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Abstract Spatial predictions of soil macro and

micro-nutrient content across Sub-Saharan Africa at

250 m spatial resolution and for 0–30 cm depth

interval are presented. Predictions were produced for

15 target nutrients: organic carbon (C) and total

(organic) nitrogen (N), total phosphorus (P), and

extractable—phosphorus (P), potassium (K), calcium

(Ca), magnesium (Mg), sulfur (S), sodium (Na), iron

(Fe), manganese (Mn), zinc (Zn), copper (Cu),

aluminum (Al) and boron (B). Model training was

performed using soil samples from ca. 59,000 loca-

tions (a compilation of soil samples from the AfSIS,

EthioSIS, One Acre Fund, VitalSigns and legacy soil

data) and an extensive stack of remote sensing

covariates in addition to landform, lithologic and land

cover maps. An ensemble model was then created for

each nutrient from two machine learning algorithms—
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random forest and gradient boosting, as implemented

in R packages ranger and xgboost—and then used to

generate predictions in a fully-optimized computing

system. Cross-validation revealed that apart from S, P

and B, significant models can be produced for most

targeted nutrients (R-square between 40–85%). Fur-

ther comparison with OFRA field trial database shows

that soil nutrients are indeed critical for agricultural

development, with Mn, Zn, Al, B and Na, appearing as

the most important nutrients for predicting crop yield.

A limiting factor for mapping nutrients using the

existing point data in Africa appears to be (1) the high

spatial clustering of sampling locations, and (2)

missing more detailed parent material/geological

maps. Logical steps towards improving prediction

accuracies include: further collection of input (train-

ing) point samples, further harmonization of measure-

ment methods, addition of more detailed covariates

specific to Africa, and implementation of a full spatio-

temporal statistical modeling framework.

Keywords Macro-nutrients � Micro-nutrients �
Random forest � Machine learning � Soil nutrient map �
Spatial prediction � Africa

Introduction

Sub-Saharan Africa (SSA) has over 50% of the

world’s potential land for cultivation, yet only a small

portion of this land satisfies conditions for agricultural

production from cropping (Lal 1987; Jayne et al.

2010). Although the proportion of arable land in SSA

has been steadily growing since 1950’s, currently only

9% of SSA is arable land and only 1% is permanently

cultivated1. Current cropping yields in Sub-Saharan

Africa are low, often falling well short of water-

limited yield potentials (Jayne et al. 2010). This

underperformance is due to number of factors: soil

nutrient deficiencies, soil physical constraints, pests

and diseases and sub-optimal management. Whilst it is

well established that nutrient deficiencies are con-

straining yields in SSA (Giller et al. 2009), only

limited information is available on soil nutrient

contents and nutrient availability. Only very general

(approximate) maps of soil micro-nutrients are at the

moment available for the whole continent (see e.g.

Kang and Osiname 1985; Roy et al. 2006 and/or

Alloway 2008).

The Africa Soil Information Services project has

recently developed a gridded Soil Information System

of Africa at 250 m resolution showing the spatial

distribution of primary soil properties of relatively

stable nature, such as depth to bedrock, soil particle

size fractions (texture), pH, contents of coarse frag-

ments, organic carbon and exchangeable cations such

as Ca, Mg, Na, K and Al and the associated cation

exchange capacity (Hengl et al. 2015, 2017). These

maps were derived from a compilation of soil profile

data collected from current and previous soil surveys.

There is now a growing interest in applying similar

spatial prediction methods to produce detailed maps of

soil nutrients (including micro-nutrients) for SSA, in

order to support agricultural development, intensifi-

cation and monitoring of the soil resource (Kamau and

Shepherd 2012; Shepherd et al. 2015; Wild 2016).

Detailed maps of soil nutrients, including micro-

nutrients, are now possible due to the increasing inflow

of soil samples collected at field point locations by

various government and/or NGO funded projects: e.g.

by projects supported by the National Governments of

Ethiopia, Tanzania, Kenya, Uganda, Nigeria, Ghana,

Rwanda, Burundi and others; and by organizations

such as the Bill and Melinda Gates Foundation

(Leenaars 2012; Shepherd et al. 2015; Towett et al.

2015; Vågen et al. 2016) and similar, as well as by the

private sector.

We present here results of assessment of nutrient

content for a selection of soil nutrients for Sub-

Saharan Africa at a relatively detailed spatial resolu-

tion (250 m). Our overarching objective was to map

general spatial patterns of soil nutrient distribution in

Sub-Saharan Africa. This spatial distribution could

then potentially be used as:

• inputs for pan-continental soil-crop models,

• inputs for large scale spatial planning projects,

• inputs for regional agricultural decision support

systems,

• general estimates of total nutrient content against

which future human-induced or natural changes

may be recognized and measured, and as
1 http://data.worldbank.org/indicator/AG.LND.ARBL.

ZS?locations=ZG.
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• prior information to guide more detailed soil

sampling surveys.

As the spatial prediction framework we use an

ensemble of random forest (Wright and Ziegler

2016) and gradient boosting (Chen and Guestrin

2016) machine-learning techniques, i.e. a weighted

average formula described in Sollich and Krogh

(1996). As inputs to model building we use the most

complete compilation of soil samples obtainable and a

diversity of soil covariates (primarily based on remote

sensing data).

We generate predictions of individual nutrients,

then look at the possibilities of delineating nutrient

management zones using automated cluster analysis.

At the end, we analyze whether the produced predic-

tions of soil nutrients (maps) are correlated with field-

measured crop yields based on field trials.

Materials and methods

Soil nutrient samples

As input data, we used a compilation of georeferenced

soil samples (ca 59,000 unique locations) processed

and analyzed consistently using the Mehlich 3 method

and/or equivalent (Eckert and Watson 1996; Roy et al.

2006). Data sets used for model building include:

• AfSIS (Africa Soil Information Service) Sentinel

Sites: 18,000 soil samples at 9600 locations i.e. 60

sites of 10 by 10 km (Walsh and Vågen 2006;

Vågen et al. 2010). Samples were taken in the

period 2008–2016 at 0–20 and 20–50 cm soil depth

intervals; analyzed by mid-infrared (MIR) diffuse

reflectance spectroscopy based on calibration

points from 960 samples (10%) analyzed by

conventional wet chemistry including Mehlich-3,

and thermal oxidation for org. C and total N.

Sentinel Sites were designed to cover all of the

agro-ecological regions in SSA and therefore

should provide a good range of covariates at each

location.

• EthioSIS (Ethiopia Soil Information Service):

15,000 topsoil samples (0–20 cm) from Ethiopia

analyzed by conventional wet chemistry including

Mehlich-3. The majority of samples was collected

in the period 2012–2015.

• The Africa Soil Profiles database compiled for

AfSIS: over 60,000 samples of 18,500 soil profiles

collected from on average four depth intervals to

on average 125 cm depth in period 1960–2010

(mainly 1980–1990) and 40 countries, with C, N,

K, Ca and Mg available for nearly all points, P for

one third of the points and micro-nutrients for ca

20% of points (Leenaars 2012).

• International Fertilizer Development Center

(IFDC) projects co-funded by the government of

The Netherlands: 3500 topsoil samples (0–20 cm)

for Uganda, Rwanda and Burundi also analyzed

using soil spectroscopy. Majority of samples was

collected in the period 2009–2014.

• One Acre Fund: some 2400 topsoil samples (0–20

cm) for Uganda and Kenya, collected in the period

2010–2016.

• University of California, Davis: some 1800 topsoil

samples (0–20 cm) for Kenya.

• VitalSigns: 1374 soil samples from Ghana,

Rwanda, Tanzania and Uganda also analyzed

using mid-infrared spectroscopy, collected in the

period 2013–2016.

We focused on producing spatial predictions for the

following 15 nutrients (all concentrations are

expressed as mass fractions using mg per kg soil fine

earth i.e. ppm): organic carbon (C) and total nitrogen

(N), total phosphorus (P), and extractable: phosphorus

(P), potassium (K), calcium (Ca), magnesium (Mg),

sulfur (S), sodium (Na), iron (Fe), manganese (Mn),

zinc (Zn), copper (Cu), aluminum (Al) and boron (B).

Although C, Na and Al are commonly not classified as

soil nutrients, their spatial distribution can help

assessment of soil nutrient constraints. For example,

extractable Al can be an important indicator of soil

production potential: high exchangeable Al levels can

reduce growth of sensitive crops as soil pH (H2O)

drops below\5.3 and become toxic to the majority of

plants\4.5 (White 2009).

Histograms of nutrients based on the data compi-

lation are depicted in Figs. 1 and 2. Although the soil

data sources used for model calibration are quite

diverse, the majority of soil samples had been

analyzed using the MIR technology by the (same)

soil-plant spectral diagnostics laboratory at the World

Agroforestry Centre (ICRAF), Nairobi, and Crop

Nutrition Laboratory Services, Nairobi, and are hence

highly compatible.
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The time span of field data collection is wide and

legacy soil data points have diverse origins, often

referring to field work done in the last 20? years

(1980–2016). Apart from the legacy soil profile data

set, all other soil samples ([60%) are relatively up-to-

date and refer to the period 2008–2016. The following

two assumptions, therefore, must be borne in mind:

(a) the produced spatial predictions presented in this

paper might not everywhere reflect current status

of nutrients on the field, i.e. they should only be

used as long-term, average estimates, and

(b) the temporal variation in soil nutrients is

ignored—or in other words, dynamics of soil

nutrients over the 1980–2016 span is not

discussed in this work.

Note also that nutrient status, in terms of total amount

of extractable nutrients (kg/ha) in the soil, is only

partially reflected by relative nutrient contents (g/kg)

in a limited depth interval of e.g. 0–20 cm. Thus the

available amount of nutrients is only a fraction of the

measured amount. Additionally, bulk density would

be necessary for conversion to kg/ha. Regardless,

concentrations are still highly relevant as most fertil-

izer recommendations are based on nutrient concen-

trations, rather than nutrient stocks.
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Fig. 1 Combined

histograms (at log-scale) for

the soil macro-nutrients

based on a compilation of

soil samples for Sub-

Saharan Africa
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Unfortunately, not all soil nutrients were available

at all sampling locations. Figure 3 shows an example

of the differences in the spatial spread of points for

extr. P, K, Mg and Fe. For micro-nutrients such as Fe,

it is obvious that points are spatially clustered and

available only in selected countries. Large gaps in

geographical coverage also often occur due to limita-

tions on sampling such as accessibility and safety

issues, so that especially tropical forests and wetlands

are under-represented in the sampling designs. Nev-

ertheless, in most of main sampling campaigns such as

the AfSIS sentinel sites, locations were purposely

selected to represent the main climatic zones (Vågen

et al. 2010), so in this sense coverage of sampling

locations can be considered satisfactory for most

nutrients.

Covariates

As spatial covariates, a large stack of GIS layers as

proxies for soil forming processes (climate, landform,

lithology and vegetation) was used:

• DEM-derived surfaces—slope, profile curvature,

Multiresolution Index of Valley Bottom Flatness

(VBF), deviation from mean elevation value,

valley depth, negative and positive Topographic

Openness and SAGA Wetness Index, all derived

using SAGA GIS at 250 m resolution (Conrad

et al. 2015);

• Long-term averaged monthly mean and standard

deviation of the MODIS Enhanced Vegetation

Index (EVI) at 250 m;

• Long-term averaged monthly mean and standard

deviation of the MODIS land surface temperature

(daytime and nighttime) based on the 1 km

resolution data;

• Land cover map of the world at 300 m resolution

for the year 2010 prepared by the European Space

Agency (http://www.esa-landcover-cci.org/);

• Monthly precipitation images at 1 km spatial

resolution based on the CHELSA climate data set

obtained from http://chelsa-climate.org (Karger

et al. 2016);

• Global cloud dynamics images at 1 km resolution

obtained from http://www.earthenv.org/cloud

(Wilson and Jetz 2016);

• Geologic age of surficial outcrops from the USGS

map (at general scale) showing geology, oil and

gas fields and geological provinces of Africa

(Persits et al. 2002);

• Kernel density maps based on the Mineral

Resources Data System (MRDS) points (McFaul

et al. 2000), for mineral resources mentioning Fe,

Cu, Mn, Mg, Al and Zn;
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the soil micro-nutrients

based on a compilation of

soil samples for Sub-

Saharan Africa
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• Groundwater storage map, depth to groundwater

and groundwater productivity map provided by the

British Geological Survey (MacDonald et al.

2012);

• Landform classes (breaks/foothills, flat plains,

high mountains/deep canyons, hills, low hills,

low mountains, smooth plains) based on the USGS

Map of Global Ecological Land Units (Sayre et al.

2014);

• Global Water Table Depth in meters based on Fan

et al. (2013);

• Landsat bands red, NIR, SWIR1 and SWIR2 for

years 2000 and 2014 based on the Global Forest

Change 2000–2014 data v1.2 obtained from http://

earthenginepartners.appspot.com/science-2013-

global-forest (Hansen et al. 2013);

• Global Surface Water dynamics images: occurrence

probability, surface water change, and water maxi-

mum extent (Pekel et al. 2016), obtained from

https://global-surface-water.appspot.com/download;

• Distribution of Mangroves derived from Landsat

images and described in Giri et al. (2011);

Fig. 3 Comparison of spatial coverage of sampling locations

for four nutrients: ext. P, ext. K, ext. Mg and ext. Fe. Data

sources: AfSIS Sentinel Sites soil samples, EthioSIS soil

samples, Africa Soil Profiles DB soil samples, IFDC-PBL soil

samples, One Acre Fund soil samples, University of California

soil samples and Vital Signs soil samples. See text for more

details
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• Predicted soil pH (H2O) maps at 250 m produced

within the SoilGrids project (https://soilgrids.org);

DEM derivatives were based on the global merge of

SRTMGL3 DEM and GMTED2010 data sets (Daniel-

son and Gesch 2011). Long-term estimates of EVI

seasonality were derived using a stack of MOD13Q1

EVI images (Savtchenko et al. 2004); and long-term

MODIS LST day-time and night-time images, also

derived from a stack of MOD11A2 LST images (Wan

2006). Both MODIS products were based on data for

the period 2000–2015. Global Surface Water dynam-

ics images refers to period 1984–2015 and CHELSA

climate images to period 1979–2015.

Remote sensing data had been previously down-

loaded and prepared via ISRIC’s massive storage

server for the purpose of the SoilGrids project (Hengl

et al. 2017). The majority of covariates cover the time

period 2000–2015, i.e. they match the time span for

most of the newly collected soil samples.

Prior to modeling, all covariates have been stacked

to the same spatial grids of 250 m, as the best

compromise between computational load and average

resolution of all covariates. To downscale climatic

images and similar coarser resolution images we used

the bicubic spline algorithm as available in the GDAL

software (Mitchell and Developers 2014).

Spatial prediction framework

Model fitting and prediction were undertaken using an

ensemble of two Machine Learning algorithms (MLA)

(Hengl et al. 2017): ranger (random forest) (Wright

and Ziegler 2016) and xgboost (Gradient Boosting

Tree) (Chen and Guestrin 2016), as implemented in

the R environment for statistical computing. Both

random forest and gradient boosting have already

proven to be efficient in predicting soil chemical and

physical soil properties at the continental and global

scale (Hengl et al. 2017). Packages ranger and

xgboost were selected also because both are highly

suitable for dealing with large data sets and support

parallel computing in R.

For all target variables we use depth as a covariate,

so that the resulting models make depth-specific

predictions of target variables:

YðxydÞ ¼ d þ X1ðxyÞ þ X2ðxyÞ þ � � � þ XpðxyÞ ð1Þ

where Y is the target variable, usually nutrient

concentration in ppm, d is the depth of observation

and XpðxyÞ are covariates and xy are easting and

northing. Note that there is somewhat bias in sampling

representation towards top-soil as large portion of

samples only has values for 0–20 cm depths i.e.

represent only one depth. On the other hand, almost all

of legacy soil profiles (18,500 locations) contain

measurements for all horizons, so that building of soil

variable-depth relationship is still possible.

We make predictions at four standard depths: 0, 5,

15, and 30 cm (at point support), and aggregate these

to the 0–30 cm standard depth interval using the

trapezoidal rule for numerical integration:

Z b

a

f ðxÞ dx � 1

2

XN�1

k¼1

xkþ1 � xkð Þ f ðxkþ1Þ þ f ðxkÞð Þ

ð2Þ

where N is the number of depths in the [a, b] interval

where predictions were made, x is depth (a ¼ x1\
x2\ � � �\xN ¼ b) and f(x) is the value of nutrient

content at depth x. Although we could have made

predictions for each 1 cm, for practical reasons

(computational intensity and storage) four depths

were considered good-enough to represent soil vari-

able-per-depth changes. Depths 0, 5, 15, and 30 cm

were chosen as standard depths also because these are

standardly used in the SoilGrids project (Hengl et al.

2017). For several soil nutrients, especially organi-

cally bound nutrients as Nitrogen, Carbon, Sodium

and to a lesser extent Phosphorus, modeling soil

variable-depth relationship is important because the

concentrations generally show distinct changes with

depth.

We initially considered running kriging of remain-

ing residuals, but eventually this was not finally

considered worth the effort for the following two

reasons. First, most of the observation points are far

apart so kriging would have had little effect on the

output predictions. Second, the variograms of the

residuals all had a nugget-sill ratio close to 1, meaning

that the residual variation lacked spatial structure and

would not benefit spatial interpolation, e.g. by the use

of kriging (Hengl et al. 2007). From our work so far on

this and other soil related projects, it seems that there is

a rule of thumb where once a machine learning model
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explains over 60% of variation in data, chances are

that kriging is not worth the computational effort.

To optimize fine-tuning of the Machine Learning

model parameters, the caret::train function

(Kuhn 2008) was used consistently with all nutrients.

This helped especially with fine-tuning of the xgboost

model parameters and the mtry parameter used in the

random forest models. Optimization and fine-tuning of

Machine Learning algorithms was computationally

demanding and hence time consuming, but our

experience was that it often led to a 5–15% improve-

ment in the overall accuracy.

All processing steps and data conversion and

visualization functions have been documented via

ISRIC’s institutional github account2. Access to

legacy data from the Africa soil profiles database

and other data sets produced by the AfSIS project is

public and to access the other data sets consider

contacting the corresponding agencies.

Accuracy assessment

For accuracy assessment a 5–fold cross-validation was

used where each model was re-fitted five times using

80% of the data and used to predict at the remaining

20% (Kuhn 2008). Predictions were then compared

with the put-aside observations. For each soil nutrient

content, the coefficient of determination (R2, the

amount of variation explained by the model) and root

mean squared error (RMSE) was derived. The amount

of variation explained by the model was derived as:

R% ¼ 1 � SSE

SST

� �
¼ 1 � RMSE2

r2
z

� �
½0 � 100%� ð3Þ

where SSE is the sum of squares of residuals at cross-

validation points (i.e. RMSE2 � n), and SST is the total

sum of squares. A coefficient of determination close to

1 indicates a perfect model, i.e. 100% of variation is

explained by the model. As all soil nutrients had a near

log-normal distribution, we report the amount of

variation explained by the model after log-transfor-

mation. Also, for the cross-validation correlation plots

(observed vs predicted; see further Fig. 9) log scale

was also used to ensure equal emphasis on low and

high values.

Multivariate and cluster analysis

In addition to fitting models per nutrient, we also run

multivariate and cluster analysis to determine cross-

correlations and groupings in the values. First, we

analyzed correlation between the nutrients by running

principal component analysis. Secondly, we allocated

individual sampling locations to clusters using unsu-

pervised classification to determine areas with rela-

tively homogeneous concentrations of nutrients. For

this we used the fuzzy k-means algorithm as imple-

mented in the h2o package (Aiello et al. 2016).

Both principal component analysis and unsuper-

vised fuzzy k-means clustering were run on trans-

formed variables using the Aitchison compositions as

implemented in the compositions package (van den

Boogaart and Tolosana-Delgado 2008). Note that

transforming the original nutrient values into compo-

sitions is important as in its absence, application of

statistical methods assuming free Euclidean space

(e.g. PCA and unsupervised fuzzy k-means clustering)

gives a highly skewed view of the variable space (van

den Boogaart and Tolosana-Delgado 2008).

After clusters in nutrient values were determined,

they were correlated with the same stack of covariates

used to model individual nutrients, and a random forest

classification model was fit and used to generate

predictions for the whole of SSA (see further

Fig. 10). As probability maps were produced for each

cluster, we also calculated a map of the Scaled Shannon

Entropy Index (SSEI) to provide a measure of the

classification uncertainty (Shannon 1949; Borda 2011):

HsðxÞ ¼ �
XK
k¼1

pkðxÞ � logKðpkðxÞÞ ð4Þ

where K is the number of clusters, logK is the logarithm

to base K and pk is the probability of cluster k. The

scaled Shannon Entropy Index (Hs) is in the range

from 0–100%, where 0 indicates no ambiguity (one of

the pk equals one and all others are zero) and 100%

indicates maximum confusion (all pk equal 1
K

). The Hs

indicates where the ‘true’ cluster is most uncertain.

In summary, the process of generating maps of

nutrient clusters consists of five major steps:

1. Transform all nutrient values from ppm’s to

compositions using the compositions package

(van den Boogaart and Tolosana-Delgado 2008).
2 https://github.com/ISRICWorldSoil/AfricaSoilNutrients.
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2. Determine the optimal number of classes for

clustering using the mclust package (Fraley et al.

2012) i.e. by using the Bayesian Information

Criterion for expectation-maximization.

3. Allocate sampling points to clusters using unsu-

pervised classification with fuzzy k-means using

the h2o package (Aiello et al. 2016).

4. Fit a spatial prediction model using the ranger

package based on clusters at sampling points and

the same stack of covariates used to predict

nutrients.

5. Predict clusters over the whole area of interest and

produce probabilities per cluster.

6. Derive scaled Shannon Entropy Index (SSEI) map

and use it to quantify spatial prediction

uncertainty.

Importance of soil nutrient maps for crop yield

data

In order to evaluate the importance of these soil

nutrient maps for actual agricultural planning, we use

the publicly available Optimising Fertilizer Recom-

mendations in Africa (OFRA) field trials database.

OFRA, a project led by CABI (Kaizzi et al. 2017),

contains 7954 legacy rows from over 600 trials

collected in the period 1960–2010. Field trials include

crop yields and field conditions for majority of crops

including maize, cowpea, sorghum, (lowland, upland)

rice, groundnut, bean, millet, soybean, wheat, cassava,

pea, climbing bean, barley, sunflower, (sweet, irish

and common) potato, cotton, and similar. The OFRA

database covers only 13 countries in Sub-Saharan

Africa, hence it does not have the ideal representation

considering all combinations of climatic and land

conditions of crop growing. It is, nevertheless, the

most extensive field trial database publicly available

for SSA.

We model the relationship between the crop yield

and mapped climatic conditions (monthly tempera-

tures and rainfall based on the CHELSA data set),

mapped soil nutrients using a single model in the form:

cropyield½t=ha�¼
f croptype;variety;application;nutrients;climatef g

ð5Þ

where cropyield, croptype, variety and application are

defined in the OFRA database, nutrients are maps we

produced, and climate are CHELSA climatic images

for SSA. Variable croptype is the factor type variable

(e.g. ‘‘maize’’, ‘‘cowpea’’, ‘‘sorghum’’, ‘‘rice’’ etc) and

so are variety (e.g. ‘‘H625’’, ‘‘Glp 2’’, ‘‘Maksoy2&4’’

etc) and application (‘‘2 splits’’, ‘‘2/3 applied basally’’,

‘‘all fertilizer applied along the furrows’’ etc). This

model we also fit using random forest, so that crop

yields can be differentiated for various crop types,

covariates and crop applications via a single model.

Once the model in Eq. (5) is fitted, it can be used to

generate predictions for various combinations of the

former, which could lead to an almost infinite number

of possible maps.

Here we primarily concentrate on testing whether

soil nutrients are important factor controlling crop

yield. Note also that fitting one model for all crop types

is statistically elegant (one multivariate model to

explain all crop yield) also because one can then

explore all interactions e.g. between crop types,

varieties, treatments etc, and produce predictions for

all combinations of crop types, varieties and treat-

ments; this would have been otherwise very difficult if

not impossible if we were to fit models per each crop

type.

Results

Principal component analysis

The results of the principal component analysis

(Fig. 4) shows that there are two positively correlated

groups of nutrients (K, Mg, Na and Ca and org. C and

N and total P). Negatively correlated nutrients are: Na,

Mg, Ca vs Fe, Zn, Cu, Mn and S (i.e. high iron content

commonly results in low Na, Mg, Ca content), and B

vs org. C and N and total P. Because most nutrients

were inter-correlated,[75% of variation in values can

be explained with the first five components: PC1 (48.8

%), PC2 (19.4%), PC3 (6.7%), PC4 (5.2%) and PC5

(3.8% variation).

Model fitting results

The model fitting and cross-validation results are

shown in Table 1 and most important covariates per

nutrient are shown in Table 2. For most of nutrients

successful models can be fitted using the current set of

covariates with R-square at cross-validation points
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ranging from 0.40 to 0.85. For extractable S and P,

models are significantly less prominent and hence the

maps produced using these models can be associated

with wide prediction uncertainty (hence probably not

ready for operational mapping).

The model fitting results show that the most

important predictors of soil nutrients are usually soil

pH, climatic variables (precipitation and temperature),

MODIS EVI signatures and water vapor images. The

order of importance varies from nutrient to nutrient:

soil pH is clearly most important covariate for Na, K,

Ca, Mg, Al; it is somewhat less important for N.

Precipitation (especially for months November,

December and January) distinctly comes as the most

important covariate overall. Considering that soil pH,

at global scale, is mostly correlated with precipitation

(Hengl et al. 2017), this basically indicates that

precipitation, overall, comes as the most important

covariate.

The fact that Landsat bands also come as important

covariate for number of nutrients (Na, Ca, Mg, S) is a

promising discovery for those requiring higher reso-

lution maps (Landsat bands are available at resolution

of 60–30 m). Nevertheless, for majority of nutrients,

the most important covariates are various climatic

images, especially precipitation images. Although

climatic images are only available at coarse resolution

of 1 km or coarser, it seems that climate is the key

factor controlling formation and evolution of nutrients

in soil.

Model fitting results also show that apart from org.

C and N, and ext. Mn, Fe, B and P, the majority of

nutrient values do not change significantly with depth.

For the majority of soil macro- and micro-nutrients, it

is probably enough to sample nutrients at a single

depth. For C, N, P, Mn, Fe and B, depth is relatively

high on the list of important covariates and hence

should not be ignored.
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Fig. 4 Principal component analysis plots generated using

sampled data: (left) biplot using first two components, (right)

biplot using the third and fourth component. Prior to PCA,

original values were transformed to compositions using the

compositions package. P is the extractable phosphorus, and

P.T is the total phosphorus
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Spatial predictions

Final spatial predictions for nutrients with significant

models are shown in Figs. 5 and 6. The spatial patterns

produced match our expert knowledge and previously

mapped soil classes in general, which is true especially

for Fe, org. C and N and Ca and Na. Our predictions

also indicate that the highest deficiencies for B and Cu

are in sub-humid zones, which corresponds to the

results of Kang and Osiname (1985). As several of the

micro-nutrients have been mapped for the first time for

the whole of Sub-Saharan Africa, many produced

spatial patterns will need to be validation both locally

and regionally.

Some artifacts, in the form of sharp gradients that

could not occur naturally, are visible in the output

maps, primarily due to the very coarse resolution of

the geological layer used for model building. Unfor-

tunately, the lithological map (Persits et al. 2002) and

the map of groundwater resources (MacDonald et al.

2012), were available only at relatively general scale,

i.e. these corresponds to spatial resolutions of 10 km or

coarser, so that consequently artifacts, due to resolu-

tion mismatch and manually drawn geomorphological

boundaries, are also visible in the output predictions.

Predictions of all soil nutrients at four depths took

approximately 40 h on ISRIC’s dedicated server with

256 GiB RAM and 48 cores (whole of Sub-Saharan

Africa is about 7500 by 7000 km, i.e. covers about

23.6 million square kilometers). Fitting of models on

the dedicated server running R software is efficient

and models can be generated within 1 hour even

though there were, on average,[50,000 of measure-

ments per nutrient. With some minor additional

investments in computing infrastructure, spatial pre-

dictions could be updated in future within 24 hrs

(assuming all covariates are ready and harmonization

of nutrients data already implemented).

Figures 7 and 8 show the level of spatial detail of

the output maps and demonstrates how these maps

could be used for delineation of areas potentially

deficient in key soil nutrients, i.e. a somewhat more

useful/interpretable form of summary information to

agronomists and ecologists. In this case, determination

of deficient and suitable nutrient content was based on

soil fertility classes by Roy et al. (2006), ranging from

very low (\50% expected yield) to medium (80–100%

yield) to very high (100% yield) and assuming soil of

medium CEC. Crop specific threshold levels can be set

by users to quickly map areas of nutrient deficiency/

high potential fertility to spatially target suitable agro-

nomic intervention. Similar, threshold values beyond

which crop does not respond to fertilizer nutrient

application can be diversified and mapped at regional

Table 1 List of target soil macro- and micro-nutrients of interest and summary results of model fitting and cross-validation

Nutrient Method N 1% 50% 99% R-square RMSE

org. N total (organic) N extractable by wet oxidation 63,937 0.0 600.0 4200 0.66 558

tot. P total phosphorus 7899 0 132 3047 0.85 284

ext. K extractable by Mehlich 3 104,784 0 130 1407.5 0.64 201

ext. Ca extractable by Mehlich 3 105,173 14 1162 14288 0.69 1950

ext. Mg extractable by Mehlich 3 103,356 1.2 242 2437 0.78 241

ext. Na extractable by Mehlich 3 71,986 0 30.13 2690 0.61 452

ext. S extractable by Mehlich 3 43,666 0.6 9 51 0.11 78

ext. Al extractable by Mehlich 3 30,945 0 874 2120 0.84 171

ext. P extractable by Mehlich 3 42,984 0 6 188 0.12 43

ext. B extractable by Mehlich 3 43,338 0 0.33 2.09 0.41 0.47

ext. Cu extractable by Mehlich 3 45,572 0.001 2.2 10.6 0.54 2.11

ext. Fe extractable by Mehlich 3 18,341 0 121 574 0.68 53

ext. Mn extractable by Mehlich 3 44,689 1.8 124 440 0.53 69

ext. Zn extractable by Mehlich 3 45,626 0.1 2.1 26.03 0.47 4.0

All values are expressed in ppm. N = ‘‘Number of samples used for training’’, R-square = ‘‘Coefficient of determination’’ (amount of

variation explained by the model based on cross-validation) and RMSE = ‘‘Root Mean Square Error’’. Underlined cells indicate

poorer models (or too small sample sizes)
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scale based on the spatial diversity of measured or

calculated attainable yield levels.

Accuracy assessment results

The cross-validation results are reported in Table 1

and in Fig. 9. For org. C and N, extractable K, Ca, Na,

Mg, Fe, Mn, Cu and Al, cross-validation R-square was

above 50%, which is often considered a solid result in

soil mapping projects (Hengl et al. 2015). For S and

ext. P we could not fit highly significant models (R-

square \30%). It could be very difficult, if not

impossible, to make any significant maps of estimates

of extractable soil P and S with the existing data, hence

these maps should be used with caution. However,

maps of other nutrients and also of properties such as

pH and CEC could be useful for informing the

potential for low contents in these elements, for

example association of high P fixation and low

extractable P with high Fe and Mn, and low sulfur in

soils with low C.

Spatial distribution of soil nutrient clusters

The results of the cluster analysis show that the

optimal number of clusters, based on the Bayesian

Table 2 Top ten most important covariates per nutrient, reported by the ranger package

Nutrient Most important covariates (10)

org. N Depth, LSTD November, TWI (DEM), LSTD October, precipitation November, soil pH, DEM, water vapor January-

February, precipitation December, mean annual temperature

tot. P Precipitation July, density of mineral exploration sites (Al), precipitation August, September, lithology, precipitation

February, LSTD August, mean annual precipitation, water vapor January-February, precipitation June

ext. K Soil pH, water vapour July-August, DEM, precipitation January, std. EVI April, precipitation February, water vapor

January-February, depth, cloud fraction February, water vapor November-December

ext. Ca Soil pH, water vapour January-February, water vapour November-December, cloud fraction March, DEM, mean EVI

May-June, Landsat NIR, std. LSTD November, mean EVI July-August, Landsat SWIR1

ext. Mg Soil pH, water vapor January-February, Landsat NIR, Landsat SWIR1, cloud fraction February, Landsat SWIR2, water

vapor November-December, LSTD March, water vapor March-April, Landsat SWIR1

ext. Na Soil pH, depth, cloud fraction seasonality, cloud fraction March, LSTN December, mean EVI January-February, slope

(DEM), std. LSTN April, mean EVI May-June, LSTD July

ext. S Lithology, Landsat SWIR2, cloud fraction December, precipitation October, May, TWI (DEM), precipitation November,

std. EVI July-August, LSTD November

ext. Al Soil pH, LSTD November, precipitation November, TWI, LSTD December, cloud fraction November, DEM, cloud

fraction December, precipitation total, precipitation February

ext. P Valley depth (DEM), precipitation July, Deviation from mean (DEM), precipitation November, DEM, std. EVI May-June,

precipitation January, positive openness (DEM), mean EVI July-August, mean EVI May-June

ext. B Precipitation August, January, depth, precipitation November, soil pH, DEM, std. EVI July-August, precipitation

September, positive openness (DEM), precipitation December

ext. Cu Water vapor May-June, precipitation December, water vapor November-December, July-August, September-October,

depth, water vapor January-February, precipitation July, cloud fraction November, precipitation August

ext. Fe Water vapor January-February, density of mineral exploration sites (Phosphates), water vapor September-October, July-

August, cloud fraction seasonality, water vapor May-June, March-April, depth, DEM, cloud fraction mean annual

ext. Mn Depth, precipitation November, April, cloud fraction January, land cover, DEM, precipitation February, January, water

vapor January-February, precipitation December

ext. Zn Precipitation January, December, mean EVI May-June, precipitation March, std. EVI March-April, precipitation February,

November, April, TWI

Explanation of codes: depth = depth from soil surface, LSTD = MODIS mean monthly Land Surface Temperature day-time, LSTN
= MODIS mean monthly Land Surface Temperature night-time, EVI = MODIS Enhanced Vegetation Index, TWI = topographic

wetness index, DEM = Digital Elevation Model, NIR = Landsat Near Infrared band, SWIR = Landsat Shortwave Infrared band.

Underlined covariates indicate distinct importance

cFig. 5 Predicted soil macro-nutrient concentrations (0–30 cm)

for Sub-Saharan Africa. All values are expressed in ppm
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Information Criterion for expectation-maximization,

initialized by hierarchical clustering for parameterized

Gaussian mixture models, as implemented in the

mclust package function Mclust (Fraley et al.

2012), can be set at 20. It appears, however, that

optimal number of clusters cannot be set clearly as

majority of points were not split into distinct clouds,

hence other smaller and larger numbers than 20 could

have been derived probably with other similar cluster

analysis packages.

A random forest model fitted using 20 clusters

shows significance with an average out-of-bag classi-

fication accuracy, reported by the ranger package, of

65%. Class centers and corresponding interpretations

are shown in Table 3, while the spatial distribution of

clusters of soil nutrients is shown in Fig. 10. Note that,

although it might seem difficult to assign meaningful

names to clusters, it is clear that for example cluster

c1 can be associated with high organic C and N, and

cluster c11 with high K content. Cluster analysis

shows that especially classes 8, 12 and 13 have

systematic deficiencies in most of micro-nutrients;

classes 2 and 7 shows specific nutrient deficiencies in

K and Mg.

Map in Fig. 10 confirms that the produced clusters,

in general, match combinations of climate and lithol-

ogy. A map of the scaled Shannon Entropy Index

(SSEI) for produced clusters is also shown in Fig. 10

(right). The differences in uncertainty for different

parts of Sub-Saharan Africa are high. Especially large

parts of Namibia, Democratic Republic Congo,

Botswana, Somalia and Kenya have relatively high

scaled Shannon Entropy Index (SSEI), hence higher

uncertainty. In general it can be said that the SSEI map

closely corresponds to extrapolation effects, i.e. that

uncertainty primarily reflects density of points—as we

get further away from main sampling locations, the

SSEI grows to[80% (high uncertainty). In that sense,

further soil sampling campaigns, especially in areas

where the SSEI is [80%, could help decrease

uncertainty of mapping soil nutrients in Sub-Saharan

Africa. Map of SSEI is provided via the download data

section.

Correlation with crop yield data

The result of modeling relationship between crop yield

and nutrient and climatic maps (Eq. 5) show that a

potentially accurate model can be fitted using random

forest: this model explains 78% of variation in the crop

yield values with an Out-Of-Bag (OOB) RMSE of

�2:4 t ha�1. The variable importance plot (Fig. 11)

further shows that the most influential predictors of the

crop yield are: crop type, selection of nutrients and

micro-nutrients (Mn, Zn, Al, B, Na), and, from

climatic data, primarily monthly rainfall for June,

October, September, May and July. This proves that

producing maps of soil nutrients is indeed valuable for

modeling agricultural productivity.

Note however that, although some micro-nutrients

such as Mn and Zn come highest on the variable

importance list, this does not necessarily makes them

the most important nutrients in Africa. Figure 11 only

indicates that these nutrients matter the most for the

crop yield estimated at OFRA points. Also note that

because soil nutrients are heavily cross-correlated

(Fig. 4) relatively high importance of Mn and Zn

could also indicate high importance of P, B, Fe and/or

S.

Again, although the potential yield modeling

results are promising and although even maps of

potential crop yield can be generated (Fig. 12) using

this model, we need to emphasize that these results

should be taken with a reserve. Especially considering

the following limitations:

1. Distribution of the OFRA field trials is clustered

and limited to actual 606 trials/locations (Fig. 12),

hence probably not representative of the whole

SSA.

2. Most of field trials are legacy trials (often over 20

years old) and hence correlating them with the

current soil conditions probably increases uncer-

tainty in the models.

3. This model ignores weather conditions for speci-

fic years (instead long-term estimates of rainfall,

temperatures are used). Matching exact weather

conditions per year would probably be more

appropriate.

If all OFRA training data was temporally referenced

(day or at least month of the year known), we could

have maybe produced even higher accuracy maps of

potential crop yield e.g. by using the model of type:

cFig. 6 Predicted soil micro-nutrient concentrations (0–3 cm)

and extractable Al for Sub-Saharan Africa. All values are

expressed in ppm
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cropyieldðtÞ½t=ha� ¼

f
croptypeðtÞ; varietyðtÞ; applicationðtÞ;
nutrientsðtÞ;weatherðtÞ; av:waterðtÞ

� � ð6Þ

so that also very dry and very wet months and their

impact during the growing season could be incorpo-

rated into the model. Unfortunately, temporal refer-

ence (begin/end date of application) in OFRA trials is

often missing. Also weather maps for specific months

for the African continent are only available at

relatively coarse resolutions (e.g. 10 km or coarser)

and often not available for periods before year 2000 at

all.

Discussion

In the following section we address some open issues

and suggest the approaches to overcome these. This is

mainly to emphasize limitations of this work, and to

try to announce future research directions.

Harmonization problems

One of the biggest problems of mapping soil nutrients

for large areas are the laboratory and field measure-

ment diversity. There is large complexity considering

the methods and approaches to measurement of soil

nutrients (Barber 1995). At farm-scale, this might not

pose a too serious problem, but for pan-continental

data modeling efforts it is certainly something that can

not be ignored. In principle, many extractable soil

nutrient content determination methods are highly

correlated and harmonization of values is typically not

a problem. For example, Phosphorus can be deter-

mined using Bray-1, Olsen and Mehlich-3 methods,

which are all highly correlated depending on the pH

range considered (Bray-1 and Mehlich-3 could be

considered equivalent in fact). Conversion from one

method to another however depends also on the soil

conditions, such as soil pH and soil types (Roy et al.

2006) and requires data which are not readily

available.

Fig. 7 Examples of nutrient deficiency maps based on our

results: zoom in on town Bukavu at the border between the

eastern Democratic Republic of the Congo (DRC) and Rwanda.

Points indicated samples used for model training. The threshold

levels are based on Roy et al. (2006, p.78) ranging from very

low (\50% expected yield) to medium (80–100% yield) to very

high (100% yield). All values are in ppm’s. Background data

source: OpenStreetMap
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Some nutrient measurements might come from the

X-ray fluorescence method (XRF), especially where

plant available nutrient levels relate to total element

concentrations (Towett et al. 2015). In this project, we

did not invest in harmonization of measurement

methods as this was well beyond the project budget.

It is, for example, well known that extractable P, K and

micro-nutrients do not predict well from MIR, hence

there are still many limitations with using nutrient

concentrations derived from soil spectroscopy.

Improving harmonization, geolocation accuracy of

samples and standardizing sufficiently large measure-

ment support sizes (some samples were taken at fixed

depths restricted to the topsoil, others were taken per

soil horizon over soil depth), could possibly help

improve accuracy of predictions.

Computational challenges

Machine learning methods have already been proven

effective in representing complex relationships with

large stacks of variables (Strobl et al. 2009; Biau

2012). However, MLA’s can demand excessive com-

puting time. Even though possibly more accurate,

more generic algorithms than ranger and xgboost

exist, these might require computing time which is

Fig. 8 Examples of locally

defined nutrient deficiency

maps based on our results:

Eastern Africa. The adopted

threshold levels are based on

Roy et al. (2006, p.78)

ranging from very low

(\50% expected yield) to

medium (80–100% yield) to

very high (100% yield). All

values are in ppm’s.

Background data source:

OpenStreetMap
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beyond the feasibility of this project. For example, we

have also tested using the bartMachine (bayesian

additive regression trees) (Kapelner and Bleich 2013)

and cubist (Kuhn et al. 2013) packages for generating

spatial predictions, but due to very excessive comput-

ing times (even with full parallelization) we had no

choice but to limit prediction modeling to ranger and

xgboost. Computing time becomes a limiting factor

especially as the number of training points is �10,000

and number of predictions locations goes beyond few

million. In our case, whole of Sub-Saharan Africa at

250 m is an image of ca. 29,000 by 28,000 pixels, i.e.

about 382 million pixels to represent the land mask.

Critically poor predictions for P and S

Although the preliminary results presented in this

paper are promising and many significant correlations

have been detected, for nutrients such as ext. P, S and

B we obtained relatively low accuracies. It could very

well be that these types of nutrients will be very

difficult to map at some significant accuracy using this

mapping framework. To address these shortcomings

in the near future one could test developing spatial

predictions at high spatial detail e.g. at 100 m spatial

resolution, and/or test developing spatiotemporal

models for mapping the space-time dynamics of soil

nutrients over Africa. Drechsel et al. (2001), for

example, recognized that much of the soils of Sub-

Saharan Africa are actually constantly degrading,

hence spatiotemporal modeling of nutrients could

probably lead to higher accuracy in many areas. In

addition, all soil tests need calibration with crop

response trials for different soil types and climates,

and future efforts may be better directed at more

accurate calibration of crop responses to soil test data.

Since this study focussed on predictions of soil

nutrients using soil samples from a long period of

years (1980–2016), we cannot tell from the current

data what the rate of soil nutrient depletion is, nor

where it is most serious. As nutrient contents can also

bFig. 9 Accuracy assessment plots for all nutrients. Predictions

derived using 5–fold cross-validation. All values expressed in

ppm and displayed on a log-scale

Table 3 Class centers for 20 clusters determined using supervised fuzzy k-means clustering

Cluster org. C org. N K P P tot. Ca Mg Na S Fe Mn Zn Cu B

c1 23,400 1680 247 13.7 874 1570 306 113 13 123 119 3.8 2.2 0.4

c2 1840 280 54.7 12.4 344 321 56 0 49 97 250 47.0 60.0 0.7

c3 2230 286 115 78.7 366 463 114 48 29 134 128 5.3 2.7 0.9

c4 3580 335 109 33.7 333 631 162 69 23 117 120 4.7 2.8 0.6

c5 3090 383 211 27.9 449 1720 282 171 626 99 134 4.2 2.7 2.4

c6 1890 246 76.3 13.4 163 628 166 76 24 86 130 9.5 5.4 0.4

c7 1190 291 58 19.5 237 295 95 46 28 115 121 4.7 2.3 2.6

c8 1 0 62 7.55 290 231 104 36 9 193 55 1.3 1.7 0.1

c9 2840 372 335 21.3 303 3780 669 4270 56 69 116 4.1 2.5 0.7

c10 3870 439 297 27 444 3200 416 267 246 90 166 4.1 2.9 2.1

c11 5780 704 1740 34.4 607 2840 572 474 33 86 117 4.4 2.6 0.9

c12 4 1 112 7.74 278 797 214 41 8 140 74 1.5 1.1 0.1

c13 34 5 79.4 4.36 821 447 133 37 8 114 46 1.1 0.9 0.1

c14 3750 803 101 22.7 465 518 150 59 21 116 113 4.0 2.6 0.6

c15 1620 1040 82.2 26.6 482 332 115 56 28 108 116 3.9 2.8 0.6

c16 4260 514 269 21.8 451 5790 1180 496 41 76 136 4.3 3.2 0.8

c17 3200 393 65.6 21.6 301 357 127 51 22 139 122 5.0 2.4 1.8

c18 2600 330 64.7 15 179 742 145 25 51 101 330 27.5 30.1 0.6

c19 6890 580 133 24.4 413 665 162 56 17 122 114 4.0 2.3 0.5

c20 13,700 1100 416 20.8 756 5820 944 262 17 67 132 2.3 3.2 0.7

Underlined numbers indicate highest values per nutrient; italic indicates top two lowest concentrations per class

Nutr Cycl Agroecosyst (2017) 109:77–102 95

123



96 Nutr Cycl Agroecosyst (2017) 109:77–102

123



be quite dynamic and controlled by the land use

system (especially for nitrogen and organic carbon,

and potentially phosphorus depending on fertilisation

history), spatiotemporal models which take into

account changes in land use could help increase

mapping accuracy. Although we already have prelim-

inary experience with developing spatiotemporal

models for soil data, there are still many methodolog-

ical challenges that need to be addressed, e.g. espe-

cially considering poor representation of time within

the given sampling plans.

Missing covariates

Accuracy of spatial predictions of nutrients could also

be improved by investing in new and/or more detailed

covariates. Unfortunately, no better parent material

i.e. surface lithology map was available to us than the

most general map of surface geology provided by

USGS (Persits et al. 2002). Kang and Osiname (1985)

suggests that the micro-nutrient deficiencies are espe-

cially connected with the type of parent material,

hence lack of detailed parent material/lithology map of

Africa is clearly a problem. Using gamma-radiomet-

rics images in future could likely help increase

accuracy of nutrient maps (especially for P and K).

In Australia for example, a national agency has

bFig. 10 Predicted spatial distribution of the determined clusters

(20) (above), and the corresponding map of scaled Shannon

Entropy Index (below). High values in scaled Shannon Entropy

Index indicate higher prediction uncertainty. Cluster centers are

given in Table 3
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Model importance plot (grain yield)

Precipitation March
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Precipitation December
Temperature November
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Precipitation total
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Precipitation June

ext. Cu
Variety − B53
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Crop type − Potato
Crop type − Maize

Crop type − Cassava

Fig. 11 Variable importance plot for prediction of the crop

yield using the model from Eq. (5). Training points include

7954 legacy rows for 606 trials

Fig. 12 Examples of predicted potential crop yield for the land mask of SSA (excluding: forests, semi-deserts and deserts, tropical

jungles and wetlands). Circles indicate the OFRA field trials database points used to train the model

Nutr Cycl Agroecosyst (2017) 109:77–102 97

123



collected and publicly released gamma-radiometrics

imagery for the whole of the continent (Minty et al.

2009); similar imagery is also available for the whole

of conterminous USA (Duval et al. 2005). Although it

is not realistic to expect that the African continent

would soon have an equivalent, gamma-radiometric

imagery could contribute substantially to regional soil

nutrient mapping due to its ability to differentiate

topsoil mineralogy. The recent initiatives such as the

World Bank’s Sustainable Energy, Oil, Gas and

Mining Unit (SEGOM) programme ‘‘The Billion

Dollar Map’’ (Ovadia 2015), could only help with

bridging these gaps.

Another opportunity for increasing the accuracy of

maps of nutrients is to try to utilize Landsat 8 and

Sentinel-2 near and mid-infrared imagery to derive

proxies of surface minerology. Several research

groups are now working on integrating airborne/

satellite sensing with ground-based soil sensing into a

single framework (see e.g. work of Stevens et al.

(2008) and Ben-Dor et al. (2009)). The newly

launched SHALOM Hyperspectral Space Mission

(Feingersh and Dor 2016) could be another source of

possibly crucial remote sensing data for nutrient

mapping and monitoring.

Other soil nutrient data bases of interest

Accuracy and value of produced predictions could be

improved if more sampling points were added to the

training dataset, especially those funded and/or col-

lected by national government agencies and NGO’s.

Relevant data from additional soil data sets (not

currently available for spatial prediction or with

unknown user restrictions) include the AfSIS data

recently generated in collaboration with Ethiopia,

Tanzania, Ghana and Nigeria, ICRAF (World Agro-

forestry Centre) and CIAT (The International Center

for Tropical Agriculture) institutes additional data

generated in collaborative projects, private sector

funded data (e.g. MARS in Ivory Coast and others in

Ivory Coast, Nigeria), USAID-funded IFDC project

(https://ifdc.org/) data from West Africa, CASCAPE

project (http://www.cascape.info/) data sets, N2Africa

project samples (http://www.n2africa.org/), and data

generated by various national initiatives.

As gradually more soil samples are added, espe-

cially in the (extrapolation) areas with highest spatial

prediction error, it is reasonable to expect that the

models and derived maps will also gradually become

better. If not more accurate, then at least more

representative of the main lithologic, climatic and

land cover conditions in the SSA.

Usability of produced maps

There is a critical need for agricultural and ecological

data in Africa, where an expected 3.5–fold population

increase this century (Gerland et al. 2014) will place

immense demand on soil nutrients that form the basis

of food production. Researchers and policy makers

have repeatedly called for data and monitoring

systems to track the state of the world’s agriculture

(Sachs et al. 2010). In response to this need, this soil

nutrients data set provides both a useful tool for

researchers interested in the role that soil nutrients

play in ecological, agricultural and social outcomes in

Sub-Saharan Africa, as well as a general estimate of

soil nutrient stocks at a time when the continent is

facing significant climate and land-use change.

As the resolution of maps is relatively detailed, it is

possible to spatially identify regional areas (Figs. 7, 8)

that are ‘naturally’: (1) deficient, (2) adequate and (3) in

excess relative to specific land-use requirements; and

pair these with the nutrient-specific agronomic interven-

tions required to achieve critical crop thresholds. Such

usage could help optimize the use of soil resource and

possibly (major) agronomic interventions across African

countries (Vanlauwe et al. 2014). These agronomic

interventions could consist of: targeting degraded areas

that are suitable for restoration projects, and/or targeting

areas for agricultural intensification and investment by

modeling crop suitability and yield gaps at the regional

scale (Nijbroek and Andelman 2016), and/or assessing

the nutrient gaps to predict fertilizer nutrient use

efficiency.

Although we have only estimated long-term nutri-

ent contents using relatively scarce data, the maps

produced could be used to derive various higher-level

data products, such as nutrient mass balance maps,

when combined with soil bulk density data, Soil

Fertility Index maps (Schaetzl et al. 2012) and/or

nutrient gap (deficiency) maps. Such maps can be

beneficial for non-specialist audiences who are nev-

ertheless interested in spatial distributions of soil

nutrients. The maps from this research could also be

used as prior estimates that could be updated with

more intensive local level sampling.
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In addition to deriving higher-level products from

this data set, combining these soil nutrient data with

other continent-wide data sets will also yield insights.

For example, data sets on weather (multiple years),

farm management and root depth soil water (Leenaars

et al. 2015) combined with data sets on crop distribu-

tion and yield, both actual and potential, will lead to

insights about edaphic and agronomic drivers of yields

gaps and associated nutrient gaps, or help policy

makers target areas likely to undergo future nutrient

depletion through crop removal and prevent areas that

would otherwise fall below some critical nutrient level

in the near to medium future. Other socio-economic

data sets, such as health or income surveys, could be

paired with these data to demonstrate how soil nutrient

depletion can affect livelihoods and health outcomes,

as well as to model the effects of predicted soil nutrient

changes. Finally, this dataset could be combined with

ecological data, such as biophysical inventories or NDVI

data sets to refine our understanding of the role soil

nutrients play in the heterogeneous and seemingly

stochastically shifting plant community regimes of the

semi-arid tropics, the underlying dynamics of which are

still poorly understood (Murphy and Bowman 2012).

As we have already noted, probably the most

serious limitation of this project was the high spatial

clustering of points, i.e. under-sampling in countries

with security issues or poor road infrastructures

(tropical jungles, wetlands and similar). Fitting mod-

els with (only) 60 sites could result in many parts of

Africa containing only extrapolated areas as topsoil

data are predominantly collected/available for Eastern

Africa (Ethiopia, Kenya, Uganda, Rwanda, Burundi,

Tanzania), with large areas of relatively fertile soils

developed from materials of volcanic origin located at

relatively high altitude. More sampling points are

certainly needed to improve spatial prediction models

(and also to make the cross-validation more reliable),

especially in West African soils developed in base-

ment complexes (granites, gneisses, schists) and

deposits and which are generally very much lower in

soil nutrient contents. Because of high spatial cluster-

ing of points, and consequent extrapolation problems,

the maps presented in this work should be used with

caution. In that context, for the purpose of pan-African

mapping it would be important to further optimize

spreading of the sampling locations especially to

increase representation of the geological and particu-

larly the pedological feature space. This would

increase sampling costs, but it might be the most

efficient way to improve accuracy and usability of

maps for the whole continent.

Also soil subsoil could be somewhat better repre-

sented. As the majority ([90%) of measurements refer

to topsoil, unfortunately, we cannot tell if these soil-

depth relationships are also valid for subsoil i.e.

beyond 50 cm of depth and including the soil C

horizon in weathering substrate. So also collecting soil

nutrient measurements for depths beyond 50 cm could

lead to interesting discoveries, especially when it

comes to mapping organic Carbon and Nitrogen, soil

alkalinity and similar.

Conclusions

Spatial predictions of main macro- and micro-nutri-

ents have been produced for soils of Sub-Saharan

Africa using an international compilation of soil

samples from various projects. Our focus was mainly

on producing spatial prediction of extractable concen-

trations of soil nutrients (thus relative nutrient content

estimates based on Mehlich-3 and compatible meth-

ods). For phosphorus we also produced maps of the

total P content and for carbon and nitrogen we

produced maps of organic component of the two

elements.

The results of cross-validation showed that, apart

from S, P and B, which seemed to be more difficult to

model spatially using the given framework, significant

models can be produced for most targeted nutrients

(R-square between 40–85%; Table 1). Produced maps

of soil macro- and micro-nutrients (Figs. 5, 6) could

potentially be used for delineating areas of nutrient

deficiency/sufficiency relative to nutrient require-

ments and as an input to crop modeling. Results of

cluster analysis indicate that whole of SSA could be

represented with ca. 20 classes (Fig. 10), which could

potentially serve as the (objectively delineated) nutri-

ent management zones.

The finally produced predictions represent a long-

term (average) status of soil nutrients for a period from

1960–2016. The training data set could have been

subset to more recently collected soil samples

(2008–2016) to try to produce baseline estimates of

soil nutrients for e.g. 2010. We have decided to use all

available nutrient data instead, mainly to avoid huge
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sampling gaps, but also because our covariates cover

longer time spans.

A limiting factor for mapping nutrients using the

existing point data in Africa is a high spatial clustering

of sampling locations with many countries/land cover

and land use groups completely unrepresented (based

on the Shannon Entropy Index map in Fig. 10).

Logical steps towards improving prediction accuracies

include: further collection of input (training) point

samples, especially in areas that are under-represented

or where the models perform poorly, harmonization of

observations, addition of more detailed covariates

specific to Africa, and implementation of full spatio-

temporal statistical modeling frameworks (i.e. match-

ing more exactly in time domain nutrient concentra-

tions, crop yields and weather conditions).

Overlaying soil nutrient data with crop yield trials

data shows that soil nutrients are indeed important for

agricultural development with especially Mn, Zn, Al,

B and Na, being listed high as the most important

variables for prediction of crop yield (Fig. 11). If both

nutrient maps and climatic images of the area are

available, crop yields can be predicted with an average

error of �2:4 t ha�1. If a more up-to-date field trial

database was available, the model from Eq. (5) could

have been used to produce more actual maps of

potential yield (as compared to Fig. 12). Because the

model from Eq. (5) can be used to produce almost

infinite combinations of predictions, it would be also

fairly interesting to serve the model as a web-service,

i.e. so that users can inspect potential yields on-

demand (for arbitrary chosen combination of crop

type, variant and application).

The gridded maps produced in this work are

available under the Open Data Base licenses and can

be downloaded from http://data.isric.org. These maps

will be gradually incorporated into Web-services for

soil nutrient data, so that also users on the field can

access the data in real-time (i.e. through mobile phone

apps and cloud services).
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