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Abstract Despite the extensive research on crack
propagation in brittle solids, numerous unexplored
problems still necessitate in-depth study. In this work,
we focus onnumericalmodeling ofmulti-crackgrowth,
aiming to explore the effect of material heterogeneity
and multi-crack interaction on this process. To do this,
an improved singular-finite element method (singular-
FEM) is proposed with incorporation of heterogeneity
and crack interaction. An efficient algorithm is pro-
posed for simulatingmulti-crack propagation and inter-
action. Stress singularity near crack tip is reproduced
by the singular elements. The singular-FEM is con-
venient and cost-effective, as the zone far away from
crack tips is directly discretized using linear elements,
in contrast to the quadratic or transition elements uti-

The animation of crack growth is packaged in the attachment as
the supplementary data.
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lized in traditional FEM. Next, the proposed method is
validated through benchmark study. Numerical results
demonstrate that the superiority of the singular-FEM,
which combines the merits of low cost and high accu-
racy. Then, the mechanics of crack growth are explored
in more complex scenarios, accounting for the effects
of crack interaction, loading condition and heterogene-
ity on crack trajectory, stress field and energy release
rate. The findings reveal that the combined effect of
heterogeneity and crack interaction plays a critical role
in the phenomenon of crack growth, and the proposed
method is capable of effectively modeling the process.

Keywords Fracture mechanics · Crack interaction ·
Stress intensity factor · Material heterogeneity

1 Introduction

The prediction of multi-crack growth in brittle materi-
als is considerably more complex than that in single-
cracked materials, primarily due to the interactions
between adjacent cracks (de Borst 2022; Zhang et al.
2022). Moreover, the level of complexity will be even
more severe in heterogeneous media (Schöller et al.
2022; Wang et al. 2022c). Accurately evaluating the
stress field in the vicinity of crack tips is important to the
safety design that prevents failure of engineering struc-
tures (Al-Ostaz and Jasiuk 1997;Wang et al. 2020; Tan
et al. 2021). The accurate prediction of crack trajectory
can offer a valuable reference for estimating the life
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span of a structure. Therefore, developing an efficient
and reliable approach for analysingmulti-crack growth
in heterogeneousmaterials is of paramount importance.

Early studies for investigating the crack tip stress
field were given by Griffith (1921) and Irwin (1957).
They recognised that the failure and rupture of a brit-
tle material are induced by the stress concentration
around the crack tips, wherein the surface free energy
of crack plays an important role in this process. Irwin
(1957, 1968) extended the concept of stress concentra-
tion and creatively proposed the singular theory around
the crack tip. It is now widely acknowledged as the K -
field theory, where the stress intensity factors (SIFs)
are denoted by K . After that, numerous studies have
been conducted on crack analysis, building upon the
SIFs concept inherited from Irwin’s theory (Erdogan
and Sih 1963; Sih 1991; Wang et al. 2019). How-
ever, these works mainly focus on theoretical or semi-
analytic analysis, limiting their scope to handling only
single cracks or regular multi-crack.

The finite element method (FEM), as a powerful
numerical method, was employed for solving prob-
lems in fracture mechanics. (Weißgraeber et al. 2016;
Sedmak 2018; de Borst 2022). Early pioneering stud-
ies were pioneered by Chan et al. (1970) and Mow-
bray (1970). Chan et al. (1970) pointed out that grid
refinement could improve the accuracy of calculating
SIFs. In their study, the linear triangle elements were
used to discretize the crack tip zone. Similarly, Mow-
bray (1970) proposed an approach known as the energy
release rate method for SIF calculation, eliminating the
need for grid refinement. Nevertheless, these studies
can not recover the characteristic of stress fail to fully
capture the crack tip. To this end, Tracey (1970) devised
a novel element, the so-called tip singular element, to
reproduce the tip singularity. While this advancement
enhances the accuracy of SIFs calculation, it is incon-
venient to integrate such element into an existing FEM
code. Later, the works of Barsoum (1976) andHenshell
and Shaw (1975) laid the groundwork for modern com-
putational fracture mechanics. They proposed an alter-
native approach which is able to recover the tip stress
singularity as done by Tracey (1970). The proposed
element was devised based on the concept of isopara-
metric finite elements. Consequently, they proved that
the singular element is a special form of its isoparamet-
ric element and can be obtained via collapsing nodes
into one tip node. Although a lot of successes have
been made by the above works, they merely focus on

stationary cracks and do not consider the propagation
of cracks.

To model cracks growth, researchers have made
significant contributions to the computational frac-
ture mechanics community. Some representative mile-
stones based on the continuum mechanics include
the extended-FEM (XFEM) (Budyn et al. 2004), the
adaptive-FEM (Mohmadsalehi and Soghrati 2022), the
finite-discrete element method (FDEM) (Wang et al.
2021), the boundary element method (BEM) (Zhang
et al. 2019), the material point method (MPM) (Kak-
ouris andTriantafyllou 2017), etc. The numericalmeth-
ods mentioned above have their own pros and cons. For
example, the XFEM possesses the merit of mesh inde-
pendent but will get in trouble with modeling crack
interaction and multi-crack (Weißgraeber et al. 2016;
Sedmak 2018; de Borst 2022). Furthermore, theXFEM
requires the enrichment on the FEM nodes in the scope
of a pre-defined distance to the crack tip, resulting in
the increase of degree of freedom (Budyn et al. 2004).
The adaptive FEM-based methods use the remeshing
technique to track the crack paths, wherein an addi-
tional cost should be spent on remeshing to update
crack configurations. This procedure is quite expensive
and complicated if multi-crack are involved (Alzeb-
deh et al. 1998; Azadi and Khoei 2011; Dang-Trung
et al. 2020), and extra efforts need to be paid for map-
ping the variables from the old mesh to the new mesh
(Nguyen-Xuan et al. 2013). The FDEM uses the cohe-
sive zone model to simulate the failure of materials
(Wang et al. 2021). However, an expensive computa-
tional cost should be spent to predict the condition of
each cohesive element. In addition, the cracks can only
propagate along the edges of elements. The BEM has
an advantage of relative low computational cost com-
pared to the FEM-based methods (Zhang et al. 2019),
but it is prone to trouble when complicated geome-
tries are involved. Although the MPM has been suc-
cessfully used to model crack growth, it will encounter
an issue with multi-crack growth (Kakouris and Tri-
antafyllou 2017; de Borst 2022). In contrast to the
methods rooted in the classical continuum mechanics
and mesh-dependent methods, in recent years some
novel numerical methods have been proposed, such
as phase-field (PF) model (Miehe et al. 2010) based
on an extended variational principle and peridynam-
ics (Silling et al. 2010) based on the non-local theory.
Although these methods have been applied to analyse
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material failure, the fundamental theory of them is still
being developed.

Despite being vital important, developing a numer-
ical method capable of simulating multi-crack remains
unexplored to a large extend. In particular, previous
studies on crack tip elements mainly focused on mod-
ifying the quadratic triangular elements to the quarter-
point elements (Henshell and Shaw 1975; Barsoum
1976; Dang-Trung et al. 2020). However, this treat-
ment leads to the elements that are far away from the
crack tips being quadratic aswell, resulting in an expen-
sive cost. Alternatively, one can simply use the lin-
ear triangular element over the global computational
domain (Chan et al. 1970; Mowbray 1970), but the
numerical accuracy is problematic, since it can not
recover the stress singularity. Moreover, those meth-
ods will encounter some complicated procedures when
simulating crack growth, such as the adaptive meshes
and remeshing technique. To this end, this study pro-
poses an improved singular-FEM. It allows to integrate
the effect of material heterogeneity and straightfor-
wardly model the multi-crack growth and their inter-
action. The stress singularity in the vicinity of crack
tips can be recovered by the five-node singular trian-
gular elements. The zone far away from the tips can
be directly treated by the linear triangular elements
instead of the quadratic or transition elements in the
traditional FEM. This method is rooted in the rigorous
SIFs-based Griffith-Irwin crack theory, which is dif-
ferent from the smeared crack models and the damage
mechanics-based methods (e.g. the PF method (Miehe
et al. 2010) and the cohesive zone elements (Wang et al.
2021; Romanowicz 2022)).

Thepaper is organised as follows: a fracturemechan-
icsmodel formulti-crack analysis is provided inSect. 2;
the singular-FEM is then formulated, and the calcula-
tion method of SIFs and crack propagation algorithm
are elaborated in Sect. 3; next, numerical validation on
benchmarks is performed in Sect. 4; some insights to
the mechanism of effects of crack interaction and het-
erogeneity on crack growth are explored based on sim-
ulations.

2 Formulation of multi-crack growth

2.1 Fracture mechanics model

The presented model is formulated within the frame-
work of linear elastic fracture mechanics (Sih 1991;

Fig. 1 Fracture mechanics model with multi-crack growth

Zehnder 2012). In this study, we consider a situation of
multi-crack growth. As displayed in Fig. 1, the matrix
component of the deformable medium � is denoted
as �m . There are N f cracks distributed inside the

domain, denoted as � f = ∑N f
i=1 �i

f . Consequently,
the deformablemedium is composed of� = �m∪� f .

Consider a linear quasi-statics 2D elastic problem,
the deformable medium satisfies the equilibrium equa-
tion (Zienkiewicz and Taylor 2000; Bathe 2006). The
matrix form is written as:

LTσ = −b (1)

where σ is the stress tensor in Voigt notation, b is the
body force. The operator L is defined as:

L =
⎡

⎢
⎣

∂
x1

0
0 ∂

x2
∂
x2

∂
x1

⎤

⎥
⎦ (2)

The matrix form of stress tensor reads:

σ = Cε = CLu (3)

where C is the elasticity matrix, ε is the strain tensor,
u is the displacement vector. As shown in Fig. 1, the
boundary conditions are defined on the external bound-
aries �t and �u:

u = u0 on �u

GTσ = t̄ on �t
(4)

where u0 and t̄ are the prescribed displacement and
traction, respectively. The matrix G is composed by
the outward unit vector n = [n1 n2]T, given by:

G =
⎡

⎣
n1 0
0 n2
n2 n1

⎤

⎦ (5)
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Assuming the crack i , denoted as�i
f , will propagate

with an increment �a due to the external loadings, the
crack growth direction θc is determined by the stress
state around the crack tip. Fracture mechanics theory
captures the singularity of stress at crack tip by the
stress intensity factors (SIFs) KI and KII (Kanninen
et al. 1986; Zehnder 2012). As illustrated in Fig. 2, in
the polar coordinate system (r, θ), the circumferential
stress σθ and tangential stress σrθ around the tip of a
mixed-mode crack are expressed as (Kanninen et al.
1986; Zehnder 2012):

σθ (r, θ) = 1√
2πr

cos
θ

2

(

KI cos
2 θ

2
− 3

2
KII sin θ

)

= Keq
I√
2πr

σrθ (r, θ) = 1

2
√
2πr

cos
θ

2
[KI sin θ + KII (3 cos θ − 1)]

= Keq
I I√
2πr

(6)

where Keq is the equivalent SIF for a mixed-mode
crack (Erdogan and Sih 1963; Sih 1991). It can be cal-
culated by the SIFs (KI and KII) of pure mode-I and II
cracks. The details of numerical implementation will
be discussed in Sect. 3.

2.2 Multi-crack growth

The maximum circumferential stress (MCS) criterion
(Erdogan and Sih 1963; Sih 1991) is employed to deter-
mine crack propagation condition and crack growth
direction θc. As depicted in Fig. 2, θc needs to be eval-
uated at each step based on the current stress state.

(1) Crack growth direction. The stress state around
crack tip at Step n is given in Eq. (6). Therefore, the
direction θc is obtained by solving ∂σθ/∂θ = 0 and
∂2σθ/∂θ2 < 0 according to MCS criterion:

θc = 2 arctan

⎛

⎝
KI ±

√
K 2

I + 8K 2
II

4KII

⎞

⎠ (7)

(2) Propagation criterion. The critical value of the
equivalent SIF Keq

I inEq. (6) is obtainedby substituting
θc. It can be re-written as:

Keq
I = cos

θc

2

(

KI cos
2 θc

2
− 3

2
KII sin θc

)

(8)

The crack branch shown in Fig. 2 will emerge once
the circumferential stress equals to the critical stress. It

can be evaluated by the fracture toughness KIC:√
2πr σθ (r, θc) = Keq

I ≥ KIC (9)

(3) Crack increment. Assume each of the cracks has
different increments at each computation step, �ai for
crack i is determined by Paris-type law (Kanninen et al.
1986; Zehnder 2012):

�ai = �aimax

(
Gi

f

Gmax

)α

(10)

where �aimax is the maximum increment during crack
propagation. It equals to the initial length Li

f of crack
as suggested in literature (Paluszny andMatthäi 2009).
The numerical parameter α equals to 0.35 as suggested
in literature (Renshaw and Pollard 1994; Dang-Trung
et al. 2020). Gmax is the maximum energy release rate
among all of the cracks in the domain. The energy
release rate Gi

f for crack i is formulated as:

Gi
f = (1 + ν)(1 + k)

4E

[(
Keq

I

)2 + (Keq
I I

)2
]

(11)

where the equivalent SIFs are defined inEq. (6). E andν

are Young’s modulus and Poisson’s ratio, respectively.
k = (3 − ν)/(1 + ν) for plane stress problem and
k = 3 − 4ν for plane strain problem.

As depicted in Fig. 2, the deflection and propagation
increment of a crack depend on the stress state around
crack tip, in which stress singularity at the tip is eval-
uated by the SIFs. The details of calculating SIFs will
be elaborated in Sect. 3.

3 Numerical approach

3.1 Formulation of Galerkin FE framework

The improved singular triangular elements are inte-
grated into the Galerkin FE framework to capture the
characteristics of stress singularity (Liu et al. 2010;
Nguyen-Xuan et al. 2013). This integration constitutes
the singular-FE method, which is formulated based on
the weak form of the governing equation Eq. (1):
∫

�

uTLTCLvd� −
∫

�t

GTσvd� −
∫

�

bvd� = 0

(12)

where v is the test function in finite element method.
The aim of solving Eq. (12) is to find u ∈ VS with ∀v ∈
VT . The test space VT and solution space VS satisfy the
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Fig. 2 Schematic of crack growth at different stages

following conditions (Zienkiewicz and Taylor 2000;
Dang-Trung et al. 2020):

VT =
{
v ∈ H1(�), v

∣
∣
�u = 0

}
and

VS =
{
v ∈ H1(�), v

∣
∣
�u = u0

}
(13)

where H1(�) is the Sobolev space of functions. Dis-
placement u is approximated by the Galerkin finite ele-
ment method:

u ≈ uh =
nnode∑

i=1

NiUi = NU (14)

where U is the displacement vector located at grid ver-
tices. nnode is the number of nodes in the finite ele-
ment grids. N is the shape function matrix containing
all nodes. For node i , the matrix reads:

Ni =
[
Ni (x) 0
0 Ni (x)

]

(15)

where Ni (x) is the shape function of node i .
Then, the weak form Eq. (12) can be further written

as the fully discretized form:

KU = F (16)

The global stiffness matrix K and external force
matrix F are formulated as:

K =
∫

�

NTLTCLNd� and

F =
∫

�

NTbd� +
∫

�t

NTGTσd� (17)

The linear triangular elements (LTEs) are used to
discretize the regions that are not directly connected
to the crack tip. Especially, the LTEs offer the advan-
tage of low computational cost since it is sufficient for
regions far away from tips. The convenience stems from
the fact that the shape functions can be formulated in

the same manner as in the standard FEM (Liu et al.
2010; Nguyen-Xuan et al. 2013):
⎡

⎣
NL
1 (x)

NL
2 (x)

NL
3 (x)

⎤

⎦ = 1

2�A

⎡

⎣
y23 x32 x2y3 − x3y2
y31 x13 x3y1 − x1y3
y12 x21 x1y2 − x2y1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

(18)

where xi j = xi − x j and yi j = yi − y j for i �= j and
(i, j = 1, 2, 3). The area of element is calculated by
�A = (x32y12 − x12y32)/2.

3.2 An improved singular-FEM

It is worth mentioning that the shape function matrix
Ni has different forms for the finite elements in the
vicinity of a crack tip compared to those far away from
the tip. The reason is that the stress distribution at the
crack tip often exhibits the 1/

√
r stress singularity, as

indicated by the stress field (Eq. (6)). This characteristic
necessitates that the elements around the crack tip can
effectively reproduce the singularity.

In the displacement-basedfinite elementmethod, the
stress singularity requires a displacement field with the
term

√
r because stress is the derivative of displace-

ment. Herein we follow the formulation of an adaptive
singular FEM proposed in literature (Liu et al. 2010;
Nguyen-Xuan et al. 2013). The five-node singular tri-
angular elements (STEs) are assigned around the crack
tips to describe the singular stress field with arbitrary
order, as shown in Fig. 3. Note that the improved sin-
gular elements differ from the traditional quarter-point
elements (Henshell and Shaw 1975; Barsoum 1976;
Dang-Trung et al. 2020), which are typically required
even in regions far away from the tips to ensure com-
patibility, while such limitation is addressed in the pro-
posed framework.
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Fig. 3 Finite element grids
around a crack and the
schematics of STE and LTE

The displacement of an arbitrary point P(x, y)
within a crack tip element can be expressed by the inter-
polationof displacements of node1 (the crack tip node),
point A and point B. The displacement component u
reads (Liu et al. 2010; Nguyen-Xuan et al. 2013):

u = c1 + c2r + c3
√
r (19)

where ci (i = 1, 2, 3) are the coefficients determined
by the displacement components of node 1, point A and
point B, denoted by u1, uA and uB .

In Fig. 3, point A is positioned on the line connect-
ing the singular nodes 4 and 5, whereas point B is posi-
tioned on the line connecting nodes 2 and 3. The accu-
rate locations can be determined through interpolating
with the coordinates of nodes 2 ∼ 5 (Liu et al. 2010).
The definition of r is illustrated in Fig2. It measures the
radial distance from the crack tip in a polar coordinate
system. Substituting u1, uA and uB into Eq. (19), one
can obtain the expanded formula:

u = φ1u1 + φ2uA + φ3uB (20)

where the interpolation function φi (i = 1, 2, 3) are
expressed by:
⎡

⎣
φ1

φ2

φ3

⎤

⎦ =
⎡

⎣
1 2 −3
0 −4 4
0 2 −1

⎤

⎦

⎡

⎣
1

r/lB-1√
r/lB-1

⎤

⎦ (21)

where lB-1 is the length of edge B-1, as illustrated in
Fig. 3.

Displacement u1 in Eq. (20) is a node-based quantity
which is the primary unknown in the singular-EFM.
However, as shown in Fig. 3, uA and uB are not the

node-based quantities and should be expressed by the
interpolation of displacements of nodes 2, 3, 4 and 5 of
this element:

uA = (1 − η)u4 + ηu5

uB = (1 − η)u2 + ηu3
(22)

where η is the distance fraction and defined by η =
lA-4/ l5-4 = lB-2/ l3-2 (Liu et al. 2010; Nguyen-Xuan
et al. 2013).

Substituting Eqs. (21) and (22) into Eq. (20), the
general form of displacement components u within a
STE can be written as:

u =
5∑

i=1

NS
i (x)ui (23)

where NS
i (x) (i = 1, . . . , 5) are the shape functions of

five nodes of STE. The subscript S represents the five-
node singular triangular elements. They are formulated
as:

NS
1 = φ1, NS

3 = ηφ3, NS
5 = ηφ2

NS
2 = (1 − η)φ3, NS

4 = (1 − η)φ2
(24)

3.3 Calculation of stress intensity factors (SIFs)

As discussed in Sect. 2.2, the evolution of cracks highly
depends on the evaluation of SIFs KI and KII. There
are many methods developed for calculating SIFs,
typically the interaction integral method (Liu et al.
2010), the energy domain integral method (Moran and
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Fig. 4 Different types offinite elements used in fracturemechan-
ics (STE: the improved singular triangular element; LTE: linear
triangular element; QPE: quarter-point element; QTE: quadratic
triangular element)

Shih 1987), and the displacement extrapolationmethod
(Kuang and Chen 1993).

The methods based on integral are often used in the
analysis of single-crackproblem.However, if themulti-
crack are involved, the calculation of integrals in the
vicinity of each of the crack tips is quite complicated.
Here we do not intend to compare different compu-
tation methods. In this study, we utilize the displace-
ment extrapolation method (Kuang and Chen 1993),
which has been extensively applied in computational
fracture mechanics (Guinea et al. 2000; Dang-Trung
et al. 2020).

The SIFs can be expressed by the nodal displace-
ments of singular elements and material properties
(Kuang and Chen 1993; Guinea et al. 2000):

KI = E

6(1 + ν)(1 + k)

√
2π

htip

(
8�Uay − �Uby

)

KII = E

6(1 + ν)(1 + k)

√
2π

htip
(8�Uax − �Ubx )

(25)

where htip is the average size of crack tip elements
around the crack tip. The capital letter U indicates
that it is a node-based quantity (primary unknown).
As depicted in Fig. 3, the tangential components of rel-
ative displacements between the node pairs a+ − a−
and b+−b− are�Uax and�Ubx . Similarly, the normal
components are �Uay and �Uby .

It is worth mentioning that the displacement extrap-
olation method has been successfully applied in the
standard FEM for fracturemechanics simulation.How-
ever, one of the drawbacks of standard FEM is that the
quadratic triangular elements (QTEs) should beutilized
even in regions far away from the crack tips to guar-
antee displacement compatibility (Henshell and Shaw

Fig. 5 Schematic of two interacting cracks approachingor cross-
ing each other

1975; Barsoum 1976), as displayed in Fig. 4. It leads to
some unnecessary computational costs. In contrast, this
limitation is resolved in the proposed singular-FEM.

3.4 Algorithm for crack propagation and interaction

The state of crack propagation is highly dependent on
the stress conditions around crack tips. In numerical
implementation, the SIFs of each crack tip need to
be evaluated. Actually, the calculation of SIFs based
on displacement extrapolation (Eq. (25)) is stress-
independent and only the node-based displacements
are involved, wherein the displacement vector is cal-
culated by the FE formulation Eq. (16). The solution
strategy is summarized in the following steps:

(1) Generate the multi-crack in the computational
domain and define the coordinates of each crack
tip.

(2) Discretize the computational domain using Delau-
nay triangulation. The grid resolution depends on
the minimum size of cracks (Shewchuk 2002;
Wang et al. 2022a, c).

(3) At each step, calculate SIFs according to Eq. (25)
for all crack tips; calculate the equivalent SIF using
Eq. (8), then determine whether the crack grows or
not based on Eq. (9).

(4) If the crack satisfies propagation criterion, crack
growth direction and crack increment are deter-
mined by Eqs. (7) and (10), respectively.

(5) Update crack tip coordinates for all propagated
cracks. The grids are correspondingly updated
usingDelaunay triangulation for computation in the
next step.

123



L. Wang et al.

Fig. 6 Schematics of a plate with a crack under a tensile loading
and b internal pressure

Modeling of interaction between two cracks that
are approaching or crossing each other has attracted
widespread attention. A previous study proposed a
strategy to simulate interacting cracks by the adaptive-
FEM (Paluszny and Matthäi 2009). However, as they
claimed in the literature, this method can easily result
in an issue of grid distortion and will encounter
some unexpected troubles in mesh adaptive procedure.
Therefore, we introduce an efficientmethod to alleviate
the troublesome grid operations, as displayed in Fig. 5.
We directly use the SIF-based MCS criterion Eq. (9) to
predict growth of such interacting cracks, where Keq

I,A

and Keq
II,B are the equivalent SIFs of crack tips A and

B. In Sect. 4, we will show that the improved singular-
FEM is able to simulate multi-crack growth and their
interaction.

4 Results and discussion

In this section, the improved singular-FEM is used to
analyse the stress field and crack propagation in the
deformablemedia under different configurations. After
a series of numerical tests, we are concerned about
the influences ofmulti-crack, crack interaction, loading
conditions and material heterogeneity on crack trajec-
tory and crack tip field.

4.1 Model performance: comparison of different
methods

First, we consider a plate containing a single crack to
validate the numericalmethod and investigate the stress

field and displacement around the crack tip. The mate-
rial is a kind of brittle material (plexiglas). The size
of the 2D computational domain is 10cm × 10cm. A
crack with inclined angle β and length 2a = 1 cm is
placed in the center of the domain, as shown in Fig. 6a.

A tensile loading is imposed on the top side of the
specimen (σt = 1 MPa). The bottom side is fixed. In
this situation, the equivalent SIF Keq

I is smaller than the
fracture toughness KIC such that the crack remains sta-
tionary.Weanalyse the stress fieldwith various inclined
angles β = 30, 60 and 90 degrees. As reported in liter-
ature (Erdogan et al. 1962; Yukio et al. 1983), Young’s
modulus and Poisson’s ratio of plexiglas are 4×106 psi
(eqauls to 2.76 GPa) and 0.31, respectively. The frac-
ture toughness KIC of plexiglas is 4.6 kgf/mm2 (equals
to 1.425 MPa ·√m) (Yukio et al. 1983). According to
Eq. (8), when Keq

I < KIC, the equivalent SIF reads:

Keq
I = cos

θ

2

(

KI cos
2 θ

2
− 3

2
KII sin θ

)

(26)

where both KI and KII can be calculated either by ana-
lytical solution or by numerical methods. For a sta-
tionary crack, the analytical SIFs are formulated as
KI = σt

√
πa sin2 β and KII = σt

√
πa sin β cosβ

(Erdogan and Sih 1963; Sih 1991). In addition, the SIFs
can also be computed numerically by Eq. (25).

To evaluate the accuracy of singular-FEM, the
numerical solutions of the stress field in the vicinity of
the crack tip are compared with the results obtained by
the commercial software ABAQUS (Smith 2009). The
element type is CPS6with the collapse of element sides
to generate the singular elements in the software. Fig. 7
provides a comparison between the solutions obtained
by the improved singular-FEM and ABAQUS. The x-
axis is a normalised distance x̄ along the crack length.
Moreover, it can be seen that both the stress compo-
nents σθ and σrθ at the crack tip are relatively larger
than other positions. The angle β measures the degree
of the crack inclination, therefore the crack is a pure
mode-I fracture in the case of a horizontal crack. It can
also be indicated in Fig. 7 that σrθ equals to zero when
β = 90◦.

To quantitatively measure the accuracy, we compare
the difference of Keq

I between the results calculated by
the singular-FEM and the analytical solution. The error
is defined by:

εh =
∥
∥K̄ eq

I − K̃ eq
I

∥
∥
2∥

∥K̄ eq
I

∥
∥
2

(27)
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Fig. 7 Stress fields of a
circumferential stress σθ

and b tangential stress σrθ
at the crack tip with various
inclined angles

Fig. 8 Grid convergence
with different grid
resolutions hmin . The error
εh is evaluated by the
difference of Keq

I calculated
by the improved
singular-FEM and
analytical solution

Fig. 9 Comparison of grid
convergence with different
grid resolutions hmin . The
error εh is calculated by
different types of the crack
tip elements

where K̄ eq
I and K̃ eq

I are the analytical and numerical
values, respectively.

Different inclined angles β have influences on the
Keq

I as well as numerical accuracy. In this context, we
examine the convergence performance with two angles
β = 60◦ and 90◦. The error indicator εh is calculated
with different grid resolutions hmin , where εh is the
minimumsize over all finite elements.As demonstrated

in Figs. 8 and 9, the convergence is almost a linear rela-
tion during reducing grid size. A similar result can also
be found in our recent publication related to stress anal-
ysis of the fractured media (Wang et al. 2022a). More-
over, the convergence results prove that the improved
singular-FEM is more accurate than those of FEMwith
linear triangular element (LTE) and almost as accurate
as quarter-point element (QPE).
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Fig. 10 Comparison of a
degrees of freedom and b
convergence of the strain
energy with different types
of the crack tip elements

The strain energy Ue is calculated to evaluate
the convergence performance of different numerical
schemes. It is calculated by:

Ue =
∫

�

1

2
σTεd� (28)

As shown in Fig. 10b, the strain energy calculated
by different methods approximate to a constant value
with the increase of grid refinement. The simulations
were executed on an Intel Core i7-7950 processor at
2.6 GHz with 16 GB memory. In a quasi-static prob-
lem with 9000 nodes, the CPU times (unit: seconds)
for the singular-FEM, LTE and QPE methods are 386,
355 and 591, respectively. Note that in this case the
reference solution is 0.0179 J. The simulation results
show that the results of FEM (LTE) is smaller than
those of singular-FEM and FEM (QPE). Although the
FEM (QPE) is slightly more accurate than the singular-
FEM, at the cost of higher degrees of freedom, where
the expensive cost significantly increase as the compu-
tational scale increases, as displayed in Fig. 10a. The
improved singular-FEM provides a compromise strat-
egy that combining the merits of low cost and high
accuracy.

To further demonstrate the reliability of the pre-
sented method, we consider another loading condition,
where the internal pressure p is imposed on the crack
surface, as shown in Fig. 6b. Model parameters are the
same as the above model. We are concerned about the
opening δ f between the two sides of crack. The ana-
lytical solution reported in literature (Ucar et al. 2018;
Wang et al. 2022a) reads:

δ f = 2ap (1 − ν)

G

√

1 −
(η

a

)2
(29)

where η is the local coordinate on the crack surface
(0 ≤ η ≤ 2a). The shear modulus G is related to E via

E = 2G(1+ ν). We consider a stationary crack where
the analytical solution is applicable.

Figure11proves that a goodmatching exists between
the analytical and numerical solutions. Crack opening
at the middle position of the crack surface reaches the
maximum value. A similar study was also given in lit-
erature (Ucar et al. 2018;Wang et al. 2022a). In general
the curve of crack opening induced by the internal pres-
sure has a parabolic shape for any arbitrary angle β. In
addition, the strain energy Ue is calculated to evaluate
the convergence performance of the improved singular-
FEM with different inclined angles β, as shown in
Fig. 11. It demonstrates that in this case Ue is inde-
pendent of β. The strain energy converges to a certain
value with the grid refinement.

4.2 Characteristics of a propagated crack in
homogeneous media

To simulate a propagated crack, the external loading
σt is increased to 10 MPa such that the equivalent SIF
Keq

I > KIC. The material parameters are the same as
the above. The crack length is 2cm with an inclined
angle 45◦, and the size of the specimen is 20cm ×
20cm, as shown in Fig. 12.

The experimental result of an inclined propagated
crack in a brittle plate is reported by Erdogan and Sih
(1963). It is observed that the crack propagates along
a specific direction, extending in a wing-shaped pat-
tern. Crack growth represents a progression of material
deterioration, eventually terminating when the crack
reaches the boundaries of the domain. The results indi-
cate that the crack propagates horizontally, aligning
with the orientation perpendicular to the maximum
stress. Therefore, Fig. 12 illustrates a good matching
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Fig. 11 Comparison of
numerical results and
analytical solution (a) and
convergence of the strain
energy

Fig. 12 Comparison of crack trajectory of an inclined propagated crack obtained by experiment and numerical simulation

Fig. 13 Variation of the SIFs Keq
I and Keq

II with different inclined angles and crack extension

between the experimental result and the numerical
solution.We can also reasonably infer that any inclined
crack will propagate along the horizontal direction
under uniaxial tensile loading.

The dominance of mode-I and II fractures is varied
with the inclined angle β, as shown in Fig. 13. Both
the SIFs Keq

I and Keq
II equal to zero in the case of a

vertical crack (β = 0◦), while Keq
I plays a dominant

role when β = 90◦ since in this context there is no
shear component existing in the vicinity of the crack
tip.

A plate containing an edge crack is displayed in
Fig. 14. We are intended to compare the crack trajec-
tories simulated by the presented method with that of
the existing results. This problem has been studied in
the existing literature (Rao and Rahman 2000; Azó-
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Fig. 14 Crack trajectory in
an edge cracked plate. The
results extracted from
Nguyen-Xuan et al. (2013)
(top), the vertical
displacement (middle) and
the shear stress (bottom)
calculated by the improved
singular-FEM (unit:
dimensionless)

Fig. 15 Variation of a SIFs
and b energy release rate
with crack extension (unit:
dimensionless)

car et al. 2010; Nguyen-Xuan et al. 2013). We follow
the parameters used in the literature (Rao and Rahman
2000), wherein the variables are dimensionless. The
height and width of the model are 16 units and 7 units,
respectively. A horizontal edge crack is placed in the
middle of the left side. Young’s modulus and Poisson’s
ratio are 30×106 units and 0.25, respectively. The shear
stress τ imposed on the top surface is 1 unit. As dis-
played in Fig. 14, the crack propagates along an oblique
direction rather than the horizontal direction, since the
external shear loading induces a different stress field

compared with the uniaxial loading. Obviously, in this
context KII plays a dominant role relative to KI . In
addition, we provide the distributions of vertical dis-
placement Uy as well as shear stress σ12, wherein the
shape of crack tip zone relies on the propagation steps.

The relation of SIFs and crack extension is dis-
played in Fig. 15a. The dominance of SIFs depends on
the increase of crack extension �a. For instance, it is
observed that Keq

II (shear failure) dominates over Keq
I

(tensile failure) when�a ≤ 1.9. The specimen is com-
pletely destroyed once the crack propagation reaches
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Fig. 16 Brazilian disk
model. a The size effect and
b variation of SIFs with
crack extension. The unit
MN/m equals to MPa · m

the right boundaryof the specimen. Figure15bprovides
the variation of energy release rate with crack exten-
sion. It shows that different values of initial length a0
of crack have effect on energy release, where the aster-
isks marked in this figure indicate the energy release
rate when the specimen is complete failure. The rate of
change of energy release for a large crack is relatively
higher compared to that of small cracks. It can be inter-
preted by a fact that energy release rate is equivalent to
the surface energy, which is dependent on the size of
the crack.

4.3 Brazilian disk test and effect of heterogeneous
material

The Brazilian disk test has been widely investigated
in crack analysis and it is a benchmark for validat-
ing numerical results (Atkinson et al. 1982; Bouchard
et al. 2000; Haeri et al. 2014; Dang-Trung et al. 2020).
Especially, for a disk containing a center pre-existing
crack, both the experimental and analytical analyses
have proven that the crack trajectory is almost a straight
line along the vertical direction (Bouchard et al. 2000;
Haeri et al. 2014).

As illustrated in the inset in Fig. 16a, a disk model
is established to study crack growth. The specimen
is a brittle material. Young’s modulus and Poisson’s
ratio are 25 GPa and 0.21, respectively. The fracture
toughness of the disk specimen is KIC = 2 MPa ·√m
(Atkinson et al. 1982). The length of the central crack
is 2a = 10 mm and the radius of the disk specimen is
R = 42 mm. The bottom of the computational domain
is fixed. The external loading is controlled by a line
load f0 (unit: MN/m) and it is applied on the top of

the disk. In 2D problem, the load is calculated by f0ht
and ht is the thickness of the specimen. The size effect
has an influence on the SIF KI , as depicted in Fig. 16a.
The ratio R/a is defined by the disk radius to the half
length of the crack. The numerical solution shows that
Keq

I is smaller than the fracture toughness KIC when
f0 = 2 MN/m and R/a ≥ 7. It appears that the SIF
tends to a stable value if the ratio is greater than 8,
since the size effect will disappear if the crack length is
small enough compared to the disk size. The SIF Keq

I
varies with the increase in crack extension, as shown in
Fig. 16b. In addition, Keq

II is a constant in this process
since the crack is placed along the horizontal direction,
therefore the failure mode is purely tensile.

Figure17 shows the contours and crack trajectory
in a homogeneous elastic medium. The distributions
of displacement and stress fields (von Mises stress and
shear stress) are governed by the condition of crack
growth. Obviously, the crack propagates along the ver-
tical direction since the crack is subjected to a tensile
stress in the Brazilian test, and the failure is a mode-I
fracture (Atkinson et al. 1982). As we expected, the
crack path obtained by the improved singular-FEM is
in agreement with the experimental results reported in
literature (Haeri et al. 2014).

The above numerical simulations are based on a
homogeneousmedium.However,many studies point to
the important of material heterogeneity in mechanical
characteristics of fractured media. In particular, crack
growth in heterogeneous media differs from crack
growth in homogeneous media (Budyn et al. 2004),
since the heterogeneity may alter the stress field and
affects the crack interaction. To study the influence of
heterogeneity, we generate a heterogeneous medium
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Fig. 17 Crack growth in the Brazilian disk model. The von Mises stress (top, unit: Pa), the shear stress (middle) and the displacement
(bottom, unit: cm). The animation of crack growth is accessible in Supplementary Data

with Pattern A and Pattern B, wherein the heterogene-
ity is controlled by the random field of Young’s mod-
ulus E , as illustrated in Fig. 18. The method for gen-
erating heterogeneity is similar to the method used in
literature (Wang et al. 2022b, c). It is observed that the
von Mises stress field is not smooth compared to the
case of homogeneity (Fig. 17). The crack trajectories
in homogeneous and heterogeneous media are shown
in Fig. 19. There are deviations of crack trajectory in
heterogeneous cases instead of the vertical direction in
homogeneous case. The reason is that the crack tip field
is related to the distribution of E , wherein it is a uncer-
tain and random field. Figure20 provides a comparison
of distributions of stress and displacement (along the
vertical direction of the disk specimen) between the
homogeneous and heterogeneous media. It turns out
that the curves in the homogeneous case are relatively
smoother than those in the heterogeneous cases. The

effect of heterogeneous fluctuation on stress is more
pronounced than on displacement. Despite Pattern B
employing a heterogeneous field, its overall displace-
ment closely aligns with that of the homogeneous case.
We attribute this observation to the heterogeneity in
mechanical properties.

Numerical results prove than material heterogeneity
has a slight influence on convergence performance of
the proposed singular-FEM as well as the strain energy
Ue, as shown in Fig. 21a. On the one hand, the strain
energy Ue tends to a stable value when the grid res-
olution is larger than 7000. On the other hand, Ue in
the condition of heterogeneous Pattern A (0.0142 J) is
smaller than that of in other two conditions (0.0148
and 0.01496 J). It implies that the effect of hetero-
geneity leads to a highly uneven stress field distributed
over each finite element. In this context the degree of
uneven field is also reflected by the difference of com-
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Fig. 18 Crack trajectory
and von Mises stress field in
two patterns of the
heterogeneous media of
Brazilian disk test. The
animation of crack growth
is accessible in
Supplementary Data

Fig. 19 Comparison of crack trajectories in homogeneous and
heterogeneous media of Brazilian disk test

pressive stress-deformation relation obtained from dif-
ferent materials, as displayed in Fig. 21b. Moreover, it
appears that the heterogeneity may improve or reduce
material strength.

4.4 Propagation of interacting cracks and multi-crack
in heterogeneous media

In this section, we analyse crack growth of two inter-
acting cracks as well as multi-crack. First, we focus on

understanding the influence of interaction effects on the
crack tip field and crack trajectory. To this end, a plate
with two interacting cracks is established, as shown in
Fig. 22. The crack on the left side (Crack 1) is placed
horizontally and the other one (Crack 2) is inclinedwith
an angle β. The length of both two cracks is 2a = 1cm
and the angle β is 45◦. The size of the computational
domain is 10cm× 10cm. The external loading applied
on the top surface σt is controlled by an increased dis-
placement 0.1 mm per step. The specimen is a brittle
medium. Young’s modulus and Poisson’s ratio are 30
GPa and 0.25. respectively.

The distance H between these two cracks is mea-
sured by the line connecting the center points of the
cracks. To study the influence of various distance on
the degree of interaction, H is set to five values (H =
1,2,3,4 and 5cm) such that the ratio a/H is 1/2, 1/4,
1/6, 1/8 and 1/10. The effect of crack interaction is
evaluated by the SIFs KI and KII.

Next, we focus on the tips A and B of Crack 1. The
variation of SIFs is shown in Fig. 22. Obviously, the
influence of crack interaction on tip A is larger than
on tip B, as indicated by the phenomenon that KI is
almost a constant when a/H ≤ 1/4. The crack inter-
action can be neglected in the case of a/H ≤ 1/8 since
the distance H is larger enough. However, the degree of
interaction is stronger while the tip A is approaching
to Crack B, especially when a/H ≥ 1/4. The result
demonstrates that the fracture mode of Crack 1 transi-
tions from pure mode-I to mixed-mode I-II as Crack 1
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Fig. 20 Brazilian disk test.
Distributions of a von Mises
stress and b displacement
when stress state satisfies
propagation criterion

Fig. 21 Brazilian disk test.
Convergence of a strain
energy and b influence of
material heterogeneity on
compressive
stress-deformation relation

Fig. 22 Influence of the
distance between two
interacting cracks on the
variation of SIFs (KI and
KII) of crack tips A and B
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Fig. 23 Crack growth of
two interacting cracks with
different distances H (a is a
fixed value 0.5 cm). In a
a/H = 1/2 and b 1/6, the
top and bottom rows are
displacement (unit: cm) and
von Mises stress (unit: Pa).
The animation of crack
growth is accessible in
Supplementary Data

approaches to Crack 2, accompanied by an increase in
the magnitude of SIFs.

Figure23 shows the displacement field and von
Mises stress during crack propagation in the cases of
a/H = 1/2 and 1/6. There is a common observation in
both the two cases, where Crack 1 and Crack 2 prop-
agate simultaneously, after experiencing the stages of
crack growth and crack interaction, then the cracks will
eventually coalesce together. The degree of interaction
depends on the distance H , as indicated in Fig. 22. It is
worthmentioning that the crack trajectories in the inter-
action zone is not along the horizontal direction when
the cracks are almost connected, for instance, Step 15
in Fig. 23a. Figure24 illustrates a comparison in the
cases of a/H = 1/2 and 1/6. It shows the distributions
of displacement and stress along a line cd (as displayed

in Fig. 22) across the cracks. The results imply that the
effect of crack interaction increases the degree of stress
concentration, and the strong discontinuities are caused
by the presence of cracks.

A further study demonstrates that the distance
between two cracks has strong effect on the variation
of energy release rate. The closer the distance, themore
energy is released, as illustrated in Fig. 25a. In another
aspect, this study further induces that the variation rate
of energy release for two cracks very close is larger
than that of two distant cracks, as shown in Fig. 25b.
The asterisks marked in this figure imply the energy
release rate when the two cracks are connected.

A deformable medium with a more complex crack
configuration is studied to explore the growth of multi-
crack, and to show the presented method is able to sim-
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Fig. 24 Distributions of a von Mises stress and b displacement along line cd when stress state satisfies propagation criterion (a/H =
1/2 and 1/6) of the interacting cracks

Fig. 25 Variation of energy
release rate with crack
extension and in a different
solid materials in b
homogeneous material
when the two cracks are
connected

ulate the interaction ofmulti-crack. Themodel parame-
ters are the same above. Ten crackswith length 1cm are
randomly distributed inside the computational domain,
as displayed in Fig. 26. First, we consider a homoge-
neousmaterial. Simulation results imply that the cracks
(Cracks 1, 2 and 3) located at the middle of the domain
start to grow first because the stress concentration in
this zone is significantly higher than other zones. The
interaction effect between crack tips leads to the devia-
tion of crack paths. For example, the left tip of Crack 2
tends to approach the right tip of Crack 1. Similarly, the
left tip of Crack 3 and the right tip of Crack 2 are tend
to coalesce. Eventually, as shown in Step 25 in Fig. 26,
these cracks become one major crack, resulting in the
fragmentation of the material. Note that the crack tra-
jectory obtained by our method is similar to the results

reported in literature (Budyn et al. 2004; Azadi and
Khoei 2011).

It is an interesting theme to study the effect of
heterogeneity on crack trajectory, especially for the
multi-crack growth. Similar to Sect. 4.3, we generate
two different heterogeneous fields (Patterns A and B)
controlled by the material property E , as illustrated
in Fig. 27. Simulation results show that although the
heterogeneity has an effect on crack propagation, the
degree of influence depends on the collaboration of ran-
domfield and crack interaction. Themechanismbehind
this phenomenon is more complicated than in the case
of a single cracked medium, such as the Brazilian disk
in Sect. 4.3, since crack interaction plays an important
role that cannot be ignored. In summary, whether it is a
homogeneous material or a heterogeneous material, in
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Fig. 26 Crack trajectories in a homogeneous medium with multi-crack. The displacement (unit: cm) and von Mises stress (unit: Pa).
The animation of crack growth is accessible in Supplementary Data

Fig. 27 Comparison of
crack trajectories in
homogeneous and
heterogeneous media of
multi-crack growth

this context the cracks eventually coalesce in one large
crack.

Furthermore, as displayed in Fig. 28, a line is placed
crossing the three propagated cracks, to further explore
the effect of material heterogeneity on stress analysis.
It appears that the heterogeneity induces some fluctua-
tions in both the stress and displacement fields. These
fluctuations are random and may change the local dis-
tribution of stress around the crack tips. Therefore,

the SIFs evaluated at crack tips (A, B, C and D) in
homogeneous and heterogeneous media are different,
as depicted in Fig. 29a, where the SIFs KI and KII

are represented by the normalized SIF ratio defined by
K̄ = (2/π) arctan(KI /KII). It implies that the cracks
tend to mode-I (tensile failure) if K̄ > 0.5 and tend
to mode-II (shear failure) if K̄ < 0.5. The dominance
of KI and KII is the same when K̄ = 0.5. The effect
of KI on the tips B and C is relatively larger than on
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Fig. 28 Distributions of a
von Mises stress and b
displacement when stress
state satisfies propagation
criterion of multi-crack
growth

Fig. 29 a The normalized
SIF ratio evaluated at
different crack tips and b the
influence of heterogeneity
on energy release rate
compared to homogeneity

the tips A and D. Figure29b shows the influence of
heterogeneity on energy release rate. To achieve this,
we calculated the deviation of energy release rate in
heterogeneous material compared to that in homoge-
neous material. The results indicate that the deviations
in the crack growth process are randomly distributed,
but the overall trend is an increase. The heterogene-
ity either amplify or diminish the SIFs, contingent on
the collaborative effect of the heterogeneity and crack
interaction.

5 Conclusions and implications

In this work, an improved singular-FEM has been
developed for simulating multi-crack growth in hetero-
geneous fractured media. Then, the influences of crack
interaction, loading condition andmaterial heterogene-
ity on crack trajectory, crack tip field and energy release
rate were clarified.

The highlights of the proposed method are summa-
rized as follows:

(1) This method is able to integrate the effect of hetero-
geneity and straightforwardly model multi-crack
growth, with an efficient algorithm for simulating
crack propagation and interaction.

(2) A novel five-node singular triangular element is
used to reproduce the stress singularity in the vicin-
ity of crack tips.

(3) The region far away from the tips can be discretized
by the linear triangular elements instead of the
quadratic or transition elements in the traditional
FEM.

The main concluding remarks and implications are
summarized as follows:

(1) The method was applied to complicated cases with
material heterogeneity and multi-crack growth.
Numerical performance was examined by a bench-
mark study. The results prove that the improved
singular-FEM is more accurate than those of FEM
(LTE) and almost as accurate as FEM (QPE). It
provides a compromise strategy that combining the
merits of low cost and high accuracy. It also illus-
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trates that material heterogeneity has a slight influ-
ence on convergence performance as well as the
variation of strain energy.

(2) Numerical results demonstrate that the initial length
of crack has obvious effect on energy release rate
and SIFs, which depend on the collaboration of het-
erogeneity and crack interaction. On the one hand,
the heterogeneity may improve or reduce material
strength. One the other hand, the distance between
two cracks has strong effect on the variation of
energy release rate. The closer the distance, the
more energy is released.

(3) The mechanism behind multi-crack growth in het-
erogeneousmaterial is complicated due to the com-
bined mechanism of heterogeneity and crack inter-
action. Although the crack trajectory depends on
the finite element grids, this impact will be elimi-
nated once the resolution reaches a specified value.
During crack propagation, the deviation of the
energy release rate of the heterogeneous mate-
rial from that of the homogeneous material is dis-
tributed randomly, but the overall trend is increas-
ing.
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