram district ranges from 13.37 to 
36.59 °C (Fig. 5b) and is categorized into five classes.

TWI

The topographic wetness index can be used as an indi-
cator of a flood potential area (Riadi et al., 2018), as 
it is an estimate of water accumulation (Cohen et al., 
2010). Rasheed et al., (2013) reported an increase in 
the number of dengue cases following a flood. In their 
study conducted in Thiruvananthapuram district, Nair 
and Aravind (2020) found a highly significant corre-
lation between rainfall and dengue cases. This is due 
to the abundance of outdoor breeding sites created 
by rains for Aedes aegypti (Lai, 2018). The TWI of 
the Thiruvananthapuram district ranges from 2.02 to 
16.94 (Fig. 5c) and is categorized into five classes.

LULC

Land use/land cover types such as built-up areas 
(commercial sites as well as residential areas) are 
recognized as likely risk factors in dengue outbreaks 

Fig. 4  a Elevation, b NDBI, c Household density, d Population density
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because they provide a suitable environment for the 
vector (Ali & Ahmad, 2018). The croplands were 
distinguished by sustained water depths of 2.5  cm 
to 30 cm (Sarfraz et al., 2012), and the study by Sar-
fraz et  al., (2012) indicated that the areas close to 
the cropland had an increased population of dengue 
vectors. The LULC types in the district include bar-
ren land, scrubland, built-up areas, evergreen forest, 
deciduous forest, cropland, water bodies, and mixed 
vegetation (Fig. 5d).

Elevation

A study by Tsheten et al., (2021) found that low-lying 
areas are more vulnerable and have a higher dengue 
risk. The elevation of the district ranges up to 1828 m 
(Fig.  6a), and is divided into five classes: 0–91  m, 
91–254 m, 254–545 m, 545–941 m, and 941–1828 m.

NDBI

The NDBI is an index derived from a satellite image 
that was used to extract built-up areas (Govil et  al., 
2019). Aedes aegypti (L.) will have more vecto-
rial capacity and efficiency than Aedes albopictus 
(Skuse), which means a smaller number of Aedes 
aegypti (L.) can infect more people. As a part of 
urbanization, there will be a greater availability of 
smaller water-filled sites, and Aedes aegypti (L.) pre-
fers water accumulated in construction sites, water-
filled concrete tanks for breeding. Hence, the chance 
of dengue spreading will be greater in areas with 
higher NDBI values, as these areas will have a higher 
risk of peridomestic type mosquitoes. The NDBI of 
the district ranges between − 1.00 and 0.39 (Fig. 6b).

Fig. 5  Dengue cases
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Household density

Diseases will spread more easily when household 
density is higher, as infected Aedes mosquitoes usu-
ally have a flight range of between 100 and 200  m 
(Ali & Ahmad, 2018) and can bite people living in 
crowded areas more easily.  Water use, storage, and 
disposal of water-holding containers all have a sub-
stantial impact on Aedes aegypti breeding in house-
holds (Ngugi et  al., 2017). Also, due to the abun-
dance of rain-filled discarded containers, the outdoor 
environment provides greater breeding possibilities 
(Ngugi et  al., 2017). When households are denser, 
families may share peri-domestic areas, and this may 
result in the rapid spread of disease. The areas with 
higher household density will be at higher risk due 
to the presence of domestic and peridomestic varie-
ties of Ae. aegypti. Honório et al., (2003) discovered 

that Aedes aegypti and Aedes albopictus can move at 
least 800 m in a six-day period in an urban endemic 
dengue area in the Brazilian state of Rio de Janeiro. 
The district is categorized into five classes (32–201, 
202–401, 402–557, 558–896, and 897–1529) based 
on the household density, and is depicted in Fig. 6c.

Population density

Higher population density areas may be affected 
by various issues, including lack of proper sanita-
tion facilities, improper sewage systems, etc. (Ali & 
Ahmad, 2018). These conditions can create an ideal 
environment for Aedes mosquitoes and result in dis-
ease transmission. When the population density is 
high, the infected mosquitoes will locate numerous 
individuals to bite during their lifetime. The district 
is categorized into five classes (122–823, 824–1725, 

Fig. 6  Validation dataset



2462 GeoJournal (2023) 88:2449–2470

1 3
Vol:. (1234567890)

1726–2660, 2661–3804, and 3805–6707) based on 
population density (Fig. 6d).

Dengue risk zones

The area of Thiruvananthapuram district is grouped 
into five risk zones ranging from very low to very 
high. A total of 7661 dengue cases were recorded dur-
ing the period considered for this study. The prepared 
dengue risk zone maps are depicted in Figs.  7 and 
8. The percentage of risk zones is shown in Table 8. 
The validation of the results using the ROC curve 
method proved that both the AHP and the F-AHP 
models are effective in predicting the risk zone maps 
with outstanding AUC values of 95.4% (0.954) and 
97.1% (0.971), respectively. The study proved that the 
F-AHP method is more efficient in dengue risk mod-
elling. The ROC curves are depicted in Fig. 9.

As per the risk zone map created applying 
F-AHP weights, Thiruvananthapuram Corporation is 

categorized as a very-high risk zone. The high popu-
lation density, household density, LST and NDBI val-
ues, and the presence of built-up areas are the main 
reasons for the spread of dengue in the Thiruvanan-
thapuram corporation. Neyyattinkara, Nedumangad, 
Attingal, and Varkala municipalities, and Navaiku-
lam, Mudakkal, Mangalapuram, Kadinamkulam, 
Manikkal, Vembayam, Karakulam, Parassala, Aru-
vikkara, Vilappil, Poovachal, Kattakkada, Malayin-
keezhu, Maranalloor, Pallichal, Balaramapuram, and 
Kalliyoor panchayats are categorized as high-risk 
zones. The Thiruvananthapuram corporation alone 
reported 3671 cases, and the other municipalities and 
panchayats categorized as high-risk zones together 
accounted for 2678 dengue cases. Around 82.87% of 
the dengue cases occurred in the very high and high-
risk zones (Fig. 10).

This study found household density, population 
density, LST, NDBI, and LULC to be the most influ-
ential factors. The study by Ali and Ahmad (2018) 

Fig. 7  Dengue risk zones: AHP model
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also found household density, population density, 
LST, and LULC as the most influential factors for 
dengue spread in Kolkata municipal corporation. 
They also listed elevation and waterlogged areas as 
influential factors. Withanage et  al., (2021) found 
close proximity to roads and vegetation to be the 

most influential factors for high dengue risk in the 
Gampaha district, Sri Lanka. Tsheten et  al., (2021) 
identified population density, LULC, and road con-
nectivity as the three highly influential factors. 
However, road networks, water bodies/waterlogged 
areas, and climatic factors like rainfall have not been 

Fig. 8  Dengue risk zones: F-AHP model

Table 8  Percentage of risk zones

Risk zones AHP method F-AHP method

Percentage of the area 
of risk zones

Percentage of 
the area of risk 
zones

Very low 16.04 16.53
Low 25.94 25.48
Moderate 30.18 30.60
High 18.71 18.30
Very high 9.13 9.09
Total 100 100

Fig. 9  The ROC curves
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included in this model. This is because, to assess 
the influence of developments, NDBI has been inte-
grated. Similarly, instead of water bodies or water-
logged areas, factors like TWI have been included in 
the modelling. Because of the lack of precise rainfall 
data due to a lack of adequate rain gauges or auto-
mated weather stations, as well as the poor spatial 
resolution of the global dataset (http:// www. world 
clim. com/ versi on2) and the India Meteorological 
Department’s gridded data (https:// www. imdpu ne. 
gov. in/ Clim_ Pred_ LRF_ New/ Gridd_ Data_ Downl 
oad. html), rainfall was not chosen as a factor in this 
study. In a study conducted in Kerala by Karuna-
karan et al., (2014), altered sensorium, hypertension, 
and patients over the age of 40 (who were 9.3 times 
more likely to die) were revealed to be independent 
predictors of dengue death. This underlines the need 
for vulnerability modelling by integrating socio-eco-
nomic and physico-environmental indicators (as in 
Senan et al., 2022).

F-AHP can be employed to address AHP’s inca-
pacity to deal with subjectivity and irrationality in the 
decision maker’s judgments (Carnero, 2017). This fact 
is confirmed by the prediction accuracy score (AUC 
value) of the maps created in this study. The studies by 
Akshaya et  al., (2021), Meshram et  al., (2019), Trip-
athi et al., (2021), and Senan et al., (2022) also found 
F-AHP as more effective than the AHP model. Valida-
tion of the created maps is the integral part of any mod-
elling (susceptibility, risk, or vulnerability) due to the 
fact that "unless validated, the map is of no operational 
use". The ROC curve is one of the best techniques for 
validation (accuracy assessment) of maps. The crea-
tion of the ROC curve is challenging for this type of 
modelling, as the coordinates of houses with dengue 
cases are not available with the IDSP portal (https:// 
dhs. kerala. gov. in/ idsp-2/) of DHS. Therefore, in this 
study, one location from each LSG with dengue cases 
has been selected as a representation of the whole LSG 
for the validation. The study by Tsheten et al., (2021) 

Fig. 10  Very high and high risk LSGs with dengue cases

http://www.worldclim.com/version2
http://www.worldclim.com/version2
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Gridd_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Gridd_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Gridd_Data_Download.html
https://dhs.kerala.gov.in/idsp-2/
https://dhs.kerala.gov.in/idsp-2/
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also validated their results using a similar approach, 
and this type of ROC validation can have a certain level 
of uncertainty. The dengue risk modelling by Ali and 
Ahmad (2018) also hasn’t validated their results. In 
their study, Hassan et al., (2012), instead of validation 
by methods like ROC, compared the risk map with a 
map of actual dengue cases to assess the accuracy. The 
comparison of the risk map with the actual case data 
has been done in this study and also in the work by Ong 
et al., (2018) to assess the accuracy.

Conclusion

In this study, the risk zones for dengue in the Thiru-
vananthapuram district of Kerala were identified 
using the AHP and the F-AHP models. The den-
gue risk modelling utilized factors such as NDVI, 
LST, TWI, LULC, elevation, NDBI, household 
density, and population density. This study found 
that the F-AHP model (with an AUC of 97.1%) is 
more effective than the AHP model (with an AUC 
of 95.4%, or 0.954). Based on the F-AHP model, 
around 9.09% of the Thiruvananthapuram district is 
classified as a high-risk zone. This study identified 
Thiruvananthapuram corporation as a very high-
risk zone, and four municipalities and 17 panchay-
ats as high-risk zones. This study used the census 
data published in the year 2011, the only authentic 
data published by the government of India every 
10  years. The latest population and household 
data are not available, as the 2021 census was not 
completed by the government due to the COVID-
19 outbreak. Also, only the LSG-wise number of 
dengue cases is available on the DHS IDSP portal. 
If the geotagged dengue cases and precise rainfall 
data were integrated, the output could be greatly 
improved. These are the limitations of this study. 
The importance of this modelling is that the dengue 
hotspots can be predicted using these types of geo-
environmental and demographic factors, and this 
will aid decision-makers, health professionals, and 
the government in identifying households located in 
high and very-high risk areas. It will help to strate-
gize dengue-related projects in the future. This type 
of modelling can also be adopted for identifying 
hotspots for other types of water or vector-borne 
diseases, and this model can also be used as a base 
model for developing dengue risk models in other 

areas of similar geo-environmental conditions. By 
revising the input factors, this model can be applied 
to other areas with different geo-environmental set-
tings. The risk zone map that has been created will 
be greatly beneficial in the development of appro-
priate preventive strategies for agencies/depart-
ments that deal with epidemics.
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