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Abstract This work reports a selective median crack

propagation phenomenon in glass, leading to a novel

glass cutting process. We found that by scribing a glass

sample to the extent of plastic deformation with a

deformation depth of 100–400 nm, followed by

inducing an initial crack, a subsurface crack with a

depth of * 10 lm was propagated backward along

the centerline of the scribed region with a speed of

1 lm/s order. The crack depth and propagation speed

were increased by increasing the scribing load. We

conclude that the propagation direction was deter-

mined by the effect of the shear stress caused by a

scribing tip sliding motion.

Keywords Glass cutting �Median crack � Subcritical

crack propagation � Plastic deformation � Mixed mode

fracture

1 Introduction

Crack formation is one of the fundamental phenomena

in brittle materials, including glass, and has always

been a complex matter. Various types of cracks, such

as median, lateral, and radial cracks, typically appear

when hard materials are indented into glass surfaces

(Lawn and Swain 1975; Cook and Pharr 1990; Sglavo

and Green 1995). The nucleation and propagation

mechanisms have been intensively researched (Hagan

1979; Rouxel 2015; Yoshida 2019). Controlling these

crack formations is difficult because the indentations

include elastic/plastic deformation, densification, and

shear flow (Peter 1970; Hagan 1980), followed by the

unloading process, leading to the change of the stress

distribution resulting in multiple types of crack

formation. Moreover, the crack formation can be

three-dimensional, which becomes further compli-

cated, as shown in the fundamental studies on

scratching and grinding-related tests. For example,

Qiu et al. (2016) investigated the surface flaw and
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subsurface behavior when scratching glass–ceramics

to elucidate crack propagation and material removal

mechanisms of grinding. Yu et al. (2016) studied the

effect of machining parameters, and Li et al. (2016)

analyzed the subsurface damage using an analytical

model. Matsuoka et al. (2017) reported the influence

of scratching speed and normal load on the crack

morphology in glass by changing the environment.

Bandyopadhyay and Mukhopadhyay (2013) predicted

the shear stress distribution and experimentally vali-

dated these values after scratching glass. Some of the

research applied progressively increased loads to

evaluate scratch resistances (Le Houérou et al. 2003;

Gu and Yao 2011; Ming et al. 2019). In summary, the

scratching or grinding motions can form these cracks

into lines instead of one point. Although a median

crack line is the most important for the glass cutting

process, other types of cracks are formed as well when

median cracks are formed, as shown in glass cutting

via wheel scriber (Swain 1980; Swain et al. 1980;

Cook 1994; Kopchekchi and Shitova 1996; Tomei

et al. 2018).

In this study, we report the phenomenon that only

the median crack lines are successfully formed into

glass by a simple mechanical method, which includes

two steps, the introduction of plastic deformation by

using a diamond tip and followed by initial crack

formation. As a primary objective, this study discusses

the crack formation and propagation mechanisms,

which is essential for the future application of these

cracks based on this phenomenon.

2 Materials and methods

Figure 1 shows the schematic of the experimental

procedure for the median crack initiation and propa-

gation. Alkali-free glass substrates (AF45, Schott AG)

with a thickness of 500 lm were scribed via diamond

tip (SOLID-D, Mitsuboshi Diamond Industrial Co.,

Ltd.) with a speed of 30 mm/s (‘‘1st scribing’’). The

glass surface was contacted with the point at the

diamond tip, where three diamond surfaces inter-

sected, and one of the surfaces was faced front in the

scribing direction, as shown in Fig. 1. The diamond tip

was attached to a tip holder connected to a linear servo

guide through an air cylinder to control the scribing

load ranging from 0.26 to 0.76 N. After the 1st

scribing, to initiate the crack propagation, another

scribing line (‘‘2nd scribing’’) was formed orthogo-

nally to the 1st scribing line via scribing wheel (Micro-

Penett, Mitsuboshi Diamond Industrial Co., Ltd.). The

scribing wheel had a periodically patterned structure

with a pitch of * 18 lm along its circumference. The

scribing wheel rolled on the glass surface and initiated

the crack propagation caused by the indentation of

each pattern onto the glass surface along the scribing

line, as shown in Fig. 1. The scribed glass was

observed by a confocal microscope (LEXT

OLS4000, Olympus Co., Ltd.), including the mea-

surement of surface profiles. Crack propagation speed

was measured by monitoring and plotting the location

of the crack tip in the air at * 70%RH in the case of

0.26, 0.38 and 0.51 N. In the case of 0.63 and 0.76 N,

the crack propagation speeds were measured by

observing the glass sample at a specific angle using a

standard camera due to the difficulty of locating the

crack tip via microscopic view. The sectional view of

the median crack was also captured using a scanning

electron microscope (SEM, JSM-IT200, JEOL Ltd.).

Breakability along the median crack line was checked

by breaking along the 2nd scribing line to expose the

crack initiation point, followed by breaking along the

1st scribing line by hand.

3 Results and discussion

Figure 2 shows the photographs nearby the crack

initiation point by changing the scribing load from

0.26 to 0.76 N. As an additional remark, the micro-

graphs only when the cracks were formed were shown,

because there was some instability in the crack

initiation and its propagation direction. As shown in

Fig. 2a, cracks were propagated backward compared

with the 1st scribing direction. The crack origins were

considered as radial cracks caused by the 2nd scribing.

From the origins, the cracks propagated from the slight

left or right side compared with the centerline of the

1st scribing area. Then, the crack propagated towards

the centerline (in the case of 0.63 N, the cracks were

initiated both on the left and right side, and only the

right side propagated because of the earlier initiation

than the left one). It is noted that the crack also

propagated forward along with the 1st scribing

direction, as shown in Fig. 2b. However, the cracks,

in turn, started to deviate away from the centerline and

stopped with a length of 20–100 lm.
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Figure 3a and b represent the cross-sectional

micrographs (x–z plane) of cracks in the glass after

its propagation taken by the microscope in the case of

0.26–0.76 N and by the SEM in the case of 0.63 N,

respectively. Figure 3c shows the schematic of the

cross-section near the crack-formed area, including

the definition of the measured values in this paper. As

shown in Fig. 3a, median cracks with a depth of

9.7–18.9 lm measured from the glass surface were

observed. According to Fig. 3a and b, the surface layer

depths were * 2 lm (E.g., 1.7 lm in the case of 0.63

N, confirmed by the SEM image). Figure 4 shows the

surface profiles along the x-axis, revealing that the

glass was deformed at a 200–500 nm depth. This

deformation was considered the plastic deformation of

the glass. By increasing the scribing load, the

Fig. 1 Schematic of the experimental procedure for the median crack initiation and propagation

a
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2nd scribing

0.26 N 0.38 N 0.51 N 0.63 N 0.76 N
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Fig. 2 Micrographs nearby

crack nucleation areas.

Cracks propagated

a backward and b forward

and stopped. In a, crack

initiation parts are marked,

and in b, whole cracks are

marked by broken

enclosures
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deformation depth was also increased. Then, inter-

nally applied tensile stress will increase, leading to

deeper crack depths. Regarding the surface profile of

the centerline of the scribed area along the scribing

direction (y-axis), no significant irregularities were

detected. Furthermore, we confirmed that the samples

having these cracks were breakable only in the

backward direction by applying tensile stresses after

breaking along the 2nd scribing line.

Figure 5a shows the time-lapsed crack propagation

length plotted every 10 s, where the slope of the graph

shows the crack propagation speed. The measurement

start point was located at * 1 mm apart from the

crack nucleation point. The crack propagation speeds

were 1.6, 1.9, and 2.4 lm/s at a scribing load of

0.26–0.51 N. Although, on average, the propagation

speed was constant, in a microscopic view, the crack

propagation randomly and repeatedly accelerated and

decelerated with each periodic propagation length of a

few lm order. As the profile irregularities were not

observed along the 1st scribing direction (y-axis), we

consider that this periodic propagation behavior is

a
0.26 N 0.38 N 0.51 N 0.63 N 0.76 N

10 μm

b

5 μm

c

Fig. 3 Cross-sectional images taken by a the microscope in the case of 0.26–0.76N and b the SEM in the case of 0.63 N. c Schematic of

the cross-section near the crack-formed area
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Fig. 4 Surface profiles in each scribing load
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caused by the cyclic behavior of the accumulation and

concentration of crack opening force at the crack tip

and release of the force by crack opening. Figure 5b

shows photographs of the median crack captured at 0 s

(measurement start) and 4 m 39 s in the scribing load

of 0.76 N. The median crack propagated towards the

left in the photo, and the propagation speed in the

scribing load of 0.63 and 0.76 N was 2.8 and 3.6 lm/s,

respectively (broken lines in Fig. 5a), calculated via

propagation distance and time. Figure 5c represents

the relation between the scribing load and propagation

speed. The measured speed values are similar to those

of subcritical crack propagation, a kind of crack

propagation phenomenon driven by chemical reaction

and minor applied stress, reported by Wiederhorn

(1967). Simple confirmation can be done by breathing

onto these glass samples to increase the humidity, and

then the propagation speeds increased. We note that

the median crack propagated only inside the glass and

did not open into the air, except for the initial crack

point, confirmed by a water drop test. In the case of

0.26 N, the crack propagation speed was 1 lm/s order,

which was increased to * 200 lm/s when the water

was dropped onto the initial crack point (Supplemental

video (0_26N_water_drop_test.mp4) is available).

Therefore, we conclude that the moist air entered

through the initial crack point.

Regarding the unidirectional crack propagation

mechanisms, the crack was always driven into the

centerline during backward propagation, while deviat-

ing away from the centerline during forward propaga-

tion, as shown in Fig. 2a. Figure 6 shows the

schematics of the crack propagation phenomena. Crack

patterns were shown in curved solid and broken arrows.

We consider that the key driving force is shear stress in

the x–y plane caused by scribing glass via diamond tip.

It is considered that the glass surface moves toward the

scribing direction via shear flow when the glass is

scribed. Then, an internal force is applied to the

subsurface part in the - y direction (depicted as the red

arrow in Fig. 6). Simultaneously, the reaction force is

applied to the surrounding area in the ? y direction (the
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Fig. 5 a The time-lapsed crack propagation length (Snapshot

example is shown in the left photo. Supplemental videos in the

scribing load of 0.26 N (0_26N.mp4), 0.38 N (0_38N.mp4), and

0.51 N (0_51N.mp4) are available. Supplemental video

(0_26N_water_drop_test.mp4) is another video file, which

was captured when the water drop test was conducted in the

scribing load of 0.26 N). b Photographs of the median crack

captured at 0 s (measurement start) and 4 m 39 s in the scribing

load of 0.76 N. c The relation between the scribing load and

propagation speed
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blue arrows). As a result, the shear stress is applied to

the scribed area. Thus, the crack propagates under the

mixed stress field on the tensile and shear stresses.

According to the study on crack propagation under the

mixed loads (KI and KII modes) (Erdogan and Sih

1963), the propagation angle can be described as

h Að Þ ¼ 2tan�1 1

4

KI Að Þ
KII Að Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KI Að Þ
KII Að Þ

� �2

þ 8

s

2

4

3

5

8

<

:

9

=

;

;

ð1Þ

where KI and KII are stress intensity factors on each

fracture mode, and h is the crack propagation angle to

the centerline. Equation (1) is only valid for small h
values. According to Fig. 2, crack propagation angles

in both cases of backward/forwarding propagations

were 3–5�, corresponding to KII=KI ¼ 0.026–0.044.

The result implies that even a small value on KII is

enough for this phenomenon.

4 Conclusions

This study demonstrated the median crack propaga-

tion phenomenon in glass by mechanical scribing. By

the reported method, subsurface cracks were propa-

gated backward with a crack depth of * 10 lm and

propagation speed of 1 lm/s order. The sample was

breakable only in the backward direction toward the

scribing direction. The crack propagation speed was

exponential to the applied load, and then we concluded

that the crack propagation was similar to the subcrit-

ical propagation reported in the past. The shear stress

is considered the key driving force for the crack to be

propagated along the centerline only in the backward

direction. This crack propagation phenomenon is

essential and fundamental to studying a new mechan-

ical glass cutting process without unfavorable cracks.
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