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Abstract This study presents numerical analyses for
edge chipping by impact loading. As a numerical anal-
ysis method, we extend Particle Discretization Scheme
Finite Element Method (PDS-FEM) developed by the
authors to be able to simulate fracture due to impact
loading. We performed simulations targeting edge
chipping of soda-lime glass by impact of rigid steel
sphere and examined the crackmorphologywhile vary-
ing the diameter of the impactor, the impact velocity,
and the impact distance. The proposedmethod success-
fully simulates the 3D complex crack pattern on edge
chipping such as Hertzian cone crack and conchoidal
chip scar. The method also reproduces the change of
crack morphologies depending on the impact force and
the impact distance. Also, a series of numerical anal-
yses is presented to reveal the effect of the impactor
geometry on the chip dimensions. The height of chip is
independent of the impactor geometry while the width
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of chip depends on it. According to the agreement with
experimental results, it is confirmed that the proposed
method is capable of realizing edge chipping due to
impact loading.
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1 Introduction

A concentrated impact loading applied near a sharp
edge of brittle materials can cause conchoidal frac-
ture at the edge and permanently damage the materials.
This mode of fracture, called edge chipping, is widely
observed and well-known especially associated with
themanufacturing process of cutting ormachining brit-
tle materials (Mohajerani and Spelt 2009). Edge chip-
ping during the manufacturing process not only affects
the geometric accuracy and surface finish of manufac-
tured products but also could be the source of potential
failure. Therefore, it is important to understand the con-
ditions underwhich edge chipping occurs and to predict
the damage states of materials.

The mechanism of edge chipping has been inten-
sively studied by indentation experiments. In the early
works, Almond and McCormick (1986) examined the
chipping of various brittle materials using a conical
diamond indenter and observed that the size of chip
scars depended on the indentation distance d (distance
between an indentation point and an edge). Also, sev-
eral studies investigated the critical indent force F
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required for edge chipping. Chai and Lawn (2007b)
found that F linearly relates to d1.5. Other studies
show a linear correlation between F and d (Morrell
and Gant 2001; Chai and Lawn 2007a; Gogotsi et al.
2007; Gogotsi and Mudrik 2009). The ratio of F to
d is referred to as “edge toughness”. The edge tough-
ness depends only on the investigated material and the
indenter geometry (Danzer and Hangl 2001). There-
fore, several attempts have been made to predict the
fracture toughness Kc from the edge toughness whose
value is given by the edge chipping test (Danzer and
Hangl 2001; Morrell and Gant 2001; Chai and Lawn
2007b; Gogotsi et al. 2007; Gogotsi and Mudrik 2009;
Gogotsi 2013). For example, Chai and Lawn (2007b)
performed the edge chipping tests of soda-lime glass by
Vickers indentation and reported that they were able to
provide the value of Kc directly from the critical indent
force F to within an accuracy of about 25%.

In addition to these analytical studies, the chip mor-
phology has also been investigated in detail. The chip-
ping process is quite different between sharp indenters
(e.g., Vickers and Knoop indenters) and blunt spherical
indenters (e.g., Rockwell indenters). Under quasi-static
loading by the sharp indenter, median cracks from the
tip of the indenter extend stably along the loading direc-
tion and form a penny-shaped crack (Chai and Lawn
2007b). This penny-shaped crack veers to the side wall
of the specimen and removes a chip. On the other hand,
cracks are not penny-shaped under quasi-static loading
by the blunt spherical indenter. Instead, they form a
Hertzian surface ring crack and grow downward to be
conical shape; see Fig. 1. While its lateral expansion
is stopped by intersecting the side wall, its downward
extension continues in a curve path until it again inter-
sects the side wall and removes a chip (Gogotsi and
Mudrik 2010; Mohajerani and Spelt 2010; Chai 2011).

Most of these previous experimental studies on edge
chipping have been limited to quasi-static loading. In
spite of the fact that edge chipping commonly occurs
under dynamic loading, a limited number of works deal
with edge chipping by dynamic loading. For exam-
ple, Chai and Ravichandran (2009) studied edge chip-
ping of soda-lime glass by the impact of Vickers and
spherical tip projectiles. They reported that the Vickers
impactor formed median cracks from the contact point
while the spherical impactor produced a cone crack
starting from the contact point; these features are sim-
ilar to those under quasi-static loading. However, as
the impact force increased, the spherical blunt indenter

(a) (b)

Fig. 1 Schematic model of chip scar: a penny-shaped crack, b
Hertzian cone crack

formed cracks similar to penny-shaped median cracks
as seen in sharp indentation. Morrell (2005) also stud-
ied edge chipping of brittle materials by the impact of
a tungsten carbide WC ball. Although the crack pat-
tern (i.e., penny shape or Hertzian cone) was not dis-
cussed in this study, the chip geometries shown in the
results were rather penny-shaped cracks. In addition
to these studies, Mohajerani and Spelt (2011) investi-
gated edge chipping of borosilicate glass by the low-
velocity impact of ceramic and steel balls and observed
the Hertzian cone crack. Therefore, in the relatively
high range of impact force, it is concluded that the
blunt indenter also forms a penny-shapedmedian crack
which is generally observed under the impact of sharp
indenters.

Although tremendous effort has been paid for exper-
imental research on edge chipping, there have been
very few numerical studies because of the complex
3D nature of edge chipping. Cao (2001) performed
the finite element analysis to investigate the size of
chip scars as related to loading conditions and intrin-
sic flaws of materials. Chai and Ravichandran (2007)
also performed a brittle-fracture analysis in conjunc-
tion with the finite element analysis to elucidate the
effect of the inclination angle of indenters on the
chip morphology and the indentation force. How-
ever, these numerical analyses employed the idealized
two-dimensional plane strain model. Also, many frac-
ture analysis methods have been proposed in these
two decades such as eXtended finite element method
(XFEM) (Belytschko andBlack 1999;Moës et al 1999;
Belytschko et al. 2001), FEMwith cohesive zonemodel
(CZM) (Shet and Chandra 2002; Volokh 2004), Peri-
dynamics (Silling 2000; Silling et al. 2007), and lattice
model (Martín et al. 2000; Braun and Fernández-Sáez
2014, 2016; Braun and González-Albuixech 2019;
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Braun et al. 2021). These analysis methods have been
successfully applied to a wide variety of fracture phe-
nomena. Nevertheless, to the best of our knowledge, no
previous studies have successfully simulated the com-
plex 3D geometry of edge chipping.

In this study, we perform numerical analyses to
reproduce the 3D crack morphology observed in edge
chipping. The numerical analyses presented in this
paper target edge chipping of glass by impact load-
ing because edge chipping mostly occurs under impact
loading. Since this type of problem involves dynamic
loading accompanied by stress wave propagation and
energy dissipation at collision, it is much more difficult
to simulate than quasi-static loading. For the numeri-
cal analyses, we extend Particle Discretization Scheme
Finite Element Method (PDS-FEM) (Hori et al. 2005;
Oguni et al. 2009; Wijerathne et al. 2009; Hirobe et al.
2021a) developed by the authors to be able to simulate
fracture due to impact loading. The crackmorphologies
given by our numerical analysis results are investigated
with considerations of the impact force and the impact
distance from the edge of the side wall of the specimen.

2 Numerical analysis method

In this study, we used the numerical analysis method
based on PDS-FEM which was developed by the
authors. PDS-FEM is one of the fracture analysis meth-
ods, and its detailed formulation has already been pre-
sented in the authors’ previous works (Hirobe et al
2021b; Hirobe et al. 2021a). For the simulations of
edge chipping by impact loading, we extend PDS-
FEM to analyze the fracture and the collision of two
objects simultaneously. Here, we first introduce the
overview of PDS-FEM formulations. Then, we present
the impact analysis method using PDS-FEM formula-
tion in Sect. 2.2. Einstein’s summation convention is
employed for subscripts that describe indices in letters
throughout this paper.

2.1 Overview of PDS-FEM

PDS-FEMapplies the particle discretization to the field
variables using a pair of conjugate geometries; see
Fig. 2. The Delaunay tessellation becomes a set of tri-
angles in the two-dimensional case and a set of tetrahe-
drons in the three-dimensional case. The field variables

are discretized by using the following discontinuous
shape functions defined on the respective Voronoi tes-
sellations and the Delaunay tessellations.

φα(x) =
{
1 (x ∈ �α)

0 (x /∈ �α)
(1)

ψβ(x) =
{
1 (x ∈ �β)

0 (x /∈ �β)
(2)

where x is a position, �α is the α-th Voronoi tessel-
lation and �β is the β-th Delaunay tessellation. The
displacement field ui (x) is discretized on the Voronoi
tessellations as

ui (x) =
N∑

α=1

uα
i φα(x) (3)

where N is the number of Voronoi tessellations. The
physical quantities related to the spatial derivatives of
the displacement field are discretized on the Delaunay
tessellations as

εi j (x) =
M∑

β=1

ε
β
i jψ

β(x) (4)

σi j (x) =
M∑

β=1

σ
β
i jψ

β(x) (5)

where ε
β
i j and σ

β
i j are the strain tensor and the stress

tensor, respectively. According to these discontinuous
and non-overlapping shape functions, the displacement
field can be regarded as the translational motion of the
rigid body particles defined by the Voronoi tessella-
tions. Such particle description enables the easy treat-
ment of fracture.

For the sake of simplicity, two-dimensional PDS-
FEM formulation is provided here. The displacement–
strainmatrix Bβα

i for the triangular element�β is given
as

Bβα
i = 1

�β

∫
�β

φα
,i ψ

βdV

= 1

�β

(∫
∂�αγ ∩�β

nαγ

i dS +
∫

∂�αζ ∩�β

nαζ
i dS

)
(6)

where ∂�αγ is the boundary of the α-th Voronoi tes-
sellation adjacent to the γ -th Voronoi tessellations (see
Fig. 2), and nαγ

i is the outward unit normal vector of the
α-th Voronoi tessellation on ∂�αγ : likewise for ∂�αζ ,
and nαζ

i . Then, the stiffness matrix K αγ

ik is defined as

K αγ

ik =
M∑

β=1

Bβα
j cβ

i jkl B
βγ

l �β (7)
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Fig. 2 The conjugate geometries used for discretization of field
variables

where M is the number of Delaunay tessellations and
cβ
i jkl is the material constant. Despite the discontin-

uous shape functions, the components of Bβα
i and

K αγ

ik are identical to those of the displacement–strain
matrix for the conventional FEMof triangular elements
with linear shape functions. According to this, PDS-
FEM provides the rigorous particle description for the
deformable solid continuum.

The particle description in PDS-FEM enables the
definition of the Hamiltonian formulation for the solid
continuum. The Hamiltonian H for the motion of the
set of the Voronoi particles is given as

H =
N∑

α=1

1

2mα
pα
i p

α
i +

N∑
α=1

N∑
γ=1

1

2
K αγ

i j qα
i q

γ

j (8)

where pα
i is the generalized momentum and qα

i is
the generalized coordinates. Therefore, the dynamic
behavior of the solid continuum is given by solving
the following Hamilton’s equations.

q̇α
i = ∂H

∂pα
i

= u̇α
i (9)

ṗα
i = − ∂H

∂qα
i

= −
N∑

γ=1

K αγ

i j uγ

j (10)

In PDS-FEM, the fracture is expressed as the loss of
the interaction between two adjacent Voronoi tessella-
tions; this is expressed as setting the surface integral in
Eq. (6) on the fractured Voronoi boundary to zero. For
example, when the boundary between the α-th Voronoi

particle�α and the γ -th Voronoi particle�γ fractures,
∫

∂�αγ ∩�β

nαγ

i dS = 0. (11)

2.2 Impact analysis

To analyze the edge chipping by impact loading, we
incorporate the following impact analysis method in
PDS-FEM. Here, for example, we consider the case in
which the impactor collides with a glass material. The
glass material is modeled as a set of Voronoi particles
presented in section 2.1 and the impactor is set as a rigid
body. When the α-th Voronoi particle collides with the
impactor, the velocities of the α-th Voronoi particle
and the impactor are changed to satisfy the momentum
conservation law:

vα′
i = vα

i (mα − eipt M) + Vi (M − eipt M)

mα + M
(12)

V ′
i = Vi (M − eiptmα) + vα

i (mα − eiptmα)

mα + M
(13)

where vα
i is the velocity of α-th Voronoi particle,

Vi is the velocity of the impactor, M is the mass
of the impactor, eipt is the coefficient of restitution
between the glass and the impactor, and the primemark
expresses the velocity after collision.

We should also consider the collision between
Voronoi particles, whose boundary is fractured, in the
glass material to avoid overlap of Voronoi particles.
This is because the fractured Voronoi particles have no
interaction with each other and the repulsive force does
not work even when they mutually approach.When the
boundary between the α-th Voronoi particle�α and the
γ -thVoronoi particle�γ is fractured and also these two
Voronoi particles collide with each other, the velocities
of these Voronoi particles are changed to satisfy the
momentum conservation law as the same manner as
the collision between the glass and the impactor:

vα′
i = vα

i (mα − eglsmγ ) + v
γ

i (mγ − eglsmγ )

mα + mγ
(14)

v
γ ′
i = v

γ

i (mγ − eglsmα) + vα
i (mα − eglsmα)

mα + mγ
(15)

where egls is the coefficient of restitution between the
glasses.
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3 Numerical analysis setting

In this study, we perform numerical analyses for edge
chipping by impact loading near the edge of brittle
materials. As shown in Fig. 3, our numerical analyses
intend tomodel the surface-normal impact loading on a
rectangular soda-lime glass plate; glass is the ideal brit-
tle material and also the most frequently used material
in the experiment of edge chipping. The impactor is the
rigid steel sphere. The impact point is located at (X/2,
0.0, Z − d) as shown in Fig. 3, where d is the distance
between the impact point and the side wall of the glass
plate. The displacement of x = 0, X surfaces are con-
strained in x-direction, the displacement of z = 0, Z
surfaces is constrained in z-direction, and the displace-
ment of y = 0 surface is constrained in y-direction.
z = Z surface is referred to as “chipping wall” in this
paper. The material properties of the soda-lime glass
plate and the steel sphere are shown in Table 1. The
value of the surface energy of the soda-lime glass was
extracted from Wiederhorn (1969) at 300Kelvin.

We prepared the finite element model with unstruc-
tured tetrahedral mesh for the soda-lime glass plate. In
the numerical analyses, the diameter of the rigid sphere,
the velocity of the spherical impactor at impact V0, and
the impact distance d were varied. We performed two
sets of numerical analyses: one was for analyzing the
crack morphology of edge chipping and the other was
for analyzing the chipping size.

The numerical analyses using PDS-FEM were per-
formed with the constant time step t which satis-
fies the Courant-Friedrichs-Lewy (CFL) condition. We
employed the fourth-order bilateral symplectic algo-
rithm (Casetti 1995) for the time integration scheme
to solve the Hamilton’s equations (Eqs. 9 and 10). At
each time step, the collision determination with the
spherical indenter was performed on all Voronoi par-
ticles of the glass plate. Also, the collision determina-
tion between Voronoi particles of the glass plate was
performed on all fractured Voronoi particles. Then, if
these collisions occur, the velocities of the spherical
impactor and Voronoi particles are modified based on
Eqs. 12–15. In addition to the collision determination,
all the Voronoi boundaries adjacent to the already frac-
tured boundaries were examined whether they satisfy
the fracture criterion at each time step. For the fracture
criterion, the Griffith energy criterion (Griffith 1921)
was used. The detailed formulation of this criterion in

Fig. 3 Schematic view of the analysis setting

Table 1 Material properties of soda-lime glass and steel sphere

Soda-lime glass

Young’s modulus 71.9 (GPa)

Poisson’s ratio 0.23

Mass density 2.495 × 103 (kg/m3)

Griffith’s surface energy 7.8125 (J/m2)

Steel sphere

Mass density 7.874 × 103 (kg/m3)

the framework of PDS-FEM is shown in our previous
researches (Hirobe et al. 2021a; Hirobe et al 2021b).

4 Results

4.1 Mesh dependency

We performed the preliminary analysis to verify the
mesh size dependencyof the analysis results. The diam-
eters of the spherical impactor was 10µm and the
impact velocity V0 was 2000m/s. The impact distance
d was set as 15µm.Here,we employed the small spher-
ical impactor and the high impact velocity because this
condition reproduces fine and complex crack patterns.
We prepared two kinds of finite element models for the
glass plate with different mesh sizes. For the coarse
mesh, the number of nodes is 4,546,697, the number of
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Fig. 4 Comparison of crack morphologies between two kinds
of finite element model with different mesh size

elements is 27,613,669, and the average nodal distance
lavg is 0.6µm. For the fine mesh, the number of nodes
is 35,593,456, the number of elements is 219,872,596,
and the average nodal distance lavg is 0.3µm. The
dimension (X × Y × Z ) of the finite element model
for the glass plate was set as 0.15 × 0.15 × 0.06mm.

Figure 4 shows the comparison of the crack mor-
phologies between two kinds of finite element models
with different mesh sizes. In Fig. 4, the upper figure is
a perspective view, the lower left figure is a front view,
and the lower right figure is a side view; see view angles
in Fig. 5. Though the rough shapes of the cracks agree
with each other, the Hertzian cone crack (explained in
sect. 4.2) is reproduced more clearly in the fine mesh
than the coarse mesh. Therefore, we use the finite ele-
ment models whose average nodal distance is 0.3µm
hereafter.

4.2 Crack morphology

Table 2 shows the numerical analysis cases for ana-
lyzing the crackmorphologyof edge chipping; the anal-
ysis cases shown by round mark in Table 2 were per-
formed. The diameters of the spherical impactor were
set as 25µm and 50µm. The impact distance d was set
as 1.0, 2.5, 5.0, 10, 15µm. The impact velocity V0
was varied between 100 − 800m/s in 100m/s incre-
ments. These analysis settings assume the edge chip-
ping in the cutting process of glass. This edge chipping
might be caused by the contact of very sharp points gen-
erated by folding and cutting of glass. Therefore, we
employed the small spherical impactors and the short

Fig. 5 View angles for figures of numerical analyses results

impact distances. In the numerical analysis cases shown
in Table 2, the dimension (X ×Y × Z ) of the finite ele-
ment model for the glass plate was set as 0.15×0.15×
0.06mm and 0.2×0.2×0.08mm for the analyses with
φ 25µm and φ 50µm spherical impactor, respectively.
For the 0.15×0.15×0.06mm finite elementmodel, the
number of nodes is 35,593,456 and the number of ele-
ments is 219,872,596. For the 0.2×0.2×0.08mmfinite
element model, the number of nodes is 83,894,039 and
the number of elements is 520,480,781. t was set as
2.0 × 10−11 sec for both the models.

The computing resource is a dual CPU processor
server with Intel Xeon Gold 6252. The computational
time for each time step significantly depends on the
number of fractured Voronoi boundaries because the
impact analysis is not parallelized but performed by a
single thread in our current code. Also, the total com-
putational time depends on the number of time steps
necessary for the termination of crack propagation. In
the numerical analyses shown in Table 2, themaximum
total computational time is about 360h. The improve-
ment of the efficiency of parallelization is our future
work.

The maximum impact force F depends on the
impact velocity V0. F is predicted for the case of the
impact of a rigid sphere on a semi-infinite elastic wall
using Hertzian contact theory (Love A. E. 1934; Tim-
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Table 2 Numerical analysis cases for analyzing the crack morphology

φ 25µm spherical impactor φ 50µm spherical impactor
V0 d µm d µm
m/s 1.0 2.5 5.0 10 15 1.0 2.5 5.0 10 15

100 © – © – – © © – – –

200 © © © © – © © © – –

300 © © © © – © © © © –

400 © © © © © © © © © ©
500 © © © © © © © © © ©
600 – © – © © – – © © ©
700 – – – – © – – – © ©
800 – – – – © – – – – ©

Fig. 6 The relationship between the impact velocity V0 and the
maximum impact force F

oshenko and Goodier 1970) as

F =
(
4

3

E

1 − ν2
R1/2

)2/5 (
5

4
V 2
0 m

)3/5

(16)

where E is Young’s modulus of the wall, ν is Poisson’s
ratio of the wall, R is the radius of the rigid sphere,
and m is the mass of the rigid sphere. This equation
yields the relationship between the impact velocity V0
and the maximum impact force F in the analysis cases
of Table 2 as shown in Fig. 6. It should be noted here
that this analytical solution gives an upper limit for the
impact force; since it does not take into account the
energy dissipation due to impact, stress wave propaga-
tion, and possible cracking, the actual value of F during
impact deviates from the analytical value.

Figures 7 and 8 show the cracks formed by the
impact of φ 25µm rigid sphere. At each case in Figs. 7,

8, 11, 12, and 13, the upper figure is a perspective view,
the lower left figure is a front view, and the lower right
figure is a side view; see view angles in Fig. 5. At short
impact distanced = 1.0µmshown inFig. 7, the forma-
tion of a ring crack at the top surface of the glass plate
is interrupted by the edge of the chipping wall; see also
Fig. 9a. At relatively low impact force F = 0.582N
(V0 = 100m/s), cracks are formed only on the impact
surface. As impact force increases (F = 1.337N,
V0 = 200m/s), a ring crack grows downward to form
a Hertzian cone crack. The ring crack and the Hertzian
cone crack are indicated in Fig. 10. This Hertzian
cone crack intersected the chipping wall and resulted
in an incomplete cone crack at the short impact dis-
tance d. Upon the further increase of impact force
(F ≥ 2.176N, V0 ≥ 300m/s), the evolution of the
Hertzian cone crack to the bottom of the glass plate is
interrupted and it sharply deflected toward the chipping
wall. When the deflected Hertzian cone crack reached
the chipping wall, the conchoidal platelet of the glass
was formed. This conchoidal platelet is the character-
istic fracture pattern in edge chipping. Figure9a shows
the cracks on the top surface of the glass plate with
impact distance d = 1.0µm and φ 25µm spherical
impactor. As impact force increases, the size of the ring
cracks becomes larger. Also, at F = 3.073, 4.016N
(V0 = 400, 500m/s), it can be observed that radial
cracks extended from the ring cracks to be perpendic-
ular to the chipping wall.

In the analyses caseswithφ 25µmspherical impactor,
these crack morphologies depending on the impact
force F are also observed at relatively short impact
distance d; see d = 2.5µm and d = 5.0µm in Fig. 7.
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Fig. 7 Cracks formed by the impact of φ 25µm rigid sphere at impact distance d = 1.0, 2.5, 5.0µm in the numerical analyses

However, the required impact force F for the crack
growth is strongly affected by the impact distance d;
the higher impact force is required at a longer impact
distance to cause similar damage to a shorter impact
distance. For example, at d = 1.0µm, the Hertzian
cone crack is formed by F = 1.337N (V0 = 200m/s)
while it is formed by F = 2.176N (V0 = 300m/s) at
d = 2.5µm.

In Fig. 8, which is for relatively long impact
distances d = 10, 15µm with φ 25µm spherical
impactor, a ring crack at the top surface of the glass
plate is completely formed. Then, as the impact force
F increased, a ring crack grows downward and forms
a Hertzian cone crack as seen in short impact dis-

tance. Simultaneously with that, radial cracks extend
from the periphery of a ring crack; see Fig. 9 b in the
case of d = 15µm. At relatively low impact force
(F = 3.073N, V0 = 400m/s), the radial cracks are
almost perpendicular to the chipping wall. However, at
higher impact force (F ≥ 4.016N, V0 ≥ 500m/s), the
radial cracks start to extend in the direction parallel to
the chipping wall edge and then bend toward the chip-
pingwall. In the experimental results ofMohajerani and
Spelt (2010), these crack arms are called “side cracks”
and it is reported that these side cracks also grow sta-
bly downward and merge with the Hertzian cone crack
into a single asymmetric cone crack. In our numeri-
cal analysis results, it is also difficult to distinguish the
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Fig. 8 Cracks formed by the impact of φ 25µm rigid sphere at impact distance d = 10, 15µm in the numerical analyses

Fig. 9 Top view of the numerical analysis results: (a) impact of φ 25µm rigid sphere, impact distance d = 1.0µm; (b) impact of
φ 25µm rigid sphere, impact distance d = 15µm

developed side cracks and the Hertzian cone crack; see
also Fig. 10. As pointed out in Mohajerani and Spelt
(2010), the side cracks are only observed at long impact
distances where a ring crack is completely formed in
our numerical analyses.

In addition to the growth of the side crack, the
Hertzian cone crack sharply deflects toward the chip-
ping wall at a high impact force. Upon further increase
of the impact force, the Hertziain cone crack inter-
sected the chipping wall and formed the conchoidal
platelet of the glass as seen in short impact distance
(d ≤ 5.0µm). Here, at d = 15µm, the analysis

results seem to be affected by the other side walls
because cracks reached the boundary of the analysis
model (especially in the case with V0 = 700, 800m/s
). Therefore, we performed the analyses by using the
0.2 × 0.2 × 0.08mm finite element model for these
cases. The analysis results are shown in Fig 11. Since
the crack patterns become sharp and the extra cracks are
not observed in the analyses with 0.2× 0.2× 0.08mm
finite element model, it is concluded that the chipping
morphology is strongly affected by the specimen size
when the specimen is not sufficiently large against the
chipping size.
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Fig. 10 Location of characteristic crack pattern formed by the
impact of φ 50µm rigid sphere in the numerical analyses

Fig. 11 Cracks formed by the impact of φ 25µm rigid sphere
at impact distance d = 15µm in the numerical analyses with
0.2 × 0.2 × 0.08mm finite element model

Figures 12 and 13 show the cracks formed by the
impact ofφ 50µm rigid sphere. The sequence of crack-
ing such as the formation of the Hertizan cone crack,
the side cracks, and the conchoidal platelet depend-
ing on the impact distance d and the impact force F
is similar to that of the analysis cases with φ 25µm
spherical impactor. The different point is the multi-
ple cracking. For example, at F ≥ 12.29N (V0 ≥
400m/s) in Fig. 12, the multiple Hertizian cone cracks
are observed. These multiple cone cracks are clearly
observed in the experiments of Chai (2006), where
quasi-static indentation tests of soda-lime glass bonded
to a polycarbonate substrate were performed by using
a spherical indenter made of W/C sphere. According
to this study, the emergence of the different angles of
cone cracks results fromexpansion of the contact radius
during indentation. In our numerical analysis, since we

also employed the spherical impactor, it is considered
that the cause of the multiple cone cracks with differ-
ent angles is the expansion of the contact radius during
impact. Also, themultiple cone cracks are not observed
at low impact force F . This tendency coincideswith the
experimental results of Mohajerani and Spelt (2010).

At higher impact force F = 24.06, 28.24N (V0 =
700, 800m/s) and longer impact distanced = 10, 15µm
in Fig. 13, the crack pattern becomes a penny-shaped
crack rather than a conical crack. The penny-shaped
crack is commonly observed under quasi-static loading
of sharp indenters. However Chai and Ravichandran
(2009); Morrell (2005) reported in their experimental
studies that the blunt indenter forms a penny-shaped
crack at a high range of the impact force. Our numerical
analysis results agree with these experimental results.

Comparing the analysis cases with φ 25µm and
φ 50µm spherical impactor at d = 1.0µm, the
Hertzian cone crack is sufficiently formed at F =
2.176N (V0 = 300m/s) with φ 25µm spherical
impactor and at F = 2.329N (V0 = 100m/s) with
φ 50µm spherical impactor. The edge chipping occurs
at F = 4.016N (V0 = 500m/s) with φ 25µm spheri-
cal impactor and at F = 5.350N (V0 = 200m/s) with
φ 50µm spherical impactor. Thus, the formation of the
Hertzian cone crack occurs at around 2N and chipping
force is 4–5N when the impact distance d is 1.0µm,
regardless of the impactor size. According to this, the
chipping morphology could be determined only by the
impact force F and the impact distance d. In this paper,
since we performed limited numerical analysis cases, it
requiresmore comprehensive analyses to determine the
precise chipping force F and the relationship between
the chipping force F and the impact distance d.

4.3 Chipping size

To analyze the size of edge chips, we performed
the numerical analyses with two sizes of spherical
impactor: the diameters were 50µm and 100µm. The
impact distance d was set as 0.05mm. The velocity V0
was varied from100m/s to 2000m/s in 100m/s incre-
ments in order for the impact force F to be under 100N.
It should be noted here that the analysis settings are
not realistic but these are merely for numerical exper-
iments. The relationships between the impact veloc-
ity and the impact force for φ 50µm and φ 100µm
spherical impactor are shown in Fig. 6. The dimen-
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Fig. 12 Cracks formed by the impact of φ 50µm rigid sphere at impact distance d = 1.0, 2.5, 5.0µm in the numerical analyses

sion (X × Y × Z ) of the finite element model for the
glass plate was set as 4.0 × 2.5 × 1.0mm. The num-
ber of nodes and elements of this analysis model were
110,560,806 and 686,110,789, respectively.

Using the crack patterns obtained from the numer-
ical analyses, we measured the width (W ) and the
height (H ) of chip scars; the definition of W and H
is shown in Fig. 14. Figure15 shows the plots of W
and H versus impact force F . W and H are normal-
ized by impact distance d = 0.05mm. As impact force
increases, the chip dimensions also increase.W and H
are almost linearly increase until approximately 40N
impact force however the gradient of increase becomes
small over 40N. While the width W of the analy-
ses with φ 100µm impactor is much larger than that

of the analyses with φ 50µm impactor, the height H
has a slight difference between analyses with φ 50µm
impactor and φ 100µm impactor.

In the previous experiments of edge chipping due
to quasi-static loading by a spherical indenter of dif-
ferent radii (Chai 2011), it is indicated that the chip
dimensions are independent of indenter geometry. The
tendency of the height H of our numerical analyses
coincides with this previous experimental result while
the tendency of the width W does not. Also, Chai and
Lawn (2007b) shows that the chip dimensions are given
by W/d = 8 and H/d = 5.1 through the experiments
of edge chipping due to quasi-static loading by Vick-
ers indenter. These equations are established regardless
of the indented materials and the indent distances (i.e.,
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Fig. 13 Cracks formed by the impact of φ 50µm rigid sphere at impact distance d = 10, 15µm in the numerical analyses

Fig. 14 The definition of chip dimensions in the case with
φ 50µm spherical impactor and V0 = 800m/s. The upper figure
is the perspective view of cracks and the lower figure is the front
view of cracks

Fig. 15 Plots of normalizedW and H versus impact force F by
impact of φ 50µm and φ 100µm rigid sphere

chipping load) (Chai 2011). However, in our numerical
analysis results, the ratios W/d and H/d are not con-
stant and depend on the impact force. The disagreement
of the tendency of thewidthW with the previous exper-
imental observation and the dependency of W/d and
H/d on the impact force could result from the differ-
ence in the loading condition (i.e., dynamic or quasi-
static loading). However further investigation of this
point is currently difficult because of the lack of exper-
imental data about the chip dimensions under dynamic
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impact loading. More detailed discussions about the
differences in the chip dimensions depending on load-
ing conditions are our future work.

5 Conclusions

This paper proposes the numerical analysis method for
edge chipping by impact loading. Our method is based
on PDS-FEM developed by the authors and we extend
PDS-FEM to be able to simulate impact loading. Using
this method, we performed the numerical analyses of
edge chipping of soda-lime glass caused by the impact
of a rigid steel sphere. In the numerical analyses, the
diameter of the rigid sphere, the impact velocity, and
the impact distance were varied.

The numerical analyses successfully simulate the
3D complex crack morphology generally observed in
edge chipping. In the numerical analyses with φ 25µm
spherical impactor, at relatively low impact force,
the ring crack on the impact surface and the follow-
ing Hertzian cone crack are formed. As impact force
increases, the Hertzian cone crack deflects the chipping
wall and a conchoidal chip is removed from the edge
of the chipping wall. In addition to these Hertzian cone
cracks, the radial cracks initiate from the ring crack at
high impact force. Also, the critical chipping force is
strongly affected by impact distance; a higher impact
force is required for chipping at a longer impact dis-
tance. These Hertzian cone cracks and radial cracks
reproduced in the numerical analyses are commonly
observed in the experiments of edge chipping under
quasi-static and dynamic loading of blunt (spherical)
indenter. In the numerical analyseswithφ 50µmspher-
ical impactor, the crack geometries become penny-
shaped rather than conical with the increase of impact
force. This formation of penny-shaped cracks at high-
impact force also coincides with experimental obser-
vations reported in previous studies.

We also measured chip dimensions obtained from
the numerical analysis with φ 50µm and φ 100µm
spherical impactor. While the height of the chip scar
has a very slight difference between the two sizes of
impactors as long as the same impact force is applied,
the width of chip scar of φ 100µm impactor is larger
than that of φ 50µm impactor.

To the best of our knowledge, this is the first time
that the 3D crack morphology of edge chipping has
been simulated in detail. While the quantitative dis-
cussions of the precise critical chipping load and chip

dimensions have yet to be provided, the numerical anal-
yses studied here give insight into the complex mecha-
nism of edge chipping. We anticipate that our method
will help to predict the potential chipping even under
complicated conditions and to improve the manufac-
turing techniques of cutting or machining brittle mate-
rials. In our future work, we will work on the improve-
ment of the efficiency of parallelization and the detailed
investigation of the effect of the specimen size for the
practical application of our analysis method. Also, for
quantitative comparison between numerical and exper-
imental results, we will perform the numerical analysis
for edge chipping under quasi-static loading which has
more detailed experimental data than impact loading.
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