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Abstract Expansive clayey soils often pose chal-
lenges for construction projects due to their low 
bearing capacity, swelling, and shrinkage proper-
ties. While previous research has explored additives 
to enhance these soils’ properties, the potential of 
sand remains underexplored. This study investigates 
the impact of varying sand percentages on expansive 
clayey soils’ consistency, compaction, and perme-
ability. This study examines how adding different 
percentages of sand influences the physical properties 
of expansive clayey soils. Laboratory tests involved 
systematic testing of texture, compaction, and per-
meability. Findings reveal a notable improvement in 
the physical properties of the soil with the addition 
of sand. Results from the laboratory tests provided 
data for empirical equations that facilitate the predic-
tion of soil properties based on the sand content. The 
enhancement in soil properties underscores the poten-
tial of sand as an additive for expansive clayey soils. 
The empirical equations presented here provide prac-
tical benefits to geotechnical engineers and practition-
ers engaged in construction projects involving these 
soils, offering them valuable insights into the benefits 
of sand additives to improve physical characteristics. 
The insights gained from this research hold promising 

prospects for improving construction practices and 
addressing the challenges associated with these soils.

Keywords Expansive soil · Sand · Additive 
material · Physical properties · Improvement
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wi  Initial moisture content 
(%)

V  Initial sample volume 
 (cm3)

Vd  Volume of the sample 
after drying  (cm3)

ms  Mass of the dried soil (gr)
ρw  Density of water (gr/cm3)
γd  Dry unit weight (kN/m3)
γdmax  Maximum dry unit weight 

(kN/m3)
γdmax(Fs)  Unknown maximum dry 

unit weight for the desired 
percentage of sand Fs (kN/
m3)

Wopt(Fs)  Unknown optimal mois-
ture content for the desired 
percentage of sand Fs (%)

γdmax(Fs1)  Well-known maximum 
dry unit weight that 
corresponds to the sand 
percentage Fs1 (kN/m3)

Wopt(Fs1)  Well-known optimal 
moisture content that 
corresponds to the sand 
percentage Fs1 (%)

γw  Unit weight of the water 
(kN/m3)

mv  Coefficient of volumetric 
compressibility  (m2/kN)

cv  Coefficient of consolida-
tion  (m2/day)

Cc (compressibility)  Compression index (−)
Cr  Recompression index (−)
Cu  Coefficient of uniformity 

(−)
Cc (grain size)  Curvature coefficient (−)
emax  Maximum voids ratio (−)
emin  Minimum voids ratio (−)
K  Hydraulic conductivity 

(permeability coefficient) 
(m/day)

G  Specific gravity (−)
F200  Percent passing No. 200 

sieve (%)
OMC  Optimal moisture content
MDD  Maximum dry density

1 Introduction

Expansive clayey soils present a worldwide geotech-
nical problem, causing extensive damage to build-
ings and infrastructure and requiring costly repairs 
and delays to construction. Damage from expansive 
soils, such as structural fractures, building collapse, 
and road failures, costs billions of dollars annually 
(Steinberg 1985; Kolay and Ramesh 2016; Goodarzi 
et  al. 2016; Salimi et  al. 2018). Nelson and Miller 
(1997) have contended that expansive soils generate 
a financial impact more significant than earthquakes 
or floods. Considering these losses, there is a need 
to study expansive soils to find effective methods for 
mitigating their adverse effects on civil infrastructure.

Mineral additives and fibers inclusion have 
emerged as valuable tools in geotechnical engineering 
for improving the performance of expansive clayey 
soils. Table 1 presents the various materials used over 
many years to make the expansive clayey soils suit-
able for use in various civil engineering projects.

Sand also provides a beneficial effect on expan-
sive soils. Understanding the relationship between 
sand percentage in clayey soil and its improved engi-
neering performance requires additional testing and 
research. A common approach relates soil index prop-
erties to shrink-swell performance. Geotechnical lab-
oratories determine Atterberg limits, grain size distri-
bution, maximum dry density, and optimum moisture 
based on standard tests they perform at a modest cost 
(Edora et  al. 2021; Alavi et  al. 2010; Holtz 2001). 
Engineers then correlate these results to the soil mix-
tures’ strength, compression, and swell properties. 
The quantity of added sand may have a profound ben-
eficial influence on the problematic soil.

The primary purpose of this research is to evalu-
ate the laboratory results of such mixtures and to 
determine the extent to which sand can improve the 
physical characteristics of expansive soils from Dam-
serkhu, Syria.

Previous researchers have investigated the behavior 
of expansive soils by adding sand (Kaoua et al. 1994; 
Louafi and Bahar 2012; Nagaraj 2016; Deng et  al. 
2017; Phanikumar et al. 2021). Roy (2013) also stud-
ied changes in the plasticity, compaction, and strength 
characteristics of soil mixtures as they improved from 
adding sand in varying proportions to cohesive soil.

Researchers, including Louafi and Bahar (2012), 
Roy (2013), Srikanth and Mishra (2019), and 
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Atemimi (2020) have conducted investigations on the 
impact of adding sand to improve soil consistency. 
Their findings show that adding sand to expansive 
soil significantly reduces the liquid limit and plastic-
ity index and highlights the importance of sand in 
enhancing the engineering characteristics of cohesive 
soil.

Al Rawi et  al. (2018) investigated the effect of 
adding sand (0–20%) on the characteristics of low 

plasticity clayey soil. The results revealed that as the 
percentage of added sand increased, the soil’s liquid 
limit values and plasticity index values decreased. 
Furthermore, the soil strength and permeability coef-
ficient increased with increasing percentages of added 
sand.

The study by Khan et  al. (2014) investigated the 
behavior of clay-sand mixtures with varied sand per-
centages (0–20–40%) using standard Proctor tests. 

Table 1  Physical properties of the clay and sand components

Material Type of addition Reference

Hydraulic binders Cement Asgari et al. (2015), Ahmadi Chenarboni et al. (2021)
Lime Yi et al. (2015)

Volcanic additives Volcanic ash Hossain et al. (2007), Hastuty et al. (2017)
Natural pozzolana Hossain et al. (2007), Harichane et al. (2012), Gadouri et al. 

(2016), Gadouri et al. (2017), Harichane et al. (2018), Gadouri 
et al. (2019)

Industrial solid wastes Coal waste ash Modarres and Nosoudy (2015)
Fly ash Kolay and Ramesh (2016)
Silica fume Singh et al. (2020)
Cement kiln dust Amadi and Lubem (2014)
Copper slag Ziari et al. (2017)
Red mud Bandopadhyay and Giri (2023)
Granulated blast furnace slag Celik and Nalbantoglu (2013), Mujtaba et al. (2018)
Phospho-gypsum James et al. (2023)
Ceramic dust Al-Baidhani and Al-Taie (2020a), Okeke (2020)
Brick dust Al-Baidhani and Al-Taie (2020b)
Polyvinyl waste Oyekan et al. (2013)

Agricultural solid wastes Bagasse ash Hasan et al. (2016), Dang et al. (2021)
Rice husk ash Ashango and Patra (2014), Kumar et al. (2022)
Cassava peels ash Edeh et al. (2014)
Coffee husk ash Munirwan et al. (2022)
Olive cake residue Nalbantoglu and Tawfiq (2006)
Groundnut shell ash Oriola and Moses (2010)

Domestic solid wastes Incinerator ash Gautam et al. (2021)
Waste tire Mistry et al. (2021)
Eggshell powder Zada et al. (2023)
Glass cullet Eberemu et al. (2012)

Mineral solid wastes Quarry dust Sudhakar et al. (2021)
Marble dust Jain et al. (2020)
Pyroclastic dust Ene and Okagbue (2009)
Granite dust Abdelkader et al. (2022)

Fibers Coir fibers Maliakal and Thiyyakkandi (2013)
Polypropylene fibers Meziani and Gadouri (2023), Gadouri and Meziani (2023)
Nylon fibers Al-Akhras et al. (2015)
Glass fibers Rabab’ah et al. (2021)
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Their results showed that increasing sand content led 
to an increase in the maximum dry density (MDD) 
of the mixtures and a decrease in the optimum mois-
ture content (OMC), which is consistent with studies 
by Roy (2013) and Gupta and Sharma (2014). Simi-
larly, Prasad and Sharma (2014) reported an improve-
ment in MDD with the addition of sand; however, 
they studied expansive soils with a high sand content, 
which may limit the applicability of their findings to 
mixtures with relatively small percentages of added 
sand.

Sand particles will tend to form peds within the 
clay matrix, eventually leading to a more robust sup-
port network within the remaining clay. The mixture 
is less sensitive to moisture, demonstrates some fric-
tional strength, and increases permeability, ultimately 
leading to a higher bearing capacity when mixed and 
compacted on-site (Alnmr and Ray 2021).

In summary, while previous studies have shown 
that adding sand to expansive soil can be an effec-
tive and cost-efficient means of improvement, the 
impact of sand on the physical characteristics of the 
soil, particularly permeability coefficients, has not 
been adequately investigated in most published stud-
ies. Improved performance varied widely, and a sin-
gle, general correlation remains elusive. Furthermore, 
prior studies have only looked at modest percentages 
of added sand and have not provided equations for 
predicting the physical characteristics of expansive 
soil based on widely varying sand content.

This study seeks to address these constraints 
by looking further into the effects of sand and con-
structing equations to predict the physical features of 
expanding soil based on sand content percentages. 
This is critical since sand content of soil samples 
taken from project locations can vary significantly 
and the derived relationships will aid in predicting 
the physical characteristics of such soils. By conduct-
ing thorough testing programs to determine index 
and performance properties, this study will correlate 
results between the two sets of test results. Overall, 
this study will improve our understanding of how 
sand impacts the physical characteristics of expansive 
soils and provide essential tools for future research 
and engineering applications.

2  Research Materials and Methodology

This research adopted an experiment-based approach 
to fulfill its objectives. The clay soil originated from 
Damserkhu, Lattakia, Syria, where technicians 
retrieved samples from a depth of about three meters. 
Starting from the surface, the geotechnical profile at 
the site consisted of three layers: (1) an agricultural 
layer with a thickness of up to 1 m; (2) an expansive 
soil layer that extended from 1 to 4 m depth; and (3) 
sandstone interlaced cementitious lime below 4  m. 
Sand used for mixing came from the Shuqayfat Jibla 
location in Syria and consisted of fine marine sand 
that remained on a No. 200 sieve after washing. A 
summary of physical properties appears in Table  2. 
Testing details appear in the paragraphs that follow.

Laboratory technicians performed the experiments 
according to ASTM standards. Sand-clay mixtures 
were prepared based on dry weight by blending the 
soil with varying percentages of sand (Fs) (10%, 
20%, 30%, 40%, and 50%). Grain Size Distribution 
experiments (ASTM D6913/D6913M-17, 2017a; 
ASTM D7928-17, 2017d); produced particle size dis-
tribution curves shown in Fig. 1. Note that the shape 
of the curves suggests a gap-graded mixture with very 
little material between 0.1 and 0.01 mm in diameter. 
The percentage of clay particles with a diameter less 
than 0.002 mm was 73.9%. Table 3 shows the mineral 
composition of the clay.

The Casagrande method (ASTM D4318-17e1, 
2017b) determined the liquid limit (LL). The pro-
cedure was repeated for several trials of moisture 
content to determine the final result. The LL results 
from a best-fit line of moisture vs. the number of 
drop impact blows to determine moisture at 25 
blows (Casagrande 1932). The plastic limit (PL) test 
(ASTM D4318-17e1) involves manually rolling a soil 
thread on a glass plate until it crumbles at a specified 
diameter, typically about 3  mm. This crumbling is 
caused by air entry or cavitation within the soil thread 
(Haigh et  al. 2015). Technicians mixed the proper 
proportions of sand and clay and then performed LL 
and PL tests on mixtures with % added sand = (0%, 
10%, 20%, 30%, 40%, and 50%). The determination 
of the plasticity index (PI = LL − PL) resulted in the 
final step of plasticity determination (Bleam 2017). 
The mixtures are plotted on the Casagrande chart, 
as shown in Fig.  2. The data point labels show that 
the points follow the A-line but deviate above it with 
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increasing sand content. The results are discussed fur-
ther in a later section.

According to the AASHTO (2002) classification 
system, clean clayey soil (without sand) was clas-
sified as A-7-5, while under the USCS (unified soil 
classification system) (ASTM D2487-17e1, 2017c), 

it was classified as CH. The specific expansive clay 
mineral present in the clay was presumed to be illite 
(Holtz et  al. 1981) based on its placement near or 
above the A-line on Casagrande’s plasticity chart.

According to Prakash and Sridharan (2004), 
the free swell determined for clean, clayey soil was 
127%. The oedometer test revealed that the swelling 
pressure was equal to 26 tn/m2. Figure 3a presents the 
glass cylinders employed for determining free swell-
ing. Figure 3b depicts the fixed-load oedometer used 
in performing consolidation tests (ASTM D2435/
D2435M-11, 2020) for clay-sand mixtures to calcu-
late hydraulic conductivity (k).

This study determined the maximum dry den-
sity and optimum moisture content of various mix-
tures using the standard Proctor method (ASTM 
D698-12e2, 2012). Hydraulic conductivity or the 
permeability coefficient resulted from back-calcu-
lating consolidation vs. time data. Terzaghi’s one-
dimensional consolidation theory relates hydraulic 

Table 2  Physical 
Properties of the clay and 
sand components

Clay Sand

Parameter Value Parameter Value

Liquid limit LL (%) 79 Uniformity coefficient  Cu (−) 2.31
Plastic limit PL (%) 35 Curvature coefficient  Cc (−) 1.03
Plastic index PI (%) 44 Maximum void ratio  emax (−) 0.844
Shrinkage limit SL (%) 12 Minimum void ratio  emin (−) 0.585
Hydraulic Conductivity K (m/day) 9.4e−07 1.24
Specific gravity G (−) 2.70 2.65
Percent Passing No. 200 sieve (%) 100 0
Classification according to USCS 

(ASTM D2487-17e1)
High plastic-

ity clay 
(CH)

Poorly 
graded 
sand (SP)

Fig. 1  Gradation curve of the tested soils and mixes

Table 3  Mineral components and properties of the clay

Chemical composition %

Alumina  (Al2O3) 11.51
Ferric  (Fe2O3) 5.49
Calcium (CaO) 12
Magnesium (MgO) 2.41
Silica  (SiO2) 49.79
Sodium  (Na2O) 1.2
Potassium  (K2O) 0.37
Loss of ignition (LoI) 17.23

Fig. 2  Atterberg limits for Sand-Clay mixed soils. Numbers 
represent the sand percentage
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conductivity to the two parameters resulting from 
the test as shown in Eq. (1) below:

where: K : the hydraulic conductivity, cv : the coef-
ficient of consolidation, determined by Taylor’s 
method, mv : the coefficient of volumetric change, �w : 
the unit weight of the water.

Watabe et  al. (2011) utilized a similar method. 
They observed that this method’s hydraulic conduc-
tivity (k) compared well to the falling head perme-
ability test results, provided the sand content did not 
exceed 50%.

Specimens mixed with varying sand content, 
compacted at maximum dry density/optimum mois-
ture content, and tested for consolidation response 
provided K-values for this study. Each specific 
mixed specimen was blended, compacted, placed 
into the oedometer mold, and trimmed during sam-
ple preparation. Much care was required to achieve 
consistent densities and moisture contents. This 
approach provided improved control over essential 
parameters such as void ratio, moisture content, per-
centage of fines, and sand content within the mixed 
specimen, resulting in a more reliable and consist-
ent experimental setting (Lupogo et al. 2009).

Figure  4 depicts images of the modified sample 
preparation process employed in the laboratory. 
First, sand and clay soils were blended to create a 
homogeneous mixture (a). The mixture was then 
placed in a sealed plastic bag and isolated for 24 h 

(1)K = cvmv�w

for a uniform moisture distribution (b). The result-
ant mixture mass was then placed in a mold with 
dimensions matching the oedometer ring (c). A 
hydraulic jack applied static pressure to compress 
the specimen to the desired unit weight (d). The 
finished specimen (e) was placed in the oedometer 
frame.

Figure 5 illustrates the sequence of the oedometer 
experiment, conducted as follows:

1. Prepare soil samples based on the maximum 
dry unit weight and optimum moisture content 
obtained from the standard Proctor test for each 
sand-clay mixture.

2. Place the prepared samples in the oedometer and 
apply a vertical load of 25 kPa.

3. Allow 1–2 weeks for the samples to swell (this is 
7 days in Fig. 5)

4. Apply the following consolidation load sequence: 
50, 100, 200, 400, (200), 400, 800, (400), (200), 
(100), (50), (25) shown by the green line in 
Fig. 5.

a) Each load stage lasts approximately 48 h for 
loading and 24  h for unloading, followed 
by maintaining the load until it reaches a 
steady state.

b) The overall duration of the consolidation 
test can exceed 1  month, extending up to 
2  months. Figure  5 illustrates the process 
with a slightly shorter time line (about 
3 weeks) but the stages were the same.

Fig. 3  Free swelling (a) and Confined swelling (b) experiments of different percentages of added sand
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Fig. 4  Images of the 
modified method of sample 
preparation

Fig. 5  The odometer 
experiment testing sequence
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5. Remove the samples from the oedometer and dry 
them to determine their moisture content.

6. Calculate the coefficient of volume compressibil-
ity (mv) and the coefficient of consolidation (Cv) 
depending on the logarithm of time at t90.

Figure  6 shows the compression curve of the 
clean clay, prepared according to standard Proc-
tor specifications, with a dry unit weight (γd) of 
13.95  kN/m3 and an optimum moisture content 
 (wopt) of 31.9%.

3  Results and Discussion

This section presents the results of the laboratory 
program and discussion on correlating the results of 
the index tests to performance. The primary focus 
of the correlations is the effect of added sand. Fol-
lowing sections will address sand’s effect on soil 
consistency, shrinkage, Proctor density and mois-
ture, oedometric modulus  (Eoed), and hydraulic 
conductivity.

3.1  Effect of Sand on Soil Consistency

3.1.1  Effect of Sand on the Liquid Limit (LL) 
and Plastic Index (PI)

The results show that as the percentage of added sand 
(Fs) increases, both LL and PI decrease. While the 
plastic limit (PL) exhibits a similar trend, the decrease 

in PL is less steep than that in LL. These findings are 
consistent with previous soil improvement studies by 
Shankar et al. (2012), Louafi and Bahar (2012), and 
Roy (2013).

The effectiveness of sand in improving the char-
acteristics of expansive soils is dependent on the 
soil’s plasticity index. Previous studies by Louafi 
and Bahar (2012) and Atemimi (2020), who used 
high-plasticity bentonite clay, found that adding 
sand significantly decreased the liquid and plastic 
limit values. The slope of the relationship between 
the Atterberg limits and the percentage of added 
sand was steeper, indicating greater improvement 
in soil properties. On the other hand, the current 
study used illite clay, which has a lower plastic-
ity. Figure  7 shows that the plastic indices at 0% 
added sand were 44.2, 79.7, and 161 for the current, 
Atemimi, and Louafi and Bahar, respectively. These 

Fig. 6  Compression curve of the clear clay

Fig. 7  The relationship curves between a the liquid limit and 
b the plastic index with the percentage of added sand
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findings agree with those of Srikanth and Mishra 
(2019), who used more than 50% sand to improve 
the properties of high-plasticity soil.

Based on the experimental data, the current study 
derived Eqs. (2) and (3) for the liquid limit (LL) and 
plastic index (PI).

where: Fs% is the percentage of added sand.

3.1.2  Effect of Sand on the Shrinkage Limit 
and Longitudinal Shrinkage

The current study investigated the impact of sand 
addition on the shrinkage limit (SL) (ASTM D4943, 
2008) and longitudinal shrinkage (L.Sh) (BS 1377-2, 
1990).

3.1.2.1 Shrinkage Limit Test The shrinkage limit 
experiments were carried out using soil samples 
sieved to pass through a 425-μm sieve. The soil sam-
ples were first remolded with distilled water to obtain 
a soil paste consistency approximating the liquid limit. 
Following that, the samples were oven-dried for 24 h 
at approximately 105 °C. A preliminary wax coating 
was applied to the oven-dried soil samples to reduce 
water absorption. After immersing the wax-coated 
samples in water, the weight of the displaced water 
was carefully measured. After that, the shrinkage limit 
(SL) was calculated using Eq. (4):

 where: w
1
 is the initial water content, V is the initial 

sample volume, Vd is the volume of the sample after 
drying, ms is the mass of the dried soil, and �w is the 
density of water.

3.1.2.2 Shrinkage Limit Results Shrinkage limit 
(SL), defined as the moisture content at which soil 
volume no longer decreases, shows a slight increase 
with increasing percentage of added sand (Fs), which 
is consistent with previous research by Srikanth and 
Mishra (2019). In contrast, as shown in Fig.  8, the 

(2)LL = −0.76 × Fs% + 79
(

R
2 = 0.999

)

(3)PI = −0.42 × Fs% + 44
(

R
2 = 0.999

)

(4)SL = w
1
−

(

V − Vd

)

�w

ms

shrinkage index (SI), which measures the difference 
between liquid limit (LL) and SL (Sridharan and Naga-
raj 2011), decreases sharply with increasing percent-
age of added sand (Fs). This suggests that volumet-
ric changes decrease significantly as the percentage 
of added sand (Fs) increases, potentially alleviating 
issues associated with expansive soils. Equation  (5) 
was derived for the shrinkage limit (SL) in the current 
study.

3.1.2.3 Longitudinal Shrinkage Test The current 
study also looked into longitudinal shrinkage (L.Sh), 
which is the change in length of a sample relative to 
its original length after drying a sample with moisture 
equal to the liquid limit placed in molds of specific 
dimensions.

The longitudinal shrinkage test was performed 
according to BS 1377-2. A 150  g soil sample with 
particles smaller than a 425-μm sieve was used in 
each test. The procedure began with remolding the 
soil samples with distilled water, resulting in a soil 
paste with a moisture content roughly equal to the 
soils’ liquid limits. The sample was then placed and 
leveled within the shrinkage mold. The sample’s ini-
tial moisture content and weight were recorded dur-
ing this phase before subjecting it to natural drying at 
room temperature for approximately 24 h. Following 
that, the drying process was continued in an oven at a 
temperature not exceeding 60 °C until the shrinkage 

(5)SL = 0.1 × Fs% + 12.5
(

R
2 = 0.967

)

Fig. 8  The relationship curves between the shrinkage limit, 
the liquid limit, and the shrinkage index with the added sand 
percentage



2684 Geotech Geol Eng (2024) 42:2675–2691

1 3
Vol:. (1234567890)

of the sample had significantly ceased. The final dry-
ing stage involved keeping the oven at around 105 °C 
for 24 h to complete the drying process. Finally, the 
oven-dried soil samples were measured for length and 
mass.

The percentage of linear shrinkage (L.SH) was cal-
culated using Eq. (6)

where L.SH is the longitudinal shrinkage percent-
age, L0 is the initial length of the soil sample (mold 
length), and LD is the length of the dried sample.

3.1.2.4 Longitudinal Shrinkage Results The results 
reveal that the longitudinal shrinkage limit decreases 
as sand content increases, as illustrated in Fig. 9 and 
defined by Eq. (7).

3.1.3  Proposed equations of LL, PI, L.Sh, and SL

The methods for developing the equations originate 
from linear regression analysis. This well-known sta-
tistical technique models linear relationships between 
variables. During this analytical procedure:

• The dependent and independent variables were 
identified, with the dependent variable represent-
ing the particular soil property of interest (e.g., 
liquid limit, plasticity index) and the independ-

(6)L.SH = 100 ×
(

L
0
−LD

)

∕L
0

(7)L.Sh = −0.275 × Fs% + 24.5
(

R
2 = 0.987

)

ent variable representing the percentage of added 
sand.

• Individual linear regression analyses for each soil 
property under consideration were performed 
using the combined dataset from this research and 
relevant prior studies.

• The equations were then formulated using the 
coefficients and intercepts derived from the linear 
regression analysis.

The current study examines the relationships 
between LL, PI, SL, and L.Sh and the percentage of 
added sand. Given that the Atterberg limits are known 
for a specific percentage of added sand, Eqs. (8), (9), 
(10), and (11) were proposed to predict the Atterberg 
limits of expansive clayey soils for any percentage 
of added sand. These equations are a helpful tool for 
engineering applications, allowing for the estimation 
of soil consistency under different conditions.

where LLFs , PIFs , SLFs and L.ShFs are the unknown 
Atterberg limits for the desired percentage Fs. LLFs1 , 
PIFs1 , SLFs1 L.ShFs1 and SLFs1 are the known Atterberg 
limits that correspond to the sand percentage Fs1.

To predict the liquid limit and plasticity index of 
expansive clayey soils at any given percentage of 
added sand using Eqs. (8) and (9), it is recommended 
to select a value from the stated ranges ( − 0.76 
to  − 2.47) and ( − 0.42 to  − 1.78) for Eqs. (8) and (9), 
respectively. The selection can be determined with 
the graphic representation shown in Fig. 7.

3.2  Effect of Sand on Maximum Dry Unit Weight 
and Optimal Moisture Content

Standard Proctor experiments were performed in 
this study, as shown in Fig. 10, for determining the 
maximum dry unit weight and optimal moisture 
content for each percentage of added sand. 

Figure 11 depicts the variation in maximum dry 
unit weight concerning the percentage of added 

(8)LLFs = (−0.76 → −2.47)(Fs − Fs1) + LLFs1

(9)PIFs = (−0.42 → −1.78)(Fs − Fs1) + PIFs1

(10)SLFs = 0.1(Fs − Fs1) + SLFs1

(11)L.ShFs = −0.275(Fs − Fs1) + L.ShFs1

Fig. 9  The relationship between longitudinal shrinkage limit 
and percentage of added sand
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sand. Note that the maximum dry unit weight of 
the soil increases continuously as sand content 
increases, which is similar to the findings of pre-
vious studies by Roy (2013), Gupta and Sharma 
(2014), and Khan et  al. (2014). This phenomenon 
can relate to decreased soil pore volume and suction 
stress caused by replacing a soft component with a 
high water retention capacity and a coarse portion 
with limited water retention capacity. This obser-
vation is supported further by the observed trend 
in the optimal moisture content for the mixtures, 
which decreases with increasing sand content, as 
shown in Fig. 12.

3.2.1  Proposed Equations of Maximum Dry Unit 
Weight and Optimal Moisture Content

Figure  11 demonstrates the linear relationship 
between the maximum dry unit weight and the per-
centage of added sand. In contrast, Fig.  12 demon-
strates the linear relationship between the optimal 
moisture content and the percentage of added sand. 
These relationships can estimate the maximum dry 
unit weight and optimum moisture content of expan-
sive clayey soils mixed with sand, given that a Proctor 
experiment is performed for a single sand percentage. 
The assumption of a constant slope (Fig. 12) is rea-
sonable since the behavior of the soil and added sand 
is assumed to be the same regardless of the mineral 
composition of the soil. This assumption, however, 
needs to be validated by carrying out mixing sand 
tests with different types of expansive soils. Previous 
investigations on expansive soils show similar behav-
ior, as shown in Fig. 13. The findings reveal that the 
slopes are similar with a minor variation, demon-
strating the reliability of the equations in estimating 
the maximum dry unit weight and ideal moisture of 
expansive soils.

Accordingly, Eqs.  (12) and (13), respectively, are 
given as a means of predicting maximum dry unit 
weight and optimal moisture content.

where:  �dmax(Fs) and wopt(Fs) are maximum dry unit 
weight (kN/m3) and optimal moisture content (%), 
respectively, of the required percentage of sand Fs.

(12)�dmax (Fs) = 0.07(Fs − Fs1) + �dmax (Fs1)

(13)Wopt(Fs) = −0.27(Fs − Fs1) +Wopt(Fs1)

Fig. 10  Proctor compaction curves for clay samples mixed 
with varying percentages of sand

Fig. 11  The relationship between maximum dry unit weight 
and percentage of added sand

Fig. 12  The relationship between optimal moisture content 
(Wopt) and percentage of added sand
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�dmax(Fs1) Wopt(fs1) Wopt(fs1) and Wopt(Fs1) are maxi-
mum dry unit weight (kN/m3) and optimal moisture 
content (%), respectively, of the known percentage of 
sand Fs1.

3.3  Effect of Sand on the Modulus of Oedometric 
Elasticity

Figure  14 presents the oedometric modulus as a 
function of the percentage of added sand at three 
stress levels, namely (1–2), (2–3), and (4–6) kg/cm2. 

The results demonstrate that increasing the per-
centage of added sand up to a certain level (about 
30%) significantly increases the modulus of oedo-
metric elasticity. At high stress levels, however, the 
modulus of oedometric elasticity remains constant 
up to 20% of added sand before increasing notice-
ably. This finding confirms the beneficial effect of 
sand on soil stiffness during the plasticity stage, 
especially when more than 20% sand is added. 
Nevertheless, expansive soils have a low bearing 
capacity at high saturation levels, so adding more 

Fig. 13  Comparison of 
Wopt and �dmax of current 
study and previous studies 
a optimal moisture content 
[ Wopt(Fs) ] b maximum dry 
unit weight [ �dmax]
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than 30% sand is most effective to ensure minimum 
settlement.

3.4  Effect of Sand on Hydraulic Conductivity

The hydraulic conductivity controls the rate of water 
movement and heave within a region of swelling 
clays. Values of conductivity in clays may vary over 
several orders of magnitude, translating to days, 
months, or years of moisture migration in the field. 
Previous studies have found that the permeability 
of clayey soil increases as the percentage of sand 
increases. Figure  15 illustrates the variation of the 
permeability coefficient of mixed soil with the per-
centage of added sand. The results show a steady 
increase in the permeability coefficient with an 
increase in the percentage of added sand up to 20%, 
which is consistent with Al Rawi et  al. (2018), fol-
lowed by a sharp decrease to a minimum of 30% and 

then a slight increase to 50%. The observed increase 
in permeability is due to the swelling of the sample 
during saturation, as shown in Fig. 16. However, after 
30% sand addition, the decrease in volume changes 
and void sizes significantly reduces permeability.

Based on the findings of the experiments, the rec-
ommended percentage of added sand in expansive 
clayey soils for civil engineering purposes, such as 
earth dams, road construction, and landfill cover lay-
ers, should not be less than 30% to meet the desired 
criteria of low permeability, high stiffness, and mini-
mal volumetric changes.

4  Conclusions

The use of expansive clayey soils in civil engineer-
ing applications necessitates careful consideration of 
their characteristics to ensure stability and long-term 
durability. Sand is a valuable amendment to improve 
the characteristics of expansive clayey soils in recent 
years. This study aimed to look into the effects of 
different sand percentages on the characteristics of 
expansive soil and recommend the best sand percent-
age to achieve the best performance in terms of high 
stiffness, low permeability, and minimal volumetric 
changes. The findings of an experimental study of the 
behavior of expansive soil mixed with various per-
centages of sand provided the basis for correlations 
and recommended practice, including the liquid limit, 
plastic limit, plasticity index, shrinkage limit, shrink-
age index, longitudinal shrinkage, maximum dry den-
sity, optimal moisture, oedometric elasticity modulus, 
and hydraulic conductivity. The experimental results 

Fig. 14  Modulus of oedometric elasticity variation with added 
sand ratio at three stress levels

Fig. 15  Effect of percentage of added sand on hydraulic con-
ductivity of formed Proctor samples

Fig. 16  Effect of added sand percentage on swelling of 
formed samples based on standard Proctor test results at three 
different applied loads (25, 75 and 150 kPa)
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of expansive soil mixed with various percentages of 
sand can be summarized as follows:

• The liquid limit, plastic limit, and plasticity index 
all decrease as the percentage of added sand 
increases. Meanwhile, due to the increase in the 
shrinkage limit and decrease in the liquid limit, 
the shrinkage index decreases more sharply than 
the plasticity index with increasing sand content.

• The efficacy of sand in expansive soils becomes 
increasingly significant as the plasticity index 
increases.

• The longitudinal shrinkage decreases by about 
half as the percentage of added sand increases, 
leading to reduced volumetric changes.

• The proposed Eqs.  (8, 9, 10, 11) can be used to 
predict the values of the liquid limit, plastic index, 
shrinkage limit, and longitudinal shrinkage limit if 
the Atterberg limits for only one of the added per-
centages of sand are known.

• The maximum dry density of mixed soil increases 
with increasing sand content.

• The approximate Eqs.  (12, 13) predict the maxi-
mum dry density and optimal moisture of expan-
sive soil if the results of a Proctor experiment for 
only one of the added percentages of sand are 
known.

• This investigation indicates that the oedometric 
elasticity modulus increases as the percentage of 
sand added increases. The optimal percentage of 
added sand for achieving the best stiffness should 
not be less than 30%.

Based on the findings, the recommended percent-
age of sand in expansive clayey soil should be no less 
than 30% to achieve the best performance, such as 
low permeability, high stiffness, and minimal volu-
metric changes. This recommendation applies to civil 
engineering projects such as earth dams, roads, land-
fill covers, and other backfilling applications.

In consideration of future research, it is worth not-
ing that previous studies did not thoroughly investi-
gate the effect of sand additives on shrinkage limit 
(SL), longitudinal shrinkage (L.Sh), and hydraulic 
conductivity within expansive clay soils. Future 
investigations into the effect of sand on these specific 
characteristics would prove beneficial for various 
types of expansive clay. This approach could lead to 
developing predictive equations that can effectively 

extrapolate physical properties based on varying sand 
content and for different types of expansive clays. It 
is also important to note that the existing equations, 
denoted as Eqs.  10 and 11, apply to illite expansive 
clay. Consequently, future research should aim to 
develop equations incorporating a broader range of 
expansive clay types and improve the generality of 
models in geotechnical engineering along with con-
struction practices involving expansive clayey soils.
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