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Abstract The shortfalls in the quality, quantity, and

reliability of agriculture performance data are neither

new nor confined to Sub-Saharan Africa (SSA). It is,

however, a more dire challenge given the overwhelm-

ing importance of agriculture in the economies of most

countries in the region in terms of food security and

poverty reduction. While farmers’ self-reported (SR)

data on crop outputs and farm sizes remain popular

variables for computing plot productivity and yields,

especially in SSA, other methods such GPS measure-

ment and remote sensing measurement of crop area,

crop cuts (CC) as well as whole plot harvests have

been touted as the gold standard methods for yield

measurement. All these approaches to yield estimation

are insufficient in capturing real agriculture produc-

tivity in rainfed farming systems due to the significant

area loss that characterizes these farming systems in

the course of each cropping season. This paper

compares yield data of smallholder maize plots from

two farming communities in the Eastern Region of

Ghana based on farmer self-reported outputs and crop

cuts, as well as GPS and aerial imagery measurement

of plot area. The study finds a high level of agreement

between GPS-measured plot area and that measured

using remote sensing methods (R2 = 0.80) with the

minor deviations between the two measures

attributable to changes in farmers’ plans in the course

of the season with regards to their cultivation extent.

More interestingly, the study finds a substantial

disparity between measured CC yields and SR yields;

2174 kg/ha for CC yields compared to 651 kg/ha for

SR yields. The significant disparity between the two

measures of yield is partly attributable to the signif-

icant intra-plot variability in crop performance leading

to plot area loss in the course of the season. This area

loss (ranging from 15 to 30% of the planted area) is

usually not taken into account in current yield

measurement approaches. Delineating the productive

and planted-but-unproductive sections of plots has

important implications not only for yield estimation

methodologies but also for shedding more light on the

factors underlying current poor yields and pathways to

improving productivity on smallholder rainfed maize

farms.

Keywords Smallholder farming � Agricultural
productivity � Farm yield measurements � Remote

sensing

Introduction

Globally, food crop production and productivity have

significantly grown in the last half-century. There is,

however, the need for this growth to continue in the
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coming decades to meet expected increases in

demand. Unlike other regions of the world, these

increases have been largely driven by cropland

expansion rather than yield growth on currently

cropped lands. Continued reliance on crop area

expansion is, however, unsustainable in the long term

with human population and energy requirements set to

rise even further in the next several decades. This is so

because many countries are now facing land scarcity

with the most fertile areas having, generally, already

been put in use. Expansion into more marginal lands

increases the risk of further land degradation. The

majority of farmers have small farms (1–5) ha and

limited chances to expand their farms. Thus, increas-

ing productivity in a sustainable manner can be a way

out of poverty at the same time as it can create

surpluses for the markets. A fundamental requirement

for achieving Goal 2 (Zero hunger) of the Sustainable

Development Goals, particularly for SSA, is thus

significant improvements in farm productivity. While

the agricultural landscapes of much of Europe, North

America and some parts of Asia have experienced

significant changes in the area of agricultural intensi-

fication and mechanization in the last century, same

cannot be written of SSA. The latter region is still

dominated by smallholder farms1 cultivated under

rainfed regimes (De Graaff et al. 2011), using

predominantly non-mechanized methods and tools

(Sheahan and Barrett 2017). Given the pervasiveness

of smallholder systems and their importance in

poverty reduction and food security not just in the

agricultural sector but also the wider economies of

SSA countries (Wiggins 2009; World Bank 2008),

their productivity ought to be the preoccupation of

research and development policy. Though doubling

agricultural productivity by 2050 has rightly been the

clarion call among researchers and development

practitioners, obtaining accurate and reliable data on

smallholder productivity, a sine qua non for formu-

lating informed policies that adequately cater for the

oft-reported poor yields among smallholder farmers in

SSA has not garnered adequate attention.

Currently, the most reliable sources of agriculture

performance data at the global level are the statistical

databases of the Food and Agriculture Organization of

the United Nations and that of the World Bank Group.

These databases are, in turn, based on data from

general-purpose as well as agriculture-specific surveys

usually conducted by national statistical services. It is

based on these sources that regional and national

agricultural productivity comparisons are often made.

While such analysis and comparisons are useful for

understanding temporal trends, there are important

peculiarities, to be shown later, within various regions

and villages which underlie the reported data and thus

need a more nuanced understanding. These broad

comparisons often form the basis of certain miscon-

ceptions about crop productivity in SSA. Smallholder

farming in this region is still characterized by signif-

icant crop yield variability and this variability is

persistent even within the same agroecological zones

and farm plots (Falconnier et al. 2016; Ronner et al.

2016). Waddington et al. (2010) point out that there is

a general tendency to average out the constraints over

villages and farming systems, arguing for the need to

not only recognize but also take into account differ-

ences in farming practices and growing conditions.

In terms of justification for this study, unlike other

regions, farm productivity in SSA is inextricably

linked to the food security of smallholders and their

households and so yield estimation methods devel-

oped and tested in other regions may not adequately

capture agricultural productivity in SSA (Sapkota

et al. 2016). Reynolds et al. (2015), in explaining the

variability in yields, point out that, sometimes, the top

5% could yield as much as 4 times the median yield,

and argue that while this could point to the so-called

yield gaps, it may as well suggest shortfalls in current

measures for tracking national and plot productivity.

This recognition ought to feed into how crop yields are

measured in different regions rather than seeking to

make data comparable across regions and in the

process lose out on the nuances of SSA agriculture

performance. To this end, the present paper seeks to

demonstrate the complexities associated with the

1 There is no globally accepted definition of smallholder farms,

often used interchangeably with small farms and family farms.

Usually defined based on certain criteria: landholding size,

resource endowment, production orientation and tools, source of

farm labour, asset base, and level of vulnerability (Lipton 2005;

Samberg et al. 2016; World Bank 2003). All these criteria need

not be simultaneously met for a farm to qualify as such (Hagos

and Geta 2016). In the present study and in the Ghana context

(MoFA-SRID 2017; SRID-MoFA 2013), smallholder farms

occupy less than 2 hectares, have poor resource endowment,

subsistence production orientation using predominantly rudi-

mentary tools, high dependence on farm household labour, low

level of external inputs use, poor asset base, and high level of

vulnerability.
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estimation of yields on smallholder farms and discuss

how within-plot heterogeneity could impact yield

measurement variables. The paper will, thus, con-

tribute to current efforts at improving methods of

measuring agricultural productivity by highlighting

the within- and between-plot variabilities and the

insufficiency of current approaches of yield measure-

ment. It will also show how this can be improved by

complementing field-based measures of crop cuts,

GPS area and farmer self-reported outputs with

remotely-sensed UAV data to enhance the accuracy

of yield data. That smallholder farms in SSA perform

poorly compared to other regions is trite knowledge.

However, getting a more accurate representation of

yield levels is crucial for understanding the produc-

tivity of this critical sector of the economies of most

SSA countries. We seek to achieve this by demon-

strating how current yield measurement approaches

inadequately capture plot level productivity given the

substantial heterogeneity characteristic of these farm-

ing systems. This is done using remote sensing data

from a UAV and demonstrates how this integration

could potentially improve the accuracy of agriculture

yield data for such complex farming systems.

Literature review

Yield levels and variability: from global to local

The concept of crop yield measures refers to the

measurement of the productivity of a plot; i.e. the

quantity of a crop produced from specified plot area. It

is the outcome of a season-long production process on

the farm and as such, it is the ultimate objective of the

farmer (Beddow et al. 2015). The key variables for

determining crop yields are crop area and crop

production (World Bank 2010), though the use of

other inputs in the production process means that yield

is at best a partial measure of farm productivity

(Beddow et al. 2015). Fermont and Benson (2011)

therefore define crop yield as a ratio of harvested crop

output and crop area. They (Fermont and Benson)

point out that despite the apparent simplicity of this

formula, the estimation of both variables for comput-

ing crops yields is ridden with several difficulties

(discussed in next section).

Stabilization of crop yields through the reduction of

inter-annual and inter-farm yield variability is crucial

to the food systems of nations (Ben-Ari andMakowski

2014; Kassie et al. 2014; Ray et al.2015) and this is

particularly true for marginal production regions in

SSA where most smallholder farmers are still net

buyers of food.2 There are two main perspectives from

which yield variability can be analysed: (a) temporal

yield variability; and (b) spatial yield variability.

Temporal (inter-annual) yield variability refers to that

which occurs over time and is largely attributed to

differences in growing conditions, chiefly climate

though it is also significantly impacted by other factors

like production technologies. Spatial variability of

yields refers to that which occurs over space even

when biophysical factors are controlled for. It is this

type of variability that is of more interest with regards

to dealing with production shortfalls and can be

assessed at various scales from the global through

regional, national and even subnational levels.

Even within countries and agroecological regions

in Africa, significant spatial yield variabilities have

been reported. For instance, Falconnier et al. (2016)

found significant maize yield variability in southern

Mali, a range of 0.20–5.24 tons/ha on unaltered control

plots. Similarly, in seeking to evaluate the impact of

fertilizers and leguminous plants on subsequent maize

crops in Rwanda, Rurangwa et al. (2018) found that

maize yields ranged from 0.8 tons/ha in controls to 6.5

tons/ha in treatments previously fertilized with phos-

phate and planted after common beans, and from 1.9

tons/ha in controls to 5.3 tons/ha for maize grown after

soybean. Based on the Ugandan National Household

Survey data, Fermont and Benson (2011) estimated

that average unfertilized maize yields for local and

improved maize varieties ranged from 0.7 to 1.7 tons/

ha, and 1.1 to 2.9 tons/ha, respectively, with fertilizer

use increasing on-farm trial yields to between 4.3 and

4.5 tons/ha. The above point to significant maize yield

variability even within the same agro-ecological

zones. In order to stabilize and improve yields to

meet projected increases in demand, however,

2 The poorest of the poor in developing countries are small-

holder farmers (FAO 2017a). Most of the poor are net buyers of

staple food crops (World Bank 2008). In many African

countries, the proportion of smallholders categorized as net

sellers of maize is estimated to be less than a third of all

producers, with most of the smallholders, while often selling

some maize soon after harvest to generate cash income, needing

to purchase more from the market than they sell in the course of

the entire season (FAO 2017a, p. 15).
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currently poorly-yielding plots need to be brought up

to the levels of better performing plots.

Much of the variability is, often ascribed to

differing farm management practices for different

plots. Differing management practices, however, do

not adequately explain variability which occurs within

plots. As Sheahan and Barrett (2017) point out, there is

negligible variation in input use (though fertilizer use

is a major yield determinant) by farmers within plots.

That is, farmers do not discriminate between fertile

and non-fertile, or erosion-prone and non-eroding

portions of their plots in deciding the location and

quantity of fertilizers to apply. This is curious because

smallholder farmers’ economic rationality is well-

documented in the literature (Beddow et al. 2015;

Jirström 1996; Mueller and Binder 2015). Thus, they

would not want to dissipate inputs on erosion-prone or

obviously unproductive segments of their plots.

However, current yield measurement approaches do

not cater to these nuances. There is a lack of

appreciation and consideration of the intra-plot vari-

ations in current approaches to yield measurement,

with plots often treated as homogeneous units in spite

of significant heterogeneity in smallholder plots in

SSA.

Shortfalls of current measures of yield estimation

Debates on the weaknesses of current crop yield

estimation approaches became topical in the last

decade. This culminated in the Global Strategy: a

global, multi-agency initiative under the auspices of

the United Nations Statistical Commission in 2010

which identified improvements in the measurement of

agricultural productivity as the highest priority of

research (FAO 2017b; World Bank 2010). This is a

much-needed intervention given the significant

advances in technology since the previous compre-

hensive guideline on yield estimation by the FAO was

issued as far back as the 1980s (Carletto et al. 2015;

Reynolds et al. 2015). Sapkota et al. (2016) contend

that the need for such a revision is starker in the

context of smallholder production systems, particu-

larly at the plot, farm, and landscape scales so as to

obtain a much-needed accurate agricultural data at

these scales. Though shortcomings with agricultural

statistics are neither new nor confined to SSA, it is

more of a challenge in the sub-region given the

predominance of smallholder farms, their linkages to

households food security and importance in national

economies, as well as the wide range of crops

cultivated (Carletto et al. 2015; Fermont and Benson

2011).

Conventionally, yield measurement is based on

farmer-reported estimations of cropped area and crop

output, though the latter could also be based on the so-

called crop cuts or whole plot harvests (Lobell et al.

2018). Most SSA countries, however, still depend on

farmer self-reported data for both crop output and plot

area to estimate yields. These two main variables used

in deriving crop yields can be arrived at using several

methods. For crop output, methods include crop

modelling (both process-based and empirical crop

modelling), allometric models, purchasers’ records,

crop insurance data, crop cards kept by farmers,

expert’s assessment, sampling of harvest units, whole

plot harvest, grain weighting, crop cutting, farmer

surveys and remote sensing approaches (Fermont and

Benson 2011; Sapkota et al. 2016). Methods for

arriving at the plot area include farmer estimations

report, collective estimation by farmers and enumer-

ators, the polygon method of actual area assessment,

the rectangulation and triangulation methods, P2/A

method, GPS area measurement, remote sensing, and

GIS methods. All these methods come with various

degrees of efficiencies. For the purposes of this paper,

we focus on the merits and weaknesses of the farmer-

reported output, crop cutting, and GPS area measure-

ment due to their wide acceptance and application, and

the fact that they form the basis of most yield

databases.

Farmer self-reports crop outputs

Of all the methods for estimating the numerator of

yield estimation formula, farmer estimation of crop

output is the most widely used and is the main source

of data for most agriculture databases in SSA

(Fermont and Benson 2011; Sapkota et al. 2016). Its

popularity is borne out of its convenience, cost-

effectiveness, and efficiency as well as its applicability

in diverse farming systems. Farmer estimations of

crop outputs could either be from predictions—the

number of crops farmers expect to harvest at the end of

the farming season from a given plot or recall—the

quantity they did harvest (Fermont and Benson 2011).

For output predictions, visual estimations of crop

vigour and yields are most accurate at maximum
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stages of crop growth (Singh 2003; Wahab et al.

2018), and ideally with the farmer and enumerator in

visual contact with crops (Fermont and Benson 2011).

The reliability of such predictions, however, depends

on the previous seasons’ experiences of the farmer on

the particular plot. Farmer recalls of crop output is

however done sometime after harvest either at the

residence of the farmer or the storage location of the

output to enable cross-checking.

While a number of studies attest to the relatively

higher accuracy and lower variability of farmer

estimations of crop outputs (Fermont and Benson

2011), and notwithstanding the cost-effectiveness and

ease-of-application of this method, there are several

weaknesses associated with it. Carletto et al. (2015)

assert that farmer estimations are riddled with a high

degree of arbitrariness and subjectivity, leading to

significant errors. Sources of these errors include the

tendency to round off quantities, not accounting for in-

kind payments to relatives, farm labourers, and

landowners, poor recollection of historical outputs,

poor quality of responses in prolonged interviews, the

tendency to average outputs over several seasons,

deliberate under- and over-reporting as well as errors

arising from conversions from non-standard units

(Fermont and Benson 2011; Gourlay et al. 2017;

Sapkota et al. 2016). With regards to errors due to

conversion from non-standard units, the maize crop is

one of the most susceptible crops. Carletto et al. (2015)

posit that significant portions of the total production of

maize may be harvested while still green, and

particularly in the context of food-insecure communi-

ties. They point out that this is a major source of error

because not only do most surveys not collect data on

such fresh maize harvest, but even those that do have

difficulty converting such quantities in an accurate

manner.

Additional sources of error for farmer-reported

output is the complication that results from intercrop-

ping and other crop mixing practices. Again, this is

most pronounced in the SSA context where farmers

intercrop for a variety of reasons including assurance

against total crop failure arising from pests infestation

(Yengoh 2012) and a bid to increase output from

individual plots (Fermont and Benson 2011). Gener-

ally, intercropping would have a negative conse-

quence for the total output of individual crops

(Srivastava et al. 2016), even though others have

found a symbiotic relationship between nitrogen fixers

such as groundnuts and beans, and maize yields

(Rurangwa et al. 2018). Either way, taking estimates

of crop outputs from farmers without due considera-

tion for the cropping system is likely to underestimate

the actual productivity of their plots. Further to this is

the need to probe what type of outputs farmers report.

Do farmers report gross yields—that which is obtained

before any losses during and after harvest or that

which they have in storage after postharvest losses as

well as in-kind payments for land rental? Owing to

these and other inherent shortcomings of the farmer-

estimated crop outputs, the FAO recommends what is

deemed as a more objective method of output

measurement: crop cutting (Desiere and Jolliffe

2018; Gourlay et al. 2017).

Crop cuts and whole plot crop harvests

For the purposes of quantifying crop outputs, partic-

ularly for cereals but to a lesser extent, roots, and

tubers, crop cutting is often considered the gold

standard (Carletto et al. 2015). Since its development

in the 1950s in India and subsequent endorsement by

the FAO in the 1980s, this method has gained

widespread recognition as a more objective method

for output and yield measurement. With this method, a

subplot or a number of subplots are randomly demar-

cated using various means and crop outputs from these

subplots are harvested by trained field staff, and this

then forms the numerator of the yield formula (FAO

2017b; Fermont and Benson 2011). The number and

size of subplots generally range between 1 and 5 and

0.5 and 50 m2, respectively, depending on available

resources and level of precision desired (Sapkota et al.

2016).

Though it has been touted as more objective, the

crop cutting method has its own inherent biases. These

biases could be substantial on relatively small, irreg-

ularly-shaped plots with uneven plant density (Fer-

mont and Benson 2011): an apt characterization of a

substantial proportion of smallholder farms in SSA.

Recommendations for dealing with plots with variable

crop performance range from increasing the number

and size of subplots to using a neutral person—not the

researcher, farmer nor the extension officer, and even

blindfolding the person selecting subplot (Sapkota

et al. 2016). Even with such elaborate precautions to

minimize bias and thus, improved reliability, other

shortfalls such as edge, border, and harvest effects,
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weighing errors as well as the costly and time-

consuming nature of this method do not endear it to

more researchers.

It is on the basis of the shortfalls in spite of various

recommendations that whole plot harvest has been

regarded as the most accurate method for measuring

crop outputs. It is, however, more feasible on demon-

stration plots and less so on farmers’ plots, especially

in cases of large scale surveys (Sapkota et al. 2016)

due to time and cost constraints. Additionally, crops

with definite maturity dates such as cereals are easier

to harvest in a whole plot harvest operation compared

to those with indeterminate growth habits such as

beans and cassava (Fermont and Benson 2011).

Similarly, staggered planting, another common prac-

tice among smallholders in SSA can also complicate

whole plot harvesting by researchers. The above

notwithstanding, this method is ideal for capturing

most complete output for plots given that it includes

postharvest losses which could be excluded in farmer-

reported outputs. Thus, this method offers the least

level of bias and error for deriving crop outputs from

plots.

Crop area estimation

While crop output forms the numerator of the yield

measurement formula, plot area is the denominator.

The two most widely used measures of plot area are

farmer estimations and GPS area measurement. Sev-

eral studies have recently reported the substantial

inaccuracies that result from reliance on farmers’ self-

reported area estimations leading to the questioning of

the theory on the inverse relationship between plot size

and productivity (Carletto et al. 2015; Carletto et al.

2013; Desiere and Jolliffe 2018). Varying sources of

the inaccuracies, as enumerated by De Groote and

Traoré (2005) include deliberate misreporting due to

fear of taxes or belief that they stand to gain certain

benefits depending on farm sizes, as well as uninten-

tional misreporting due to limited education and

quantitative skills, rounding off based on unit of

measurement or variations in measuring units from

one village or farmer to the other. A review by

Fermont and Benson (2011) found that the reliability

of farmer estimates of crop area varies between

countries with SSA farmer estimates being most

inaccurate. More importantly, the inaccuracy is further

affected by crop type and plot size with a tendency to

overestimate smaller plots and underestimate larger

ones (Carletto et al. 2013). De Groote and Traoré

(2005), for instance, found that farmers overestimate

plots less than 1 hectare, with farmers able to provide

more accurate estimates of cash crop plot sizes than for

those of food crops including cereals.

In light of these shortcomings, the GPS method of

area measurement, just as is the case with crop cuts, is

often regarded as the gold standard given that it drives

more objective outcomes. The advantages of the GPS

method of area measurement including rapidity, time-

efficiency, and ease of application is however coun-

terbalanced by its shortcomings relating to regions

with significant cloud cover, large trees on plots and

hills with plots on slopes (FAO 2017b). While these

shortcomings can be overlooked on larger plots, the

errors resulting from GPS area measurement on small

plots—less than 0.5 ha—could be substantial (Fer-

mont and Benson 2011). This notwithstanding, GPS

area measurement is regarded as best-among-the-rest

and hold the potential to significantly improve the

accuracy of agricultural data in the context of house-

hold surveys (Carletto et al. 2013).

Planted area versus productive area

Beyond these difficulties associated with crop output

and area measurement which is most dire in the SSA

agriculture context, other factors further complicate

the collection of accurate agricultural yield data in the

region. These factors include the presence of inter-

crops, staggered planting and general heterogeneity in

crop performance even within the same plots. These

often lead to a situation where the planted area is not

congruent with the productive and hence harvested

area. Loss of crop area could be the result of poor

germination, damage from pests and diseases, animal

grazing or extreme weather, as well as floods and

erosion activities, crop theft, and abandonment due to

unusual economic conditions (Craig and Atkinson

2013; Fermont and Benson 2011). While the disparity

between planted and harvested area further complicate

yield measurement (Sapkota et al. 2016), many studies

fail to specify whether they define crop area as planted

area or harvested area and this could significantly

impact yield levels. Using plot-level data from Tan-

zania’s National Panel Survey, Reynolds et al. (2015)

found that though it may be infrequent on trial plots,

area losses are substantial on smallholder plots; with
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23% of the sample plots showing harvested area

smaller than planted area. They posit that smallholder

farmers are far more likely to experience area losses

because they are more likely to intensively cultivate

marginal plots without adequate replacement of soil

nutrients.

While the ideal crop area measure ought to be

harvested area rather than planted area, current

measurement methods do not adequately capture the

latter. The pertinent question then is which of the area

measures are reported in national surveys whose data

feed into global databases? What are the implications

on the narratives on smallholder productivity if the

harvested area is used to compute yields? Depending

on current traditional methods, however, it may

become necessary to make area estimates multiple

times in the course of the season in order to capture

area loss and harvested area (Craig and Atkinson

2013). While some countries prefer one set of yield

measures to others, the United States Department of

Agriculture adopts a combination of methods to derive

crop yields. Integrating different measures could

potentially improve the accuracy of yield estimations.

Complementing traditional methods with remote

sensing approaches

The application of remote sensing methods to assess

crop status and yields has a long history. However,

limitations with regards to the spatial resolution of

satellite data imply that it is of limited value at the plot

level, particularly in the context of SSA where plots

are usually small in size and often intercropped

(Fermont and Benson 2011; Gourlay et al. 2017).

Notwithstanding this limitation, Zhao et al. (2007)

predict that remote sensing will in the future be a

keystone of agricultural statistics is not without basis,

given recent advances on this front (Craig and

Atkinson 2013). At the plot level, several studies

(Lobell et al. 2015; Sibley et al. 2014; Singh 2003)

have consistently documented moderate to strong

correlations between vegetation indices derived from

satellite imagery and crop yields. In spite of the

promising prospects of these studies even at the plot

level, most of the applications have been undertaken

on large scale plots. More recently, however, Burke

and Lobell (2017) and Lobell et al. (2018) in Kenya

and Uganda, respectively, have surmounted the

aforementioned difficulties by using higher resolution

satellite data to arrive at decent relationships between

vegetation indices from smallholder plots and yields.

There are still challenges to contend with though

because Lobell et al. (2018) found that satellite-based

yield estimates were less well correlated with ground-

based measures on intercropped plots compared to

pure stand ones. Apart from yield estimations, plot

area can also be accurately derived using satellite

imagery in a geographic information system software.

This approach can help enhance the precision of area

estimates based on surveys though such a system will

need to be regularly updated to the latest area extent

(FAO 2017b).

The use of unmanned aerial vehicles (UAVs)

however, opens hitherto unconsidered possibilities.

Already, Wahab et al. (2018) have demonstrated that

similar results as obtained using satellite data are

attainable using UAVs on smallholder farms in SSA.

On this basis, intra-plot heterogeneity analysis can be

undertaken to explore the implications of comple-

menting survey- and field-based measures of yield

estimation with UAV data for yield estimation in such

farming systems.

Data and methodology

Study sites and plots sampling

This paper relies on a cross-sectional dataset on two

predominantly maize farming communities: Asitey

and Akatawia, in the Eastern Region of Ghana

(Fig. 1). Of the ten regions in Ghana, the Eastern

Region is the second highest producer of maize after

Brong Ahafo region. This dataset was collected under

the aegis of the Yield Gaps project, a multi-disci-

plinary study which aims at integrating biophysical

and socioeconomic explanations for the significant

differences between potential and observed crop

yields in Ghana and Kenya. Data was collected during

the major farming season which spans the period of

April to August 2016. Asitey is located in the

relatively more urbanized Lower Manya Krobo

Municipality while Akatawia is located in the more

rural Upper Manya Krobo District (Fig. 1). Thus,

while the two communities are similar in cropping

systems and climatic conditions, they differ in impor-

tant respects such as rurality and urbanity and thus

some important socioeconomic characteristics.
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The study uses a multilevel sampling approach.

Below the country level, while the region, district, and

communities were purposively selected, farming

households were sampled using a simple random

approach. The sample frame for the present study: 62

and 68 farming households for Asitey and Akatawia,

respectively, is the sample for the Afrint study

described in detail by Djurfeldt et al. (2011). However,

given that this earlier project has been in operation

since 2002 and the latest round was conducted in 2012,

there was bound to be dropouts. These were replaced

with descendants from the same households. Using the

frame of 62 and 68 and in a simple random approach,

the present study reduced the sample to 30 and 32

farming households for Asitey and Akatawia given the

more detailed, multi-disciplinary scope of the data to

be collected vis-à-vis the length of the maize growing

season. The unit of analysis is, however, maize plots.

The approach of sampling maize plots has been

detailed by Wahab et al. (2018). In total, 42 and 44

maize plots3 for Asitey and Akatawia, respectively are

used for the following analyses.

Crop output and area measurement

Here, the methods of maize crop output and area

measurement are summarily explained. With regards

to output, the two methods used are farmer self-

reported (SR) outputs and those based on crop cuts

(CC) are detailed while area measurement using a

Garmin 64S GPS device as well as plot area derived

from georeferenced UAV imagery in an ArcMap

environment are detailed below.

Fig. 1 Map of the study area showing the locations of Asitey and Akatawia and their respective districts

3 Plot, as used here, is distinct from a whole farm in the sense

that a plot is a subset of the farm. A farm may be made up of

multiple plots on which different crops are cultivated. The

selected maize plot is that which a household considers its main

maize plot. This could further be divided where significant

heterogeneity is discerned. Some households also had multiple

maize plots at different locations.
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Farmer self-reported outputs

Data on crop outputs estimations at the plot level were

collected through household surveys conducted

2 months after harvest. Farmers and plot operators

were asked to report maize quantity and units

harvested from individual maize plots. They were

also to report on the condition of dry crops; whether

shelled grains or cobs—husked or dehusked. Even

harvests in grains had to be probed for the state of the

grains in terms of the moisture content as well as the

specific size of the bag or bowl used.4 Farmers were

also asked to report any green maize harvests from the

larger maize plot but were implored not to harvest

green maize from CC subplots.

Output based on crop cuts

The subplots from which CC outputs were measured

were demarcated earlier in the season prior to planting.

This was done to eschew the possibility of sampling

relatively more vigorous sections of plots. The

subplots, 4 m by 4 m in size, were located at roughly

the centre of each maize plot unless this centre

coincides with footpaths, former anthills or large trees

and these were not widespread in the larger plot. In

such a situation, the location of the subplot is moved a

few meters from such irregularities to sections which

are more representative of the larger plot. While these

16 m2 subplots were, to all intents and purposes,

normal parts of the larger plot, farmers were entreated

not to harvest maize crops from subplots which had

been demarcated with pegs and farmers were well

aware of their existence and location. Crops were

allowed to dry in fields before harvest, threshing by

field enumerators and the grains weighed using a hand

scale and the moisture content of each crop cut sample

was noted for subsequent standardization at 13%

moisture content.

Global position system area measurement

The crop area measurement was undertaken using a

Garmin GPSMAP 64S handheld navigation device

(accuracy: * 3 m) at the start of the farming season.

Each plot operator was made to show by walking the

boundary of their respective plots. The enumerators

then traversed the perimeter of each plot to measure

the area in square meters and the result recorded in an

electronic survey form with the raw GPS track stored

on the device and later uploaded onto a geodatabase

linked to individual plots. Both CC and farmers’ SR

yields were then computed based on GPS area

measurement.5 On a couple of plots, areas that were

actually cultivated went beyond the area farmers

originally planned to cultivate and this became

obvious by comparing the shapefiles of plots stored

in the geodatabase based on GPS tracks of the area to

plot area extracted from georeferenced UAV imagery.

Remote sensing area measurement

The UAV system deployed in this study is Agribotix’s

Enduro Quadcopter mounted with two GoPro Hero 4

consumer-grade cameras, one of which had been

modified to capture in the near infrared region (NIR).

The system is a vertical take-off and land which is

flown autonomously at an altitude of * 100 meters

above sea level on the maize plots. Both camera

systems independently capture images simultaneously

at a shutter speed of 1 s. Post-flight operations

including image geotagging, mosaicking and georef-

erencing were then done using Agribotix’s proprietary

software packages. A detailed description of the UAV

system, as well as image processing protocols, have

been explained in Wahab et al. (2018). The NIR

mosaics were then imported into ArcMap for addi-

tional protocols including projection, clipping indi-

vidual plot shapefiles, and using the Map Algebra tool

to extract the green normalized difference vegetation

index by ratioing the NIR reflectance with that of the

green band. Thus,

GNDVI ¼ ðNIR� GÞ=ðNIRþ GÞ;4 Measurement at the local level is usually in non-standard units

such as bowls, locally termed ‘olonka’, head pans, sack loads,

and cobs for green harvests. These data were all collected and

converted using a standardized units in kilogrammes. Further

probing brings to light, quantities that were used as payment in

kind to farm labourers, landowners and plot managers. This is

usually not reported for surveys in which farmers are made to

estimate and report on their outputs.

5 Farmer estimations of plot area were ab initio not intended to

be collected due to well-catalogued deficiencies with that

approach in most SSA countries (Fermont and Benson 2011).
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where NIR is reflectance captured in the band 1 of the

modified camera, and G is reflectance captured in the

band 2 of the modified camera.

The variances between these two bands enable

assessment of crop density and vigour within the plots

(Wahab et al. 2018).

A comparison of the plot shapefiles from the GPS

area measurement and that georeferenced mosaics

showed a discrepancy between the two for 5 of the

plots. Further analysis showed that for three of these

plots, operators could not carry through their original

intentions to plant the whole plots while in two others,

they exceeded the area they originally intended to

cultivate. This came to light by virtue of comparing the

UAV data with reported and GPS-measured area.

Results

Descriptive statistics

Table 1 summarizes a general description of the farm

plots used in the subsequent analysis. This is organized

for the overall plot sample for both study locations

(N = 87) and then subdivided into the two locations.

Comparisons between the two study locations bring up

some interesting dynamics in some indicators while in

others, there are no significant differences between the

two locations. For example, while no significant

differences exist between the two communities in

terms of the average maize plot sizes, the proportion of

maize plots intercropped and even proportion of plots

planted with certified seeds, significant differences

exist with regards to total household landholding,

average land holding under fallow and distances

between maize plots and farmers’ dwelling.

Additionally, there are significant differences

between yields—both SR and CC yields between

Asitey and Akatawia. Generally, yields are higher in

Akatawia than in Asitey; SR yields in Akatawia is on

average 791 kg/ha compared to an average of 501 kg/

ha for Asitey. Similarly, CC yields on the average are

also higher in Akatawia; 2305 kg/ha compared to

2036 kg/ha in Asitey. More interesting is the substan-

tial differences between SR and CC yields for the same

villages. This discrepancy between CC and SR yields

is the subject of the next section.

The disparity between farmer SR and CC yields

A comparison of maize yields based on farmers’ SR

and the CC approach returns some interesting findings.

Table 2 shows a breakdown for the two measures of

crop yields for the two study locations.

Overall, average measured CC yields are substan-

tially higher (2174 kg/ha) than average SR yields

(651 kg/ha) (Table 1). However, an interesting

dynamic is uncovered when the two communities are

compared. From Table 2, while CC yields were higher

for both communities than SR yields, the former is

much more variable, with a standard deviation of

1053 kg/ha for Asitey compared to 644 kg/ha for

Akatawia. More interestingly, this trend does not

repeat for SR yields with a standard deviation of

360 kg/ha for Asitey compared to 518 kg/ha for

Akatawia. The breakdown thus suggests more vari-

ability in CC yields compared to farmers’ SR yields

and that this observed variability in CC yields is more

pronounced at Asitey than Akatawia. The reverse,

however, holds for farmer’s SR yields; 360 kg/ha and

518 kg/ha for Asitey and Akatawia respectively.

For our dataset, the difference between the two

measures of crop yields is substantial, so much so that,

Table 1 Summary

statistics of the

characteristics of plots and

yields in study communities

N = 87; unless specified

otherwise, values in

parenthesis are standard

errors of the means

SR self-reported, CC crop

cut

Indicator Asitey Akatawia Both communities

Average household landholding size, SR, acres 8.93 (1.09) 13.89 (1.45) 11.49 (0.95)

Average household land under fallow, acres 4.29 (1.00) 7.29 (1.01) 5.84 (0.73)

Average maize plot size, GPS-measured, acres 1.02 (0.12) 1.04 (0.09) 1.03 (0.07)

Proportion of maize plots intercropped 29 31 30

Average distance to plot from dwelling, km 1.25 (0.17) 0.64 (0.06) 0.93 (0.09)

Proportion of plots planted with certified seeds 10 7 8

SR maize yields, (GPS area), kg/ha 501 (56) 791 (78) 651 (51)

CC maize yields, (GPS area), kg/ha 2036 (162) 2305 (97) 2174 (94)
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in some plots, CC yields are multiples of farmer SR

yields. This difference cannot single-handedly be

explained by the generally more thorough harvests of

the CC approach. Also, while GPS area may have its

limitations (to be explored in the next section), such

limitations have been controlled for by using the same

variable as the denominator for deriving both CC and

SR yields.

As Fig. 2 shows, farmers’ SR yields are signifi-

cantly lower compared to measured yields based on

the CC approach. It is, therefore, our hypothesis that

CC yields rather overestimate plot level maize yields,

particularly among plots which display a high level of

within-plot heterogeneity. This upward bias of CC

yields could thus be attributed, at least partly, to the

general central locations of subplots where crop

performance is generally better. Generally, when

sampling CC subplots, edges, and borders of plots

where crop stands are generally poorer are excluded. If

these assumptions hold, then a direct positive rela-

tionship between plot area and mean deviation in

yields (computed as CC yields-SR yields by plot area)

is to be expected.

As Fig. 3 shows, no clear trend is discernible for the

relationship between the size of the maize plot and

how significantly measured CC yields differ from

farmers’ SR yields. The absence of any significant

relationship (R2 = 0.07) suggests that plot size alone

does not explain the deviation. It is, therefore, our

hypothesis that the CC approach to yield estimation

overestimated yields or that there was under-report-

ing—deliberately or inadvertently—of crop outputs

by farmers. The possible basis for overestimation of

yields by the CC approach is the location of the CC

subplot which may not be representative of the larger

plot area in terms of crop density and vigour.

Intra-plot variability

An inherent underlying assumption of the CC

approach to yield estimation is the representativeness

of the sampled subplot relative to the larger plot. This

assumption may, however not hold in significantly

Table 2 Comparison of the

variability of GPS plot area-

based crop cut and self-

reported maize yields for

Asitey and Akatawia

Values in parenthesis are

standard errors of the mean

Village N Minimum Maximum Mean SD

Akatawia

Farmer SR yields (kg/ha) 44 164.93 2514.68 790.77 (78) 518.08

Measured CC yields (kg/ha) 44 924.38 4458.75 2305.33 (97) 643.66

Asitey

Farmer SR yields (kg/ha) 42 22.47 2012.64 501.50 (56) 359.82

Measured CC yields (kg/ha) 42 437.50 5274.38 2035.82 (162) 1053.06
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heterogeneous plots. A certain level of heterogeneity

is to be expected, even at the plot level. However, in

the context of SSA smallholder plots where the limited

application of machinery is common, homogeneity in

plot-level crop performance is uncommon. From

Fig. 4, even for a relatively flattened surface, signif-

icant levels of intra-plot heterogeneity in crop vigour

is still discernible. Thus, the sampling of 16 m2

subplots at the approximate centre of each plot where

crop vigour is above average would most likely lead to

overestimation when yields are extrapolated to the

whole plot.

From visual inspection of Fig. 4, plot B1 appears to

be more homogeneous at the plot level with crops

relatively more vigorous over most parts of the plot

and so wherever the location of the subplot, the CC

approach might not overestimate yields as much as it

would in plots A1, A2, and B2 in which crops appear

sparser with significant heterogeneity. Thus, general

crop vigour might contribute significantly to CC yield

overestimation. It is pertinent to note that the level of

heterogeneity might be even higher in the overall

sample given that a significant proportion of plots are

not ploughed as these four plots shown in Fig. 4 were.

From the overall sample, the majority of the plots

(70%) had poor patches of crop vigour close to the

edges of the plots, especially when these plots share

boundaries with uncultivated parcels of land. A few

had poor patches in and around the centre of the plots.

The crop health maps also show some poor patches

following ploughing lines. The observed intra-plot

heterogeneity could, therefore, lead to significant

differences between the two yield measures where

the number and size of the sampled subplot do not

representatively capture the heterogeneity of the

whole plot. However, this heterogeneity alone cannot

explain the observed discrepancy. Given that both

yield measures were based on the GPS plot area, there

was the need to validate it by comparing it to area

derived from the remotely-sensed UAV images.

Comparison of GPS- and RS-plot area

measurement

There are strong associations (R2 = 0.80) between

GPS-measured plot area and RS-measured plot area.

The minor differences in a few observations are

attributable to changes in the extent of intended

cultivation area by farmers in the course of the farming

season.6 The mirroring of the two measures of area

persists irrespective of plot sizes. That is, deviations
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6 This affected only 5 plots from both communities. Of this, 2

plots were exceeded with regards to the extent of originally

intended plot area while for the remaining 3, farmers could not

carry through the full extent of intended cultivation area.
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between the twomeasures are not affected by plot size.

The similarity between the twomeasures of plot area is

obvious from Table 3.

When the plot area is disaggregated to the village

level, however, slight differences emerge. While the

difference between GPS- and RS-measured plot areas

is largely insignificant overall, there are some subtle

differences at the village level (Table 4).

From Table 4, while mean plot sizes are similar for

both area measures in both study locations; 1.04

(SD = 0.58) and 1.13 (SD = 0.59) for GPS- and RS-

measured plot area respectively for Akatawia, those

for Asitey were 0.96 (SD = 0.57) and 0.92 (SD =

0.62) for GPS- and RS-measured plot area respec-

tively. More interestingly, total GPS- and RS-based

plot area does not differ significantly—less than an

acre—in Akatawia compared to Asitey where the

difference is more than 4 acres (Table 4).

In-season cropped area loss

To evaluate the effect that within-field heterogeneity

could have on current measures of crop yield, we set

out to assess the proportion of each plot area which

turned out to be unproductive in the course of the

season in spite of having been planted. That is, the

unproductive plot area is conceptualized as the area of

each plot which ought to havemaize crops but does not

have any halfway through the growing season. The

unproductive plot was subtracted from the whole plot

area to arrive at the productive plot area for each maize

plot. Thus, the productive plot area is equivalent to the

total plot area minus the cropped area lost. From our

sampled plots, a significant proportion—82%—lost

more than 10% of the plot area. This is significant

given that plot area is one of two variables—the

denominator—for computing crop yields levels. Over-

all, about 8 acres (23%) of the planted plot area was

lost in the course of the season in both locations

Fig. 4 Intra-plot maize crop vigour variability in four plots at

Asitey after approximately 9 weeks after planting. These plots,

unlike most others in this study area, were ploughed with a

tractor prior to planting of maize and so a certain level of

homogeneity in crop vigour ought to be expected
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(Fig. 5). This has important implications for yield

computation.

Again, more interesting findings result when the

plot area loss is disaggregated to the village level. As

Table 5 shows, planted area loss is more severe in

Asitey than in Akatawia. Thus, at the village level,

while about 8 acres (18%) of the planted area was lost

in Akatawia, almost 11 acres (30%) of the planted area

became unproductive in Asitey in the course of the

season (Table 5).

This is validated by a sample of the GNDVI results

from the UAV images for both communities as shown

in Fig. 6. What is obvious from Fig. 6 is the impor-

tance of the so-called edge and border effects and their

association with poor patches even for a relatively

vigorous plot like Plot D. The border effect is,

however, worse in relatively poorer plots. Other poor

patches could be the result of management practices.

These losses in crop area would have significant

implications for how farm productivity is calculated.

It is pertinent to note however that, the intra-plot

crop vigour heterogeneity as shown in Figs. 4 and 6

cannot adequately explain the substantial disparity

between measured CC yields and farmers’ SR yields.

Table 3 Comparison between GPS- and RS-measured plot area

Area measure N Minimum Maximum Sum Mean SD

GPS-measured plot area (acres) 83 0.1293 2.6911 82.78 1.00 0.57

RS-measured plot area (acres) 83 0.1061 2.8872 81.14 1.03 0.61

This takes into account the area of plots for which both measures are available. Also, plots whose original extents have not been

altered by farmers either by not cultivating the full extent or cultivating beyond the initially-intended area have been excluded

Table 4 Village level

comparison of GPS- with

RS-measured plot area

GPS- and RS-measured plot area

Village N Minimum Maximum Sum Mean SD

Akatawia

GPS-measured plot area (acres) 44 .27 2.69 45.70 1.04 .58

RS-measured plot area (acres) 44 .25 2.41 45.15 1.13 .59

Asitey

GPS-measured plot area (acres) 39 .13 2.36 39.26 .96 .57

RS-measured plot area (acres) 39 .11 2.89 34.98 .92 .62
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That is, while the CC approach to yield estimation has

the inherent tendency to overestimate yields due to the

location of the CC subplot vis-à-vis edge effects on

crop vigour, it cannot adequately account for the

difference. To discount the role of the unproductive

segments of plots on yield estimation, both yield

measures are recalculated based on the productive plot

area rather than the planted plot area.

As Table 6 shows, when the unproductive seg-

ments of plots are not factored in, yields improve

substantially. For example, farmers SR yields increase

from 679 and 734 kg/ha to 1066 and 923 kg/ha for

Table 5 Community-level plot area loss analysis

Village N Minimum Maximum Sum Mean SD

Akatawia

GPS-measured plot area (acres) 40 .27 2.69 45.70 1.04 .58

RS-measured plot area (acres) 40 .25 2.41 45.15 1.13 .59

Productive plot area (acres) 40 .10 2.33 38.13 .95 .56

Asitey

GPS-measured plot area (acres) 39 .13 2.36 39.26 .96 .57

RS-measured plot area (acres) 39 .11 2.89 34.98 .92 .62

Productive plot area (acres) 39 .05 1.85 24.42 .64 .43

Productive area is computed as the total plot area (RS-measured) minus the unproductive portions of each plot. Asitey suffered

relatively more plot area compared to Akatawia though the phenomenon cropped area loss was present in both study villages

Fig. 6 Loss of crop area in the course of the season on a sample

of plots from both study communities. Plot in c at Asitey

experienced substantial cropped area loss though plots

a (Asitey) and d (Akatawia) also lost significant areas,

especially around the edges compared to those in b also in

Akatawia
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Asitey and Akatawia, respectively. Similarly, mea-

sured CC yields increase from 2035 and 2306 kg/ha to

2362 and 2676 kg/ha for Asitey and Akatawia,

respectively. Thus, depending on the definition of

plot area—whether GPS area, RS area or even

productive area—yield values differ.

Discussions

In this section, key findings and their implications are

discussed. While there are limitations with regards to

the sample size of the plots, the findings are represen-

tative at the village level given that the plots were

sampled from households that are representative of all

maize farming households of each village. Both study

villages have agriculture as the most important

economic activity, engaged in by a large proportion

of the households. In spite of the centrality of

agriculture and its productivity on the welfare and

poverty reduction and food security, particularly for

rural households in the context of SSA, there are still

no clearly reliable and validated methods for accu-

rately estimating crop yields. Methods that are viewed

as more objective still come with a number of

limitations which in turn have important implications

on yield measurement. Thus, attempts to average

yields over large areas; landscapes to entire regions

and countries, are likely to be rife with challenges.

Yield variability between and within study

communities

The findings show that using both yield measurement

approaches produces different results even for the

same dataset for the same location. Overall, our

findings show that farmer SR yields are lower than CC

yields for both locations together. This is in stark

contrast to findings of other studies by Gourlay et al.

(2017) and Lobell et al. (2018) in Uganda which found

that average farmer SR yields are more than double

CC yields. The major difference between the

approaches used in those studies and the present one

is that they used multiple CC subplots (4–5 subplots

per farm plot) even though the subplots were smaller

in some cases relative to the present study. However,

similar to our findings, Sapkota et al. (2016) find that

CC yields consistently exceed SR yields due to an

inherent bias when extrapolating results to a larger

area. Thus, devoid of any sampling and non-sampling

errors, CC yields would normally be higher than

farmer SR yields (Fermont and Benson 2011). Farmer

SR yields have been noted to be inexact in estimating

yields. There is a tendency to omit from their reports

on crop outputs quantities that have been used as

payment for land rental, especially when sharing of the

output is done at the point of harvest. Other sources of

error include deliberate and unwitting over- or under-

estimation and errors resulting from reporting outputs

in non-standard units. Farmers may also underestimate

their production if they perceive that some form of

benefits would be due them if their plots are not

performing well (Gourlay et al. 2017). This could have

played an important role in the low yields obtained

using farmers’ SR outputs. These notwithstanding,

and in spite of the endorsement of the CC approach,

SR remains the most popular method for estimating

yields in most SSA countries including Ghana.

In spite of it being touted as the gold standard, the

CC approach is not without its limitations. While these

Table 6 Comparison of

yield measured based on

productive plot areas for

both Asitey and Akatawia

Community Yield measure Yield level (kg/ha)

Asitey Farmer SR yields (based on GPS plot area) 502

Farmer SR yields (based on RS plot area) 679

Measured CC yields (based on GPS plot area) 2035

Measured CC yields (based on productive area) 2362

Farmer SR yields (based on productive plot area) 1066

Akatawia Farmer SR yields (based on GPS plot area) 791

Farmer SR yields (based on RS plot area) 734

Measured CC yields (based on GPS plot area) 2306

Measured CC yields (based on productive area) 2676

Farmer SR yields (based on productive plot area) 923
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limitations may not have serious implications for

largely uniform plots, they can have important ram-

ifications for the validity of computed yields for plots

with a significant level of heterogeneity. A way around

this limitation in the context of heterogeneous plots is

thus to sample several subplots within each plot as was

done by (Gourlay et al. 2017) as well as increase the

sizes of the CC subplots. This, however, has implica-

tions for costs and may therefore not be practical when

the study involves a large sample or on a limited

budget. Using CC yields as reference yields however,

there is a significant level of yield variability and this

variability is more acute in Asitey compared to

Akatawia as shown by the higher variance in Table 2.

To provide context for our findings, Upper Manya

Krobo where Akatawia is located had an average

maize yield of 1920 kg/ha over a 3-year period,

compared to 2280 kg/ha for Lower Manya Krobo

where Asitey is located (MoFA-SRID 2017). Thus,

our findings with regards to average SR and CC yields

of 651 kg/ha and 2174 kg/ha, respectively, throw up

some important debates particularly with regards to

the SR yields. It is noteworthy, however, that CC

yields are comparable to secondary yield data from

these locations. It is also pertinent to point out that the

particular farming season during which data were

collected for the present study was an unusually poor

one. It was during this season that the Fall Armyworm

(Spodoptera frugiperda) devastated large plots of

maize farms in the country. Thus, while the extremely

low SR yields could be partly ascribed to under-

reporting by farmers, it is important to reiterate that

yields were generally poor for that particular season.

As our analyses show, however, such district level

comparisons can gloss over some important variabil-

ities at the plot and community level. Thus, while

average CC yields are comparable to the national

average, there is a significant proportion of plots which

are yielding much lower than the national average.

This is important because of the linkage between plot

level productivity and household food security.

Intra-plot crop performance variability and in-

season area loss

Apart from the high yield variability at the plot level,

our analyses also show that CC yields tended to

overestimate yields by virtue of the significant intra-

plot crop performance. This calls into question the

applicability of the CC approach to yield estimation

particularly in the context of smallholder farms in SSA

which are characterized by significant intra-plot

variability. Relative to the two communities, Asitey

appears to have a higher level of intra-plot crop

performance variability than Akatawia. This hetero-

geneity feeds into higher yield variability in Asitey

relative to Akatawia. Analysing yields at the plot and

community levels is more useful because this brings to

the fore certain nuances that tend to be glossed over

when analyses are done at the district, regional and

national levels. For instance at the district level,

according to the latest statistics fromGhana’sMinistry

of Food and Agriculture (MoFA-SRID 2017), Lower

Manya Krobo is said to be performing better in terms

of maize yields relative to Upper Manya Krobo

district. However, at the village level within our

dataset, maize yields for Asitey are lower than

Akatawia for both yield measures. This is validated

by the use of RS approaches. This is not to claim that

our selected villages are representative of their

respective districts. It, however, demonstrates the

need to integrate methods in order to comprehensively

capture agricultural performance at micro scales.

While the CC approach might more accurately

capture plot productivity in relatively homogeneous

farming systems in more developed agricultural

settings, it comes with significant limitations in the

SSA context with significant intra-plot heterogeneity.

Context, therefore, matters for the appropriateness of

the choice of yield measurement methods. This is

exemplified by the differences between the two

methods of plot area measurement tested in this study.

While the difference between GPS- and RS-measured

plot areas is insignificant for Akatawia—about 1%—

the GPS overestimates plot area relative to the RS

approach by up to 7% in Asitey. This finding is

expected given that the GPS device has been shown to

have reduced accuracy under certain plot conditions

such as where the plot is very small in size, located on

steeper slopes, and has significant tree cover (FAO

2017b; Fermont and Benson 2011). With regards to

our study communities, Asitey more aptly fits this

description. For instance, 79% of the plots in Asitey

are located on terrains with slopes of above 4%

compared to only 23% of plots in Akatawia fitting this

criterion. Similarly, there is more tree cover on Asitey

plots than on Akatawia plots. For instance, 22% of the

plots in Asitey are being used by farmers in caretaker
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roles with the parcels being controlled by the Forestry

Commission and thus as part of the conditions for

continued use of the plots, farmers are duty-bound to

nurture teak trees on the same plots that they cultivate

maize crops. No such arrangement exists in Akatawia.

It is therefore conceivable that Asitey plots would

have denser tree canopies compared to Akatawia and

thus limit the accuracy of GPS devices. Thus, while

GPS area measurement is still regarded as the best-in-

class and most objective method for plot area

measurement, the reduced accuracy of the GPS device

under stated circumstances implies that its accuracy

could be impaired. A comparison of the GPS-

measured plot area with RS-measured plot area from

UAV imagery is therefore important given that the

accuracy of the latter is not influenced by the relative

plot size and tree cover.

Implications of using productive area instead

of planted area

The higher heterogeneity in Asitey plots can also be

inferred from the relatively higher proportion of

planted area loss in Asitey compared to Akatawia.

Heterogeneity leads to the situation where significant

proportions of plot area become unproductive in the

course of the season. This is noteworthy because most

studies often do not provide a working definition of

plot area and this could range from the planted area,

productive area or even harvested area. As Craig and

Atkinson (2013) point out, plot area may change

throughout the growing season as a result of extreme

weather damage, abandonment, or unusual economic

conditions and thus, to be able to accurately derive plot

area, it is often necessary to make area estimates

multiple times throughout the season. Integrating RS

methods not only renders multiple area measurements

unnecessary but also, it is able to accurately demarcate

productive and unproductive segments of plots. Per-

sisting with yield estimation based on planted area

assumes uniform treatment of whole plot by farmers

including the unproductive sections resource alloca-

tion. On the one hand, if farmers continue to dissipate

resources such as fertilizers on poor patches especially

the edges of plots shown in Fig. 5, then yield

estimation ought to use the whole plot area. On the

other hand, if farmers amend their activities on plots

relative to the productiveness or otherwise of plots,

then an accurate estimation of plot productivity ought

to account for this. Given the economic rationality of

farmers, it ought to be expected that they would not

dissipate already scarce resources on unproductive

sections of plots.

It is our contention therefore that it is more

reasonable to base yield estimations on the productive

area which has been shown to be significantly different

from the planted area in our dataset. Using productive

rather than planted area would mean that CC yields in

Asitey are, on average 2362 kg/ha relative to 2676 kg/

ha in Akatawia. More interestingly, farmers’ SR yields

increase from 502 to 1066 kg/ha and from 791 to

923 kg/ha for Asitey and Akatawia, respectively. This

has important implications for yield measures. It is

pertinent to note, however, that estimating yields

based on productive area, and thus, discounting plot

area lost in the course of the farming season, ignores

the detrimental role that of the factors which lead to

the existence of such poor patches (Reynolds et al.

2015).

Conclusions

From the foregoing, it is obvious that the validity of

yield measurement variables is, at least to a certain

degree, context-specific. Thus, while they may be

accurate in certain crop production settings, they may

be inadequate in capturing agricultural dynamism and

productivity in others. Even the so-called gold stan-

dards of yield measurement have weaknesses that

have important implications for yield levels, particu-

larly for heterogeneous farming systems such as those

in SSA. Not only does the crop cutting approach

overestimate yields partly due to unproductive patches

especially around the edges of plots in this context but

also, GPS-measured plot area has inherent inaccura-

cies depending on plot sizes, location on slopes as well

as the degree of tree cover. Thus, while crop yields

may vary significantly even within settings with the

same growing conditions, methods of measuring yield

levels could potentially have important implications

for captured yields on the same plots. The multiplicity

of yield measurement approaches will have to be

integrated in order to adequately capture plot produc-

tivity at the micro levels. At the very least, RS tools

and methods can serve as powerful validation tools in

this regard.
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