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Abstract Damage mechanics models exhibit favor-
able properties such as the intrinsic influence of stress
triaxiality on damage evolution and the prediction
of crack initiation as well as propagation leading to
structural failure. However, their application requires
advanced expertise hindering the transfer of thesemod-
els into industrial practice, especially since the param-
eter calibration is a key obstacle. In this paper, a sim-
plified procedure is proposed for a non-local extension
of the Gurson–Tvergaard–Needleman model (GTN),
which is a highly accepted model for ductile failure
of metals. The procedure is iteration free and requires
experimental input data from only two standardized
tests. The parameters are determined using look-up dia-
grams created on the basis of systematic simulations
and made available for different material behavior cov-
ering the majority of ductile metals. Benchmark tests
for three different steels are conducted to evaluate the
robustness of the proposed procedure. The reliability of
the GTN model is validated for all investigated mate-
rials.
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1 Introduction

Ductile metals are used in different areas of engineer-
ing. This wide employment has always drawn special
attention to an in-depth investigation of ductile fail-
ure to ensure safe operation and increased the com-
ponent’s efficiency with respect to its weight and load
bearing capability. Ductile failure is mainly prompted
by the evolution of the so-called ductile damage, which
is characterized by the nucleation, growth and coales-
cence of microvoids due to plastic deformation.

In the last decades, the modeling of ductile dam-
age and failure received substantial interest. Numer-
ous modeling attempts were made to tackle and over-
come the different major challenges to realistically pre-
dict and simulate ductile failure at different scales.
Reviews were given, e.g., by Besson (2010), Benz-
erga et al. (2016) or Li and Cui (2020). Among the
numerous approaches, the micromechanically-based
model of Gurson (1977) with its extension of Tver-
gaard and Needleman (1984), famously known as the
GTN model, has since been characterized as the gold
standard to simulate and predict ductile damage and
failure. The GTN model introduces a yield function
which does not only depend on the equivalent Mises
stress, but additionally on the hydrostatic stress and the
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void volume fraction f , where the latter characterizes
the damage state and evolves with plastic deformation.

In the original local version, the GTN model suffers
(as do all other local damage models) from a spuri-
ous mesh dependency of respective finite element sim-
ulations. The damage localizes in a thin zone, deter-
mined by the element size, at the initiation of soften-
ing. In order to overcome this problem, different non-
local formulations of the GTN-model and other ductile
damage models have been proposed and applied suc-
cessfully (Leblond et al. 1994; Jackiewicz and Kuna
2003; Jirásek and Rolshoven 2003; Reusch et al. 2003;
Linse et al. 2012; Enakoutsa 2014; Soyarslan et al.
2016; Zhang et al. 2018; Nguyena et al. 2020; Bergo
et al. 2021). Due to their simple and robust integrabil-
ity into existing finite element codes, implicit gradi-
ent enhanced formulations (Peerlings et al. 1996) and
related approaches have become the standard tool for
obtaining mesh convergent results (Linse et al. 2012;
Zhang et al. 2018; Nguyena et al. 2020; Samal et al.
2008; Kiefer et al. 2018; Seupel et al. 2018, 2020; Ost-
wald et al. 2019; Azinpour et al. 2018).

Another challenge encounters the different damage
models and is manifested by the number of parameters
to be identified. For instance, the extension of Tver-
gaard and Needleman introduced several new param-
eters to accurately predict the void growth kinetics
and coalescence. Additionally, the strain-induced void
nucleation proposed by Chu and Needleman (1980)
introduces more parameters. Furthermore, the non-
local extensions add extra parameters to the identifi-
cation procedure, e.g. the intrinsic length. Great efforts
have been made in the past on different model calibra-
tion strategies and parameter identification procedures
(cf. also the review in Li and Cui (2020)). Many prac-
tical and useful conclusions resulted from the different
studies, which facilitate the identification process. For
example, there is a broad consensus in the literature that
the yield curve of thematrixmaterial can be determined
from a smooth tensile test. Moreover, it was found that
the initial and nucleable porosity, f0 and fn, respec-
tively, should be identified from metallographic analy-
sis, if available (e.g. by Franklin’s formula). Regarding
the other parameters of theGTNmodel, being related to
the growth and coalescence of voids, the identification
strategies differ considerably. Starting with the seminal
works of Tvergaard and Needleman (1984), Tvergaard
(1981), it was proposed to calibrate all these parame-
ters fromnumerical unit cell simulations (Kuna andSun

1996; Steglich and Brocks 1998; Faleskog et al. 1998;
Koplik and Needleman 1988). In order to improve the
predictions for the void coalescence stage, it was later
proposed in several studies to calibrate the critical void
volume fraction fc fromnotched tensile tests, see (Jack-
iewicz and Kuna 2003; Zhang et al. 2021; Haušild
et al. September 2002; Brocks et al. 1995; Bernauer and
Brocks 2002) and references therein. In several recent
studies, all GTN parameters were calibrated with the
help of notched tensile tests (Chen et al. 2021; Zhu et al.
2022) or the Small-Punch Test (Abendroth and Kuna
2003; Kulawinski et al. 2021) using generic optimiza-
tion algorithms, with a certain grouping of the param-
eters with respect to their influence on certain regimes
of the load-deflection curves (Leclerc et al. 2021). A
round-robin study (Bernauer and Brocks 2002), how-
ever, revealed problems on the reproducibility of the
results and rather weak predictions of fracture tests if
the GTN parameters are calibrated only from notched
tensile tests. Some studies therefore directly employed
fracture tests for calibrating the respective parameters
of the GTN model (Zhang et al. 2018; Seupel et al.
2020; Gao et al. 1998; Hütter et al. 2013a). Fracture
mechanics tests, as well as smooth tensile tests, have
the advantage that they are standardized. From the engi-
neering perspective, all the aforementioned strategies
of parameter calibration have in common that they
require iterations over relatively expensive finite ele-
ment simulations.

The lack of a reliable and yet simple parameter cali-
bration strategy has been identified as one of the obsta-
cles for a wide-spread usage of the GTN-model (and
other damagemodels) in engineering (Li andCui 2020;
Bernauer and Brocks 2002). The aim of the present
work is to develop and validate an easy-to-use non-
iterative procedure based on standardized experiments.

The outline of the present paper is as follows. After a
brief introduction, a short description of the employed
implicit gradient-enhancedGTNmodel and its numeri-
cal implementation are presented. In the following sec-
tion, the simplified parameter identification procedure
is introduced.Next, benchmark examples are shown for
different materials and conditions. Afterwards, some
recommendations and usage guidelines are given to
assist in obtaining the best outcomes. Finally, the main
accomplishments and conclusions of this work are
summarized.
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2 Non-local GTN-model (Gradient enhanced
formulation)

2.1 Formulation

In the present study, a non-local modification of
the continuum damage model established by Gurson
(1977) and improved by Tvergaard and Needleman
(1984), Tvergaard (1981) is employed, adapting an
implicit gradient-enriched formulation. In general, the
void volume fraction f is used as a measure for ductile
damage, which enters the yield function by its effec-
tive counterpart f ∗. The yield function Φ of the orig-
inal GTN model still holds in this formulation and is
given in a rate independent formulation with loading-
unloading conditions as follows

Φ = σ 2
eq

σ̄ 2 +2 q1 f ∗ cosh
(
3 q2 σh

2 σ̄

)
−

[
1+ (

q1 f ∗)2] ≤ 0 ,

�pl ≥ 0 , �pl Φ = 0 , (1)

in terms of the hydrostatic stress σh, the Mises equiv-
alent σeq stress and with q1, q2 as the empirical model
parameters of Tvergaard andNeedleman. Furthermore,
σ̄ is the current yield stress of the matrix material and
�pl corresponds to the plastic multiplier. The men-
tioned characteristic stress measures are defined as

σh = 1

3
tr (σ ) , S = σ − σh I , σeq =

√
3

2
S : S ,

(2)

where S denotes the stress deviator and I is the iden-
tity tensor of second order. A hypoelastic approach and
associative flow rule are employed, where the stress–
strain relation is based on the assumption that the defor-
mation rate D can be decomposed into an elastic Del

and plastic Dpl part, so that

σ̇ J = C : Del , Del = D − Dpl . (3)

Therein, σ̇ J andC correspond to the Jaumann-rate of the
Cauchy-stress tensor σ and to the fourth order tensor
of isotropic elasticity, respectively. The associativeflow
rule of the plastic rate of deformation yields

Dpl = �pl
∂Φ

∂σ
= ε̇eq N + ε̇h I, N = 3

2 σeq
S , (4)

using the definitions of the rates of macroscopic equiv-
alent plastic strain ε̇eq and the volumetric plastic strain
ε̇h

ε̇eq = �pl
∂Φ

∂σeq
, ε̇h = �pl

1

3

∂Φ

∂σh
. (5)

The effective equivalent plastic strain of the matrix
material ε̄ is determined by the evolution equation

˙̄ε = σ : Dpl

[1 − f ] σy (ε̄)
= σeq ε̇eq + 3 σh ε̇h

[1 − f ] σy (ε̄)
. (6)

The evolution of the void volume fraction f is related
to two main contributions, the growth of the existing
voids ḟG and the nucleation of new voids ḟN

ḟ = ḟG + ḟN. (7)

The growth of the initial voids is related to the volumet-
ric plastic strain evolution ε̇h, since an incompressible
matrix behavior is assumed, which is expressed by the
relation

ḟG = 3 [1 − f ] ε̇h . (8)

The void nucleation is driven by the equivalent plastic
strain ε̇eq

ḟN = A (
εeq

)
ε̇eq , (9)

where the specific form of the nucleation rateA is cho-
sen according to Chu and Needleman (1980)

A (
εeq

) = fn

sn
√
2π

exp

(
−1

2

[
εeq − εn

sn

]2)
. (10)

Therein, fn is the volume fraction of nucleable voids
and εn as well as sn correspond to the parameters of the
normal distribution.

In the considered non-local modification of the
GTN-model, the evolution equation of the void vol-
ume fraction is changed. A local strain-like quantity ε̇l
is introduced which comprises the void nucleation and
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void growth according to

ε̇l = ḟ

3 [1 − f ]
= ε̇h + 1

3 [1 − f ]
A (

εeq
)

ε̇eq . (11)

The non-local counterpart εnl related to εl is introduced
following the implicit gradient approach of Peerlings
et al. (1996) by extending the mechanical boundary
value problem with a further partial differential equa-
tion of Helmholtz type

l2nl �xεnl = εnl − εl, ∀x ∈ 	 . (12)

Trivial Neumann-boundary conditions are
prescribed on all surfaces

gradxεnl · �n = 0, ∀x ∈ ∂	 . (13)

The symbols �x , gradx and �n are the Laplacian opera-
tor, the gradient operator and the outward unit normal
vector with respect to the current configuration, respec-
tively. Equation (12) introduces an additional param-
eter lnl, which can be interpreted as an internal length
that controls the width of the damage process zone.

The mechanical boundary value problem remains
unchanged in the non-local formulation and is given by
the balance of linear (static case) and angular momen-
tum

divxσ = �0 , σ = σT ∀x ∈ 	 (14)

and the respective boundary conditions.
The regularization of the boundary value problem is

attained by relating the void growth ḟ to the evolution
of the non-local plastic strain ε̇nl

ḟ = 3 [1 − f ] ε̇nl . (15)

For vanishing void nucleation, the non-local variable
εnl corresponds to the non-local volumetric plastic
strain as introduced by Linse et al. (2012). Moreover,
a full regularization is obtained even in the case of
a nucleation dominated damage process. However, in
contrast to the recent GTN-approaches by Nguyena
et al. (2020) and Leclerc et al. (2021), void nucleation
and growth are handled by the same length scale param-
eter lnl.

A modified accelerated void evolution formulation
is employed here to model the coalescence mechanism
(Seupel et al. 2020)

f ∗ ( f ) =

⎧⎪⎨
⎪⎩

f f ≤ fc ,

fc + k [ f − fc] fc < f ≤ fu ,

f ∗
max

[
1 − exp (−af [ f − bf])

]
fu < f .

(16)

At a critical value fc, the coalescence of microvoids
stage is initiated and the void evolution is then con-
trolled by the parameter k. Total material failure is
described, if the effective void volume fraction f ∗
attains the value of f ∗

f = 1/q1. The proposed mod-
ification contains the third case of Eq. (16). Thereby, a
robust numerical treatment of total material damage is
ensured, formore details see (Seupel et al. 2020; Seupel
andKuna 2019). In this modification, the final effective
void volume fraction is set to f ∗

max = 0.995 f ∗
f and the

parameters af and bf are prescribed as

af = k

f ∗
max − f ∗

u
, bf = fu + 1

af
ln

(
1 − f ∗

u

f ∗
max

)
,

(17)

which ensures a continuous and continuously differ-
entiable transition with respect to f . In this formu-
lation, the material is considered as totally failed if
the transition value of the effective porosity reaches
f ∗
u = 0.98 f ∗

f < f ∗
max, which corresponds to a transi-

tion value of fu = [
f ∗
u + fc[κ − 1]] /κ .

2.2 Numerical implementation

The non-local GTN model described in the previous
section is implemented in the commercial finite ele-
ment softwareAbaqus (2014). Due to themathematical
similarity of the additional Helmholtz-type differential
equation (12) for the non-local variablewith the station-
ary heat conduction equation, the implementation can
be performed by a User-Defined Material Subroutine
(UMAT) (Seupel et al. 2018; Ostwald et al. 2019; Azin-
pour et al. 2018). This technique avoids the program-
ming of a separate element routine, so that all in-built
elements of Abaqus can be used, including features
such as contact. The non-local GTNmodel is therefore
implemented in Abaqus/standard as an user defined
material UMAT and alternatively for Abaqus/explicit
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as VUMAT for dynamic problems. In both cases, the
constitutive equations are integrated with an Euler
backward scheme in the framework of a radial return
mapping algorithm including an operator split. The
implementation is carried within a monolithic solution
scheme for the coupling between nodal displacements
and nodal non-local strains. Details about the imple-
mentation of the present model can be found in (Seupel
et al. 2020). The source code (UMAT/VUMAT) of the
present implementation of the non-local GTNmodel is
provided at https://tu-freiberg.de/NonlocalGTN.

3 Simplified parameter identification procedure

3.1 Known trends from literature

A robust strategy for identifying the parameters of the
GTN model relies on a profound knowledge of the
influence of individual parameters onmeasurable quan-
tities. For that purpose, the known influences from lit-
erature are shortly recalledwith respect to the standard-
ized tests to be used in the present approach, i.e., the
smooth tensile test and fracture mechanics tests.

3.1.1 Uni-axial tensile test

Regarding tensile tests of common engineering metals
like steels, the load-elongation curves are governed by
the matrix yield curve σ̄ (ε̄)

σ̄ = σt ≈ σ [1 + ε] , εt = ln (1 + ε) , ε̄ = εt − σt

E
.

(18)

The true stress and strain, σt and εt, respectively, are
calculated with help of themeasured engineering stress
σ , engineering strain ε

σ = F

A0
, ε = �l

l0
, (19)

and the determined Young’s-modulus E , where F is
the force, A0 is the nominal cross section of the tensile
specimen, l0 is the length of the measurement domain
and �l is the elongation.

The relations for the determination of the yield curve
above are valid for nearly incompressible materials, up
to the onset of necking of the tensile specimen. Beyond

this point, correction methods, e.g., Bridgman correc-
tion, are needed to determine the true stress–strain
behavior. Alternative concepts of extracting the matrix
hardening characteristics can be found in the recent lit-
erature (Defaisse et al. 2018; Hao et al. 2019; Tu et al.
2019).

Various empirical hardening functions have been
proposed. In guidelines (SINTAP 1999; Zerbst et al.
2007) (SINTAP) and in engineering practice (Sherry
et al. 2005), the one-parametric power law

σt =
⎧⎨
⎩
Eεt for σt < σy ,

σy

[
εt
εy

]1/n
for σt ≥ σy ,

(20)

is established. Therein, σy and εy denote the character-
istic stress and the corresponding strain at initial yield-
ing. The hardening exponent n ≥ 1 is determined with
help of a σt/σy vs. εt/εy plot in a double-logarithmic
diagram as the slope for the domain σt/σy > 1. The
strain hardening law can be obtained by taking into
account the additive decomposition of the true strain
into an elastic and plastic part i.e. εt = εelt + ε

pl
t , as

well as the constitutive law σt = Eεelt (implicit formu-
lation)

σ̄ = σy

[
σ̄

σy
+ E

σy
ε̄

]1/n
. (21)

3.1.2 Fracture mechanics tests

A round-robin (Bernauer and Brocks 2002) revealed,
that the simulation results of tensile tests, either smooth
or notched, are rather insensitive to the intrinsic length.
It was thus proposed to incorporate a fracture test for
parameter calibration. Fracture tests of ductile materi-
als are usually evaluated in terms of crack growth resis-
tance curves (R-curves) J = J (�a). The R-curve is
specific to eachmaterial if specimenswith a sufficiently
high level of crack tip constraint are employed, such as
compact tension C(T)-specimens or deep-cracked sin-
gle edged bend SE(B) specimens. Such R-curves can
be predicted by the GTN-model for each parameter set.
Dimensional considerations show that the predicted R-
curves are of the form (Seupel et al. 2020; Hütter et al.
2013a; Xia and Shih 1995)
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Table 1 Fixed ad-hoc GTN parameters

q1 q2 f0 fn fu f ∗
u

1.5 1.0 0.005 0.0
[
0.98
q1

+ fc[κ − 1]
]
/κ 0.98/q1

J

σylnl
= f

(
�a

lnl
,
E

σy
, f0, fn, fc, fu, f ∗

u , εn, sn, q1, q2,

dimensionless hardening parameters

)
. (22)

The fracture toughness JIc forms a characteristic
point of the R-curve (defined slightly differently in dif-
ferent standards), so that�a drops out from the depen-
dencies of Eq. (22)

JIc
σylnl

= f

(
E

σy
, f0, fn, fc, fu, f ∗

u , εn, sn, q1, q2,

dimensionless hardening parameters

)
. (23)

And remarkably, the intrinsic length lnl drops out when
considering the dimensionless slope of the R-curve,
the so-called tearing modulus,1 at a characteristic point
(Paris et al. 1979)

TR := E

σ 2
y

dJ

d�a

∣∣∣∣∣
c

= f

(
E

σy
, f0, fn, fc, fu, f ∗

u , εn, sn, q1, q2,

dimensionless hardening parameters

)
. (24)

Even in this dimensionless form, these relations
comprise nine parameters

{
f0, fn, fc, fu, f ∗

u , εn, sn,
q1, q2

}
which cannot be solely determined from the ten-

sile test. To the authors’ knowledge, there is no study
available in the literature, which varied all these param-
eters simultaneously in a systematic way. Rather, f0
and/or fn are usually determined from metallographic
considerations like Franklin’s formula. The parameters
q1, q2 are extracted frommicromechanical unit cell cal-
culations (Kuna and Sun 1996; Faleskog et al. 1998;

1 Paris et al. (1979) defined TR with respect to a quantity σ0 as
the arithmetic average of initial yield stress and ultimate tensile
strength instead of σy.

Koplik and Needleman 1988). Mostly the seminal ones
of Tvergaard and Needleman are applied (q1 = 1.0,
q2 = 1.5) as can be seen in the compiled table of
employed GTN parameters by Zhu et al. (2022). The
nucleationparameters εn and sn canbedetermined from
metallographic investigations of interrupted tests or
partial unloading (Zhang et al. 2021). Often, these val-
ues are set ad-hoc to εn = 0.3 and sn = 0.1 (compare
also the compilation of parameters in Zhu et al. (2022)).
This choice is robust from a numerical point of view
and related predictions yielded reasonable agreement
with respective experiments. The nucleation porosity
fn is however neglected in this work, as it is not neces-
sarily needed to predict ductile failure at moderate to
high triaxialities. Sensitivity studies regarding the R-
curve, Eq. (22), were performed by cell model simula-
tions. Gao et al. (1998) and Xia and Shih (1995) varied
the initial porosity f0 at a fixed value of fc and pro-
posed to calibrate f0 to the experimentally measured
tearing modulus. Vice versa, a considerable influence
of fc on the tearing modulus at fixed f0 was noted in
(Bernauer and Brocks 2002; Hütter et al. 2013a; Chah-
boub and Szavai 2019; Chen et al. 2020) and it was
thus suggested to calibrate fc to the respective exper-
imental data. Subsequently, the intrinsic length lnl can
be determined from the measured fracture toughness
JIc. Recently, Seupel et al. (2020) found that the same
R-curve can be obtained with different sets of GTN-
parameters and that it is mainly the ratio fc/ f0 that
determines the tearing modulus. A non-uniqueness of
the GTN-parameters with respect to macroscopically
measurable quantities was also found in (Chahboub
and Szavai 2019; Brinnel et al. 2015). Unfortunately,
the experimental determination of the tearing modulus
is not part of common standardized fracture mechan-
ics procedures and thus not available in most material
data sheets. This problem applies tomany non-standard
tests such as notched tensile tests, interrupted tests
or certain quantitative metallographic quantities. Fur-
thermore, all aforementioned calibration procedures
require several iterations over numerical simulations
to extract relationships like (22)–(24) within an opti-
mization loop.

3.2 Concept of the simplified procedure

The aim of this work is to propose and validate a sim-
ple and robust iterative-free identification procedure for
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the non-local GTN parameters based on a number of
certain pragmatic assumptions and the requirements of
only two standardized tests. The main assumptions and
requirements will be introduced in the next sections, as
well as how to determine the required key input param-
eters and followed by a guideline for the application of
the procedure.

3.2.1 Basic assumptions and requirements

Firstly, several parameters are fixed ad-hoc in the usual
way as given in Table 1. This pragmatic choice corre-
sponds to typical values, as can be found, e.g., in the
collected parameter sets in (Chen et al. 2021; Zhu et al.
2022; Chahboub and Szavai 2019).

Asmentioned previously, only two standard tests are
required for the completeness of the proposed proce-
dure:

1. A uni-axial tensile test (to determine yield stress
and hardening exponent n)

2. A fracture test C(T) or SE(B) (to determine fc and
lnl)

In this work, the established one-parametric power
law (20) is chosen as an appropriate strain harden-
ing law, which is widely accepted within the engi-
neering community (SINTAP 1999; Zerbst et al. 2007)
(SINTAP) and (Sherry et al. 2005). The elastic–plastic
parameters to be determined are thus reduced to only
two, i.e., the power law exponent n and the yield stress
σy. For practicality, two possibilities to determine n are
presented, see Fig. 1a), depending on the available data
from the tensile test:

(a) Determine n from a logarithmic regression of the
experimental stress–strain curve, or

(b) Estimaten conservatively usingn = 2

1 − Rp0.2/Rm
according to the SINTAP guideline,

where Rp0.2 and Rm correspond to the yield strength
(proof strength at 0.2% plastic strain) and ultimate
tensile strength, respectively. Consequently, the initial
yield stress σy can then be evaluated from Rp0.2 for the
determined n using the following relation

σy =
[
Rp0.2

] n
n−1

[
Rp0.2 + 0.002 E

] 1
n−1

(25)

Moreover, according to the dimensional considera-
tions in the previous section, the fracture toughness JIc

is linearly related to the intrinsic length lnl but nonlin-
early to the critical void volume fraction fc. The latter
is related to the tearing modulus TR according to (24),
which is independent of lnl. In line with these consid-
erations, two characteristics are required from the R-
curves of standard fracture tests (here C(T) following
the ASTM E1820 guidelines):

• The tearing modulus TR (to determine fc)
• The fracture toughness JIc (to determine lnl)

The fracture toughness, according to the ASTME1820
standard, is determined from the intersection of the
0.2mm offset blunting line with the power-law fit of
the R-curve, see Figs. 1b or 2.2 However, the experi-
mental determination of the tearingmodulus has not yet
been standardized; therefore, it remains an open point
to be explored in the next section.

3.2.2 Identification of a robust measure of tearing

Since no suitable measure for the tearing modulus has
been given in the literature, two possible choices are
proposed and investigated here, in order to find a robust
and reliable method of identifying the tearingmodulus.
Based on the ASTM E1820 standard, the experimen-
tal R-curves are usually fitted by a power-law curve of
the form J = C1(�a)C2 , with the dimensionless expo-
nent C2 determining the steepness of the curve, which
makes it a possible candidate to quantify tearing. The
other feasible choice to define tearing is described by
the dimensionless slope of the R-curve as in Eq. (24),
taking, however, a linear regression of all experimen-
tal points between the 0.2mm and 1.5mm exclusion
lines, instead of one characteristic point. Figure2 shows
a schematic representation of the two possible candi-
dates for the tearing measures.

After introducing the two possible choices for the
tearingmodulus, it remains to assesswhich one of them
provides a more robust and reliable measure. For that
purpose, sets of virtual tests were conducted to show
the effects of some of the key parameters on these mea-
sures. Based on the dimensional consideration (24), it
was found that the tearing modulus should be indepen-
dent of the intrinsic length lnl. So, as a first test, an
arbitrary parameter set is chosen, where all parameters

2 The standards, in fact, define this intersection point as JQ ,
which corresponds to a material-specific fracture toughness JIc
once certain criteria are met. Here, we assume a valid test which
satisfies these criteria.
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Fig. 1 Schematic representation of the necessary data required for the proposed simplified identification procedure

Fig. 2 Schematic
representation of the two
methods to determine the
tearing modulus

are fixed while the intrinsic length lnl is varied. Fig-
ure 3 displays the R-curves of corresponding virtual
C(T) simulations for three different lnl = 0.05, 0.1 and
0.2mm.

Additionally, the tearing behavior is evaluated using
the two different methods described before. From the
results in the legend of Fig. 3 it is observed that the
tearing modulus TR, if determined by a linear regres-
sion line, is indeed independent of the intrinsic length
lnl within acceptable tolerance. In contrast, the R-curve
exponent C2 exhibits an inaccaptable scatter of more
than 50%. Consequently, the exponent C2 has been
dropped as candidate for the tearing measure.

Another set of virtual C(T) tests was conducted to
investigate the influence of the hardening exponent n.
The results in Fig. 4 show that the tearing modulus
TR, again measured via a linear regression, even gave

the same results for the different hardening exponents.3

This behavior was confirmed by virtual tests with other
values of E/σy (not shown here). It can be therefore
established that the tearing modulus, defined as the lin-
ear regression of the R-curve between the exclusion
lines, can be considered a suitable and robust mea-
sure for tearing. Furthermore, it can be concluded that
the tearing modulus can be used to identify the critical
porosity fc, thus settling all the necessary requirements
for a complete description of the proposed simplified
procedure.

3 This prediction might be related to the fact that Gurson derived
his model by a homogenization with ideally-plastic material, and
extended it heuristically to hardening by a self-similar scaling of
the yield surfaceΦ = 0 in Eq. (1) via thematrix yield stress σ̄ (ε̄).
In contrast, fully-resolved direct numerical simulations (DNS) of
the ductile crack propagation presented by Hütter et al. (2013b)
reveal a significant influence of n on the tearing behavior.
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Fig. 3 R-curves for the
different intrinsic lengths
with the associated different
measures of tearing: C2 as
the exponent of the power
law fit based on the ASTM
1820 guideline and TR as
the linear regression
between the exclusion lines

Fig. 4 R-curves for the
different hardening
exponents n with the
different measures of
tearing

3.2.3 Identification procedure usage guidelines

Based on these findings and the aforementioned liter-
ature survey, an iteration-free calibration procedure is
proposed which requires only the experimental data of
a tensile test and a standardized fracture test. The main
steps for the utilization of the procedure are summa-
rized as follows:

• Gather all key parameters: E , Rp0.2, Rm, JIc, and
TR

• From Rp0.2 and Rm determine n and σy
• For TR use the look-up “TR-diagram” to read of

fc/ f0 as in Fig. 5a
• For the identified fc/ f0 determine lnl using JIc and
the look-up “lnl-diagram” as in Fig. 5b

The whole procedure is also summarized in Fig. 5,
which represents a full schematic illustration of the
identification procedure. Figure5a summarizes (in an
algorithmic setting) the main ingredients and steps of
the identification procedure. A typical example of the

look-up diagrams used in this procedure is shown for
a specific material strength characterized by the ratio
E/σy in Fig. 5b and c, with the four steps to read off
the parameters (in Fig. 5, curves for E/σy = 500.0
are shown as a representative example). A flowchart of
the procedure is additionally shown in Fig. 5e, which
helps to easily visualize the full parameter identifica-
tion procedure. The diagrams of Fig. 5 visualize the
dimensionless relations (23)–(24) between the GTN
parameters and the measurable quantities of fracture
initiation toughness JIc and tearing modulus TR. Each
data point therein was extracted from the simulation of
a C(T) test with respective GTN parameters.

Figure 6 shows an FE mesh of the standard size
C(T)-specimen used for the simulations to create the
diagrams. An initial crack length a0 was assumed with
a0/W = 0.6, where W = 50.0 mm corresponds to the
width of the specimen. A 2D plane strain model was
employedwith an effective thickness of Beff = √

B Bn.
The thickness and net thickness due to side grooves
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Fig. 5 Schematic illustration of the identification procedure, where a summarizes the main ingredients and step of the procedure, b
and c represent the typical diagrams used to identify the parameters and d shows the flowchart of the identification procedure
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Fig. 6 Example of the
FE-mesh of the
C(T)-specimen. A radius rt
is applied at the crack tip
and a fine elements size be
is used in the fracture
process zone

were prescribed as B = 25.0 mm and Bn = 20.0 mm,
respectively. Due to symmetry, only the half model
was used for the simulation. A displacement-controlled
loading was applied via an elastic wedge at the pin
holes (Linse et al. 2012). A small radius of rt = lnl/2
was prescribed at the initial crack tip in order to avoid
large element distortion (Hütter et al. 2013a). Accord-
ing to previous convergence studies w.r.t the element
size be (Linse et al. 2012; Seupel et al. 2020), the
crack ligament was meshed by square shaped elements
(serendipity Q2-Q1 formulation with reduced integra-
tion, Abaqus type CPE8RT), with be = lnl/4, see mag-
nified view in Fig. 6.

The simulated R-curveswere evaluated according to
ASTM E1820 (ASTM 2020). Here, the required crack
extension �a is defined as

�a = �ablunt + �afail , (26)

where the first term�ablunt corresponds to the blunting
contribution of the crack tip and is measured as the
relative displacement along the ligament between the
nodes highlighted by “×′′ in Fig. 6. The second term
�afail denotes the crack growth due to total material
failure along the ligament.

For each E/σy ratio, two diagrams are needed, the
“TR-diagram” for the tearing modulus TR (see Fig. 5b)
and the “lnl-diagram” for the internal length lnl (see
Fig. 5c). In order to make this procedure valid for a
wide range, these diagrams have been created by exten-
sive FE simulations of the C(T) fracture test for many
different values of the ratio E/σy and strain hardening
exponent n, to cover the majority of tensile properties
of ductile metals used in different applications (The
chosen values follow mainly the ranges specified in

Sherry et al. (2005)). As has been shown in the previ-
ous section, the tearingmodulus does not depend on the
hardening exponent n, which is also clear from Fig. 5b,
where TR is the same for the different n. So to identify
the ratio fc/ f0, one has to draw a horizontal line at
the given TR (step 1 in Fig. 5b), and read directly the
ratio fc/ f0 as the intersection point between the hori-
zontal line and the curve (step 2 in Fig. 5b). Next, to
identify the internal length lnl, one has to use the the
“lnl-diagram” Fig. 5c, by drawing a vertical line at the
identified fc/ f0 (step 3 in Fig. 5c), and read the ratio
lnlσy/JIc as the intersection point between the vertical
line and the curve corresponding to the given hardening
exponent n (step 4 in Fig. 5c). Knowing now both σy
and JIc for the material, the non-local length lnl follows
immediately.

Respective diagrams for other combinations of rel-
ative strength E/σy and hardening exponent n can be
found in Appendix A. Therein, it was was taken into
account that the tearing modulus does only negligi-
bly depend on n, so that a single diagram, Fig. 15, is
required for the relation between TR and fc/ f0.

4 Benchmark problems

The proposed identification procedure will be tested
in this section to evaluate its robustness and reliabil-
ity. Benchmark problems will be carried out for three
differentmaterials, whose respective experimental data
are available in published literature. The materials cho-
sen for the benchmark test possess distinct characteris-
tics and are used in different engineering applications:
The first material is a mild steel (StE 460) (Brocks

123



84 O. El Khatib et al.

Table 2 Material properties of the three steels under consideration

E (GPa) Rp0.2 (MPa) Rm (MPa) E/Rp0.2 TR JIc (N/mm)

StE 460 210.0 460.0 635.0 456.0 105.0 169.0

18Ch2MFA 206.0 667.0 759.0 309.0 65.0 280.0

27NiCrMoV 15-6 200.0 872.0 968.0 229.0 28.0 156.0

Fig. 7 Stress–strain curves
for the StE 460 steel.
Experimental data (Brocks
et al. 1995) compared to the
power-law fit up to Rm and
the power law strain
hardening curve w.r.t
SINTAP

et al. 1995), the second one a pressure vessel steel
(18Ch2MFA) (Seupel et al. 2020; Abendroth and Kuna
2003; Müller 1999; Abendroth 2005) used mainly in
nuclear reactors, the third, a low alloy steel used for
forged turbine shafts (27NiCrMoV 15-6) (Kulawinski
et al. 2021). The elastic–plastic properties and the frac-
ture parameters for the three materials are summarized
in Table 2. Different verification and validation tests
will be conducted for each of these materials depend-
ing on the available experimental data. Details on the
experimental procedures can be found in the given ref-
erences.

4.1 Mild steel

Brocks et al. (1995) investigated a high-strength fine
grained structural steel with old German designation
StE 460 (corresponding to S 460N or P 460N in cur-
rent European standards). Among others, a smooth ten-
sile test, a fracture test with a C(T) specimen and a
fracture test under a low level of in-plane constraint
with a M(T) specimen were performed. The experi-
mental stress–strain data for this material are available
and given in Fig. 7, along with the power law fit and
the power law strain hardening curve w.r.t the SINTAP

approximation of n. As observed before and as can
be seen from the different stress-curves, the SINTAP
approximation underestimates the experimental results
and gives a rather conservative approach. For all the
materials, both methods of estimating the hardening
exponent will be employed for the benchmark tests.
For simplicity, these two methods will be referred to
throughout the remaining paper as follows:

– For the regression of the experimental data points
up to Rm: “Rm-Fit”

– For the SINTAP estimation: “SINTAP”

For the Rm-Fit method, a hardening exponent of
n = 4.5 and a respective initial yield stress of σy =
384.0 MPa were determined, which yield a ratio of
E/σy ≈ 550.0. Now putting the procedure into action:

1. Using theTR-diagramFig. 15 for the E/σy = 550.0
curve to read the ratio fc/ f0

2. Using the lnl-diagrams Fig. 16 for E/σy = 550.0
and n = 4.5 to determine lnl

The same procedure is performed for the SINTAP
method and the identified parameters for both meth-
ods are summarized in Table 3.

For the purpose of verification, FE-simulations of
the C(T)-specimen using the sets of identified parame-
ters were performed. The predicted R-curves from the
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Table 3 Sets of calibrated parameters for the StE 460

n σy (MPa) E/σy fc/ f0 lnl (mm)

SINTAP (from E/σy = 500.0 and 6.0 ≤ n ≤ 7.5) 7.25 415.0 506.0 8.5 0.0585

Rm -Fit (from E/σy = 550.0 and 4.0 ≤ n ≤ 5.0) 4.5 384.0 546.0 7.2 0.0455

Fig. 8 Predicted C(T) R−curves using the parameter sets identified by the proposed procedure compared to the experimental results
(Brocks et al. 1995) for the StE 460 steel

simulations were then evaluated following the ASTM
E1820 guidelines. The predicted R−curves are plot-
ted and compared to the available experimental data in
Fig. 8. Both simulated R−curves fit the experimental
results quite well. It can also be noticed, as expected,
that the R−curves predicted with the SINTAP method
represent a more conservative prediction, character-
ized by the lower values of the J -integral in the ini-
tial stage of the R−curve. In this first benchmark test,
the identification procedure presents a reliable predic-
tion of the R−curves for both methods of determining
the hardening exponent, even though the determined n-
values for each method lead to different E/σy-ratios,
which necessitates performing the identification pro-
cedure using different diagrams for each method. The
obtained fc/ f0-ratios for the given TR will therefore
not be identical, since the tearing modulus depends on
the E/σy-ratio. This actually indicates that despite the
differences between the two methods for the determi-
nation of the hardening exponent, the proposed iden-
tification procedure will still achieve good results, if
the right corresponding diagrams are used to read and
identify the different parameters.

These results of the C(T)-specimen R−curves work
very well as a verification test for the proposed proce-
dure, especially since all the diagrams used for identifi-
cationwere generated based on virtual C(T)-tests. Nev-
ertheless, a validation test is still required for a complete
proof of concept. For that purpose, the M(T)-specimen
was chosen for the StE 460. Following Brocks et al.
(1995), a 2D FE model was utilized with plane strain
assumption due to the side grooved M(T)-geometry.
An FE discretization similar to the requirements of the
C(T)-specimen was employed, as previously explained
in Sect. 3.2.3. The R−curves for the M(T)-specimen
were evaluated according to the procedure described
in (Aurich 1993), using both identified parameter sets
and compared to the available experimental data. Fig-
ure9 shows the different R-curves of the M(T)-test,
where the predicted R−curves are observed to give a
reasonable qualitative and quantitative fit of the exper-
iments.

In addition to the conclusion that the results of the
M(T) test validate the concept of the proposed iden-
tification procedure, they also highlight another very
valuable point. They demonstrate, in fact, that the non-
local GTN model is capable of capturing crack-tip
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Fig. 9 Predicted R−curves
for the M(T)-specimen
using the parameter sets
identified by the proposed
procedure in comparison to
the experimental results
(Brocks et al. 1995) for the
StE 460 steel. C(T) results
are plotted to highlight the
apparent constraint effects

constraint effects. The M(T)-specimen is known to
exhibit a lower in-plane constraint compared to the
C(T)-specimen, which manifested itself in the differ-
ence of the steepness of the predicted R−curves slopes.
The C(T)-specimen, with higher constraints or triaxial-
ity at the tip, corresponds to rather flat R−curves com-
pared to those of theM(T)-specimen,which themselves
exhibit a much lower triaxiality at the tip. Moreover, all
these results underline the practicality of the proposed
identification procedure. It should be emphasized that
different tests, for one material, can be predicted with
reasonable accuracy using the identified parameter set
without any additional parameter tuning.

4.2 Reactor pressure vessel steel

For the second benchmark test, the reactor pressure
vessel steel 18Ch2MFA investigated by Seupel et al.
(2020), Abendroth andKuna (2003), Abendroth (2005)
andMüller (1999) was chosen. Thematerial properties
needed for the application of the procedure are summa-
rized in Table 2. The stress–strain curves of the experi-
mental data and the power law curves of the two differ-
ent hardening exponents are plotted in Fig. 10. For this
material, the two hardening exponents lead to a nearly
the same E/σy-ratio, so that the same corresponding
two diagrams can be used for the identification proce-
dure. Consequently, for both exponents n, the obtained
ratio fc/ f0 is the same, since the tearing modulus, as
shown before, is independent of the hardening expo-
nent.

The identification procedure is applied as described
before and the resulting parameter sets are given in

Table 4. Similar to the previous benchmark test, the
C(T)-specimen was used for the verification of the
identified parameter sets. The corresponding predicted
R−curves were evaluated and compared with the
experimental results as shown in Fig. 11.

For this material, both identified sets deliver a very
close fit of the experiments. A reason for this accuracy
can be attributed to the obtained E/σy-ratio for both
methods, which is very close to the given experimental
E/Rp0.2 ratio. The R−curves predicted with the SIN-
TAP method are again slightly more conservative.

Besides the verification tests, some validation exam-
ples were also conducted for this material for the sake
of completeness of the benchmark test. For this case,
the failure behavior of smooth and notched tensile
tests, as well as the Small Punch Test (SPT) were
chosen. Details on the underlying FE models can be
found in (Seupel et al. 2020). Firstly, the predicted
force-diameter reduction response of notched tensile
specimens with two different notch radii (R2 and R4)
and one smooth tensile specimen are compared to the
experimental results in Fig. 12a. Secondly, the force-
displacement curves of the SPT are compared to their
respective experiments in Fig. 12b.

From the predicted tensile test results in Fig. 12b, it
can be seen that the simulation results are in a very good
agreement with the experimental results for both the
Rm-Fit and the SINTAPmethod. The maximum forces
are accurately predicted for all specimen types with the
Rm-Fit method, whereas, as expected, more conserva-
tive values are obtained with the SINTAP method. The
failure points are slightly overestimated ; however, they
remain in the acceptable range of error.
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Fig. 10 Stress–strain
curves for the 18Ch2MFA
steel. Experimental data
(Seupel et al. 2020)
compared to the power-law
fit up to Rm and the power
law strain hardening curve
w.r.t SINTAP

Table 4 Sets of calibrated parameters for the RPV-steel

n σy E/σy fc/ f0 lnl (mm)

SINTAP (from 300.0 ≤ E/σy ≤ 350.0 and 15.0 ≤ n ≤ 20.0) 16.5 635.0 325.0 11.25 0.1

Rm -Fit (from 300.0 ≤ E/σy ≤ 350.0 and 10.0 ≤ n ≤ 15.0) 12.0 625.0 330.0 11.25 0.09

Fig. 11 Predicted C(T)
R−curves using the
parameter sets identified by
the proposed procedure
compared to the
experimental results for the
RPV steel (Müller 1999)

Considering the SPT results in Fig. 12b, the pre-
dicted force-displacement curves show a very reason-
able match of the experimental data. Moreover, the
results with the Rm-Fit method are able to capture very
closely the maximum force values of the upper bound
(UB) of the experiments, and the SINTAP results again
yield a conservative predictions. The load drop and fail-
ure points match the experimental points quite well for
both methods.

In conclusion, the proposed identification procedure
was also able to successfully predict the distinct behav-
iors of different tests and specimens for this material.

4.3 Forged alloy steel

The final material of choice is the forged-alloy steel
27NiCrMoV15-6 (also namedEN1.6957) investigated
by Kulawinski et al. (2021), which is used for turbine
shafts. As for the two previous tests, the hardening
exponent n for both methods is first determined and
the stress–strain curves of the experiments along with
the two power-law curves are plotted in Fig. 13. The
material properties are summarized in Table 2 and the
identified parameters are given in Table 5.
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Fig. 12 Validation tests for the RPV steel. Experiments by Abendroth and Kuna (2003), Abendroth (2005)

Fig. 13 Stress–strain
curves for the
27NiCrMoV 15-6 steel.
Experimental data
(Kulawinski et al. 2021) is
compared to the power-law
fit up to Rm and the power
law strain hardening curve
w.r.t SINTAP

For this material, the obtained E/σy-ratios were
about the same, which means that the same two dia-
grams can be used for the identification, leading to the
same fc/ f0-ratio for both hardening exponents n. The
verification tests are once again done with the help of
the C(T)-specimen, and the comparison between the
experimental results and the predicted R−curves are
shown in Fig. 14a. A goodmatch between the predicted
results and the experiments can be observed.

As a validation test for this material, the failure
behavior of an SPT is investigated and the simulated
force-displacement curves are compared to the experi-
ments of Kulawinski et al. (2021), as seen in Fig. 14b.
The geometry and assumptions of the FE model are
taken from (Kulawinski et al. 2021), whereas the FE
mesh is chosen according to the requirements for the

non-local GTN model, as proposed by Seupel et al.
(2020). The predicted force-displacement curves of the
two methods are in an acceptable agreement with the
experimental results, and once again the simulation
results enclose the experimental data around the point
of maximum force, where the maximum force is rather
overestimated for the Rm-Fit method and as expected
SINTAPmethod yields a conservative result. A reason-
able prediction, however, of the load drops and failure
points is attained for both methods.

5 Recommendations for usage of the simplified
parameter identification procedure

In the previous section, the proposed procedure was
put to the test for three different materials exhibit-
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Table 5 Sets of calibrated parameters for the 27NiCrMoV 15-6

n σy E/σy fc/ f0 lnl (mm)

SINTAP (from 200.0 ≤ E/σy ≤ 250.0 and n = 20.0) 20.0 855.0 234.0 10.5 0.048

Rm -Fit (from 200.0 ≤ E/σy ≤ 250.0 and n = 10.0) 11.0 840.0 238.0 10.5 0.040

Fig. 14 Verification in terms of the C(T)-R−curves and validation in terms of the SPT force-displacement curves for the low alloy
steel 27NiCrMoV 15-6. Experiments of Kulawinski et al. (2021)

ing a broad range of properties and features. For all
three examples, the procedure exhibited a high level of
robustness and reliability. This shows that it is possible
to identify the non-local GTN parameters in a practical
manner, by using the provided diagrams, without the
need for a time consuming and complex iterative cal-
ibration scheme. This also indicates that, despite the
simplifying assumptions made in the beginning, the
proposed procedure is still broadly applicable and suf-
ficiently accurate. Nevertheless, inaccuracies can occur
if certain considerations are not taken into account. In
what follows, some guidelines are given to ensure the
best outcomes of the parameter calibration with this
approach:

– For the determination of n, two methods were pre-
sented in this work. One systematically overesti-
mated the stress–strain curves and the other was
more conservative. So if a conservative approach
is required, then the SINTAP method is recom-
mended.

– The ratio E/σy plays a very important role in this
procedure. Because of that, special care should be
taken when considering this ratio. After determin-
ing the hardening exponent n, the corresponding
initial yield stress σy is evaluated. It is therefore
recommended to use the diagrams for this specific
E/σy-ratio to read off the different parameters.

– It is possible that the obtained E/σy-ratio falls
between two available E/σy-ratios’ diagrams. In
this case, it is recommended to perform a linear
interpolation between the parameters identified in
the two diagrams. However, if conservative results
are sought, then reading the parameters from the
closest higher E/σy-ratio diagrams is advised.

– Similarly, if the determined n falls between two
available n, then a linear interpolation between the
two corresponding curves is recommended. And
for a conservative result, one should use the curve
of the next smaller n.
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6 Summary and conclusions

In this paper, a simplified parameter identification pro-
cedure for the non-local GTN model was proposed.
The GTN model is well-established to predict duc-
tile damage and failure. However, it is not widely used
in different engineering applications, mainly to avoid
the challenging task of calibrating its parameters. This
task is deemed complicated and time costly, since it
usually requires numerous FE simulations within an
iterative optimization scheme. The aim of this work
is therefore to provide a robust, reliable and practi-
cal method, which facilitates and hopefully promotes
the usage of the GTN model. It is an easy-to-use
method, based on simplifying assumptions, such as the
on-parametric hardening power-law and some a priori
fixed parameters, and does not require any additional
FE-simulations.

The proposed strategy is an iteration-free procedure
and requires experimental data of only two standard-
ized tests, in which the parameters are read from look-
up diagrams, that were created based on systematic
studies and produced for a wide range of material prop-
erties to cover themajority of ductilemetals used in dif-
ferent engineering applications. The main assumptions
and requirements of the procedure were introduced and
the steps how to determine the key input parameters
were explained. Moreover, detailed guidelines for the
application of the procedure were provided. For verifi-
cation/validation purposes, three benchmark tests, for
three different materials with distinct features, were
carried out to assess the robustness and reliability of the
proposed procedure. Finally, some key tips and recom-
mendationswere given, of how to obtain the best results
from the procedure.

The benchmark tests have shown that the identifica-
tion procedure exhibits a high level of reliability. For all
three materials tested, the simulation results were able
to accurately match the experimental data using the
identified parameters. Since each of the studied mate-
rials possess different characteristics, it is expected that
the strategy can be employed formost ductilematerials.
Moreover, some particular conclusions can be drawn:

– The proposed procedure can be applied for dif-
ferent power-law strain hardening exponents n for

the same material and still yields sufficient lev-
els of accuracy. Nevertheless, some exponents n
(e.g. SINTAPmethod) provided more conservative
results.

– A robust definition of the tearing measure was
found, which is reflected in the linear regression
of the R-curves between the 0.2mm and 1.5mm
exclusion lines.

– The tearing modulus TR was shown to be indepen-
dent of the internal length lnl, as well as the harden-
ing exponent n. Additionally, TR is used to identify
the key parameter fc/ f0.

– The diagrams used in the identification procedure
showed consistent trends for all material strengths
E/σy and hardening exponents n, making the appli-
cation of the procedure simple and straight-forward
regardless of the particular material properties.

– From the different verification and validation tests,
it was concluded that using the identified parame-
ters, the specific behaviors of the different tests can
be predicted, without the need of further tuning of
the parameters.

– Itwas pointed out that certain considerations should
be taken into account to guarantee the highest pos-
sible level of accuracy.

As with any newly proposed concept, more bench-
mark and validation tests are required. The proposed
procedure will thus be further tested in the future for
different materials and applications.
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7 Look-up diagrams

Fig. 15 “TR-diagram” for
different E/σy ratios
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Fig. 16 “lnl-diagrams” for different E/σy-ratios and hardening exponents n
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