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1 Introduction

Footings are constructed on rock masses in many 
hilly areas and the determination of their bearing 
capacity is of considerable importance in the design 
and construction process. This is especially so when 
the footings are closely spaced. The overlapping 
effects in rock masses induced by surrounding foot-
ings cannot be ignored. This research proposes an 
efficiency factor accounting for the interference effect 
of closely spaced strip footings on rock masses. The 
interference effect in this study is defined using an 
efficiency factor that is a ratio between the ultimate 
bearing capacity of a group of footings and that of a 
single isolated footing.

The non-linear failure criterion for intact rock or 
heavily jointed rock masses was first developed by 
Hoek and Brown (1980). Using a large number of 
triaxial test data of intact and jointed rocks, a curve-
fitting method was employed to develop the well-
known Hoek–Brown failure criterion. Hoek et  al. 
(2002) further revised their previous work and pro-
posed new parameters that can be used to capture the 
failure behaviour of highly fractured rock media. By 
using the latest Hoek–Brown yield criterion, many 
researchers have since studied the bearing capacity 
of a single isolated footing on rock mass (e.g., Ser-
rano and Olalla 1994, 1998a, b; Yang and Yin 2005; 
Merifield et  al. 2006; Saad et  al. 2008; Mao et  al. 
2012; Kumar and Mohapatra 2017; Ukritchon and 
Keawsawasvong 2018; Mansouri et al. 2019; Keawsa-
wasvong et al. 2021).

Footings are constructed closely to each other on 
numerous occasions, with a goal to efficiently transfer 
the loads to underneath rock masses. This can result 
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in the interference of imposed stresses in rock masses 
induced by surrounding footings. The interference 
effect of two adjacent strip footings on soils has been 
studied by numerous researchers in the past (e.g., 
Stuart 1962; Das and Larbi-Cherif 1983; Kumar and 
Ghosh 2007a, b; Kumar and Kouzer 2008; Mabrouki 
et al. 2010; Pal et al. 2016; Lavasan et al. 2018). The 
early study towards understanding the interference 
effect of two adjacent strip footings on sandy soils 
was conducted by Stuart (1962), who defined an effi-
ciency factor that is a ratio between the ultimate bear-
ing capacity of two adjacent footings and that of a 
single isolated footing. The laboratory model test was 
later carried out by Das and Larbi-Cherif (1983) to 
compare results with the theoretical study by Stuart 
(1962). Kumar and Ghosh (2007a, b) employed the 
stress characteristics and upper bound methods to 
evaluate the ultimate bearing capacity of two adjacent 
strip footings on cohesionless soil by considering the 
full ranges of the distance between two footings and 
the internal friction angle of sand. The same problem 
was re-visited by Kumar and Kouzer (2008) using 
finite element lower bound analysis. Mabrouki et  al. 
(2010) presented the efficiency factors of two footings 
on cohesive-frictional soils, where the impact of sur-
charge loading was considered. The bearing capacity 
of two closely spaced skirted strip foundations in sand 
was also investigated by Pal et al. (2016) and Lavasan 
et al. (2018). The efficiency factor of multiple equally 
spaced strip footings on cohesionless soils was also 
considered by Kumar and Bhattacharya (2010) and 
Yang et al. (2017).

The aforementioned studies were considered 
merely for the soil foundation. It is not uncom-
mon to see adjacent footings be constructed in 
mountainous areas that requires the employment 
of the Hoek–Brown yield criterion for rock mass. 
Very recently, two closely spaced strip footings 
on Hoek–Brown rock masses were investigated by 
Shamloo and Imani (2021) using the analytical upper 
bound theorem, which requires an assumption of 
failure mechanism of two strip footings. This study 
therefore set out to assess the efficiency factor of two 
distinct interference problems, namely the two closely 
spaced strip footings and the multiple closely spaced 
strip footings on Hoek–Brown rock masses. The 
advanced upper bound (UB) and lower bound (LB) 
finite element limit analysis (FELA), which does not 
require a presumption, is employed to numerically 

study the efficiency factors. The rigorous UB and 
LB solutions can be used to assist in the design of a 
group of strip footings founded on rock mass with 
great confidence.

2  Problem Statement

2.1  Assumptions

In this study, the numerical technique of the finite ele-
ment limit analysis (FELA) is employed to solve the 
bearing capacity and the efficiency factor of a group 
of footings on rock masses. The rock masses are mod-
elled by volume elements and obey a rigid-perfectly 
plastic Hoek–Brown material under drained condi-
tions. The footings are represented by rigid plate ele-
ments and a fully rough condition is specified for the 
contact interface between all footings and rocks.

The Hoek–Brown (HB) model is adopted as a fail-
ure criterion for rock masses. This failure criterion 
can be expressed by a power-law function in terms 
of the major and minor principal stresses (i.e., σ1 and 
σ3), where tensile normal stresses are taken as posi-
tive as shown in Eq. (1) (Hoek et al. 2002).

where σci is the uniaxial compressive strength of 
intact rock mass. The mathematic functions of the 
parameters mb, s, and a are expressed in the following 
relationship as shown in Eqs. (2) to (4).

In the above expressions, the parameter GSI 
(geological strength index) ranges from 10 for 
an extremely poor rock mass to 100 for an intact 
rock mass. In Hoek et  al. (2002). the parameter mi 
(Hoek–Brown yield parameter) refers to the yield 
parameter corresponding to a frictional strength of a 
rock mass. The parameter D (degree of disturbance) 
is a disturbance factor that varies from 0 (undisturbed 
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in-situ rock masses) to 1 (extremely disturbing in-situ 
rock masses).

2.2  Modelling

The first problem considered here is a twin strip foot-
ing. Shown in Fig.  1a is the footing width B that is 
subject to a limit vertical pressure of q, i.e. the bear-
ing capacity of the footing. The edge-to-edge distance 
of the twin footings is denoted by S. The dashed line 
AE indicates the line of symmetry. Only half of the 
domain is needed, and this is shown in Fig. 1b. For 
the symmetrical problem, the nodes on the left-hand 
side boundary are prevented from moving horizon-
tally. This boundary condition is the same for the 
nodes at the far side (i.e. the right-hand side bound-
ary), which are fixed in the x direction. The bot-
tom nodes are fixed in both directions whilst the 
top boundary is a free surface. In this problem, the 
sizes of the right and bottom boundaries are carefully 
selected to be large enough (approximately 19B and 

4B, respectively) so that there is no intersection of 
the plastic shear zone at the far side and the bottom 
boundaries, which can yield an error in the computed 
results. A typical adaptive mesh of the FELA analysis 
for half of the domain is shown in Fig. 1c.

The second problem belongs to a multiple inter-
fering footing. The footing width B, the limit vertical 
pressure of q, and the edge-to-edge footing distance S 
are the same as the twin strip footing. See Fig. 2a for 
the problem definition. Both dashed lines CD and AE 
are the symmetrical planes which are best explained 
with Fig.  2b where a full domain was analysed for 
the three strip footings. The obtained failure mecha-
nism has clearly shown the two symmetrical planes 
for the proposed problem of multiple interfering foot-
ings. With this understanding, the problem domain 
can be simplified to Fig.  2c. As in the twin footing 
problem, the symmetric boundary condition always 
requires a prevention of horizontal movement. All 
other boundary conditions are the same as in the twin 
footing problem. In this problem, to avoid the effect 
from insufficient boundaries, the size of the bottom 

Fig. 1  Problem geometry 
of two interfering footings: 
a the statement; b model 
domain; c typical adaptive 
mesh

(a)

(b)

(c)

B BS

q

E
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boundary is carefully selected to be large enough 
(approximately 3B). An intersection of the plastic 
shear zone at the bottom boundary is not allowed to 
take place. A typical FELA adaptive mesh for the 
“twin” symmetrical planes is shown in Fig. 2d. Inter-
estingly, the adaptive mesh also shows the potential 
failure mechanism of the problem. 

2.3  Finite Element Limit Analysis

The upper bound (UB) and lower bound (LB) finite 
element limit analysis (FELA, OptumCE 2019) has 
been successfully applied to several geotechnical 
stability problems in recent years (see e.g., Keawsa-
wasvong and Shiau 2021a, b; Shiau et al. 2003, 2006; 
2021a, b, c; Shiau and Al-Asadi 2020a, b, c, 2021a, 

b; Keawsawasvong et al. 2022), and it is employed to 
study the bearing capacity of the closely spaced foot-
ing problems using the Hoek–Brown (HB) yield cri-
terion in this paper.

In the lower bound analysis, a linear three-node tri-
angular element is used, where each node is associ-
ated with three unknown stresses. Each triangular ele-
ment has the nodal stresses including σx, σy, and τxy 
are set to be the basic unknown variables for the plane 
strain problem. The statically admissible stress dis-
continuities are allowed for producing the continuity 
of normal and shear stresses along with the interfaces 
of all the elements. The conditions of stress equilib-
rium, stress boundary condition, and the Mohr–Cou-
lomb failure criterion are all constraints in a typical 
LB analysis, in which the objective function is to 
maximize the limit vertical pressure of two interfer-
ing footings or multiple interfering footings by using 
equilibrium equations, where stress boundary condi-
tions and the yield criterion are satisfied. The expres-
sion of Mohr–Coulomb failure criterion in conjunc-
tion with tensile normal stresses taken as positive at a 
point can be represented by Eq. (5).

In the upper bound theorem, a six-node triangu-
lar element is adopted for the upper bound analysis, 
where each node contains two unknown velocities 
that vary quadratically within the triangular element. 
At each node of the element, there are the horizon-
tal (u) and vertical velocities (v) defined as the basic 
unknown variables. The setting of kinematically 
admissible velocity discontinuities is applied at the 
interfaces of all the elements. The material is set to 
obey the associated flow rule so that Eq. (6) is satis-
fied along any velocity discontinuity.

where Δu and Δv are the tangential and the normal 
velocity jumps along the discontinuity. The formu-
lated objective function is to minimise the limit verti-
cal pressure of either two interfering footings or mul-
tiple interfering footings. More details on the LB and 
UB FELA can be found in Sloan (2013).

The automatic mesh adaptivity function is used in 
all analyses. The scheme of this adaptive mesh refine-
ment is based on the work of Ciria et  al. (2008). In 

(5)
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Fig. 2  Problem geometry of multiple interfering footings: a 
the statement; b typical failure mechanism; c  model domain; 
d typical adaptive mesh
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Table 1  List of parametric values used for modelling the foot-
ing and Hoek–Brown material

Parameters Selected values

S/B 1 – 30
mi 5 – 35
GSI 30 – 100
D 0
Γ 0

this procedure, several elements increase in certain 
sensitive regions of simulation during the time of cal-
culation (Keawsawasvong and Ukritchon 2017; Ukrit-
chon and Keawsawasvong 2017). For numerical sim-
ulations in this study, three adaptive refinement steps 
are selected by increasing the number of elements 
from 5000 elements at the first step to approximately 
10,000 elements at the final step. Note that the first, 
second, and third steps correspond to the differences 
between the UB and LB solutions approximately 
about 10, 8, and 5%, respectively. As a result, this 
study employs the setting of three adaptive refinement 
steps since the 5% difference is acceptable for FELA 
results with HB failure criterion (Keawsawasvong 
2021; Keawsawasvong et al., 2021, 2022; Yodsomjai 
et  al. 2021a; 2021b; Keawsawasvong and Ukritchon 
2020). The examples of final adaptive meshes after 
three adaptive refinement steps are shown in Figs. 1c 
and 2d for two interfering footings and multiple inter-
fering footings, respectively.

2.4  Limitations

The main Hoek–Brown parameters for rock masses 
considered in this paper are the parameter GSI 
(geological strength index) and the parameter mi 
(Hoek–Brown yield parameter). Table  1 shows the 
details of parametric values considered. It should 
be noted that this study is concerned with the rock 
masses under undisturbed in-situ conditions and the 
disturbance factor D is assumed to be zero. Also note 
that the effects of rock unit weight (γ) and surcharge 
(q) are not considered in the study due to their negligi-
ble effect. In addition, the foundation roughness of all 
strip footings is assumed to be rough in all numerical 
simulations. This is similar to several previous stud-
ies of a single footing on HB rock mass by Yang and 
Yin (2005), Keawsawasvong (2021), Keawsawasvong 
et  al. (2021), and Yodsomjai et  al. (2021a). More 
information regarding the effects of rock unit weight 
(γ) and surcharge (q) on the bearing capacity of a sin-
gle footing can be found in Merifield et al. (2006).

3  The Efficiency Factor and Hoek–Brown Failure 
Criterion

In this study, the efficiency factor of two interfering 
footings and multiple interfering footings is denoted 

by ξ, which is the ratio of the ultimate bearing capac-
ity of two interfering footings (qtwo) to the ultimate 
bearing capacity of a single isolated footing (qsingle). 
For multiple interfering footings, the ξ ratio is defined 
as (qmultiple)/ (qsingle). On the other note, the efficiency 
factor ξ is the ratio between the ultimate bearing 
capacity solutions between a group of footings and a 
single isolated footing, as shown in Eqs. (7) and (8).

The efficiency factor is a function of three dimen-
sionless parameters including the geological strength 
index GSI, the HB yield parameter mi, and the spac-
ing ratio S/B as shown in Eq. (9).

Note that GSI and mi are literally a dimensionless 
coefficient, which does not require to be normalised 
(Merifield et  al. 2006; Keawsawasvong et  al. 2021; 
Keawsawasvong 2021; Yodsomjai et al. 2021a).

Throughout the present study, the effects of the 
spacing ratio (S/B) and the HB strength parameters 
on the efficiency factor of interfering strip footings on 
HB rock masses are investigated and presented in the 
form of design charts. The proposed efficiency fac-
tor can be conveniently used to determine the bearing 
capacity of a group of strip footings on rock mass.

(7)x =
(
qtwo∕qsingle

)
for two interfering footings

(8)
x =

(
qmultiple

)
∕
(
qsingle

)
for multiple interfering footings
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4  Model Validation

Before any parametric analyses, it is of vital impor-
tance to validate the developed numerical model. In 
this section, the bearing capacity factors q/σci of a 
single isolated strip footing are compared with pre-
viously published results. Both our upper bound 
(UB) and lower bound (LB) results are averaged 
(AVG = (UB + LB)/2) and used to compare with 
those reported by Merifield et  al. (2006) and Ser-
rano et al. (2000). Note the solutions from Merifield 
et  al. (2006) were the AVG solutions obtained from 
their UB and LB FELA analyses while the solutions 
from Serrano et  al. (2000) were computed by using 
the elasto-plastic displacement-based finite element 
method. Table 2 summaries the percentage errors of 
the bearing capacity factor q/σci. Excellent agreement 
is found between the present study and the previously 
published solutions. In general, the percentage errors 

are within 5%, giving great confidence with the pro-
duced results in the paper.

5  Two Interfering Footings

The relationship between the efficiency factor ξ and 
the distance ratio S/B are presented in Fig.  3a–e for 
the different values of mi = 5—35 and GSI = 30—100. 
Taking Fig.  3a for example, the efficiency fac-
tor increases dramatically as the distance ratio S/B 
between two footings increases. At some points after 
reaching the peak, the efficiency factor decreases 
sharply as the distance ratio S/B further increases and 
returns to unity (i.e. the problem of a single footing). 
This finding is similar to the previous studies of two 
footings on soils (e.g., Kumar and Ghosh, 2007a; 
2007b; Mabrouki et al., 2010). The smaller the GSI, 
the larger the the efficiency factor ξ.

Table 2  Bearing capacity 
comparison (qsingle/σci) of a 
single strip footing on rock 
mass

GSI m
i

Present Study Merifield et al. 
(2006)

%Error Serrano et al. 
(2000)

%Error

30 5 0.235 0.235 0.00 0.227 3.524
30 10 0.394 0.397 −0.756 0.393 0.254
30 20 0.695 0.713 −2.525 0.716 −2.933
30 30 0.990 1.022 −3.131 1.038 −4.624
30 35 1.142 1.193 −4.275 1.200 −4.833
50 5 0.646 0.644 0.311 0.638 1.254
50 10 1.036 1.037 −0.096 1.031 0.485
50 20 1.747 1.765 −1.020 1.760 −0.739
50 30 2.397 2.467 −2.837 2.458 −2.482
50 35 2.723 2.817 −3.337 2.801 −2.785
70 5 1.587 1.582 0.316 1.574 0.826
70 10 2.450 2.444 0.245 2.434 0.657
70 20 3.985 4.012 −0.673 3.998 0.325
70 30 5.436 5.491 −1.002 5.470 −0.622
70 35 6.124 6.068 0.923 6.187 −1.018
90 5 3.888 3.881 0.180 3.869 0.491
90 10 5.763 5.758 0.087 5.741 0.383
90 20 9.120 9.125 −0.055 9.100 0.220
90 30 12.213 12.270 −0.465 12.237 −0.196
90 35 13.648 13.794 −1.058 13.738 −0.655
100 5 6.126 6.124 0.033 6.114 0.196
100 10 8.904 8.896 0.090 8.875 0.327
100 20 13.853 13.847 0.043 13.809 0.319
100 30 18.400 18.444 −0.239 18.390 0.054
100 35 20.612 20.668 −0.271 20.628 −0.078
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Fig. 3  The variation of efficiency factor ξ with S/B for two 
interfering footings (mi = 5—35 and GSI = 30—100)

▸

The results in Fig. 3a–e also indicate that the larger 
the mi value, the larger the efficiency factor ξ. One 
interesting observation is for the distance ratio S/B 
when the efficiency factor ξ = 1. Taking (mi = 5 and 
GSI = 30) as an example (see Fig. 3a), S/B is about 5 
when ξ returns to unity. As mi increases (see Fig. 3e 
for mi = 35), a much larger distance ratio S/B = 20 is 
required for the efficiency factor ξ to return to unity. 
This result may be explained by the fact that the 
parameter mi represents the frictional strength of a 
rock mass. The larger the mi value, the larger the dis-
tance ratio S/B required for the efficiency factor ξ to 
return to unity.

Figures  4a–e show the efficiency factors of two 
interfering strip footings for the different values 
of GSI = 30, 50, 70, 90, and 100, respectively. The 
results indicate that the smaller the value of GSI, the 
greater the efficiency factor ξ. Table  3 presents the 
results of the peak efficiency factor ξp and the corre-
sponding “peak” distance ratio Sp/B for different val-
ues of mi and GSI. These “peak” values are useful in 
design practice as the optimum value of the interfer-
ing bearing capacity can be efficiently determined.

The failure mechanisms of two interfering strip 
footings on Hoek–Brown rock masses are presented 
in Fig. 5a and b for mi = 5 and mi = 35, respectively. 
For brevity, only the plots of incremental shear strain 
contours (εs) are used to portray the effects of HB 
parameters and the distance ratio S/B. With the sym-
metrical domain, the overlapping effects are mostly 
seen in small values of S/B. This overlapping effect 
can increase the footing capacity when the value of 
S/B is small. However, when the ratio S/B becomes 
very large, the failure patterns become the Prandtl 
types of failures. For the small value of mi = 5 (see 
Fig.  5a), no significant differences in failure mecha-
nism were found amongst the various distance ratios 
S/B. A possible explanation for this might be due to 
the low frictional strength of the rock mass when mi is 
small. Further to this, it was found that a larger value 
of mi results in a larger size of failure mechanism in 
the horizontal direction (see both Fig. 5a and b).

The effect of GSI on the failure mechanisms of 
two interfering strip footings on rock masses is pre-
sented in Fig.  6a and b for GSI = 30 and GSI = 100, 
respectively. The mi value is chosen as 20 for this 
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comparison. This study confirms that the size of fail-
ure mechanism decreases as the GSI value increases, 
which is similar to the findings by Keawsawasvong 
et  al. (2021), Keawsawasvong (2021), and Yodsom-
jai et  al. (2021a, b). Overall, these results broadly 
support the common understanding of the two key 
parameters GSI and mi in the HB failure criterion.

6  Multiple Interfering Footings

The efficiency factor ξ of multiple interfering strip 
footings are shown in Figs. 7(a–e) for various values 
of S/B, mi and GSI. One interesting finding that is sig-
nificantly different from the previous two interfering 
strip footings is the starting value of the spacing ratio 
S/B. The efficiency factor ξ increases immediately to 
a peak value as soon as S/B becomes non-zero. This 
finding is the same as the previous studies of multiple 
footings on soils (e.g., Kumar and Bhattacharya 2010; 
Yang et al. 2017). In Fig. 7a, mi = 5 and GSI = 30, the 
peak efficiency factor ξ  = 5.41 at a minimum value of 
S/B = 0.1. After reaching the peak value, an increase 
of S/B results in a decrease of ξ. Besides, the larger 
the mi value, the larger the efficiency factor ξ. It was 
also found in Fig.  8a–e that the larger the GSI, the 
smaller the the efficiency factor ξ. Table 4 shows the 
results of the peak efficiency factor ξp and the corre-
sponding “peak” distance ratio Sp/B (= 0.1) for differ-
ent values of mi and GSI.

Depending on the values of GSI and mi, the effi-
ciency factor ξ drops to unity at different S/B values. 
This is best demonstrated using the failure mecha-
nisms of multiple interfering strip footings, shown 
in Figs. 9 and 10. For the small value of mi = 5 (see 
Fig. 9a), the footing interference become insignificant 
at S/B = 10. On the other hand, for the large value of 
mi = 35 in Fig. 9b, a value of S/B = 30 is required to 
avoid the interference effect. The effect of GSI on the 
failure mechanisms of multiple interfering strip foot-
ings is presented in Fig. 10a and b for GSI = 30 and 
GSI = 100, respectively. The domains of the multiple 
footings have symmetrical planes on both left-handed 
and right-handed sides. Again, the mi value is chosen 
as 20 for this comparison. The most obvious finding 
to emerge from the plots is that the smaller the GSI 
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Fig. 4  The variation of efficiency factor ξ with S/B for two 
interfering footings (mi = 5—35 and GSI = 30—100)
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Table 3  Sp/B versus ξp of two interfering footings on rock 
masses

GSI m
i

Sp/B ξp

30 5 0.5 1.25
30 10 0.6 1.29
30 20 0.7 1.35
30 30 0.7 1.38
30 35 0.7 1.40
50 5 0.5 1.22
50 10 0.5 1.25
50 20 0.6 1.29
50 30 0.6 1.33
50 35 0.7 1.34
70 5 0.4 1.20
70 10 0.5 1.24
70 20 0.6 1.28
70 30 0.6 1.29
70 35 0.6 1.30
90 5 0.4 1.19
90 10 0.5 1.21
90 20 0.5 1.25
90 30 0.6 1.28
90 35 0.6 1.29
100 5 0.4 1.17
100 10 0.4 1.20
100 20 0.5 1.24
100 30 0.6 1.26
100 35 0.6 1.28

(a) mi = 5

S/B = 0.5

S/B = 1

S/B = 10

S/B = 5

S/B = 30

(b) mi = 35

S/B = 1

S/B = 5

S/B = 0.5

S/B = 10

S/B = 30

Fig. 5  Incremental shear strain contours of two interfering 
footings on rock masses (GSI = 70)

value, the larger the distance ratio S/B is required to 
eliminate the interference effect of multiple strip foot-
ings. The impacts of mi and GSI on the size of the 
failure mechanisms are found to be the same as those 
previous studies in Keawsawasvong et  al. (2021), 
Keawsawasvong (2021), and Yodsomjai et al. (2021a, 
b).  

In general, the overlapping has a positive effect on 
the overall bearing capacity of multiple footings own-
ing to the lateral resistance provided by the nearby 
footings. This study confirms broadly the understand-
ing of the effects of the two key parameters GSI and 
mi in the HB rock mass.
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7  Conclusions

This project was undertaken to study the interference 
effects of closely spaced footings on Hoek–Brown 
rock mass. The study set out to estimate the efficiency 
factor ξ, just like in the determination of pile group 
efficiency, that can be used to evaluate the bearing 
capacity of closely spaced footings. The advanced 
finite element limit analysis has been proven to be 
both effective and efficient in producing parametric 
results of complex problems involving the interfering 
effects on rock mass. The following conclusions are 
drawn based on the present study.

1. This study has confirmed that the efficiency fac-
tor ξ is a function of three dimensionless param-
eters, namely the geological strength index GSI, 
the HB yield parameter mi, and the spacing ratio 
S/B. An increase in mi results in an increase in ξ 
whereas an increase in GSI yields a decrease in 
ξ. The relationships between the efficiency factor 
ξ and the spacing ratio S/B for the cases of two 
footings and multiple footings on rock masses are 
in the same tendencies as the previous studies for 
those footings on soils.

2. Complete design charts covering a wide range of 
the three parameters were produced for practical 
uses. To use these proposed charts, the value of 
the bearing capacity (qsingle/σci) of a single foot-
ing is firstly taken from Table 2. Then, the bear-
ing capacity of two interfering footings (qtwo) 
and multiple interfering footings (qmultiple) can be 
obtained from qtwo and qmultiple = qsingle × ξ, where 
the efficiency factor ξ can be obtained from 
Figs. 3 and 4 and Figs. 7 and 8 for two interfering 
footings and multiple interfering footings, respec-
tively.

3. The results of the peak efficiency factor ξp and 
the peak distance ratio Sp/B for different values of 
mi and GSI are reported in the paper. These opti-
mum values can be used in the design practice 
for predicting the peak distance ratio of closely 
spaced footings on rock masses.

4. This study has also shown that the size of failure 
mechanism decreases as the GSI value increases. 
Owing to the low frictional strength of the rock 
mass, very little changes in the size of failure 
mechanism was observed when mi is small. Over-
all, these results broadly support the common 

(a) GSI = 30

S/B = 5

S/B = 0.5

S/B = 1

S/B = 10

S/B = 30

(b) GSI = 100

S/B = 1

S/B = 5

S/B = 0.5

S/B = 10

S/B = 30

Fig. 6  Incremental shear strain contours of multiple interfer-
ing footings on rock masses (mi = 20)
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Table 4  Sp/B versus ξp of multiple interfering footings on rock 
masses

GSI m
i

Sp/B ξp

30 5 0.1 5.41
30 10 0.1 6.60
30 20 0.1 7.75
30 30 0.1 8.39
30 35 0.1 8.56
50 5 0.1 4.54
50 10 0.1 5.51
50 20 0.1 6.47
50 30 0.1 6.98
50 35 0.1 7.13
70 5 0.1 3.96
70 10 0.1 4.86
70 20 0.1 5.76
70 30 0.1 6.28
70 35 0.1 6.48
90 5 0.1 3.46
90 10 0.1 4.31
90 20 0.1 5.22
90 30 0.1 4.88
90 35 0.1 5.95
100 5 0.1 3.25
100 10 0.1 4.05
100 20 0.1 4.96
100 30 0.1 5.47
100 35 0.1 5.67
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Fig. 7  The variation of efficiency factor ξ with S/B for multi-
ple interfering footings (mi = 5—35 and GSI = 30—100)
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Fig. 8  The variation of efficiency factor ξ with S/B for multi-
ple interfering footings (mi = 5—35 and GSI = 30—100)
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Fig. 9  Incremental shear 
strain contours of multiple 
interfering footings on rock 
masses (GSI = 70)

(a) mi = 5

S/B = 0.5 S/B = 1
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(b) mi = 35
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Fig. 10  Incremental shear 
strain contours of multiple 
interfering footings on rock 
masses (mi = 20)

(a) GSI = 30

S/B = 0.5 S/B = 1
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(b) GSI = 100
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understanding of the two key parameters GSI and 
mi in the HB failure criterion.
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