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Abstract The present study investigates in the failure
of adhesive bondings with structural silicone sealants.
Point connectors of two circular metal adherends
bonded with DOWSIL™ TSSA are subjected to ten-
sile loading. We formulate and use a constitutive law
that captures volumetric softening owing to the for-
mation of cavities. Therein, cavitation is considered
a process of elastic instability which is homogenized
with a pseudo-elastic approach. Ultimate failure initi-
ating from the free edges is predicted employing the
framework of finite fracture mechanics. The concept
requires both a strength-of-materials condition and a
fracture mechanics condition to be satisfied simultane-
ously for crack nucleation. For the former, we use a
novel multiaxial equivalent strain criterion. For the lat-
ter, we employ literature values of the fracture tough-
ness of DOWSIL™ TSSA . The predicted onset of
cavitation and ultimate failure loads are in good agree-
ment with our experiments. The proposed model pro-
vides initial crack lengths that allow for the derivation
of simple engineering models for both initial designs

M. Drass, J. Schneider and P. L. Rosendahl have contributed
equally to this work.

F. Rheinschmidt (B) · J. Schneider · P. L. Rosendahl
Institute of Structural Mechanics and Design, Technical Uni-
versity of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt,
Germany
e-mail: rheinschmidt@ismd.tu-darmstadt.de

M. Drass
M&M Network-Ing UG, Lennebergstr. 40, 55124 Mainz, Ger-
many

and proof of structural integrity while simultaneously
extending the range of usability of the structural sili-
cone compared to standardized approaches.
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1 Introduction

Structural bondings employing silicone adhesives have
become an important part of modern engineering. In
mechanical engineering, the adhesives enable lightwei-
ght joints to bemade between differentmaterials, while
in an architectural context, silicone adhesives enable
civil engineers to design exceptional structures and
façades. In all applications, the homogenous load trans-
fer and the high tolerance of the sealant to large defor-
mations of the adherends due to thermal mismatch
between different materials are crucial advantages of
silicone bondings. However, design with silicone adhe-
sives is challenging. Nonlinear material behaviour
requires advanced material models to account for large
deformations. This results in additional work for engi-
neers, as standard failure prediction approaches typ-
ically use either linear elastic fracture mechanics or
strength-of-material approaches based on equivalent
stress criteria. Neither is applicable to structural sili-
cone adhesives.
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Thin structural silicone bondings, such as the Thin
Structural Silicone Adhesive, DOWSIL™ TSSA ,
investigated in the study, allow fully transparent bond-
ings of glass, enabling completely new structures and
façades to be constructed. In the case of these thin struc-
tural silicone bonds, strong constraints in the lateral
direction of the adhesive layer result in volumetric load-
ing of the material. Both material and failure models
must account for volumetric effects. Assemblies with
TSSA require a thorough understanding of the effects
present. Therefore, the introduction is tripartite. Firstly,
material models that account for volumetric softening
due to cavitation are discussed. Secondly, an overview
of different failuremodels is given. Thirdly, theories for
the ultimate failure of component parts in the presence
of stress singularities are discussed.

1.1 Material models

Addressing the effects of cavitation in structural sili-
cone adhesives requires for sophisticatedmaterialmod-
els. These models can either be either micromechani-
cally motivated or be based purely on empirical eval-
uation of experiments. Micromechanically motivated
approaches can be divided into three subcategories
according to Dal et al. (2018).

The first category splits the Helmholtz free energy
function ψ into an isochoric ψiso and a volumetric part
ψvol. This split, introduced by Flory (1961), proves
to be an adequate approach for materials with large
differences in their shear and bulk moduli. However,
according to Ehlers and Eipper (1998) and Li et al.
(2007), the classical approaches for ψvol fail om the
case of large volumetric strains. The isochoric part of
the Helmholtz free energy function has been exten-
sively studied and many promising approaches have
been given, e.g., Mooney (1940); Rivlin (1948); Ogden
(1972); Arruda and Boyce (1993). Approaches mod-
elling the volumetric part of the strain energy function
often lack a physical basis, so that many fail to describe
the asymptotic behaviour for large volumetric strains
and are thus restricted to the regime of small volumetric
strains.

The second category includes studies that analyt-
ically investigate the kinematics of single- or multi-
voided macroscopic continua. A first approach was
introduced by Ball (1982), where a cavity nucleates as
an elastic instability at the center of a sphere composed

of an incompressible matrix in n-dimensional space.
The onset of instable and elastic caviation growth,
the so-called bifurcation point, is calculated for the
case of a Neo-Hookian material and n = 2 and
agrees well with the results of several experiments.
Stuart (1985) extended the approach of Ball (1982)
to compressible matrix materials with multiple strain
energy density functions, using the shooting method to
determine whether cavitation occurs. Horgan and Abe-
yaratne (1986) studied elastic and compressible cylin-
ders under radial loadingwith pre-existing voids. These
studies do not introduce irreversible fracture or dam-
age to the material. However, this approach is limited
to homogeneous hydrostatic loading. The constitutive
behaviour of the voided material is not accessible by
these approaches, nor is the effect of a significant soft-
ening of the material after the onset of cavitation.

The third category uses homogenization techniques,
where a given initial void fraction is present in an
otherwise incompressible material. Danielsson et al.
(2004) based a study on the results of Hou and Abe-
yaratne (1992). Homogenized Helmholtz energy func-
tions were developed to represent poro–hyperelastic
material behaviour. Li et al. Li et al. (2007, 2008) fol-
lowed a similar approach as Danielsson et al. (2004),
but used a Voigt-type homogenization technique and
obtained a compressible constitutive law accounting
for cavitation and cavitation growth. Further studies
using the same approach were carried out by Dal et al.
(2013) and Timmel et al. (2007). However, large vol-
umetric strains were not discussed in the above men-
tioned studies, although they are critical in the design of
structural silicone bondings that undergo large deflec-
tions during loading. For example, TSSA is commonly
applied in the form of penny-shaped bondings where
small axial displacements result in large volumetric
strains in the center of the adhesive layer (Drass and
Schneider 2016).

(Drass and Schneider 2016; Drass et al. 2018a, b, c,
2019) have extensively studied the behavior of TSSA,
focussing in particular on large volumetric strains. Fig-
ure 1 shows the stress whitening effect of
DOWSIL™ TSSA for tensile tests on a penny-shaped
specimen. The whitening effect shown results from an
initial void fraction detected with CT measurements
and transmission electrons microscopy (Drass et al.
2019). These initial voids expand elastically under vol-
umetric loading and result in a softening of the mate-
rial. This is an important distinction to other rubber-
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like materials investigated, e.g., by Gent and Lind-
ley (1959), Ball (1982), Hou and Abeyaratne (1992)
or Lopez-Pamies et al. (2011a, b). While the above
studies focussed either on a defect free material or
zero-dimensional defects of arbitrary shape, the present
study accounts for a finite porosity inherent to the
material and prior to loading. This can be observed
in the stress whitening that occurs during tensile tests
of penny-shaped specimens. While in the above stud-
ies, a small to medium number of macroscopic cavities
occur, TSSA shows a very large number ofmicroscopic
cavities. Alongside the disappearance of the whitening
when unloading the material, this results in the con-
clusion, that the growth of cavities in TSSA is purely
elastic, Drass et al. (2019). Additional support for
this hypothesis comes from cyclic tests performed on
penny–shaped specimens under tensile loading (Drass
et al. 2020). Here, the classical Mullins effect for
isochoric loading is identified alongside an extended
Mullins effect that occurs under volumetric deforma-
tions. For cyclically loaded penny–shaped specimens,
unloading and reloading path are not equal. However,
for each reloading step, the initial stiffness resumes
the initial value of the virgin material, so that macro-
scopic damage in the material resulting from inelas-
tic cavitation growth can be neglected. A microme-
chanically motivated constitutive model that captures
the softening of the material after the onset of cavita-
tion was developed based on extended Nelder polyno-
mials (Nelder 1966). The combination of this novel
Helmholtz energy function with arbitrary isochoric
strain energy functions allows the representation of
either purely isotropic or purely volumetric load cases.
In order to adequately represent the general constitutive
behavior of TSSA under arbitrary monotonic defor-
mations, Drass et al. (2020) introduced an additional
term to theHelmholtz free energy function, usingmeth-
ods based on the concept of pseudo-elasticity intro-
duced by Lazopoulos and Ogden (1998). Additionally,
a study focussing on the cyclic loading and Mullins-
effect related mechanisms present in TSSA was con-
ducted byDrass et al. (2020). A numerical implementa-
tion of both monotonic and cyclic loading is available
for commercial FE-software Ansys as an UserHy-
per-subroutine. However, as a first approach on the
crack nucleation in poro-hyperelastic materials subject
to cavitation, the present study only regards the mono-
tonic case.

Fig. 1 Effect of stress whitening in DOWSIL™ TSSA under
volumetric loading during experiments

This approaches are applicable to both large and
small volumetric and isochoric deformations. Cavita-
tion is described as a purely elastic process resulting
from initial poreswithin thematerial and ingoodagree-
ment with previous studies. To evaluate the failure of
point connectors under quasi-static loading, both a fail-
ure criterion for the material and a theoretical frame-
work for ultimate failure prediction of elastomers are
required.

1.2 Bulk failure models

Normative approaches such as the European Technical
Approval Guideline (ETAG-002) require a minimum
adhesive layer thickness of 4mm and a height to width
ratio between 1 : 1 and 1 : 3. The reason for this strict
adhesive design rule is the danger of cavitation in thin
and slender adhesive layers due to the strong lateral
constraints.

In addition to the accurate description of the con-
stitutive behavior, the prediction of crack nucleation
and subsequent ultimate failure requires adequate fail-
ure models. These failure models must be capable of
representing thematerial’s strength and ultimate exten-
sibility under arbitrary and multiaxial loading. Com-
plex stress, stretch, or strain states that the material can
withstand indefinitely, define the so-called safe region.
This region is bounded by a failure surface, that defines
the stress, stretch, or strain state at which the material
fails (Kolupaev 2018). In the case of silicones with a
finite porosity and a distinct regime of possible volu-
metric deformations, two separate failure modes can
be identified. The failure modes are distinguished into
dilatational or distortional failure modes as outlined
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by Blatz (1963) or Lindsey (1967). In the context of
finite porosity silicones, dilatational or volumetric fail-
ure corresponds to the initial onset of cavitation growth
in thematerial at the bifurcation point. Distortional fail-
ure corresponds to deformations that leave the volume
of the material unchanged.

Initial pioneering work on the dilatational failure
was done by Busse (1938), Yerzley (1939) and Gent
and Lindley (1959). There, a yield point in the load
displacement behavior was experimentally identified
for rubber cylinders bonded to metal adherends and
subjected to tensile loading. From this yield point,
cavitation growth occurs. Further experimental work
based on these experiments was carried out by Lindsey
(1967), who replaced the metal adherends with trans-
parent ones made of poly-methyl methacrylate. This
setup, in combinationwith transparent silicones, allows
for optical tracking of individual cavities. The result of
this experimental design was a critical hydrostatic load
at which cavities begin to grow. This so-called bifur-
cation point was found to be related to the initial shear
modulus μ of the bulk material with the critical Piola–
stress Pcr = 5/2μ. The initial shear modulus is here
related to initial gradient of the shear stress–strain rela-
tion of the material and related in Neo-Hookean mate-
rials to the C10 parameter. In terms of models for pre-
dicting dilatational failure, (Hou andAbeyaratne 1992)
developed a cavitation criterion by applying a varia-
tional approach to arbitrary deformation states. This
criterion allows one to predict the onset of cavitation in
incompressible media and agrees well with the above
mentioned experiments.

Early studies of the distortional failure surface of
rubber-like silicones under multiaxial loading used
classical stress-based failure surfaces known from
metals to describe the failure surface (Sharma and
Lim 1965; Jones and Kruse 1966; Sharma 1966;
Knauss 1967; Dickie and Smith 1969; Smith and Rinde
1969; Tschoegl 1971; Kawabata 1973). However, this
approach has not been found to be well suited to the
properties of silicones and is not capable of describing
the failure surfaces. In addition, the identification of
failure loads in terms of stresses is challenging since
these are not directly accessible from the experimental
data. Recent approaches have therefore used polyno-
mial (Hamdi et al. 2006, 2007) or exponential (Hamdi
and Mahjoubi 2015) functions to describe the test data
measured in principal stretch space. The results of these
studies were promising and the experimental results

were well represented. Staudt et al. (2018) reformu-
lated the results of Hamdi et al. (2006), Hamdi and
Mahjoubi (2015) in terms of strain space. However, all
of the above mentioned studies were limited to one or
a few polymers and were not able to provide the failure
surface for arbitrary silicones.

Compared to early studies on failure surfaces, sig-
nificant mathematical progress has been made, e.g., by
Altenbach et al. (2018), Kolupaev (2018), or Rosendahl
et al. (2019), who generalized the classical failure
criteria of von Mises, Drucker-Prager, Tresca, Mohr-
Coulomb or Rankine. Altenbach et al. (2018) and
Podgórski (1985) provided two parametric shape func-
tions that combine several of the above classical shapes
forms of failure surfaces. Of these, Podgórski (1985)
is able to represent all the classical shapes of the
failure surface while providing a differentiable and
strictly convex mathematical formulation, cf. Kolu-
paev (2018), Rosendahl et al. (2019). The bulk fail-
ure behavior of TSSA is extensively studied by Drass
et al. (2018c) and both the shape parameters and the
equivalent stretches are determined by Rosendahl et al.
(2019). Combinedwith the advanced constitutivemod-
els, this bulk material failure model allows for the pres-
ence of cavities and predicts failure not at the point of
bifurcation, but at the point of total rupture of the bulk
material.

1.3 Notch-induced crack formation

The failure models discussed above apply in the
absence of stress raisers. That is, when a homoge-
nous, uniaxial or multiaxial loading is present. In the
case of notches or bimaterial interfaces with their com-
plex load distributions, the local evaluation of equiv-
alent stress, strain or stretch criteria regularly under-
estimates the durability of the structures. Therefore,
studies that focus on the ultimate failure of structures
often do not use the strength-of-material based concept
of local equivalent stress or stretch, but instead use non-
local approaches. Therefore, equivalent failure criteria
are not evaluated directly at the stress raiser, but at a
fixed distance. The derivation of the distance depends
on the material. Taylor (2008) developed the theory
of critical distances where the length scale is derived
from the linear-elastic material parameters. This length
scale is then used directly by the point method (PM)
or by the line method (LM), where equivalent stresses
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are calculated either pointwise at the derived distance
from the stress concentration or averaged over this
derived length. The derivation of this intrinsic length
scale by the theory of critical distances according to
Taylor (2008) fails, if no explicit Young’s modulus
can be given, as is the case for hyperelastic materials.
For rubber-like materials, Ayatollahi et al. (2016) and
Heydari-Meybodi et al. (2017) applied a stretch crite-
rion at a certain distance from notches. The results of
these studies were good, but not generalizable. Other
approaches to the failure stresses of hyperelastic mate-
rials either compare the averaged strain energy den-
sity in the vicinity of notches to a certain threshold
(Berto 2015;Heydari-Meybodi et al. 2018) or use phase
field models (Miehe and Schänzel 2014). Both of these
approaches can describe experimental results, but are
dependent on either the distance to the notch or the reg-
ularization length in the case of the phase field. Pipes
et al. (1979) showed a relationship between length
parameters and the geometry so that the length scales
cannot be considered as a material constant.

Another approach to evaluating the failure of a given
structure is based on energetic considerations rather
than material strength. Griffith (1921), a pioneer in
fracture mechanics, postulated that a certain amount
of energy per unit crack surface area is required at
the microscopic level to drive crack extension. How-
ever, this approach was limited to brittle bodies with
pre-existing cracks. Although the fracture mechanics
approach has been adapted to compliant and rubber-
like materials in the form of a critical tearing energy
(Rivlin andThomas 1953; Thomas 1955, 1958), a local
evaluation of the energy criterion also fails at weak
stress singularities, such as bimaterial interfaces. That
is, why e.g. Lake and Thomas A.G. (1967) and Lake
(1995) introduce a length scale with a diameter at the
crack tip as stress raisers to predict the onset of a tear-
ing in the material. This then registers as a nonlocal
approach as well. The determination of the length
scales ideally requires a physically sound derivation
applicable to large deformations and nonlinear materi-
als.

Hashin (1996) introduced the idea of Finite Frac-
ture Mechanics (FFM), where an initial crack length is
derived fromphysical considerations. Leguillon (2002)
formalized this approach in terms of a coupled criterion
where a fracture mechanical (energetic) criterion and a
bulk material failure criterion must be satisfied simul-
taneously along the crack path. The results from this

approach are promising. It is applied to different forms
of notches (Cornetti et al. 2019), open hole geome-
tries (Weißgraeber et al. 2016; Felger et al. 2017a)
andmixed-mode configurations (Talmon l’Armée et al.
2017; Felger et al. 2017b), joint failure (Stein et al.
2015; Felger et al. 2019), thermo-mechanical loading
configurations (Leguillon et al. 2015), crack pattern
prediction (Rosendahl et al. 2017), the occurrence of
transverse cracks in cross-ply laminates (García et al.
2018, 2019), 3D crack initiation (Doitrand and Leguil-
lon 2018), free edge delamination (Frey et al. 2021),
and the assessment of natural hazards and porous and
non-ideal brittle media (Rosendahl and Weißgraeber
2020a, b). Furthermore, a micromechanical explana-
tion of the effects present is available (Leguillon et al.
2018; Souguir et al. 2020). For further applications,
a review of the application for linear-elastic materials
is provided by Weißgraeber et al. (2016). The good
agreement with experimental data in the aforemen-
tioned studies is due to a physical sound setup where
no additional assumptions on arbitrary length scales are
required.

Here, the concept of large deflections is already con-
sidered.Basedon thiswork, the present studynowcom-
bines the advances in material models that account for
cavitation and its softening effects with the successful
failure models for combined dilatational-distortional
failure to investigate the ultimate loads of thin struc-
tural bondings made of silicone. It is organized as fol-
lows: First, the theoretical background of the mate-
rial model, the distortional failure surface and the cou-
pled criterion are presented. Then, the numerical model
with its boundary conditions and settings is presented.
The experimental results ar also discussed. Finally,
the results are presented in the form of a comparison
between model and experiments. In addition, the influ-
ence of changing diameters is considered and the paper
concludes with design rules for the design and proof of
structural integrity.

2 Theoretical foundations

This section discusses the governing equations and
models which are used to determine the ultimate loads
of penny-shaped TSSA bonds. First, the pseudo-elastic
model that accounts for volumetric softening is briefly
introduced. Therefore, thework ofDrass et al. (2020) is
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summarized. There, the Finite-Element user subroutine
used in this study is also given.

2.1 Constitutive behaviour accounting for volumetric
softening

The pseudo-elasticmaterialmodel is based on a decom-
position of the Helmholtz free energy function ψ into
three different parts. In addition to a volumetric part
ψvol, an isochoric part ψiso and a couple term ψcouple

are used,

ψ (B) = ψiso
(
B̄

) + ψvol (J )

+ ψcouple

(
I B̄1 , I B̄2 , J

)
. (1)

Here, B denotes the left Cauchy-Green tensor with
its deviatoric part B̄, the corresponding first two invari-
ants I B̄1 , I B̄2 and J being the determinant of the defor-
mation gradient F.

In Drass et al. (2020) the couple term ψcouple(
I B̄1 , I B̄2 , J

)
is motivated by the need to distinguish

between purely isochoric and purely volumetric defor-
mations and, in particular, to correctly represent mixed
isochoric-volumetric deformation states. In order to
describe the mechanisms involved, the two limit cases
of purely isochoric and purely volumetric loading are
discussed first. Then, the goals ofψcouple are briefly dis-
cussed. A detailed derivation and discussion of ψcouple

is given in Drass et al. (2020).
Purely isochoric deformations are described by the

isochoric part of the Helmholtz free energy function
ψiso

(
B̄

)
. Drass et al. (2020) found, that a simple Neo-

Hookean strain energy density function adequately
describes TSSA in this case,

ψiso

(
I B̄1 , I B̄2

)
= μ

2
(I B̄1 − 3), (2)

with the initial shear modulus μ as a material constant.
Drass et al. (2018b) showed that purely volumetric

loading of TSSA can be described by Nelder polyno-
mials (Nelder 1966), such that the volumetric term of
the Helmholtz free energy function reads,

ψvol,ND =
∫

J − 1
∑3

i=0 κi (J − 1)i
dJ, (3)

with the material constants κi , for i ∈ {0, 1, 2, 3}.

The couple termψcouple

(
I B̄1 , I B̄2 , J

)
begins to gov-

ern the material behavior in the case of mixed-mode
lading. Therefore, in the limit case of purely volu-
metric behavior, the couple term must vanish, since
the expression 3 is sufficient to describe the material
response. In the other limit case of purely isochoric
deformations, the material is considered quasi incom-
pressible. In order to obtain the desired behavior of the
Helmholtz free energy function, an additional variable,
which depends on the actual stretches, is introduced
to the couple term, which is formulated directly in the
stretches according to Drass et al. (2020),

ψcouple

(
I B̄1 , I B̄2 , J

)
= ψ̃couple (λ1, λ2, λ3) . (4)

The extensive derivation of the couple termalongwith a
Fortran–implementation as a UserHyper-subroutine
for the commercial FE- software Ansys is
given in Drass et al. (2020).

2.2 Bulk failure model for hyperelastic materials

As discussed in Sect. 2, Rosendahl et al. (2019)
reformulated the Podgorsky failure surface model and
showed that it allows to sufficiently represent the
critical states under multiaxial loading for TSSA suf-
ficiently. In the present work, the criterion is applied
in terms of stretches. The distinction between dilata-
tional and distortional failure requires the introduction
of new variables that replace the standard base system
of principal stretches λi . Starting from the hydrostatic
axis defined by λ1 = λ2 = λ3, a locally perpendicular
hyperbolic isosurface defined by a constant volumet-
ric deformation is set up, λ1λ2λ3 = const . All iso-
choric deformations can be represented on this isosur-
face. In particular, ultimate loads result in single points
on this surface, so that a distortional failure surface
as a distinction between safe spaces and distortional
failure becomes an isoline on this surface. Describing
this failure surface within the principal stretch coor-
dinate system is challenging. A cylindrical coordinate
system is introduced, with the cylindrical axis aligned
with the hydrostatic axis. Therefore, distortional fail-
ure is described only in the remaining two coordi-
nates. Before defining these variables, some invari-
ants of the left stretch tensor V and its deviatoric part
Vdev = V − trV/3 I are introduced. (·)′ denotes the
invariants of the deviatoric left stretch tensor,
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IV1 = trV = λ1 + λ2 + λ3, (5)

I V̄2 = 1

2

(
trV̄

2 − (trV̄ )2
)

(6)

= 1

6

(
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2
)

,

(7)

I V̄3 = det V̄

=
(

λ1 − 1

3
IV1

)(
λ2 − 1

3
IV1

) (
λ3 − 1

3
IV1

)
. (8)

Basedon these invariants, so-calledHaigh-Westergard
coordinates can be defined, which allow the description
of purely isochoric deformations with distortional fail-
ure:

ρV =
√
2I V̄2 , (9)

θV = 1

3
arccos

⎛

⎝3
√
3

2

I V̄3

I V̄2
3/2

⎞

⎠ . (10)

ρV defines the distance to the hydrostatic axis, while
θV is an angle, measured from the projection of a λ1-
axis onto the isosurface. However, due to the isotropy
of the material and the arbitrariness of the ordering of
eigenvalues in a given tensor, the angle θV is limited to
[0, π/3] and describes 6 different points on the devia-
toric surface.

After the introduction of these variables, the PBP
failure surface for distortional bulk material failure
reads

λeq = ρV cos

(
β

π

3
− 1

3
arccos(α cos(3θV))

)
, (11)

with the two shape parameters α ∈ [0, 1] and β ∈
[0, 1]. The failure surface describes the isoline, where
this equivalent stretch is equal to a given critical stretch,

λeq(V)

λc
= 1. (12)

For a more detailed derivation and description as
well as an extensive overview of the development of
different failure surfaces, Rosendahl et al. (2019) and
Kolupaev (2018) are recommended.

2.3 Notch-induced failure model

Predicting component failure is challenging because
the homogeneous strain and stress states known from
material testing are generally not present. Instead, there
are complex loading conditions and singular stress and
strain concentrations that must be considered. The gen-
eral approach of fracture mechanics is based on ener-
getic criteria and rather than strength-of-materials cri-
teria. Griffith (1921) proposed the concept of fracture
toughness as a critical threshold for the energy stored
in the vicinity of cracks. The strain energy is released
by crack expansion and is considered to be stored in the
surface energy of the new crack surfaces. The Griffith
criterion is therefore,

G(A) = −d


dA
= Gc, (13)

as the derivative of the total potential energy 
 with
respect to the crack surface A. On the right hand side
Gc denotes the material property of fracture toughness.
In the absence of strong stress singularities, such as
crack tips, the energy release rate vanishes. Especially
at bimaterial interfaces, weak singularities are present,
so that on the one hand the stresses and strains tend
to infinity, while on the other hand the energy release
rate vanishes. Thus, at the interface, the Griffith crite-
rion cannot predict crack nucleation,while the structure
would fail immediately if a strain or stress based fail-
ure criterion is evaluated locally. As a consequence, the
failure loads predicted by the Griffith energy based cri-
terion are infinitely high, while the failure loads from
a strength-of-material approach tend to be zero. there-
fore, resolving this contradiction requires a different
approach. Finite Fracture Mechanics as proposed by
Hashin (1996) addresses this problem. Within this the-
ory, both an energy criterion and a failure criterionmust
be satisfied simultaneously along the crack path. This
approach is formalized by the coupled criterion pro-
posed by Leguillon (2002),

λeq(�A, uf) ≥ λc ∧ Ḡ(�A, uf) ≤ Gc. (14)

In both these criteria, the continuously growing
crack area is replaced by the incremental crack area in
the argument of the equivalent stretchλeq and the incre-
mental energy release rate Ḡ. In addition, the energy
release rate introduced by Griffith (1921) is replaced
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by an incremental energy release rate Ḡ defined by

Ḡ(�A, u) = 1

�A

∫

�A
G(A, u)dA = −�


�A
. (15)

This expression describes the energy released by an
instantaneous crack formation of a given finite length
�A at an applied deformation u. The physical interpre-
tation of the coupled criterion aswritten inEq. 14 is cru-
cial to understanding the advantages of the Finite Frac-
ture Mechanics over classical nonlocal approaches. If
both the equivalent stretch criterion and the modified
energy criterion, which takes into account the initial
nucleation of finite size cracks, are satisfied over the
entire finite crack area �A, then the coupled criterion
is satisfied and instantaneous nucleation of a finite-
sized crack is predicted. In contradiction to nonlocal
approaches no additional crack length is introduced.
Instead, this length scale is derived from the coupling
of the two fundamental criteria. The presence of finite
size cracks thus results in an additional variable that is
to be determined. While both classical criteria predict
a failure displacement uf , in the case of FFM the criti-
cal crack length �A has to be determined additionally
from Eq. 14.

The criteria used to define the overload the material
in the context of the present work is based on stretch
rather than stress as originally proposed by Leguil-
lon.Since the stretch criteria outlined above can ade-
quately describe the strength of TSSA, only the fracture
toughness of TSSA needs to be determined. Therefore,
the work of Rheinschmidt et al. (2023) is considered,
where both mode I and mode III are determined. From
these material parameters, the ultimate loads of struc-
tures can be derived without further assumptions about
internal length or initial cracks. To apply Finite Frac-
ture Mechanics to penny-shaped joint made of TSSA,
a finite element model is set up in Ansys.

3 Numerical evaluation of Finite Fracture
Mechanics

Stretches and incremental energy release rates are
calculated usingAnsys commercial finite element anal-
ysis (FEA) software. The penny–shaped point fasten-
ers of interest in this study, with an adhesive thickness
of 1mm, are rotationally symmetric. Taking advantage
of this property, a two–dimensional FE–model is built

Table 1 Material parameters for TSSA for the pseudo-elastic
cavitation model obtained from Drass et al. (2020)

Parameter Value

μ 2.6652MPa

κ0 0.0004MPa−1

κ1 0.2699MPa−1

κ2 0.2501MPa−1

κ3 −0.1950MPa−1

Fig. 2 Depiction of finite element model with a the boundary
value problem and b the mesh along the crack path

from axially symmetric elements. Cavitation and the
resulting softening of the material are considered using
theUserHyper-subroutine as described byDrass et al.
(2020). The parameters for thematerialmodel are given
in Table 1. Figure 2 shows the problem domain and the
discretization near the free edge. Preliminary experi-
ments showed that cracks nucleate as a cohesive crack
within the bulk material. The failure region is located
at a distance of approximately 20 % of the radius from
the outer edge of the specimen. The theory of Finite
Fracture Mechanics demands for a stress concentra-
tion, e.g. at the free edge of the bi-material interface.
The determined crack length from the present study
provides a mean of evaluating the agreement between
our virtual testing approach and experiments. To this
end, we assume that the crack nucleates with a finite
length�a from the free edge parallel to the bi-material
interface as a cohesive failure of the bulk material.
Cohesive failure can be modelled using the fracture
properties of the bulk material and the failure criterion,
even though the numerical model geometrically indi-
cates adhesive failure. This, combined with the strong
elastic contrast between the adhesive and the adherend,
allows the adherend to be modelled by vanishing radial
displacements and tangential rotations along the inter-
faces. Cracks are implemented by locally removing this
displacement boundary condition. With the determined
initial crack length �a, a failure region is obtained,
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Fig. 3 Equivalent failure criterion in stretch space: a projec-
tion onto te isosurface of isochoric deformations and b with the
intersection of the deviatoric failure criterion in red with the iso-
surface of isochoric deformation in grey. The dashed line denotes
the hydrostatic axis

marking the area of the penny–shaped fastener, where
the point connector fails initially.

The boundary value problem to be solved is now
given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div σ = 0 in �,

u = 0 along 0,

u = u∗ along u,

u = usymm along s,

σ · n = 0 along f ∪ a,

(16)

where σ denotes the Cauchy stress tensor, u the dis-
placement field vector, n the unit outward facing nor-
mal vector and δ� = f ∪u∪s∪0∪a the bound-
ary of the problem domain �. Along the outer bound-
ary f a stress-free boundary condition is imposed,
while the boundary condition along the rotation axis
s represents the symmetry propertyin this region. In
particular, neither displacement in radial direction nor
nodal rotation around a tangential axis along the cen-
tral axis is allowed. The rigid adherend at 0 is rep-
resented by clamping the bottom edge with vanish-
ing displacements. Loading is induced at the upper
adherend u by a prescribed uniform displacement u∗
in axial directionwith vanishingdisplacements in radial
direction and vanishing rotation around the tangential
axis. Cracks are represented by stress-free boundary
conditions along a. Quadratic displacement functions
are used to adequately represent displacements and
stresses.

Due to the complex material model (Drass et al.
2020), an external displacement of 1.5mm is induced
in 2000 increments to ensure sufficient numerical sta-

bility. Along the crack path, the mesh consists of uni-
form quadratic shaped elements with an edge length
of 0.0625mm each. While stretches needed to eval-
uate the equivalent stretch criterion are evaluated in
the uncracked configuration with �a = 0, the cal-
culation of the incremental energy release rate has a
higher numerical cost. In the present study, the energy
release rate is computed from thedifferenceof the strain
energies in the cracked and uncracked configurations.
To do this, 25 different boundary value problems are
solved for each configuration studied, with the crack
length varying between 0.0625mm to 1.5mm. To avoid
mesh dependencies of the potential energies, both the
uncracked and all cracked configurations are computed
using the same discretization. The energy release rate is
then calculated from the strain energy of the uncracked
configuration,


i
0 = 
i

0(u), (17)

and the strain energy of the cracked configuration
dependent on the crack length of the configuration,


i
1 = 
i

1(u,�a). (18)

In total, the difference in potential energies is now
related to the crack surface created, such that the incre-
mental energy release rate as a function of both external
displacement and initial crack length is given by

Ḡ(u,�a) = −
i
1(u,�a) − 
i

0(u)

2πr�a − �a2
, (19)

where r denotes the specimens radius. In general,
cracks in adhesives are not subject to a single mode
of failure. Instead, crack initiation must be considered
as a mixed-mode problem. It is difficult to separate
the energy released into the different failure modes. In
addition, there are no fracture toughnessmeasurements
of mode I I for DOWSIL™ TSSA . However, Rhein-
schmidt et al. (2023) determined bothmode I andmode
I I I fracture toughness based on differently loaded dou-
ble cantilever beam specimen. The experiments indi-
cate a mode I I I fracture toughness approximately two
times the value of mode I fracture toughness GIc. Con-
sidering the typically higher fracture toughness under
mode I I loading compared to mode I, GIIc > GIc, the
assumption ofGc = GIc results in a conservativemodel.
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There are two ways to evaluate the strength crite-
rion. On the one hand, the crack path can be labeled
overloaded if the equivalent stretch at each point along
the crack path exceeds the critical threshold λc. This is
known as the point method. On the other hand, the
equivalent stretch averaged over the entire potential
crack path λ̄eq(�a) must exceed the critical threshold
λc,

λ̄eq(u,�a) = 1

�a

∫ �a

0
λeq(u, x)dx = λc. (20)

The latter procedure is called the line method (Taylor
2008). Due to the good results observed by Rosendahl
et al. (2018, 2019) when applying the line method to
silicone adhesives, the current study also follows this
approach.

3.1 Generation of the optimization problem

Specimens with diameters of d = 40mm and d =
50mm are set up numerically and compared with
experimental results. Both the incremental energy
release rate, Eq. 19 and the equivalent stretch, Eq. 20,
are used to evaluate the crack initiation as described in
Eq. 14 . The critical load is now defined by the mini-
mum external displacement uf for which the coupled
criterion holds. This leads to the optimization problem,

uf = min
u,�a

(u | u > 0, ∃ �a > 0 :
λ̄eq(u,�a) ≥ λc ∧ Ḡ(u,�a) ≥ Gc

)
, (21)

which is solved by the said critical displacement uc
and a corresponding crack length �a. The optimiza-
tion problem is solved with λeq and Ḡ interpolated
by bicubic splines in the commercial mathematical
toolkitWolfram Mathematica. The critical stretch
λc along with the two shape parameters α and β are
given in Table 2. The fracture toughness for TSSA is
also given there.

3.2 Experimental data

In order to validate the results of from the numeri-
cal failure predictions, experiments were performed by
Hagl et al. (2012a, b), Santarsiero et al. (2017), Drass
et al. (2020). A detailed discussion of the experimental

Table 2 Parameters for the equivalent stretch criterion of
DOWSIL™ TSSA with the shape parameters α and β and the
critical stretch λc. The values are obtained from Rosendahl et al.
(2019). The fracture toughnessGc is obtained fromRheinschmidt
et al. (2023)

Parameter Value

α 0.9999

β 0.8175

λc 1.64 ± 0.15

Gc 3.83 ± 0.79

setup is given there. Only a compact overview is given
here. The specimens are made of two steel cylinders
that are bonded by a thin layer of DOWSIL™ TSSA
with a nominal thickness of 1mm. The experimen-
tally tested specimens with diameters d = 40mm
and 50mm are cured in an autoclave according to the
specifications of Sitte et al. (2011). After fabrication,
the specimens are loaded with uniaxially at a load-
ing rate of 0.1mm/min. Deformations are obtained
from a DIC system. For this purpose, the specimen
is coated with whitener and then a black speckle pat-
tern is applied. Figure 4 shows a tested specimen with
whitener, speckle pattern and thewhitening effect in the
TSSA as well as the experimental setup with the stereo
camera system. From the experiments, both informa-
tion on the constitutive behavior in from of reaction
forces and displacements and the failure loads in terms
of both critical reaction force and axial displacement,
are derived.

Failure of the test specimen begins in an area
approximately at about 0.2 × r measured from the
outer edge of the specimen. Then it propagated unsta-
bly throughout the specimen.

4 Results

Figure 5 shows the experimentally determined failure
loads in a reaction force-displacement diagram. Exper-
imental test data are represented by dashed lines. Solid
lines represent the numerically calculated results of this
study. The reduction in stiffness of the material due to
the growing cavities does not lead to a fatal cracking
and ultimate failure of the material. Therefore, cavita-
tion cannot be considered as a material failure. Instead,
an elastic instability occurs and cavities grow, greatly
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Fig. 4 Pancake test specimen with whitening effect and experi-
mental setup with the digital image correlation system

reducing the ability of the material to transfer loads.
The present pseudo-elastic material model is able to
represent this softening well. In particular, the bifurca-
tion point is well represented as the critical displace-
ment at which cavitation begins and thematerial begins
to whiten. Marked by a square are the ultimate fail-
ure points of the experimental and numerical setups.
The critical failure loads in terms of displacements and
reaction forces are given in the Table 3. The experimen-
tal results are shown with the determined uncertainties.
The error bars in Fig. 5 show one standard deviation. In
the case of numerically determined failure data, Table
3 gives the results of the optimization problem, Equa-
tion (21), taking into account the uncertainty in TSSA
strength λc and fracture toughness Gc, see Table 2. To
quantify these uncertainties, 1000 pairs of (λc,Gc) are
generated by the Mathematica Random number gener-
ator. The optimization problem (21) is solved for each

Table 3 Tabular values of the experimentally and numerically
determined failure loads in terms of critical displacements uc and
critical forces Fc

∅ = 40mm ∅ = 50mm

uexpc 1.28 ± 0.15 mm 1.18 ± 0.11 mm

Fexp
c 6904 ± 414 N 10823 ± 415 N

unumc 1.35 ± 0.11 mm 1.35 ± 0.11 mm

Fnum
c 7465+686

−528 N 11561+1085
−826 N

�anum 1.099 ± 0.25 mm 1.10 ± 0.26 mm

Numerical results in the brackets account for the results of the
optimization problem in Eq. (21) considering the uncertainties
in λc and Gc as given in Table 2. Additionally, the initial crack
lnegth as a result of the optimization problem (21) are given

pair individually. From these values for uc and �a, the
mean value of critical displacements and associated ini-
tial crack lengths are derived. The error bars in vertical
direction show the reaction force calculated from the
Ansys model, taking into account one standard devia-
tion of the critical displacements.

It should be noted that FFM overestimates the crit-
ical failure loads. In the case of a 40mm radius, the
numerical results are within a 95% confident interval
of the experimental results, while in the case of the
larger diameter the deviation between the predicted dis-
placements and the experimental failure loads is larger
than the standard deviation of the experiments. How-
ever, the confidence intervals overlap. Overestimation
of failure loads using FFM is a known phenomenon
cf. Rosendahl et al. (2018, 2019). Additionally, the
determined initial crack length �anum lies between
5.4 and 3.4% of the radius for the specimen with a

Fig. 5 Comparison of
experimental results with
Finite Fracture Mechanics
prediction. Dashed lines
indicate the mean value of
experimental results. Solid
lines render the numerical
results
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diameter of 50mm. For these specimens, Santarsiero
et al. (2017) reported initial failure at 20 % of the
radius. While the failure in the experiments is reported
to initiate in the bulk material at the above described
distance from the outer edge, the initial failure of the
present model does not reach the same region with its
finite sized crack. A possible explanation for this devi-
ation is the combination of the applied line method
in combination with the non-monotonic stretch distri-
bution along the bi-material interface. The case of a
non-monotonic stretch or strength criterion was exten-
sively studied in Talmon l’Armée and Becker (2020).
The above study showed, that FFM allows for the cre-
ation of internal cracks in certain configuration if the
point method is applied. These internal cracks can than
be extended to the boundary by the line method. This
failure mechanism is assessable with high numerical
costs, as all intermediate crack propagation states have
to be solved for in the FE-programme. The application
of the proposed PMLM-method is therefore considered
out-of-scope by the authors for the present study, espe-
cially, as the determined fracture loads align well with
experimental data.

Additionally, introducing radially symmetric cracks
along the entire perimeter of the adhesive layer may
result in lower energy release rates compared to asym-
metric cracks that nucleate from only one point along
the perimeter or within in the material. . Higher
incremental energy release rates could occur due to
the smaller crack area created. However, analysis of
asymmetric cracked penny-shaped bonds is numeri-
cally expensive and requires assumptions about the
shapeof the cracks created. In addition, possible defects
in the bond between the adhesive and the adherend are
neglected in the numerical analysis. Nevertheless, the
results of FFM allow one to study the failure mecha-
nisms present in a closed theoretical framework with-
out making initial assumptions about intrinsic length
scales.

Bearing the overestimation of failure loads in mind,
this allows for further investigation of the failure behav-
ior of the adhesives . For this purpose, numerical mod-
els with different diameters are set up according to
Sect. 3. The diameter varies between 10 and 160mm.
Figures 6 and 7 show the results of the FFMpredictions
as a function of the varying diameter. Figure 7 shows
the critical loads in terms of axial displacements, while
Fig. 6 shows the critical reaction forces for different
diameters. Additionally, Fig. 8 shows the initial crack

Fig. 6 Failure reaction forces predicted by FFM for varying
diameters of the adhesive layer

Fig. 7 Failure displacements predicted by FFM for varying
diameters of the adhesive layer

Fig. 8 Predicted initial crack length by FFM for varying diam-
eters of the adhesive layer
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Fig. 9 Failure Piola stresses predicted by FFM for varying diam-
eters of the adhesive layer

lengths, which are an additional solution of the opti-
mization problem.

Figure 7 indicates a plateau in the critical displace-
ments that an adhesive layer can withstand for a wide
range of diameters. Smaller diameters generally result
in slightly decreasing external displacements. Figure
6 shows the critical reaction forces for different diam-
eters. For better comparison, Fig. 9 shows the area–
normalized reaction forces in terms of the critical Piola-
Kirchhoff stress. A critical threshold in normal stresses
can be observed. For small diameters a slight increase
in critical Piola stresses can be noted. This is generally
in good agreement with other studies (Bažant 1999;
Rosendahl et al. 2018) where small specimens show
higher failure loads. Figure 8 shows constant initial
crack lengths.

These results can be used to derive engineeringmod-
els for both initial designs and proofs of strength can
be derived. Initial designs can use the Piola-Kirchhoff
stress as the nominal tensile strength TSSA fasteners.
Detailed proofs of strength are derived from the cal-
culated initial crack lengths. These are the results of
a physical sound model for hyperelastic materials, so
they can take the role of critical distances proposed
by Taylor (2008). According to this approach, an ade-
quate choice of critical crack lengths prevents the ful-
fillment of the energy criterion and thus the nucleation
of an initial crack. This results in a single calculation
of the uncracked configuration and the evaluation of
the averaged equivalent stretch criterion Eq. 20 at a
fixed distance based on the results shown in Fig. 8.
Considering the overestimation of the ultimate loads,

sufficient safety factors still need to be considered. In
addition, viscous effects have to be considered with
different models and further experiments. Neverthe-
less, the results greatly extend the application range
of TSSA, mainly because current industry standards
treat hyperelastic adhesives with linear elastic material
properties and consider these simplifications with high
safety factors. In particular, the onset of cavitation is
usually forbidden by normative approaches and critical
stresses and stretches are derived from the bifurcation
point. This approach leaves a large part of thematerial’s
potential load bearing capacity unused, cf. Fig. 5, and
explicitly forbids the design of thin adhesive layers for
the increased risk of cavitation due to the high lateral
constraints when put under axial loading.

5 Conclusion

This study presents the results of applying Finite Frac-
ture Mechanics to thin structural silicone adhesives.
Recently developed material models that account for
cavitation occurring under strong constraints in thin
adhesive layers are used along with current equivalent
failure models for silicone materials. The onset of cav-
itation and subsequent softening of the material should
not be taken for a sign of ultimate failure of thematerial.
Rather, the present material model allows to account
for the elastic instability that leads to cavitation and
can adequately describe the softening. Ultimate fail-
ure of the adhesive bonds occurs shortly after the dis-
placement has been greatly increased and an increase
in stiffness can be observed. Ignoring this softening
and stating that the material fails with the onset of cav-
itation greatly reduces the regime of applicability of
this material and leaves much of the potential of the
adhesive untapped.

As observed in other studies, the current results
slightly overestimate the experimental results.Although
this error is not to be considered on as safe, the results of
this study can be used to calibrate engineering models
for the design and proof of strength of silicone adhesive
DOWSIL™ TSSA . In addition, the method used here
is applicable to all silicone adhesives, so that material
can be used more efficiently. The high experimental
effort required to adequately describe the constitutive
behavior of a material and to determine of its equiva-
lent failure surface must be considered a disadvantage.
However, the results of this study lead to simpler design
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and proof of strength tools for engineers without high
numerical or experimental effort in the later use of this
material.

In order to improve the predictions of the current
model, additional experiments with different geome-
tries and loading specimens are proposed to validate the
initial crack length for different configurations. Shear
loaded adhesive layers are of particular interest. How-
ever, studies on other silicone adhesives show a similar
behavior in terms of initial crack lengths. Therefore,
the approach taken in this study is considered to be
applicable to other silicones and adhesives as well and
should be considered as a first approach to more effi-
cient use of building materials in the next generation of
technical approval guidelines and industry standards.
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