
https://doi.org/10.1007/s10707-023-00491-8

SGPAC: generalized scalable spatial GroupBy
aggregations over complex polygons

Laila Abdelhafeez1,2 ·Amr Magdy1,2 ·Vassilis J. Tsotras1,2

Abstract
This paper studies the spatial group-by query over complex polygons. Given a set of spatial
points and a set of polygons, the spatial group-by query returns the number of points that lie
within the boundaries of each polygon. Groups are selected from a set of non-overlapping
complex polygons, typically in the order of thousands, while the input is a large-scale dataset
that contains hundreds of millions or even billions of spatial points. This problem is chal-
lenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are
described by very complex boundaries. We propose a highly-parallelized query processing
framework to efficiently compute the spatial group-by query on highly skewed spatial data.
We also propose an effective query optimizer that adaptively assigns the appropriate pro-
cessing scheme based on the query polygons. Our experimental evaluation with real data
and queries has shown significant superiority over all existing techniques.

Keywords Spatial big data · Group by · Query processing · Aggregation

1 Introduction

Spatial data is readily available in large quantities through the emergence of various
technologies. Examples include user-generated data from hundreds of millions of users,
fine-granularity satellite data from public and private sectors, ubiquitous IoT applications,
and traffic management data. Such big spatial datasets are rich in information and come with
new challenges for data scientists who try to explore and analyze them efficiently in various
applications. These challenges span the whole stack of spatial data management, starting
from revisiting fundamental queries and their variations to support the current volume scale
efficiently.

In this paper, we address a spatial group-by query to efficiently support large-scale
datasets that contain hundreds of millions or even billions of data points on real polygons

� Laila Abdelhafeez
labde005@ucr.edu

1 Department of Computer Science and Engineering, University of California, Riverside, CA, USA
2 Center for Geospatial Sciences, University of California, Riverside, CA, USA

Geoinformatica (2023) 27:789–816

Received: 25 December 2020 / Revised: 3 November 2022 / Accepted: 2 February 2023 /

© The Author(s) 2023
Published online: 21 March 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-023-00491-8&domain=pdf
mailto: labde005@ucr.edu

with very complex perimeter geometries that have tens of thousands of points. Such over-
whelming polygon complexity combined with large volume data poses challenges to the
currently available techniques in the mainstream spatial data management systems. Given
a set of spatial points and a set of complex polygons, our group-by query counts the num-
ber of spatial points within each polygon’s boundaries. So, it groups points by polygon
boundaries. This query is a composition of the fundamental spatial range query using sets of
polygons as spatial group-by conditions. With real polygons, spatial containment checks are
highly complex and consume significant processing overhead. For example, the polygons
of provinces’ borders worldwide have one million points on their perimeters [43]. Combin-
ing such complex boundaries with hundreds of millions of spatial data points encounters
highly inefficient query latency that easily escalates to hours of processing on a dozen
CPUs. These real polygons are heavily used by social scientists in various spatial statisti-
cal analysis applications, such as spatial regionalization [13], spatial harmonization [25],
segregation analysis [9], join-count analysis, hot-spot, and cold-spot analysis, and spatial
autocorrelation analysis [38].

The need for this research has been triggered during a collaboration with social sci-
entists [3] to perform large-scale analysis on user-generated social media data at the
world-scale. In that study, we analyzed one billion tweets through location quotients and
spatial Markov analysis over complex spatial polygons. A fundamental operation for this
analysis is aggregating counts of spatial points within each polygon. Due to the prohibitive
cost of performing such aggregations, our study was limited to the US counties and a portion
of the available Twitter datasets. To enable social scientists to perform large-scale studies at
world-scale data, it is pivotal to efficiently support such fundamental operations on modern
large-scale datasets for real complex polygons and multiple spatial scales.

Traditionally, count aggregations over polygons are performed using filter-refine
approaches [17, 19]. The filter phase retrieves a subset of data based on the polygon min-
imum bounding rectangle (MBR). This subset is refined where each data point is tested
against the exact polygon geometry using point-in-polygon checks. This approach is still
used in modern distributed systems, e.g., Apache Sedona [46]. However, it incurs sig-
nificantly expensive computations on large data. For example, running a single query
for 100 million points over only 255 country borders takes an hour to finish, using a
twelve-nodes Apache Sedona cluster with a total memory of 1TB. Such inefficient run-
time limits spatial data scientists from performing large-scale analysis on modern spatial
datasets.

Existing approaches face two challenges to handle modern large datasets efficiently. The
first challenge arises from the prohibitive computations of point-in-polygon checks on real
complex polygons due to the excessive number of points on the polygon perimeter. This is
much higher than polygons arising in computer graphics applications [32, 41, 44], which
have only tens of perimeter points. The second challenge is the high skewness of real spa-
tial data due to skewed spatial distributions of the data generators, e.g., web users or city
sensors. Such skewness leads to prohibitive runtime cost in parallel algorithms due to load
imbalance.

To overcome these challenges, we propose the Spatial GroupBy Polygon Aggregate
Counting (SGPAC), a highly-parallelized query processing framework to efficiently sup-
port spatial group-by queries in mainstream spatial data management systems. The SGPAC
framework can efficiently aggregate counts for large-scale datasets over a large number

790 Geoinformatica (2023) 27:789–816

of highly complex polygons. To this end, SGPAC crumbles both data points and query
polygons into fine-granular pieces based on two-level spatial indexing. For real polygons,
a two-level clipper significantly downsizes the number of perimeter points to consider-
ably speed up computing group-by aggregates while ensuring exact results. The counting
process over the new clipped polygons is highly-parallelizable and makes great use of
the distributed computation resources. Nevertheless, even with parallelism, SGPAC still
encounters high computations on a few nodes –due to spatial data skewness– that can
dominate the overall runtime. To address this, SGPAC identifies highly skewed data par-
titions to be further divided and directs data to underutilized nodes for distributed load
balancing.

To support efficient performance on various query workloads, we propose a query opti-
mization technique that distinguishes query polygons that are simple enough for which a
plain filter-refine approach would suffice (i.e., SGPAC adds unneeded overhead). We thus
present cost models for the SGPAC clipping approach and the filter-refine;

based on these models, we produce a cheap query plan that adaptively assigns an
appropriate processing scheme for each query polygon.

Furthermore, our query processing and optimization techniques are generalized for any
underlying distributed spatial index structures. This makes them plug-and-play modules in
a wide variety of applications and systems without a need to change the underlying system
infrastructure. We performed an extensive experimental evaluation with real spatial data and
world-scale polygons. Our techniques have shown significant superiority over all existing
techniques for real complex polygons.

This paper extends our work in [1]. The new extensions include (1) Handling highly-
skewed spatial dataset through one-to-many spatial partitioning. (2) Building a cost-based
query optimizer that selects the cheapest query plan for various query workloads. (3) Gen-
eralizing the query processing framework to work with various underlying indexes.
(4) Enriching the experimental evaluation with eighteen synthetically-composed polygon
datasets to study the effect of different parameters under controlled values. (5) Evaluat-
ing the effect of tuning the global index and the local index on the query performance,
in addition to evaluating the new query optimizer. Our contributions are summarized as
follows:

1. We define a challenging spatial group-by query (SGPAC) over real complex polygons.
2. We propose a novel distributed query processing framework to efficiently support the

SGPAC query and extend it to support highly skewed datasets.
3. We introduce cost models that enable a query optimizer to produce the best query plan

for processing the SGPAC query.
4. We provide generalizations for both the query processing framework and the query

optimizer to work in numerous systems with various index structures.
5. We perform an extensive experimental evaluation using 100M real Twitter posts and up

to 45K real spatial polygons organized in both real synthetically-composed layers with
tuning both the local and the global indexes.

In the rest of this paper, we outline related work in Sections 2, while 3 formally defines
the problem. The proposed query processing and query optimizer are detailed in Sections 4
and 5, respectively. Section 6 discusses our framework generalizations. Sections 7 and 8
present experimental evaluation and conclusions.

791Geoinformatica (2023) 27:789–816

2 Related work

Centralized techniques Aggregation over spatial polygons has been studied for long and
several techniques have been proposed [4–7, 16, 17, 19, 24, 26–31, 40, 48, 50]; the major-
ity of them produce exact results while there are also works that produce approximate
results, e.g., [5, 26, 47]. The most widely-used techniques are based on the two-phase filter-
refine approach [17, 19] that filters out irrelevant data based on polygon approximations,
most commonly a minimum bounding rectangle (MBR) approximation, and then refines
candidate points based on polygon perimeter geometry. Several works proposed more pre-
cise polygon approximations in the filtering phase. Brinkhoff et al. [6] studied different
approximations, namely rotated minimum bounding box (RMBB), minimum bounding cir-
cle (MBC), minimum bounding ellipse (MBE), convex hull (CH), and minimum bounding
n-corner (n-C). Sidlauskas et al. [40] improved filtering by clipping away empty spaces in
the MBR. Other approaches proposed multi-step filtering [7, 27, 28] and rasterization-based
polygon approximation [4, 5, 16, 47, 50] to reduce the candidate set size. Hu et al. [21, 22]
proposed indexing the line segments forming the polygon with an in-memory R-tree index,
and then using this index to facilitate both the filter and the refinement steps. The points
in the input dataset are indexed using another R-Tree index. The polygon R-tree index is
used to filter out index nodes from the point R-tree that are outside the polygon. The index
nodes from the point R-tree that are fully included within the polygon are provided in the
result set along with all their children. The costly refinement operation is performed for
index nodes from the point R-tree that intersect with the polygon. Although the rich approx-
imations result in a tight candidate set, they do not reduce the computation complexity of
each point-in-polygon check, which depends on the number of polygon perimeter points.
Kipf et al. [26] solves an orthogonal point-polygon join query that takes a single point and
outputs polygons that contain this point. This work assumes that all polygons are known
beforehand, and thus can be indexed, while the data points are streamed. This is a majorly
different setting than our setting that considers an arbitrary set of polygons as query input
to query stationary data of large volumes.

Another direction in supporting polygon aggregation is polygon decomposition [29–31,
35]. Such decomposition reduces the complexity of a polygon query by dividing it into
smaller polygons. The original polygon geometry is decomposed into regular forms, e.g.,
convex polygons, triangles, trapezoids, combinations of rectangles and triangles, or even
smaller irregular polygons using a uniform grid. However, decomposition has not yet been
adopted in distributed big spatial data systems. This is confirmed by recent surveys [15,
36] that examined work on range queries in modern big spatial systems. Current big spatial
systems mostly focus on rectangular ranges and have limited support for arbitrary polygons
with complex shapes and high-density perimeters, which is crucial for data analysis on
real datasets, e.g., in social sciences, since real-world polygons are neither rectangular nor
regular.

Distributed and parallel techniques There are also recent works on addressing irregular
polygon range queries using distributed partitioning techniques [18, 33, 34, 37] and par-
allel GPU-based techniques [2, 47, 49]. These techniques mostly rely on partitioning data
across a cluster of machines or GPU cores so that one query is partitioned along with data
partitioning, and then the query executes on multiple nodes/cores that have relevant data.
Nodarakis et al. [34] partition the data based on either a regular grid or angle-based par-
titioning. However, that work only supports convex polygons. Guo et al. [18] partition the

792 Geoinformatica (2023) 27:789–816

data using a quadtree, then different partitions work in parallel using a traditional filter-
refine approach. Ray et al. [37] partition the data based on either object size or point density
to improve workload balance among nodes. Malensek et al. [33] proposed bitmap-based fil-
tering where the global view facilitates node selection based on the intersection with query
polygons. While these distributed approaches tighten the candidate set and take advantage
of parallelism, they do not reduce the computational complexity of point-in-polygon checks,
which are the bottleneck. In addition, in many cases, polygons that lie within the boundaries
of one partition do not make use of candidate set reduction at all. Therefore, even in dis-
tributed environments, their overall computational cost is still high on large-scale datasets
and large real polygon sets. Also, GPU-based techniques are not widely incorporated in the
mainstream spatial systems.

Our work follows the decomposition direction in distributed environments to speed
up polygon aggregations. Compared to existing literature, our work is distinguished by
(a) Inherently considering real complex polygons and large-scale datasets (that contain hun-
dreds of millions of points) by identifying and reducing the main performance bottleneck.
(b) Addressing high skewness in spatial data that leads to a high imbalance in distributed
workloads. (c) Leveraging our novel techniques with existing techniques through a novel
query optimizer to produce the best query processing plan.

3 Problem definition

Consider a spatial dataset D that consists of point objects. Each object o ∈ D is represented
by (oid, lat , long), where oid is the object identifier and < lat, long > represent the lati-
tude/longitude coordinates of the object’s location in the two-dimensional space. Formally,
an SGPAC query q is defined by a set of polygons L as follows:

Definition 1 (Spatial GroupBy Polygon Aggregate Counting (SGPAC) Query) Given a spa-
tial dataset D, a query q defined by a set of polygons L = {l1, l2, ..., lm}, returns a set of m

integers {c1, c2, ..., cm}, where ci is the number of objects oj ∈ D so that oj ’s location lies
inside polygon li ∈ L.

Each polygon li ∈ L is represented by ni spatial points that define its perimeter geometry.
For large values of m and ni and a large-scale spatial dataset D with hundreds of millions
of points, scaling a spatial group-by query is highly challenging.

As with typical relational group-by queries, the query groups (in our case the polygons
in L) can be selected in an ad-hoc manner. The polygon sets that are used in different appli-
cations, e.g., social sciences, could be either pre-defined polygons, e.g., US states borders,
or arbitrary polygons, e.g., polygons produced by regionalization and harmonization algo-
rithms [13, 25]. Here we assume the general case, where set L is not known apriori (and
thus cannot be indexed beforehand). Since groups in a typical group-by clause are disjoint,
the polygon set consists of disjoint polygons. However, our processing algorithm can also
support polygon sets with overlapping polygons.

4 Query processing

We proceed with Section 4.1 which presents the generic query processing framework on
which SGPAC is built, followed by Section 4.2 which discusses the details of the framework

793Geoinformatica (2023) 27:789–816

instantiation based on a global quadtree index, and Section 4.3 that considers two variants
for the local indexes, namely a grid index and an R-tree index.

4.1 Query processing framework

The rationale behind this framework depends on two observations. The first observa-
tion recognizes that the main performance bottleneck of polygon aggregations is the high
computational cost of point-in-polygon checks. So, our framework relies on significantly
reducing the complexity of these checks to minimize the overall cost of large polygon sets
aggregations. The second observation is that in nowadays applications, large-scale spa-
tial datasets are usually indexed on distributed big spatial data systems, such as Apache
Sedona [46], Simba [45], GeoMesa [23], or SpatialHadoop [14]. Therefore, we develop a
query processing framework that exploits such distributed indexing infrastructure in reduc-
ing the computational cost of spatial group-by queries to make our techniques applicable to
a wide variety of existing applications and platforms.

Figure 1 shows an overview of our query processing framework. The framework exploits
partitioning, by facilitating a global distributed spatial index to partition both data points
and query polygons across different machines (distributed worker nodes) using standard
methods as in [14]. Each worker node j covers a specific spatial area represented with a
minimum bounding rectangle (MBR) Bj . Then, on each worker node, the local portion
of data points is indexed with a local spatial index, which does not necessarily have the
same structure as the global index. The local index further divides data into small chunks.
Meanwhile, when a new query polygon set L arrives, each worker node receives a subset Lj

of query polygons that overlap with its partitionMBRBj ; that is, for all li ∈ Lj , li∩Bj �= φ.
Each polygon li ∈ Lj goes through a Two-level Clipper module that significantly reduces
the complexity of its perimeter through two phases of polygon clipping. The first phase is
based on the global index partition boundaries Bj . This phase replaces li with li ∩ Bj , its
intersection with the partition MBR, as any part of the polygon outside Bj will not produce
any results from the data points assigned to node j . The newly clipped polygon li is passed
as an input to the second level of clipping, which further clips li based on the local index
partitions to produce multiple smaller polygons, each of them corresponding to one of the
local index partitions and clipped with its MBR boundaries.

After the two-level clipping of input polygons, the query input turns into small crum-
bles of both local data partitions and simple query polygons that are fed to a multi-threaded
Point-in-Polygon Refiner module. This module takes pairs of data partitions and clipped
query polygons with overlapping boundaries, where each pair follows one of two cases.
The first case is that the boundaries of both the local partition and the clipped query poly-
gon are the same. This means that the local partition is wholly contained inside the query
polygon and all data points are counted in the result set without further refinement. The
second case is that the clipped query polygon intersects with part of the local partition
boundaries. In this case, the refinement module iterates over all the points within the local
partition and simply uses the standard point-in-polygon algorithms (as in [20]) to filter out
points that are outside the polygon boundaries. Such point-in-polygon operation is much
less expensive on the clipped polygon compared to the original polygon, with up to an order
of magnitude cost reduction as shown in our experiments. Each thread maintains a list of
< polygonid, count > pairs that record the count of points in each polygon. Lists of pairs
from different threads and partitions are forwarded to a shuffling phase that aggregates total
counts of each input polygon, based on polygon ids, in a similar fashion to the standard
map-reduce word counting procedure.

794 Geoinformatica (2023) 27:789–816

Fig. 1 Query processing framework overview

This query processing framework puts no assumptions on the underlying index struc-
tures, both global and local indexes, so it can be realized in a wide variety of existing
applications and platforms that already use distributed spatial indexing in their data man-
agement pipelines. However, the skewness of spatial data may introduce further challenges
to this query processing framework. In Sections 4.2 and 4.3 we discuss instantiating the

795Geoinformatica (2023) 27:789–816

SGPAC query processor based on this framework and adjusting the framework modules for
highly-skewed spatial datasets.

4.2 SGPAC global index instantiation

We present an instantiation of the SGPAC query processor where in order to handle highly
skewed data, the global index is a quadtree structure, because of its ability to adapt for
high skewness in data (common in several spatial datasets) through adapting the tree depth
in different spatial areas based on data density. Given a parameter capacity that defines
how many points are allowed within a quadtree partition, the quadtree partitioner starts by
inserting the whole dataset in the root tree node. If the node capacity is exceeded, it is
divided into four child nodes with equal spatial area, and its data is distributed among the
four child nodes. If any of the child nodes has exceeded its capacity, it is further divided into
four nodes recursively and so on, until each node holds at most its parameterized capacity.
With this standard mechanism, spatial areas with high densities of data are further divided
into deeper tree levels, while sparse areas will result in shallow tree depth. The optimal goal
is to hold an equal data load in each partition, which leads to balancing the distributed query
processing time when this data is processed for incoming queries.

Nevertheless, for modern real datasets, a straightforward quadtree adaptation is not
enough to handle data skewness. One problematic case that is common in user-generated
spatial datasets is having dense hotspots (i.e., high-density points) rather than high-density
areas. A hotspot corresponds to a single point in space that has a high concentration of data.
Data hotspots have become more common recently due to privacy concerns that encourage
platforms to geotag spatial data with broad locations, e.g., cities, rather than precise points.
Similarly, most users prefer not to disclose their GPS location and instead mark their tweets
with the user’s home location (for example ‘Los Angeles’, thus assigning to a tweet the GPS
of the city’s center). The traditional quadtree cannot handle such cases since an overcapacity
node with a high-density point will continue to split infinitely or stop at a maximum level
while still holding an excessive number of points. Such overloaded nodes cause consider-
able load imbalance, which significantly skews runtime leading to highly inefficient query
processing time.

To overcome such a severe limitation, our SGPAC query processor modifies the standard
quadtree partitioner to detect high-density points and enable a one-to-many partitioning
scheme. The one-to-many partitioning scheme allows the data points of an overloaded
(skewed) partition to be divided among many partitions that share the same boundaries; such
partitions can be sent to different worker nodes and thus improve the workload balance. In
specific, to detect high-density points, while splitting a quadtree node, the new partitioner
checks if data skewness spans multiple successive levels. An integer counter skewed levels

is initialized to zero for each tree node. On splitting a node, when all data points go to only
one child node, its skewed levels counter is incremented by one. Once skewed levels

reaches a threshold, the split stops at this level and the partition is marked as a skewed
partition. Each skewed partition is then divided into multiple partitions, each has the same
spatial boundaries as the original partition but containing a distinct portion of the dataset
(of size equal to the parameterized node capacity). These multiple partitions are stored with
different partition ids and machine ids in the global index metadata, so they are seamlessly
considered by the query processor during the polygon partitioning and shuffling phases.

Later in Section 6, we discuss other potential instantiations based on different spatial
index structures to serve other potential spatial datasets.

796 Geoinformatica (2023) 27:789–816

4.3 SGPAC local index instantiation

In this Section, we present two different local indexes instantiations, the first is based on a
gird index, and the other is based on an R-tree index.

(I) Grid Local Index

At the local indexing level, the first available instantiation in SGPAC is using a regular
spatial grid index that divides the space into equal-sized spatial tiles. The grid index provides
an efficient yet simple way to index the data locally and still serves the purpose of crumbling
query polygons into small pieces. Each grid cell in the local grid index serves as a local
partition, which is passed along with the clipped simpler polygons to the multi-threaded
Point-in-Polygon Refiner module.

(II) RTree Local Index

Another possible instantiation of the local index is the usage of R-tree index that orga-
nizes the data in a balanced tree according to their spatial proximity, and data are stored
at the leaf nodes of the tree. Each non-leaf tree boundary is used to clip the original query
polygons. The clipping starts at the root node, and each parent node passes to its children the
part of the polygon that it intersects with. Each leaf node serves as a local partition, which
is passed along with the clipped simpler polygons to the multi-threaded Point-in-Polygon
Refiner module. The R-tree works better for SGPAC for two main reasons: (1) Irrelevant
nodes can be pruned earlier at a higher-tree level, saving filtering time. Instead of checking
all irrelevant leaf nodes, checking their parents is sufficient to prune them. (2) The cost of
clipping the polygon is reduced at each level of the tree since a parent node passes a clipped
version of the query polygon to its children.

5 Query optimization

Our group-by query will be supported as a system operator having an impact on a wide user
base, e.g., in distributed big spatial data systems such as Apache Sedona or parallel spatial
database systems, such as PostGIS. From a system builder perspective, the system expects
various query workloads and identifies a cheap query plan for efficient execution, which is
the main objective behind the long history of query optimization work. Our SGPAC tech-
nique is optimized for processing complex polygons, which is the case for most real spatial
datasets. However, in the case of simple polygons, a system should be able to decide on
using a simpler technique, e.g., a traditional filter-refine approach, to execute such queries
efficiently.

To help the optimizer decide whether to use the traditional filter-refine approach or to
pay the overhead of the SGPAC technique, we develop theoretical cost models that calcu-
late an approximate computation cost for each query polygon in a distributed fashion based
on polygons that are partitioned across worker machines. The estimated cost in each parti-
tion depends on its local polygons and local data distribution. Both cost models depend on
estimating the cost of the steps after the initial filter step that excludes data from irrelevant
distributed partitions. This step is common for both techniques and is implicitly included in
the global index partitioning, so it not included in the cost comparison.

797Geoinformatica (2023) 27:789–816

5.1 Filter-refine cost model

A filter-refine approach refines all data points that lie within the polygon MBR. If n denotes
the number of perimeter points in the polygon, the time complexity of a single point-in-
polygon check is O(n). Therefore, the overall refinement cost for a polygon is Cf r = d×n,
where d is the number of data points in the polygon’s MBR. If the data is uniformly dis-
tributed, then d = AMBR

A
× |D|, where AMBR is the area of the polygon MBR, A is the

total area of the covered spatial space, and |D| is the cardinally of the underlying dataset D.
However, real spatial data is highly skewed and we can not make this uniformity assump-
tion. Moreover, the polygon might span multiple worker machines, which in turn reduces
the overall cost since the refinement runtime of the whole polygon is distributed among
multiple data partitions. To handle data skew and multi-machine split, we introduce a dis-
tributed count estimator data structure associated with each local index. This estimator data
structure is of a spatial grid data structure, but instead of storing actual data points, it stores
the number of data points that lie within the boundaries of each grid cell. If we index the
data locally using a local grid index, generating the count estimator data structure is straight-
forward. In this case, the count estimator grid cell granularity follows the same granularity
of the local data index. However, having the data locally indexed using any tree-based spa-
tial index, introduces some challenges in generating the count estimator data structure. The
first straightforward option is to have the count estimator data structure follow the struc-
ture of the local index. However, the grid data structure is simpler and is easier to maintain
and access. For this reason, we advocate for keeping the estimator data structure as a grid
regardless of the underlying data index. In cases of structure mismatch, we map the data
count information from the original data structure to the grid data structure of an arbitrary
cell size r . The details of this mapping are further discussed in detail in Section 6.2.

After generating the estimator data structure, when computing the cost within each par-
tition, we access this estimator to estimate the number of data points that lie within polygon
MBR. For a set of distributed data partitions P , the cost within each local partition Pk ∈ P

is estimated by the following formula:

Ck
f r =

⎛
⎝

Ymax∑
j=Ymin

Xmax∑
i=Xmin

cij

⎞
⎠ ∗ n (1)

Where cij is the count within the estimator grid cell (i, j), and Ymin, Ymax , Xmin, Xmax

are indices that give the four corners of the polygon MBR mapped on the grid. This for-
mula sums over all cells that overlap with the polygon MBR within the local partition Pk .
Although the overall cost of a single polygon query is the maximum among all partitions,
Cf r = Max(Ck

f r), ∀Pk ∈ P , the optimization decision is actually taken locally regardless
of other partitions. This cost model for the filter-refine operation defined in (1) is the same
for all local index variants.

5.2 SGPAC cost model

Contrary to the filter-refine cost model mentioned in Section 5.1, the SGPAC cost model is
affected by the nature of the underlying index. In the following Sections 5.2.1 and 5.2.2,
we discuss the cost model for the two variants of the local index instantiations mentioned
earlier in Section 4.3. Similar to the filter-refine model, equations mentioned in the follow-
ing Sections (2) and (3) estimate the cost for a single polygon on a single partition Pk ∈ P .
The overall estimated cost for this polygon query in a distributed environment is given by,

798 Geoinformatica (2023) 27:789–816

CSGPAC = Max(Ck
SGPAC), ∀Pk ∈ P . Again, the global cost CSGPAC is not actually used

as each local partition decides on its optimal processing strategy locally.

5.2.1 Grid local index cost model

The SGPAC approach performs multiple refinement operations in each local partition at
multiple grid cells of the local grid index. Each refinement operation uses a smaller polygon
fragment, compared to the original polygon, after the two-level polygon clipping. To model
the cost of refinements, we assume: (a) the whole original polygon perimeter lies within
the local partition boundaries, (b) the number of local index grid cells that overlap with the
polygon MBR is gc, (c) each of the overlapping gc grid cell has a polygon fragment of n

gc

perimeter points, where n is the number of the polygon perimeter points, and (d) a refine-
ment operation is performed for each of the gc cells, which is a conservative assumption as
in practice some of these cells are wholly contained within the polygon and do not perform
refinement as detailed in Section 4.

Given the above assumptions, the cost of SGPAC query processing on a local parti-
tion Pk , Ck

SGPAC , is composed of two components: (i) polygon clipping cost Cclip , and
(ii) point refinement cost Cref ine. Therefore, Ck

SGPAC = Cclip + Cref ine. The cost of a sin-
gle clipping operation is O(n × log(n)) [39]. This operation is repeated gc times, so the
total clipping cost Cclip is estimated as Cclip = gc × n × log(n). For the refinement cost,
we use the same count estimation data structure that is used in the filter-refine cost model
to estimate the number of data points within a polygon. This makes the refinement cost
(
∑Ymax

j=Ymin

∑Xmax

i=Xmin
cij)× n

gc
, using the same notations as in (1). This is performed through a

multi-threaded refinement module that uses t threads in parallel. So, the overall refinement

cost is estimated by Cref ine = (
∑Ymax

j=Ymin

∑Xmax
i=Xmin

cij)× n
gc

t
. Consequently, the overall estimated

cost Ck
SGPAC is given by:

Ck
SGPAC = gc × n × log(n) +

(∑Ymax

j=Ymin

∑Xmax

i=Xmin
cij

)
× n

gc

t
(2)

5.2.2 R-Tree local index cost model

The SGPAC approach starts with the two-level clipping of the query polygons. Each non-
leaf tree boundary is used to clip the original query polygons. The clipping starts at the root
node, and each parent node passes to its children the part of the polygon that it intersects
with. Then SGPAC performs the refinement operations for each leaf node. SGPAC with a
tree-based local index differs from SGPAC with a grid index in: (i) hierarchical clipping
operations instead of a flat clipping with all intersecting nodes. This means that the clipping
operation is not necessarily performed on all the tree nodes. (ii) clipping operation cost is
significantly reduced at each level of the tree since a parent node only passes a clipped
version of the query polygon to its children.

To model the total cost of SGPAC we reuse the first two assumptions mentioned for the
grid index structure: (a) the whole original polygon perimeter lies within the local partition
boundaries, (b) the number of local index grid cells that overlap with the polygon MBR
is gc, and we add the following assumptions: (c) at each level of the tree, the perimeter
of the polygon is reduced by the branching factor of the tree b, so the polygon is of n

bl

799Geoinformatica (2023) 27:789–816

perimeter points at each level l, at l = 0 the root node, the polygon has n perimeter points,
(d) since the cost of the clipping operation is O(n × log(n)), and since the polygon has a
different value for n at every level l of the tree, we assume the average cost of the clipping
operation to be the cost of clipping the polygon at the mid-height of the treem = H/2 where
H is the maximum height of the tree, making the average cost of one clipping operation
O(n

bm × log(n
bm)), (e) since the refinement operation is only performed at the leaf nodes,

if the polygon is evenly distributed amongst all leaves, the cost of the refinement operation
would be O(n

bH) and if the polygon only intersects with one leaf node the cost will remain
O(n), on average we assume the polygon is distributed amongst bm nodes, where m is the
mid-height of the tree.

Given the above assumptions, the cost of SGPAC query processing on a local partition
Pk , Ck

SGPAC , is composed of two components: (i) polygon clipping cost Cclip , and (ii) point
refinement cost Cref ine. Therefore, Ck

SGPAC = Cclip + Cref ine. To account for the hierar-
chical clipping we assume that the clipping operation cost is the average cost of clipping
O(n

bm × log(n
bm)). This operation is repeated gc times, so the total clipping cost Cclip is

estimated as Cclip = gc × n
bm × log(n

bm). For the refinement cost, we use the same count
estimator data structure that is used in the filter-refine cost model to estimate the number of
data points within a polygon. This makes the refinement cost (

∑Ymax

j=Ymin

∑Xmax

i=Xmin
cij)× n

bm .

Consequently, the overall estimated cost Ck
SGPAC is given by:

Ck
SGPAC = gc × n

bm
× log

(n

bm

)
+

⎛
⎝

Ymax∑
j=Ymin

Xmax∑
i=Xmin

cij

⎞
⎠ × n

bm
(3)

6 Framework generalization

This section discusses the generality of our proposed framework, for both query pro-
cessing and optimization, to work with various spatial applications even if they employ
different spatial index structures and have different data characteristics. Section 6.1 high-
lights the generality of query processing, and Section 6.2 discusses the generality of query
optimization.

6.1 Variant query processor instantiations

The presented SGPAC instantiations in Sections 4.2 and 4.3 are some of the possible instan-
tiations based on our query processing framework (Section 4.1). However, the possible
instantiations are not limited to the presented ones. In fact, the main advantage of our query
processing framework is the ability to work with any underlying spatial indexing. For exam-
ple, if an application already employs a spatial index such as R-tree or kd-tree, either on the
global or local level, the same framework can be used without any significant changes. Only
two differences are implied by having different indexes. First, the two-level polygon clip-
ping module (in Fig. 1) will use the new index partitions. Second, the skewness detection
technique (detailed in Section 4.2) will depend on the split/merge criteria of the underlying
index. Other than that, every step in our query processing framework is intact and can adapt
to various spatial indexes. Such a plug-and-play module enables spatial group-by queries to
be supported efficiently in various applications and platforms.

800 Geoinformatica (2023) 27:789–816

6.2 Variant cost models

The other module that is affected by changing the underlying spatial index is the proposed
cost models in Section 5. These models are mainly designed to handle skewed spatial data,
so they depend on local spatial grid structures that are used as count estimators for data
distributions within each local worker machine. Each grid estimator has the same granularity
as the local spatial grid index, so it is straightforward to aggregate counts in each estimator
cell from the corresponding index cell. However, if the underlying local index changes to
a spatial tree index, e.g., quadtree, R-tree, or kd-tree, this estimator should respond to this
change. One way to respond is to change the estimator structure from a grid to a tree with
the same local index structure and directly aggregate counts from index cells. However, we
do not advocate for such design choice and see it as overhead from a system perspective
as estimators should be light to maintain and update, which is not the case for most tree
structures compared to a simple grid estimator. So, we argue that system builders should
keep the grid estimators even if their local indexes are not grid indexes. To overcome the
problem of structure mismatch, we propose a generic way to generalize building our grid
estimators for any spatial index structure.

The main challenge for the grid estimator is choosing an effective and efficient grid
cell size, so the grid can be efficiently maintained and still provides accurate estimates.
The granularity of the estimator cell size is left as a parameter for system administrators,
enabling human-friendly system performance tuning. Given that, the value of r is a trade-
off between the system overhead for maintaining estimators and the estimation accuracy. If
r value is small, then the grid estimator cell size is small and data is aggregated in a large
number of cells that provide high estimation accuracy with high maintenance overhead. If r

value is large, then the grid size cell is large and data is aggregated in a low number of cells
with low overhead, yet it provides lower accuracy as well. System administrators can thus
tune r value based on the available system resources and desired accuracy. In Section 7.5
we show accuracy results while varying the granularity of the grid cell estimator.

Moreover, in our cost models, estimating the cost does not only depend on counting
data within polygons but also depends on how the polygon intersects with local index cells.
In our SGPAC first instantiation, this is straightforward because the estimator cells have
one-to-one mapping to index cells. So, while counting data one can easily calculate the grid-
polygon intersection; specifically, the value of gc in (2) and (3) that represents the number
of local index partitions that intersect with the query polygon. If the local index is not a grid
index, but a spatial tree structure, then there is no one-to-one mapping between estimator
grid cells and index cells anymore. In this case, to calculate gc, the estimator grid cells do
not only store data counts, but also store ids of corresponding index cells. Each estimator
grid cell stores a list of ids for index cells that overlap with its boundaries. Then, gc can be
calculated as the total number of distinct index cell ids that overlap with the polygon MBR.

7 Experimental evaluation

This section presents an experimental evaluation of our techniques. Section 7.1 presents the
experimental setup. Then, Sections 7.2-7.4 evaluate query processing scalability, index tun-
ing, and query optimization effectiveness. Section 7.5 contains experiments on cost model
evaluation.

801Geoinformatica (2023) 27:789–816

7.1 Experimental setup

We evaluate the performance of SGPAC in terms of query latency using a real implemen-
tation based on Apache Sedona [46]. Our parameters include polygon count in the query
polygon set (i.e., set cardinality), the average number of points per polygon perimeter
(representing the complexity of polygon geometry), average polygon area, global quadtree
partition capacity, local grid granularity and local R-tree capacity. Unless mentioned other-
wise, the default value for the global quadtree capacity is 30K points, the default granularity
is 10KMx10KM for the grid local index, and the default node maximum capacity is
1K points for the local R-tree index. Other parameters are experimentally evaluated and
changed as illustrated in each experiment. All experiments are based on Java 8 implemen-
tation and using a Spark cluster of a dual-master node and 12 worker nodes. All nodes
run Linux CentOS 8.2 (64bit). Each master node is equipped with 128GB RAM, and each
worker node is equipped with 64GB RAM. The total number of worker executors on the
Apache Spark cluster is 84, each with 4 GB of memory, along with an additional executor
for the driver program.

Evaluation datasets Our evaluation data is a Twitter dataset that contains 100 million real
geotagged tweets spatially distributed worldwide. For query polygons, we use real polygons
from Natural Earth (NE) [11, 12] (collected through the UCR STAR data repository [42]),
GADM [10] and ArcGIS [8]. The real polygon sets represent four different multi-scale
spatial layers representing borders of continents, countries, provinces, and counties world-
wide. Details of each set are shown in Table 1, where n is the number of perimeter points.
However, these real layers have high variance in polygons’ characteristics and counts.
For example, in the counties, the number of perimeter points n ranges from very sim-
ple polygons with only four points to extremely complex ones, e.g., Baffin, Nunavut in
Canada has 315K points. Due to this high variance in characteristics, we synthetically com-
posed 18 polygon sets out of the same real polygons that compose the real layers. The
synthetically-composed polygon sets have much less variance, almost homogeneous, in
polygon count, areas, or perimeter complexity. These sets are used to study the effect of
each parameter isolating the effects of other parameters. Table 2 shows characteristics of
the 18 synthetically-composed polygon sets, where n is the number of polygon perimeter
points. All sets are subsets from the real polygon layers that represent continents, coun-
tries, provinces, counties worldwide. These subsets are selected to vary one parameter and
fix the other two so our experiment isolates the effects of each parameter. As shown in
Table 2, the sets are divided into three groups. The first group contains six sets, L1-L6, that
have increasing perimeter complexity, but the same polygon count and almost homogeneous
areas per set. The second group contains six sets, L7-L12, that have increasing polygon
count, but homogeneous perimeter complexity and areas per set. The third group contains

Table 1 Real Polygon Layers

Count Source Min n Max n Average n Average Area

Continents 6 ArcGIS [8] 2,904 16,206 9,454 42,493,878 km2

Countries 255 NE [11] 4 22,907 1,345 1,122,947 km2

Provinces 4,489 NE [12] 4 15,953 246 66,732 km2

Counties 45,961 GADM [10] 4 315,455 925 5,710 km2

802 Geoinformatica (2023) 27:789–816

Table 2 Synthetically-composed polygon sets

Polygon Count Minimum n Maximum n Average n Average Area

L1 1,000 11 107 60 2,338 km2

L2 1,000 107 488 250 7,102 km2

L3 1,000 488 950 700 13,207 km2

L4 1,000 2,000 3,500 2,500 37,367 km2

L5 1,000 5,000 9,500 7,000 113,700 km2

L6 1,000 9,500 315,455 18,000 609,506 km2

L7 100 1280 1529 1,400 4,194 km2

L8 500 1280 1535 1,400 46,856 km2

L9 2,000 1280 1927 1,500 34,495 km2

L10 4,000 1280 3415 2,000 35,931 km2

L11 5,000 1280 5045 2,500 49,616 km2

L12 10,000 731 9430 2,300 43,395 km2

L13 1,000 732 8745 1,400 100 km2

L14 1,000 731 8679 1,650 250 km2

L15 1,000 732 9390 2,400 700 km2

L16 1,000 732 9384 2,700 3,000 km2

L17 1,000 732 9411 2,500 13,000 km2

L18 1,000 732 9364 2,300 400,000 km2

six sets, L13-L18, that have an increasing area, but the same polygon count and homoge-
neous perimeter complexity. The table shows the actual values of polygon count, perimeter
points, and area.

Evaluated alternatives We evaluate our SGPAC technique (denoted as SGPAC-2L) against
five alternatives: (1) A variation of SGPAC (denoted as SGPAC-1L) that employs only
one-level clipping based on global index partitions and ignores local index clipping. (2) A
variation of SGPAC (denoted as SGPAC-QO) that employs our query optimizer. (3) A dis-
tributed filter-refine approach (denoted as FR) that uses the popular MBR-based filter-refine
(as discussed in Section 2) on each worker node in parallel. (4) A spatial join based approach
(denoted as SP-Join) that partitions both data points and polygons based on the global
index, and then performs nested loop spatial join on each worker node in parallel. (5) A dis-
tributed variant of Hu et al. [21, 22] approach that suggests indexing the query polygons in
an in-memory R-tree index structure (denoted as R-IDX). All approaches are summarized
in Table 3.

7.2 Query evaluation

Figures 2, 3, and 4 evaluate the query performance of the different techniques on the four
real polygon sets of continents, countries, provinces, and counties (Table 1). The figures
present the query performance for the two different local indexes, in ascending order of
three different parameters: average number of perimeter points n per polygon (in Fig. 2),
average polygon area per polygon (Fig. 3), and polygon count (Fig. 4).

803Geoinformatica (2023) 27:789–816

Table 3 Evaluated Alternatives

Acronym Approach

SGPAC-2L SGPAC with two-Level clipping using local and global indexes

SGPAC-1L SGPAC with only one-Level clipping using global index

SGPAC-QO SGPAC with query optimizer

FR Filter-refine approach

SP-Join Spatial join approach

R-IDX Indexing query polygons approach

In all cases, SGPAC-QO and SGPAC-2L outperform all other techniques. SGPAC-1L has
significant performance enhancement compared to FR and SP-Join and comparable perfor-
mance to R-IDX. The traditional FR or SP-Join only yields comparable performance in the
provinces set which has the simplest polygon perimeters, with an average of 246 points per
perimeter. Our proposed approach SGPAC-2L while using a local R-tree index takes under
1 minute to process all query polygons on the 100 million data points, except in one case
where it takes under 3 minutes. When using a grid local index, SGPAC-2L takes 4 minutes
to process these polygon sets.

In particular, Figs. 2, 3 and 4 gives the following major insights:

Fig. 2 Query performance on real polygon layers varying average perimeter points

804 Geoinformatica (2023) 27:789–816

Fig. 3 Query performance on real polygon layers varying average polygon area

(1) The first insight is the high variability in query speedup for different polygon layers.
Specifically, as the average number of boundary points increases, the speedup signifi-
cantly increases. Which means that for simpler polygon set, we see slight enhancement
when using SGPAC variations, which is depicted in provinces set that has the sim-
plest polygon perimeters, with an average of 246 points per perimeter; here FR and
SP-Join perform comparably to SGPAC variations with only 2 times slower latency,
this rate increases to be 15 times slower if SGPAC is incorporated with a local R-
tree index. However, when the polygon complexity increases, with a higher number
of perimeter points, SGPAC variations perform much better (up to 240 times faster)
due to our proposed polygon complexity reduction. The effect of this reduction is
significant and reduces query latency up to an order of magnitude on real complex
polygons.

(2) The second insight deals with the effectiveness of our optimization. In all cases,
SGPAC-QO gives a similar or better performance compared to SGPAC-2L, which
showcases the effectiveness of our query optimizer. In particular, as can be seen in

Fig. 4 Query performance on real polygon layers varying polygon count

805Geoinformatica (2023) 27:789–816

Fig. 2(c), SGPAC-QO shows its best performance over SGPAC-2L when polygons
are the simplest (i.e. with an average of 246 points per perimeter). This means that
SGPAC-QO cleverly employed a cheaper technique (filter-refine) when compared to
SGPAC-2L. This showcases the effectiveness of our query optimizer in adaptively
selecting the appropriate technique for various query workloads. Moreover, it is notice-
able that the SGPAC-QO latency reduction is slight when compared to SGPAC-2L in
all other cases. As real polygons are typically highly complex, in most cases the opti-
mizer will use the two-level clipping approach (like SGPAC-2L) and rarely uses the
filter-refine approach. This again confirms the superiority of our proposed two-level
clipping technique in most real cases.

(3) The third insight is the effectiveness of the second level of SGPAC two-level clip-
ping for reducing perimeter complexity. As shown in Fig. 3(a) and (b), the SGPAC-1L
approach (that ignores second level clipping) performs comparably to SGPAC-2L
except in the case of counties that have the smallest area (5.7km2), where SGPAC-1L
performs five times slower than SGPAC-2L in case of using a local grid index, and 13
times slower if a local R-tree index is used. In that case, many county polygons are
small enough to fit in the local machine without being clipped by the global index; that
is, the polygon complexity is not reduced by the first level clipping. In such scenarios,
ignoring the second level of clipping leads to much more expensive point-in-polygon
checks and much higher overall latency.

(4) When comparing Figs. 3 and 4 to 2,we do not see any clear effect in query latency
from the increase in polygon area or polygon count. One possible interpretation is that
area and polygon count might indeed have no effect, or that their effects are correlated.
To further isolate the effect of these parameters, our following experiment uses the
synthetically-composed polygon sets that contain polygons with controlled parameter
values.

Figure 5 shows the same experiments of Figs. 2, 3, and 4 but on the synthetically-
composed polygon sets that are described in Section 7.1. All sub-figures of Fig. 5 are
truncated at 10 minutes. FR and SP-Join in Fig. 5(a) takes 21 minutes at 7K points, and 166
minutes at 18K, whereas SGPAC-1L takes 22 minutes at 18K. In Fig. 5(b), FR takes 27 min-
utes and 224 minutes for 7K and 18K points respectively. SGPAC-1L takes 32 minutes at
18K, whereas R-IDX takes 23 minutes. In Fig. 5(c), FR and SP-Join take 32-35 minutes at
400K KM2. Whereas in Fig. 5(d) FR takes 44 minutes at the same area. In Fig. 5(e), FR
and SP-Join take 24 minutes at 5K points and 45 minutes at 10K points, whereas FR takes
32 minutes and 60 minutes at the same points in Fig. 5(f).

The results confirm that the SGPAC variations have significant performance superiority
over other techniques and scale much better for large-scale datasets. Figure 5(a) gives a new
insight that in simple polygons, SP-Join beats all other techniques, even SGPAC-QO. The
reason is that our query optimization compares only FR and SGPAC, but does not consider
SP-Join, so it never employs SP-Join even for very simple polygons.

With respect to the polygon area parameter, Fig. 5(c) and (d), if one polygon set is much
larger in area than another, it is likely that larger areas have higher query latency, due to
a larger number of points inside polygons which requires more point-in-polygon checks.
For the polygon count parameter, Fig. 5(e) and (f) show that when the number of polygons
increases, query latency linearly increases for all techniques due to more point-in-polygon
operations. That is, polygon count has a clear positive correlation with query latency. Yet,
the SGPAC variations have the least increase in latency, while other techniques have a much
higher increase.

806 Geoinformatica (2023) 27:789–816

Fig. 5 Query performance on synthetically-composed polygon sets

7.3 Global index tuning

This section studies the effect of various global index settings on the query latency of all
techniques. Names of approaches running on a grid local index are appended with (G),
whereas names of approaches running on an R-Tree local index are appended with (R).

Figure 6 shows the effect of varying the partition capacity for quadtree global index on
the four real polygon sets of Table 1. In Fig. 6(a) for continents and Fig. 6(b) for countries,

807Geoinformatica (2023) 27:789–816

Fig. 6 Varying global index partition capacity on Real Polygon Layers

all techniques have almost stable query latency while varying the partition capacity. More-
over, all variations of SGPAC have significantly faster latency for all values compared to FR
and SP-Join with up to 540 times faster when using an R-Tree local index for continents set,
and up to 340 times faster with the same setup for the countries set. SGPAC variations have
less speedup over R-IDX compared to FR and SP-Join, with faster 3-27 times faster query
latency in case of continents and 3-24 times faster in case of countries.

Figure 6(c) and (d) show the performance for the provinces and counties polygon layers.
Here we see an increasing latency pattern while increasing the partition capacity, where
the increase is slight in the case of provinces and more significant in the case of counties.
Provinces are relatively simple polygons with an average of 246 points per perimeter, yet
they are larger in area than counties. As a result, increasing the partition capacity from 10K
to 50K points does not significantly affect any of the techniques. For these simple polygons,
all techniques using grid local index are comparable with the SGPAC latency up to only
twice faster than FR and SP-Join. When using R-Tree index, SGPAC shows 2-7 times faster
query latency than R-IDX and 4-60 times faster for FR when using an R-Tree index.

For counties, most of the polygons are of a small area, so they wholly fit in local par-
titions with almost no clipping at the global index level. With their complex perimeters,
increasing the partition capacity significantly increases the point-in-polygon operations cost
at each local partition and leads to higher latency. Yet, in this case, SGPAC-2L shows the
best performance due to its effective perimeter complexity reduction at both global and local
levels. SGPAC-2L has an order of magnitude faster latency than FR and SP-Join. SGPAC-1L

808 Geoinformatica (2023) 27:789–816

shows less performance improvement as it ignores the local clipping step. This again con-
firms our previous conclusions on the significant effectiveness of our two-level clipping as
opposed to one-level clipping. R-IDX latency increases slightly with increasing the partition
capacity, till it meets and outperforms SGPAC-1L as the partition capacity increases.

The same experiment has been repeated on synthetically-composed polygon sets Fig. 7
and produces similar results and the same conclusions. All SGPAC variations have signifi-
cantly better performance than traditional techniques for different parameter values. In case
of complex polygon set with larger areas as in Fig. 7(a), increasing the partition capacity
does not have significant effect on the query latency. However in Fig. 7(c) where the average
area is 13,000km2, all approaches latencies increase with increasing the partition capacity.

7.4 Local index tuning

This section studies the effect of varying local index granularity on the performance of
SGPAC-2L. Figure 8 shows varying the cell size from 1KMx1KM to 100KMx100KM on the
real polygon sets as well as the synthetically composed sets. For all real sets, changing the
local grid granularity does not significantly affect query latency, except for the counties set.
For counties, most of the polygons are of a small area, so they wholly fit in local partitions
with almost no clipping at the global index level. If the local index cell size is large, the
polygons could fit in one local partition skipping also the second clipping which in turn
increases the running time significantly. For the synthetically-composed sets, we see that as

Fig. 7 Varying global index partition capacity on Synthetically-Composed Polygon Sets

809Geoinformatica (2023) 27:789–816

Fig. 8 Varying local grid index granularity

the cell size increases, the latency slightly increases because more polygons do not undergo
sufficient clipping.

Figure 9 shows varying the R-Tree node capacity from 100 points per node to 10K points
per node. Figure 9(b) shows that for Continents, Countries and Provinces sets the latency
is not affected by changing the node capacity. However, as seen in Fig. 9(a), Counties

Fig. 9 Varying local R-Tree node capacity

810 Geoinformatica (2023) 27:789–816

sets latency significantly increases with increasing the node capacity. Similar to the Grid
Index, increasing the R-Tree node capacity generates nodes with larger areas, which in
turn does not reduce the polygon complexity sufficiently as smaller area nodes. Similar to
the behaviour of synthetic sets using grid index, Fig. 9(c) shows that increasing the node
capacity slightly causes an increase in the query latency.

7.5 Cost models evaluation

In this section, we first evaluate the accuracy of the cost models in the case of the local
grid index introduced in Section 5. Then we evaluate the tree-to-grid mapping accuracy
discussed in Section 6.2.

7.5.1 Grid index cost models evaluation

This experiment evaluates the accuracy of our cost models (that are presented in Section 5)
in terms of the number of basic operations, rather than query latency as discussed in previ-
ous experiments. Figure 10 shows the estimated number of operations for the models in (1)
(denoted as Estimated FR) and (2) (denoted as Estimated SGPAC-2L) versus the actual num-
ber of operations (denoted as Actual FR and Actual SGPAC-2L, respectively). The figure
clearly shows the perfect match of Estimated FR and Actual FR, so the filter-refine cost
model calculates the actual processing cost very accurately. However, Estimated SGPAC-2L
is much higher than Actual SGPAC-2L in all cases except counties. This means SGPAC cost
model in (2) always overestimates the cost. The reason is that this model assumes a very
conservative assumption that all overlapping grid cells lie on the polygon borders and per-
form refine operations. This assumption is so conservative for sufficiently large polygons
for most grid cell sizes. Many of these grid cells lie completely inside the polygon and do
not perform any refine operations. This assumption is more realistic for small polygons such
as counties, and that is why Fig. 10(e) shows the most accurate estimations for this model.
This assumption is also affected by the grid cell size. The larger the grid cell, the fewer cells
are wholly contained in the polygon, the more accurate the model. So, in all figures, when
grid cell size increases, the model estimates more accurately. In all cases, it is noticeable
that the model always provides an upper bound for the actual cost and never underestimates
it.

7.5.2 Tree-to-grid evaluation

As discussed in Section 6.2, even in the case of a local tree index, we maintain a grid
estimator. The main challenge is choosing a grid cell granularity that is small enough to
provide accurate estimations but not too small, to be an overhead on the system to maintain.
Figure 11 shows the ratio between the expected number of operations to the actual num-
ber of operations while changing the number of cells in each local estimator grid. For the
continents and the countries’ datasets, the grid cell size does not affect the estimation accu-
racy. The reason is that these polygons are large enough to cover the whole local partition.
Hence dividing the local partitions into more cells does not significantly affect the estima-
tion outcome. On the other hand, the provinces and the counties datasets show estimation
accuracy improvement while increasing the number of cells per partition. This observation
is more evident in the case of the counties dataset since these polygons have the smallest
area.

811Geoinformatica (2023) 27:789–816

Fig. 10 Grid index cost models evaluation

8 Conclusions

This paper proposes a spatial group-by query that groups spatial points based on the bound-
aries of a set of complex polygons. This query designed for thousands of polygons with
complex perimeters and large-scale spatial datasets that contain hundreds of millions of

812 Geoinformatica (2023) 27:789–816

Fig. 11 Tree-to-grid estimator evaluation

points. We have proposed a highly efficient query processor that uses existing distributed
spatial data systems to support scalable spatial group-by queries. Our technique depends
on reducing query polygons complexity by clipping them based on global and local spatial
indexes. Furthermore, we distinguish highly skewed data partitions to enforce load bal-
ancing among distributed workers. In addition, we employ an effective query optimizer
that adaptively assigns an appropriate processing scheme based on polygon complexity.
The experimental evaluation showed significant superiority for our techniques over existing
competitors to support large-scale datasets with up to an order of magnitude faster query
latency.

Acknowledgements This work was partially supported by the National Science Foundation, under grants
IIS-1849971, IIS-1901379 and SES-1831615 is also their COI.

Data Availability All data created or used during this study are publicly available at the following web-
sites: https://star.cs.ucr.edu/, https://www.naturalearthdata.com/, https://www.arcgis.com/, and https://gadm.
org/data.html.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

813Geoinformatica (2023) 27:789–816

https://star.cs.ucr.edu/
https://www.naturalearthdata.com/
https://www.arcgis.com/
https://gadm.org/data.html
https://gadm.org/data.html
http://creativecommons.org/licenses/by/4.0/

References

1. Abdelhafeez L, Magdy A, Tsotras VJ (2020) Scalable spatial GroupBy aggregations over complex
polygons. In: SIGSPATIAL

2. Aghajarian D, Puri S, Prasad S (2016) GCMF: an efficient end-to-end spatial join system over large
polygonal datasets on GPGPU platform. In: SIGSPATIAL

3. Almaslukh A, Magdy A, Rey SJ (2018) Spatio-temporal analysis of meta-data semantics of market
shares over large public geosocial media data. J Locat Based Serv

4. Azevedo LG, Güting RH, Rodrigues RB, Zimbrão G, de Souza JM (2006) Filtering with raster
signatures. In: ACM GIS

5. Azevedo LG, Zimbrão G, De Souza JM (2007) Approximate query processing in spatial databases using
raster signatures. In: Advances in geoinformatics. Springer

6. Brinkhoff T, Kriegel H-P, Schneider R (1993) Comparison of approximations of complex objects used
for approximation-based query processing in spatial database systems. In: ICDE

7. Brinkhoff T, Kriegel H-P, Schneider R, Seeger B (1994) Multi-step processing of spatial joins. SIGMOD
23(2)

8. (2017) ArcGIS Continents. https://www.arcgis.com/home/item.html?id=5cf4f223c4a642eb9aa7ae1216a
04372. Accessed 2019

9. Cortes RX, Rey S, Knaap E, Wolf LJ (2019) An open-source framework for non-spatial and spatial
segregation measures: the PySAL segregation module. J Comput Soc Sci

10. GADM Counties. https://gadm.org/download world.html. Accessed 2019
11. (2009) NE Countries. https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-

0-countries/. Accessed 2019
12. (2009) NE Provinces. https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-

1-states-provinces/. Accessed 2019
13. Duque JC, Anselin L, Rey SJ (2012) The Max-p-regions problem. J. Reg Sci 52(3)
14. Spatialhadoop EA, Mokbel MF (2015) A Mapreduce framework for spatial data. In: ICDE
15. Eldawy A, Mokbel MF (2015) The era of big spatial data. In: ICDEW
16. Fang Y, Friedman M, Nair G, Rys M, Schmid A-E (2008) Spatial indexing in microsoft SQL server

2008. In: SIGMOD
17. Frank AU (1981) Application of DBMS to land information systems. In: VLDB
18. Guo Q, Palanisamy B, Karimi HA, Zhang L (2016) Distributed algorithms for spatial retrieval queries in

geospatial analysis. STCC 4(3)
19. Güting RH (1994) An introduction to spatial database systems. VLDB J
20. Haines E (1994) Point in polygon strategies. Graphics gems IV 994
21. Hu Y, Ravada S, Anderson R (2011) Geodetic point-in-polygon query processing In Oracle spatial. In:

SSTD
22. Hu Y, Ravada S, Anderson R, Bamba B (2012) Topological relationship query processing for complex

regions In oracle spatial. In: GIS
23. Hughes JN, Annex A, Eichelberger CN, Fox A, Hulbert A, Ronquest M (2015) GeoMesa: a distributed

architecture for spatio-temporal fusion. In: SPIE, vol 9473
24. Jacox EH, Samet H (2007) Spatial join techniques. TODS 32(1)
25. Kang W, Rey S, Wolf L, Knaap E, Han S (2020) Sensitivity of sequence methods in the study of

neighborhood change in the United States. Comput Environ Urban Syst 81
26. Kipf A, Lang H, Pandey V, Persa RA, Anneser C, Zacharatou ET, Doraiswamy H, Boncz PA, Neumann

T, Kemper A (2020) Adaptive main-memory indexing for high-performance point-polygon joins. In:
EDBT

27. Kothuri RK, Ravada S (2001) Efficient processing of large spatial queries using interior approximations.
In: SSTD

28. Kothuri RKV, Ravada S, Abugov D (2002) Quadtree and R-tree indexes in oracle spatial a comparison
using GIS data. In: SIGMOD

29. Kriegel H-P, Horn H, Schiwietz M (1991) The performance of object decomposition techniques for
spatial query processing. In: SSTD

30. Lee Y-J, Lee D-M, Ryu S-J, Chung C-W (1996) Controlled decomposition strategy for complex spatial
objects. In: DEXA

31. Lee Y-J, Park H-H, Hong N-H, Chung C-W (1996) Spatial query processing using object decomposition
method. In: CIKM

32. Liu R, Zhang H, Busby J (2008) Convex hull covering of polygonal scenes for accurate collision
detection in games. In: Graphics interface

33. Malensek M, Pallickara S, Pallickara S (2013) Polygon-based query evaluation over geospatial data
using distributed hash tables. In: UCC

814 Geoinformatica (2023) 27:789–816

https://www.arcgis.com/home/item.html?id=5cf4f223c4a642eb9aa7ae1216a04372
https://www.arcgis.com/home/item.html?id=5cf4f223c4a642eb9aa7ae1216a04372
https://gadm.org/download_world.html
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-0-countries/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-0-countries/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-1-states-provinces/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-adm in-1-states-provinces/

34. Nodarakis N, Sioutas S, Gerolymatos P, Tsakalidis A, Tzimas G (2015) Convex polygon planar range
queries on the cloud: grid vs. angle-based partitioning. In: ALGOCLOUD

35. Orenstein JA (1989) Redundancy in spatial databases. SIGMOD 18(2)
36. Pandey V, Kipf A, Neumann T, Kemper A (2018) How good are modern spatial analytics systems?

VLDB 11(11)
37. Ray S, Simion B, Brown AD, Johnson R (2014) Skew-resistant parallel in-memory spatial join. In:

SSDBM
38. Rey SJ, Anselin L (2007) PySAL: a python library of spatial analytical methods. Rev Reg Stud 37(1)
39. Shamos MI, Hoey D (1976) Geometric intersection problems. In: SFCS
40. Sidlauskas D, Chester S, Zacharatou ET, Ailamaki A (2018) Improving spatial data processing by

clipping minimum bounding boxes. In: ICDE
41. Toth CD, O’Rourke J, Goodman JE (2017) Handbook of Discrete and Computational Geometry

Chapman and Hall
42. (2020) UCR STAR. https://star.cs.ucr.edu/. Accessed 2019
43. (2020) UCR STAR NE Provinces. https://star.cs.ucr.edu/?NE/states provinces#center=34.0,-117.3&

zoom=2. Accessed 2019
44. Wang N, Hu B-G (2011) IdiotPencil: an interactive system for generating pencil drawings from 3D

polygonal models. In: CADGRAPHICS
45. Xie D, Li F, Yao B, Li G, Zhou L, Guo M (2016) Simba: Efficient in-memory spatial Analytics. In:

SIGMOD
46. Yu J, Zhang Z, Sarwat M (2018) Spatial data management in apache Spark: the GeoSpark perspective

and beyond. GeoInformatica
47. Zacharatou ET, Doraiswamy H, Ailamaki A, Silva CT, Freiref J (2017) GPU rasterization for real-time

spatial aggregation over arbitrary polygons. VLDB 11(3)
48. Zhang D, Tsotras VJ (2001) Improving min/max aggregation over spatial objects. In: Proceedings of the

9th ACM international symposium on advances in geographic information systems, GIS ’01. Association
for Computing Machinery, New York, pp 88–93

49. Zhang J, You S (2012) Speeding up large-scale point-in-polygon test based spatial join on GPUs. In:
SIGSPATIAL

50. Zimbrao G, De Souza JM (1998) A raster approximation for processing of spatial joins. In: VLDB

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Laila Abdelhafeez received her B.Sc. in Computer Engineering,
from faculty of Engineering, Cairo University, Egypt in 2017. She
is currently pursuing her Ph.D. degree in Computer Science at the
University of California, Riverside. Her research interests include big
data management, and spatial data management.

815Geoinformatica (2023) 27:789–816

https://star.cs.ucr.edu/
https://star.cs.ucr.edu/?NE/states_provinces#center=34.0,-117.3&zoom=2
https://star.cs.ucr.edu/?NE/states_provinces#center=34.0,-117.3&zoom=2

Amr Magdy is an Assistant Professor of Computer Science and
Engineering and a cofounding faculty member of the Center for
Geospatial Sciences at UC Riverside. His research interests include
database systems, spatial data management, big data management,
largescale data analytics, indexing, and main-memory management.
His research is published in prestigious research venues, including
ACM SIGMOD, ACM SIGSPATIAL, IEEE ICDE, IEEE TKDE, and
VLDB Journal. Amr’s research is recognized among the best papers
in IEEE ICDE 2014 and ACM SIGSPATIAL 2019 and has been incu-
bated by several industrial collaborators. He is a recipient of the NSF
CRII 2019 award and several research grants that support his research
on spatial data science and related educational activities.

Vassilis J. Tsotras is a professor at the Department of Computer Sci-
ence and Engineering at UC Riverside (UCR). Before that he was
a (tenured) Associate Professor at Polytechnic University (now New
York University). Currently, he serves as the director of the UCRData
Science Center and Chair of the UCR Data Science program. His
research is in the general area of Databases with focus on big data
management and spatial and spatio-temporal data. He serves as edi-
tor in chief of the Journal of Cooperative Information Systems and
have served as associate editor for the IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) and The Very Large Data Bases
(VLDB) Journal. He was the General co-Chair of the 26th Interna-
tional Conference of Data Engineering (ICDE) and Program Chair
(DB Track) for the 15th Conference on Information and Knowl-
edge Management (CIKM). His research has been supported through
various grants from NSF, the Department of Defense and industry.

816 Geoinformatica (2023) 27:789–816

	SGPAC: generalized scalable spatial GroupBy aggregations over complex polygons
	Abstract
	Introduction
	Related work
	Centralized techniques
	Distributed and parallel techniques

	Problem definition
	Query processing
	Query processing framework
	SGPAC global index instantiation
	SGPAC local index instantiation

	Query optimization
	Filter-refine cost model
	SGPAC cost model
	Grid local index cost model
	R-Tree local index cost model

	Framework generalization
	Variant query processor instantiations
	Variant cost models

	Experimental evaluation
	Experimental setup
	Evaluation datasets
	Evaluated alternatives

	Query evaluation
	Global index tuning
	Local index tuning
	Cost models evaluation
	Grid index cost models evaluation
	Tree-to-grid evaluation

	Conclusions
	References

