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Abstract Damage to components made of brittle
material due to thermal shock represents a high safety
risk. Predicting the degree of damage is therefore very
important to avoid catastrophic failure. An energy-
based linear elastic fracture mechanics bifurcation
analysis using a three-dimensional finite elementmodel
is presented here, which allows the determination of
crack length and crack spacing for a defined thermal
load in a free plate. It is assumed that a hierarchical
crack pattern is formed due to cooling penetration. The
constant growth of the ideal regular pattern of hexagons
can change into a pattern with a different symmetry by
slightly changing the cooling conditions. This bifur-
cation point is determined by the second derivative of
the mechanical potential with respect to the geome-
try of the crack front. The very high computational
effort for the second derivative is reduced by describing
the three-dimensional crack front with a limited num-
ber of Fourier coefficients. A one-dimensional tran-
sient temperature field at a sufficient distance from the
plate edge is assumed. For alumina, the crack length
and crack spacing curves are computed for different
quenching temperatures and heat transfer coefficients.
The corresponding final crack lengths are also calcu-
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lated as a measure of damage. Comparison with a two-
dimensional model confirms the expected 1/2 differ-
ence in crack spacing. Data from thermal shock exper-
iments are also presented. However, due to the cracks
caused by the strong cooling at the edge, these corre-
spond to the results of the two-dimensional model.

Keywords Thermal shock · 3D crack pattern ·
Ceramics · Bifurcation analysis · Linear elastic
fracture mechanics

List of symbols

a(s) Contour of crack front
a0 Crack length, distancebetween crack front

and plate surface (characteristic length)
aend Final crack length
b Half of the plate thickness (characteristic

length)
Ci Fourier coefficients
Cp Specific heat capacity
D Thermal diffusivity
E Young’s modulus
G Global energy release rate
Gc Critical energy release rate
GcFEM Energy release rate from FE analysis
H Hessian matrix
h Heat transfer coefficient
ha Step size of the crack length for FDM
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hδ Step size of the penetration length for
FDM

I Identity matrix
KI Mode I stress intensity factor
KIC Critical mode I stress intensity factor
L Crack spacing (characteristic length)
l0 Fracturemechanical length (characteristic

length)
l0FEM Fracture mechanical length from FE anal-

ysis
l0Mat Fracture mechanical length from given

material properties
ni Normal vector
p̃ Column side width
s Projected path variable along hexagonal

crack front
T0 Temperature of the heated plate before

quenching
T1 Temperature of the cooling liquid
T (z, δ), T Temperature field depending on location

z and penetration length δ(t)
t Time
Uel Elastic strain energy
ui Displacement, displacement vector
v Eigenvector
W f r Fracture energy
α Thermal expansion coefficient
δ Time dependent penetration length of the

temperature field
δi j Kronecker symbol
εeli j , ε

th
i j Strain tensor, el-elastic, th-thermal

κ Thermal conductivity
λ Eigenvalue
ν Poisson’s ratio
Π Global mechanical potential
ρ Material density
σi j Stress tensor

Abbreviations

1D, 2D, 3D One-, two-, three-dimensional
BEM Boundary element method
CT Computed tomography
FDM Central finite difference method
FE(M) Finite element (method)

1 Introduction

The study of thermal shocks in brittle materials and the
accompanying damage in form of cracks employed by
scientists for decades. Fascinating complex crack pat-
tern formations arise during thermal shock. Beside this
it is also important to know the residual strength after a
thermal shock case to avoid catastrophic failure in tech-
nical systems such as gas turbines. Engineering ceram-
ics are widely used as thermal barriers, as they can
withstand very high temperatures. This application is
always critical due to the relatively low fracture tough-
ness of ceramics. It was analyzed in Kingery (1955)
and Hasselman (1963, 1969) which material proper-
ties affect thermal shock damage. Thiswas investigated
experimentally by quenching alumina rods in water
(Hasselman 1970). An overview of various failure phe-
nomena and related thermal stress resistance parame-
ters is given in Hasselman (1985).

The first investigations of 2D hierarchical parallel
crack patterns and the associated analysis with a bifur-
cation instability criterion were carried out in Nemat-
Nasser et al. (1978) and Bažant et al. (1979). Based on
this criterion, the 2D crack patterns that occur when
glass quartz plates are quenched in water (Bahr et al.
1986) were qualitatively investigated in Bahr et al.
(1988) using the Boundary Element Method (BEM). It
was found that after thermal shock the final crack length
has a significant influence on the strength degrada-
tion. Nemat-Nasser et al. (1980) then published another
bifurcation instability criterion which was also used in
later publications (Bahr et al. 1996, 2010; Hofmann
et al. 2011). InBahr et al. (1992) another bifurcation cri-
terion based on the mechanical potential and an eigen-
value analysis was shown. This criterion is equivalent
to that of Nemat-Nasser et al. (1980). Furthermore, in
Bahr et al. (1992) the correctness of the assumption
of the hierarchical crack pattern, that one crack stops
and another one grows, and the influence of a distur-
bance on it was shown. Many publications investigated
crack patterns by experiments and by various simula-
tionmethods, e.g. Shao et al. (2011), Jiang et al. (2012),
and Xu et al. (2016a). However, they all focus on 2D
crack patterns.

In Bourdin et al. (2014), a scalar damage variable
within a non-local damage model was used to simulate
the growth of 3D columnar joints in thermal shocked
ceramics. It was shown that this can explain the forma-
tion of imperfect polygonal patterns and their selective
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coarsening during propagation, but an analysis of the
3D crack pattern geometry is still missing. 3D crack
patterns of basalt columns were investigated with the
Finite Element Method (FEM) in Bahr et al. (2009) by
a fracture mechanic bifurcation analysis based on the
local energy release rate. This research is similar to the
investigated 2D cases inBahr et al. (1988, 2009, 2010).
In order to determine the 3D crack contour, an elabo-
rate gradient method was used for the bifurcation anal-
ysis. To avoid this cumbersome iteration of the crack
front, a new effective calculation method was devel-
oped based on the global energy release rate G and on
a Fourier series expansion of the 3D crack front in order
to simplify the bifurcation analysis. The application of
thismethod has been demonstrated inAnderssohn et al.
(2018). To enable a comparison with Bahr et al. (2009),
the growth of 3D crack patterns of basalt columns was
also investigated with a steady-state temperature field.
The method of Anderssohn et al. (2018) can now be
used to investigate the growth of other crack patterns,
e.g., generated by drying or, as here, by a transient ther-
mal shock load case for a finite length.

In the present work, we use the ideal hexagonal three
column pattern from Bahr et al. (2009) and the Fourier
series expansion of the 3D crack front contour from
Anderssohn et al. (2018). An FE model for an infi-
nite free plate of thickness 2b is built, which allows for
calculating the resulting normalized crack spacing L/b
and crack length a0/b due to thermal shock. Finally, the
goal of the present study is to predict the normalized
final crack length aend/b which is crucial for the resid-
ual strength of ceramic components that were damaged
by thermal shocks.

This paper is organised as follows: Sect. 2 presents
the analytical temperature field and the basic thermo-
mechanical equations. In addition, the underlying
model of the periodic contiuable ideal hexagonal three
column pattern is described. The presentation of the
theory of eigenanalysis of the globalmechanical poten-
tial together with the development of the crack front
geometry as a Fourier series, which was used to find
the bifurcation points, concludes the section. In Sect. 3,
the numerical parameters of the FE model and the cen-
tral Finite Difference Method (FDM) used to deter-
mine the derivatives of the mechanical potential are
explained. A convergence analysis and the effects of
different numbers of Fourier series coefficients on the
result are shown. Successful calculations for different
temperature differences ΔT and heat transfer coeffi-

cients h were performed in Sect. 4. The influence of
ΔT and h on the crack length a0/b and the crack
spacing L/b is discussed. For the validation of the 3D
model, thermoshock experiments and calculations for
an already existing 2D model were performed, evalu-
ated and compared with the data of the 3D model in
Sect. 5. Furthermore, a novel evaluation method based
on Computed Tomography (CT) was applied to the
thermo-shocked specimens in this work. Note: Similar
experiments have already been performed, for exam-
ple, in Shao et al. (2010) and Xu et al. (2016b). Unfor-
tunately, no material data are given in these publica-
tions and thus cannot be used for validation. Finally, in
Sect. 6, several conclusions are drawn and an outlook
on possible future applications of the model presented
in this paper is given.

2 Theoretical considerations

2.1 Temperature profile

First, a plate is heated to the temperature T0 and then
quenched in cooling liquid of temperature T1. The area
under consideration is the center of the plate far away
from the edges. In the center the temperature field
can be described by a simple 1D analytical solution,
while at the edges a more complex temperature field is
expected. It is assumed that the cracking process has no
influence on the temperature field. This assumption is
confirmed by two points: firstly, the cracks are orthogo-
nal to the isotherms thatmeans that they do not interfere
with the heat flux. Secondly the crack opening is very
small so heat transport through the air filled cracks is
very small compared to the heat transport through the
solid. Due to the short duration of the thermal shock
process, this is a common hypothesis (Bahr et al. 1988;
Li et al. 2013). Therefore, the transient temperature
profile is used for an infinite plate with a thickness of
2b and with symmetrical boundary conditions (Tautz
1971)

T (z, δ) =T1 + ΔT
∞∑

n=1

[
2 sin(μn)

μn + sin(μn) cos(μn)

cos(μn
z

b
− μn) exp

(
−μ2

n
δ2

4b2

)]
,

(1)
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where δ = √
4Dt, μn = hb/κ cot(μn) and ΔT =

T0 − T1. Here, μn, n = 1...∞ are the positive eigen-
values, κ the thermal conductivity, h heat transfer coef-
ficient and D the thermal diffusivity. In Tautz (1971),
the origin of the z coordinate is in the centre of the
plate, whereas in the present study it is at the surface.
This shift of the coordinate system is implemented in
Eq. (1) by the −μn term in the second cosine function
(see also Bahr et al. 1987, 1988).

For short times δ2/4b2 � 1, (it should be noted that
in the literature often τ for δ2/4b2 is used) the number
of the used eigenvaluesμn must be high enough. Other-
wise Eq. (1) is not valid (Bahr et al. 1987; Martin et al.
2019). 50 and 100 eigenvalues were calculated with the
mathematic program MATLAB. For δ/b = 0.01, the
maximal difference of the summation term in Eq. (1)
was approx 3.6 · 10−4. In the simulations the smallest
time is δ/b = 0.1, therefore 100 eigenvalues are more
than enough.

In Fig. 1 the temperature function Eq. (1) is plot-
ted for different hb/κ and δ/b. The greater hb/κ is,
the better is the heat transport between the heated plate
and the cooling liquid. An increase of hb/κ leads to
an increase of the temperature gradient and therefore
the thermal stresses also increase. Because of that, the
value of the heat transfer coefficient h is very impor-
tant for the determination of the damage by the thermal
shock. It should be noted that the experimental deter-
mination of h is very difficult. In Singh et al. (1981),
Zhou et al. (2012), and Jiang et al. (2012) different
methods were used to determine h in the case of a
thermal shock of alumina in water. The results for the
heat transfer coefficient h range from 103 Wm−2K−1

to 105 Wm−2K−1.

2.2 Fundamental thermoelastic equations

Due to the thermal shock, the ceramic plate expe-
riences shrinkage leading to mechanical stresses. In
Takeuti and Furukawa (1981) it is shown that the ratio
of V = vpb/D decides if acceleration terms have to
be considered for the penetration of a temperature field.
Thereby is vp = √

(1 − ν)E/((1 + ν)(1 − 2ν)ρ). The
thermal diffusivity can be calculatedwith D = κ/ρCp.
However, for the materials used in this work, neither D
nor the specific heat capacity Cp is given, see Table 1.
From Zhou et al. (2012), D = 5.4 · 10−6m2s−1 for
alumina with similar purity (99.5%) and density (ρ =

3.98 ·103kg m−3) can be taken. For the Al2O3 material
with 99.7% purity used in the experiments, with a plate
thickness of b = 3.5 ·10−3 m, V = vpb/D = 6.9 ·106
is obtained. For such large values of V , according
to Takeuti and Furukawa (1981), p. 118, the ratio of
dynamic and quasi-static stresses is equal to one. Thus
the acceleration terms can be neglected. Volume forces
are not present and the local mechanical equilibrium
conditions read

σi j,i = 0 and σi j = σ j i , (2)

where σi j are the mechanical stresses. Eq. (2) must be
fulfilled in every point of the structure. We assume an
isotopic linear thermo-elastic material with linarised
kinematics for which the strain εi j can separated into
an elastic and a thermal part:

εi j = εeli j + εthi j = 1

2

(
ui , j +u j ,i

)

= 1 + ν

E
σi j − ν

E
σkkδi j + α(T (z, δ) − T0)δi j .

(3)

Here, ui denotes the displacement, E is the Young’s
modulus, ν the Poisson’s ratio and δi j the Kronecker
symbol in the elastic strain εeli j . The third term describes

the thermal strain εthi j . Here, α is the thermal expansion
coefficient and T (z, δ)−T0 the temperature difference
according to Eq. (1). T0 is the reference temperature at
which no thermal stresses are present.

For a plate having a 3D crack pattern, to which an
instationary temperature field like Eq. (1) is applied,
unfortunately no analytical solution of Eq. (2) is avail-
able. Therefore, the solution must be obtained numer-
ically. In the present research, this is done by the FEM
through the program Ansys. Please note that an ana-
lytical solution of the stress field which fulfills Eq. (2)
for a plate without cracks is given in Timoshenko and
Goodier (2017) and Parkus (1968).

2.3 Model development and boundary conditions

In experimental investigations on dried starch-water
suspensions, it was found that a regular hexagonal
cracking pattern causes three columns to merge into a
larger one, see Fig. 2a. A similar type of column could
be observed in basalt columns, which were formed by
thermal contraction of solidified lava. In both cases, the
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Fig. 1 Finite elemente mesh of the half hexagonal model (a0/b = 0.5, L/b = 1) and the illustration of the temperature field (Eq. (1))
for hb/κ = 1.0833, hb/κ = 10, hb/κ = 100 and hb/κ = ∞

Table 1 Properties of AL2O3 ceramic plates (DOCERAM GmbH 2014; CeramTec GmbH 2015)

ρ E ν KIC α κ b
[kg m−3] [GPa] [MPa

√
m] [K−1] [W m−1K−1] [m]

99.7% 3.9 ·103 390 0.22 5.2 6.95 ·10−6 28 3.5 ·10−3

99.8% 3.96 ·103 406 0.23 4.3 7.5 ·10−6 30 3.25 ·10−3
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Fig. 2 a Cross-sections of
crack patterns in dried
starch-water suspensions
demonstrating the local
phenomenon of merging of
three hexagonal columns
into one larger hexagonal
column. b visualisation of
this process for ideal
hexagonal columns
(following Anderssohn et al.
(2018))

tensile stress caused by drying or cooling is the reason
for the appearance of the cracks (see alsoGoehring et al.
2006; Goehring 2008). The process of merging three
columns into one is periodically repeatable in the depth
(z-direction) and also in the width of the material. This
was used to form the model described below. Fig. 2b
shows the idealised model with three regions. In region
(I) there are three hexagonal columns of equal size with
column diameter L . These columns are caused by the
steady propagation of the crack front and are referred
to as fundamental solution. The model then assumes
that the crack stops growing at the (bp) point in the
middle of the three columns. So there is another solu-
tion besides the fundamental solution. The point (bp)
is hence a bifurcation point in the mathematical sense.

In region (II), the crack front between s/ p̃ = 0 and
s/ p̃ = 1 in Fig. 3a stops growing. With this termi-
nation, the high symmetry of the hexagons is lost and
mixedmode crack propagation with curved crack faces
occurs. The three columnsmerge in region (III) to form
a larger column with a new column diameter of

√
3L .

It should be noted that region (II) after the bifurcation
point is called the post-critical solution.

As inAnderssohn et al. (2018) andBahr et al. (2009),
we use symmetry and periodicity to reduce the compu-
tational costs. The representative volume element, used
for the calculation in the case of a bifurcation, is one
half of a hexagonal column (gray area in Fig. 3b). This
is sufficient due to the periodic repetition. In Fig. 3b this
is shown by the three points 0 in which the crack stops
in the other two surrounding three hexagonal column
configurations. This leads to a point symmetry with

respect to point 2 with the following coupling of the
displacements in the ligament surfaces E and F of the
representative volume element in Fig 3b:

uE
z = uF

z , uE
s = −uF

s and uE
n = −uF

n . (4)

Here, the index n stands for the normal direction of the
ligament surfaces and s is the coordinate of the crack
front. Furthermore, the stresses must be consistent at
the surfaces E and F. The plate is not subjected to exter-
nal kinematic constraints, so that the two surfacesGand
the ligament surface at D are unloaded in the normal
direction, i.e.

0 =
∫

σi j n j d A and uini = constant . (5)

This condition was implemented by the Ansys com-
mand CE with the requirement that all FE nodes have
the same displacement in the surface normal direction.
The surface of the plate z = 0 and the crack surface
are unloaded, i.e. σi j n j = 0. The lower face, at z = b,
is the symmetry area at which the boundary condition
uini = 0 and σi j n j = 0 (i �= j) applies.

In the case of uniform column growth, a twelfth
of the column is sufficient for the calculation since a
higher symmetry is present than in the case of column
merging. The ligament face B, shown in Fig. 4, is force-
free in the normal direction according to Eq. (5). The
faces A, C, and lower face, at z = b, are symmetry
areas for which the boundary conditions u jn j = 0 and
σi j n j = 0 (i �= j) hold. The top surface and the crack
surface are free of forces σi j n j = 0 as in the half col-
umn model.
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Fig. 3 a Illustration of the
stopping crack fronts in the
postcritical solution starting
from point 0 (following
Bahr et al. (2009)). The grey
area in a is redrawn in b
(following Bahr et al.
(2009)). Because of the
symmetry and periodicity of
the structure and process, it
is sufficient to calculate
only the grey area in b

Fig. 4 Illustration of the twelfth part of the hexagonal column
(following Bahr et al. (2009))

2.4 Fracture mechanics and bifurcation

Following Anderssohn et al. (2018), we use the Fourier
series

a(s) = a0 +
j∑

i=1

Ci cos

(
iπs

2 p̃

)
, 0 ≤ s ≤ 2 p̃ (6)

for the parameterization of the crack front. Here, a0 is
the crack length, j the number of cosine elements, Ci

the time-invariant coefficients, p̃ = L/
√
3 the column

side width shown in Fig. 3b, and s the crack front curve
variable. To ensure that the Fourier series can be used as
the crack front geometry for the fundamental and also
for the bifurcation solution, the product 2 p̃ is included.
The function a(s) is the crack length measured from
the surface of the plate, as shown in Fig. 4.

For steady growth, the crack front geometries of the
three-column configuration must match the opposite
column. Due to the symmetry and periodicity of this
configuration, i = 4, 8, . . . are the only coefficients in
Eq. (6) that are nonzero. Due to the huge increase in
computation time by increasing the number of coeffi-
cients and the low effect on the result (see Fig. 9), the
highest Fourier coefficient C4 is selected.

We introduce here for the case of quasi-static crack
growth, the change in the global mechanical potential
(see for example Kuna (2013, pp. 42–44))

Π̇ = U̇el + Ẇ f r − Ẇa , (7)

where the elastic strain energy reads

Uel =
∫

1

2
σklε

el
i j dV (8)

and the fracture energy

W f r = GC

∫
a(s)ds (9)

Wa is the external work. In Eq. (7), the dot above
the symbols represents the change between two states.
These states can be two different times or, as in this
study, the first state is before the crack extension and
the second state is after the crack extension ∂A. As
there are no external forces or supports acting on the
free plate,

Ẇa = 0 . (10)

Furthermore, the kinetic energy equals zero. The ther-
mal energy has no influence on the crack growth and
thus the change in the thermal energy is negligible.
Consequently, Eq. (7) has the character of a potential.

The integral over the crack front a(s) inW f r is equal
to the full crack area. GC is the critical energy release
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rate of the material. Integration over the full volume
of the strain energy density 1

2σklε
el
i j leads to the elas-

tic strain energy Uel . The elastic strain energy Uel is
implicitly dependent on a(s). Using the Fourier series
(Eq. (6)), the mechanical potential Π(a(s)), which
is a functional, is thus converted into the function
Π(a0,Ci ).

As in Anderssohn et al. (2018), Hofmann et al.
(2011), Bahr et al. (2009), andBahr et al. (2010),we use
characteristic lengths to scale our model and produce
values with the dimension inm. Ourmodel contains six
characteristic lengths. Geometric lengths are the crack
space L , half the plate thickness b, and the crack length
a0 measured from the plate surface, see Fig. 4. Further-
more, δ = √

4Dt is the penetration depth and κ/h is
the cooling length of the temperature field according to
Eq. (1). From the fracture mechanics side

l0 = Gc(1 − ν)

Eα2(T0 − T1)2
(11)

is the length in the 3D case. The fracture mechanics
length l0 is a value that contrasts the fracture energy per
crack area G = Gc, necessary for crack propagation
and the stored elastic energy per volume. According to
Irwin (1958, p. 560), the mode I energy release rate for
the 3D case can be calculated by

G = K 2
I (1 − ν2)

E
. (12)

l0 and κ/h are given by the mechanical and thermal
material properties. The geometrical length b is given
by half of the plate thickness. We consider the problem
quasi-statically for a time δ = √

4Dt . For this time, a0
and L can be calculated using the two equations for sta-
tionary crack propagation G = Gc and the bifurcation
criterion, which will be discussed below.

In the following we give a short overview of the
bifurcation analysis considerations according toAnder-
ssohn et al. (2018).

For stationary crack propagation, it is necessary that

G = Gc (13)

is fulfilled.
The system tends to a minimum. This can be calcu-

lated by setting the first partial variation of the mechan-
ical potential Eq. (7) to zero, i.e.

Π̇ = ∂Π

∂A
= ∂Uel

∂A
+ ∂W f r

∂A
= 0 . (14)

Due to the mechanical potentialΠ(a0,Ci ), Eq. (14)
can be rewritten as

∂Π

∂a0
=∂Uel

∂a0
+ Gc = 0 ,

∂Π

∂Ci
=∂Uel

∂Ci
+ Gc

∫
cos

(
iπs

2 p̃

)
ds = 0; i = [1, j],

(15)

which is the fundamental solution of the problem. This
solution leads to j + 1 equations. Gc and l0 are both
known in Eq. (11) and if we assume that L is also given,
we can use Eq. (15) to determine a0 and Ci at a time
δ. Note that changes in the pattern perpendicular to the
crack growth direction are excluded in the case of the
fundamental solution. This is ensured by the fact that
mode I is the only stress intensity factor acting on the
entire crack front.

The phenomenon of the merging of the three hexag-
onal columns, as described in Sect. 2.3, can be under-
stood as a mathematical bifurcation problem. This
means that there exists a second solution in addition
to the fundamental one. Our goal is to find this bifurca-
tion solution for a set of critical characteristic lengths.
Starting from Eq. (15), we formed the second deriva-
tive, which leads to the Hessian matrix

H = Π,ik = ∂2Π

∂Ci∂Ck
= ∂2Uel

∂Ci∂Ck
; i, k = [0, j], (16)

where C0 = a0. The eigenvalue problem

(H − λI)v = 0 (17)

has a nontrivial solution when the coefficient determi-
nant is zero

det[H − λI] = 0. (18)

This leads to j + 1 eigenvalues λi . All eigenvalues
have real values because of the symmetry of the Hes-
sian matrix, which results in j + 1 real eigenvectors vi
computed by (H − λi I)vi = 0.

If Eq. (18) results in positive eigenvalues, then the
minimum of the mechanical potential Π (Eq. (7)) is
found and the system is stable. This is the case for
the fundamental solution, see Sect. 2.3. When one or
more of the eigenvalues become negative, the system is
unstable and bifurcation occurs. This leads to themerg-
ing of the three columns into one. The behavior after
the bifurcation can be determined from the eigenvec-
tor v in conjunction with the fundamental solution a(s)

123



Analysis of 3D crack patterns in a free plate 61

(Nguyen 1987). A set of characteristic lengths is found
where the smallest eigenvalue becomes zero, i.e.

λmin = 0 . (19)

Then, the bifurcation point is reached.
The crack grows stationary as long asEq. (13) is true.

It stops growingwhen the condition (see alsoBahr et al.
1988)

∂G

∂δ

∣∣∣∣
a0

= 0. (20)

is fulfilled. This condition states that for a fixed crack
length a0 the energy release rate G does not increase
even though the temperature field (the cooling) contin-
ues to penetrate. If the condition

∂G

∂δ

∣∣∣∣
a0

≤ 0 (21)

is fulfilled alsowith the still further penetrating temper-
ature field, it does not come again to the crack growth.
Thus, the fixed crack length a0 in Eq. (20) is the final
crack length aend .

3 Finite element model

In this section we will first describe the general pro-
cedure how to determine a0/b and L/b from the FE
analysis. In the following we will give more details
about the used numerical methods and the influence of
the number of Fourier series coefficients.

As described in Sect. 2.4 we have six characteristic
lengths of which four are given. The remaining two can
be determined with the condition for stationary crack
growth Eq. (13) and with the condition for the occur-
rence of a bifurcation point Eq. (19).

For a fixed hb/κ and δ/b, for different crack lengths
a0/b and crack spacings L/b, the energy release rate
GcFEM is calculated according to the Eq. (15)1 and
the smallest eigenvalue λmin is determined according
to the Eqs. (16)–(18) by FE analysis. Due to the restric-
tion to linear elastic material and small deformations,
normalized material values E = 1, α = 1 and a nor-
malized temperature differenceΔT = 1 can be used in
the FE calculations. The dependence of ν will be dis-
cussed below. Now, by using GcFEM and the normal-
ized E, α,ΔT and a given ν, the fracture mechanical
length l0FEM , according to Eq. (11), can be obtained.
In a further step, the searched a0/b and L/b are now

Fig. 5 Normalised fracture mechanical length lo/b versus Pois-
son’s ratio ν

determined. For this purpose, linear interpolation is per-
formed between the values of λmin so that Eq. (19) is
fulfilled. Furthermore, l0Mat is calculated from a given
material, e.g. inTable 1. The fracturemechanical length
l0FEM is then linearly interpolated so that it matches
l0Mat . This corresponds to the condition for the steady-
state crack growth, Eq. (13). Thus, the crack length
a0/b and crack spacing L/b were determined for a
given δ/b and a given hb/κ . This process was then
repeated for further δ/b and hb/κ .

Note that ∂G/∂δ is always determined with the
FE analysis. During the evaluation it can be checked
whether the condition for crack stop, Eq. (20), is true.
Furthermore, Eq. (11) depends on the Poission’s ratio
ν. In Fig. 5 the normalised fracture mechanical length
l0/b is plotted against ν. It can be seen that ν has a non-
negligible influence. The dependence of ν is also given
in the analytical solution of the temperature-loaded free
plate in Timoshenko and Goodier (2017). Therefore,
the Poisson’s ratio ν of the material must be taken into
account in the FE analysis.

Geometric limits result from the variation of the
crack space L/b = 0.05 . . . 1. The change of L causes
a change of the model size and due to the mesh-
ing, the crack length is thus limited in the range of
a0/b = 0.1 . . . 0.9. For some combinations of a0/b
and L/b, crack closures occur when δ/b < 0.5. A
more detailed investigation for the values a0/b < 0.1,
L/b > 1 and δ/b < 0.5 is possible by adapting the FE
mesh.

The determination of the derivatives in the funda-
mental solution Eq. (15), the bifurcation solution Eq.
(19), and the change of the energy release rate over δ/b
Eq. (20) was performed with the FDM analogous to
Anderssohn et al. (2018). The central difference quo-
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tient with step size ha for crack length and hδ for time
was used for this purpose.

Isoparametric hexahedral elements with quadratic
shape functions were chosen for the FE mesh. To
guarantee the independence of the step size ha in the
FDM for the first and second derivatives, small step
sizes are required compared to the crack spacing. This
means that the strain energies must be determined as
accurately as possible. Especially at the crack front,
increased stresses and strains occur due to the singular-
ity. Therefore, the crack tip was meshed with singular
elements (Barsoum 1976) and a much finer discreti-
sation was carried out in the vicinity of the crack tip
(see Fig. 1). It was checked by a convergence analy-
sis that the FE mesh is fine enough and the step sizes
ha/b and hδ/b are sufficiently small for the FDM.
Fig. 6 shows the results for the fundamental solution
Eq. (15)1 using the twelfth hexagonalmodel andFig. 7a
shows the results for λmin (Eqs. (16)–(18)) using the
half hexagonal model. Differences in the computation
of l0/b and λmin are not recognized for the presented
range of a0/b with increasingly finer FE meshes and
shorter step sizes. For the calculation of λmin , the sec-
ond derivative of the strain energy is needed according
to Eq. (16). Thus, λmin is more sensitive to numeri-
cal inaccuracies compared to l0/b. Therefore, for λmin

the range in which the abscissa is cut (in which then
also the bifurcation point occurs according to Eq. (19)),
was shown detailed in Fig. 7b. Because of the many
possible configurations for L/b, δ/b, and hb/κ , the
following settings were chosen for the further analyses
for certainty: 65000 nodes for the twelfth hexagonal
model, 380000 nodes for the half hexagonal model and
ha/b = 5·10−4 for the step size of the crack length. For
the choice of hδ/b, a similar consideration was made
for ∂G/∂δ as for λmin shown in Fig. 8. Again, the dif-
ferences due to various step sizes hδ/b are negligible.
Based on Fig. 8b, the step size hδ/b = 5 · 10−4 was
chosen for the further calculations.

TheHessianmatrix Eq. (16) was passed to themath-
ematical program Matlab, where the eigenvalues λi
were calculated.

The 1D temperature field Eq. (1) was loaded into the
nodes of the 3D FE mesh using a special routine.

To determine C4/b (according to Eq. (15)2), five
FEM calculations were performed with given crack
length a0/b and given crack spacing L/b using the
twelfth column model (fundamental solution). From
these calculations with different given values forC4/b,

Fig. 6 Results of the convergence test calculations l0/b accord-
ing to Eq. (15)1 with Eq. (11) for given L/b = 0.5, δ/b = 1, ν =
0.22 and hb/κ = 1.0833, testing three different mesh qualities
(n. mean number of FE nodes) and three different step sizes ha

five values for the elastic strain energy Eq. (8) are
obtained.According to theprinciple ofminimumpoten-
tial energy, the correct value for C4/b is the mini-
mum of the least squares interpolation function. As an
example, the calculated minimum and maximum val-
ues of C4/b with the corresponding settings are given
in Table 2.

The influence of the number of coefficients j in
the Fourier series Eq. (6) is shown in Fig. 9. The cal-
culations were performed for the Al2O3 99.8% plate
(Table 1) with h = 104W/m2K resulting in hb/κ =
1.0833 and ΔT = 800K . The crack spacing L/b ver-
sus the crack length a0/b is presented in Fig. 9a. In
Fig. 9b, the time variation of the energy release rate
∂G/∂δ versus the crack length a0/b is shown. As can
be seen, the difference in the results is low. This is in
good agreement with the results by Anderssohn et al.
(2018). For example, in Fig. 9b, where the curves cross
the abscissa, the final crack length aend/b is readable.
The relative difference between j = 1 (aend,C1/b =
0.4839) and j = 4 (aend,C4/b = 0.4936) is about 2%.
To save computational time, j = 1 (a0 and C1) was
chosen for further calculations.

4 Crack pattern in thermo-shocked free alumina
plate

It is assumed that an alumina plate is heated to a tem-
perature T0. Then the plate is quenched in a cooling
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Table 2 Calculated minimum and maximum values of C4/b with the corresponding settings for hb/κ = 1.0833 and ν = 0.23

δ/b a0/b L/b C4/b

Minimal 1.1 0.1 0.05 −2.6 · 10−4

Maximal 0.45 0.9 1 5.16 · 10−2

Fig. 7 a Results of convergence test calculations for the first eigenvalue λmin according to Eq. (16)–(19), with j = 1 (a0 and C1) for
given L/b = 0.5, δ/b = 1, ν = 0.22 and hb/κ = 1.0833, testing three different mesh qualities (n. mean number of FE nodes) and
three different step sizes ha , b detailed plot at the intersection with the abscissa

Fig. 8 a Results of the convergence test calculations for ∂G/∂δ for different step sizes hδ/b by given L/b = 0.5, a0/b = 0.5, ν = 0.22
and hb/κ = 1.0833, b detailed plot at the intersection with the abscissa
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Fig. 9 Iterative calculation of the a crack spacing and the b change in the energy release ratewith time for four sets of Fourier coefficients
(Al2O3 99.8% plate (Table 1) with h = 104 Wm−2K−1 → hb/κ = 1.0833 and ΔT = 800 K)

liquid of constant temperature T1. At a sufficient dis-
tance from the interface, the temperature field (Eq. (1))
holds in the plate.

Table 1 shows the material, thermal and geometrical
properties of alumina plates.

Extensive simulationswere performed for theAl2O3

99.7% plate (Table 1). The results are illustrated in
Figs. 10 and 11.

If aend/b or Lend/b or better both are known from
experiments and all parameters listed in Table 1 are
also known, it is generally possible to determine the
heat transfer coefficient h from diagrams like Fig. 10
between any brittle material and the cooling medium.

Here, the value hb/κ = 1 represents a kind of
transition point. For hb/κ < 1, small changes of
hb/κ have a very strong influence on the tempera-
ture gradient and thus on the stress. The final crack
length achieved (Fig. 10a) and the final crack spacing
(Fig. 10b) are very different. For hb/κ > 1, only large
changes in hb/κ have a noticeable effect on aend/b
and Lend/b. If hb/κ > 2 the values of aend/b and
Lend/b very quickly approach the values of the asymp-
tote at hb/κ = ∞. This means for the alumina plate
99.7% (Table 1) that the dependence in the final results
is small for values of the heat transfer coefficient in the
range h = 16,000Wm−2K−1 to h = ∞ Wm−2K−1.
This could explainwhy in the literature, e.g. Hasselman
(1970), Jiang et al. (2012), Li et al. (2013), andXu et al.

(2016a), the heat transfer coefficient h between water
and ceramicswas determined to vary over a large range.

The progression of L/b over a0/b for hb/κ =
1.0833 and hb/κ = ∞ as significant examples is
shown in Fig. 11. As can be seen, L/b decreases with
increasing ΔT . This could also be observed in the
experiments, see Figs. 12, 13, and 14, and by Bahr et al.
(1986, Fig. 2) and Xu et al. (2016b, Fig. 2) on the out-
side of the quenched plates. Furthermore, in Fig. 11a
it can be seen that the value of the crack spacing L/b
hardly changes with the growth of the crack a0/b. This
indicates that there is no merging of three columns as
described in Sect. 2.3 and that the columns therefore
grow in a steady course (fundamental solution). The
calculated bifurcation points are not valid because the
fixed point 0 in the model (Fig. 3) wants to catch up
again. A postcritical analysis could show this (see Bahr
et al. 2009, p. 4). However, for hb/κ = ∞ in Fig. 11b
the crack space L/b is almost tripled for ΔT = 400 K
as well as for ΔT = 450 K. For the other ΔT , L/b
changes also significantly with increasing crack length.
If the perturbation of the crack pattern is small enough,
this will show the same trend as in Fig. 3 and the new
diameter should be close to

√
3L . With the increase of

ΔT the tensile stress increases according to Eq. (3).
This leads to more cracks and thus to a decrease in
the crack spacing L/b. This was also found out in 2D
by thermal shock experiments with 50 × 10 × 1mm3

thin ceramic specimens in Jiang et al. (2012, Table 1).
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Consequently, the competition between short cracks
increases. Short cracks have a smaller crack spacing
while long cracks have a larger one.

5 Comparison with 2D model and experiments

To validate the developed model, analyses were also
performed with a comparable 2D FE model. Further-
more, alumina plates were thermally quenched for dif-
ferent ΔT and evaluated. In Fig. 12 the results from
the thermal shock experiment, the 2D and the 3D FEM
bifurcation analysis are plotted. First, a brief explana-
tion of the experiments and their evaluation is given.
This is followed by a description of the 2D model with
a comparison to the data from the 3D model and the
experiments. At the end of this section, possible rea-
sons why the 2Dmodel fits the experimental data better
than the 3D model are discussed.

The plates for the experiments weremade ofDOCE-
RAM A-132 Al2 O3 99.7% with the properties given
in Table 1 with dimensions of 40 × 40mm2. The
plates were heated to T = 550 ◦C, 750 ◦C, 950 ◦C and
quenched in boiledwater of T = 100 ◦C.Thequenched
temperatures were thusΔT = 450 ◦C, 650 ◦C, 850 ◦C.
Then the plates were treated with a contrast agent
(Schilling et al. 2005) to achieve a better separation of
ceramic and crack for the evaluation. Next, the plates
were scanned with CT in High Aspect Ratio Tomogra-
phy mode.

Through the CT scan and the contrast agent, it is
possible to produce images of the surface of the sample,
but also of the deep interior of the sample with the
cracks highlighted, see Figs. 13 and 14.

The crack length a0/b and the crack spacing L/b
of the thermal shock experiment were measured from
Fig. 14. The procedure is exemplified by Fig. 14 (e).
The sectional view was loaded into the programme
Engauge Digitizer version 10.10. Based on the scale
line, the thickness of the sample was determined (2b
= 6.97 mm). Then horizontal lines were inserted from
the top to the middle. These lines start and end at the
outer cracks. The intersections of the lines with the
cracks were counted. The crack widths are given by
L =(width of the line)/(number of intersections -1).
The associated crack length a0 is the z-position of the
line. Then the ratios L/b and a0/b can be determined
with the measured b. All information is collected in
Table 3.

The 2D FE model is described in Bahr et al. (1988).
For the analysis the bifurcation criterion from Nemat-
Nasser et al. (1980) and Bahr et al. (1992) was used.
In order to compare the results with the 3D model, the
same material, thermal and geometrical settings (see
Table 1 Al2O3 99.7%) were used in the 2D model as in
the 3Dmodel. For the 2Dmodel, the same temperature
field as in Eq. (1) was applied.

The results for the final crack length aend/bwith the
corresponding final penetration depth of the tempera-
ture field δend/b and the final crack space Lend/b in
the case of ideal cooling (hb/κ = ∞) are presented
in Fig. 15 for the 2D and 3D FE model. The values
of δend/b match quite well. The achieved values for
aend/b are slightly larger in the 2D FE model than in
the 3D FE model. The difference for Lend/b is slightly
larger. A factor of 2 or less between the results of the
2D FE model and those of the 3D FE model agrees
well with the findings in Bahr et al. (2009). This kind
of difference in aend/b and Lend/b was also found out
in the experiments by Shao et al. (2010). In our investi-
gations, similar results were obtained for other values
of hb/κ , as shown in Fig. 12.

As shown in Fig. 12, the results of the 2D anal-
ysis between hb/κ = 0.5416 and hb/κ = 1.0833
agree well with the measured values of the samples.
Thus, a heat transfer coefficient between h = 4.3 ·
103 Wm−2K−1 and h = 8.7 · 103 Wm−2K−1 can be
determined. This is slightly lower than the measured
h in Zhou et al. (2012). This is due to the fact that
nucleate boiling occurs at low sample temperatures due
to the lower water temperature in Zhou et al. (2012)
of 20 ◦C, thus increasing the heat transfer coefficient.
Quenching in boiling water favours the formation of a
vapour film, which decreases the heat transfer coeffi-
cient (Singh et al. 1981).

It is the question of why the 2D bifurcation analysis
seems to predict the crack width L/b better than the
3D one. Here are two possible explanations.

First, due to the fine grain of the material, the cracks
can close again after unloading. Thus, it is possible
that the contrast agent does not reach every crack and
thus the cracks or their lengths are partially poorly
detectable. For more details see Zielke et al. (2021).

Second, the 2D and 3Dmodels do not predict cracks
going through the entire body, see Fig. 14. In Fig. 13,
especially in Fig. 13b, e, h, it can be seen that the cracks
start from the edge and go into the whole body. It can
be assumed that there is a surplus of energy at the edge
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Fig. 10 a Normalised final crack length aend/b and b normalised final crack spacing Lend/b for the alumina plate 99.7% (Table 1) for
different values of hb/κ and the quenching temperatures ΔT of 400 K, 450 K, 650 K, 850 K and 1050 K

Fig. 11 Normalised crack space L/b versus normalised crack length a0/b (to crack stop) for a hb/κ = 1.0833 and b hb/κ = ∞ for
the material parameters of alumina plate 99.7% (Table 1)

due to the high temperature gradient. This causes the
cracks to grow unstably into the body. The fact that the
cracks also branch out is an indication of this (Kanninen
and Popelar 1985, pp. 205–207). These cracks relieve
the body and convert the 3D stress state in a 2D stress
state.

Thus, there is no longer a closed platewhen the cool-
ing penetrates further from the surface. The penetrating
cracks have cut the plate into many small slices. As has
been shown by Shao et al. (2010, Figs. 3e and f), when
comparing a whole plate and stacked individual plates
at high temperature differences ΔT , the crack pattern
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on the cooled surface looks similar. So, even for the
stacked individual plates, the crack pattern is not invari-
ant in the x- or y-direction (see also Bahr et al. 1986).
However, between the interior surfaces of the stacked
single plates and the cut surfaces at the whole plates,
the patterns differ. Thus, more cracks are found in the
whole plates, and thus a shorter crack spacing L/b, than
in the interior surfaces of the stacked individual plates.
This is not addressed in Shao et al. (2010). Only the fact
that crack branching occurs in the stacked single plates
and not in the whole plate is explained by a different
stress field caused by edge effects in the stacked single
plates.

One reason or a combination of both reasons may
explain why the 2D bifurcation analysis fits well with
the measured data from the experiments.

Nevertheless, in the following aspect the data from
the 3Dmodel, aswell as the 2Dmodel,match the exper-
iments. Both models predict that the crack spacing will
change only slightly. This means that the cracks grow
stable and do not recede. This agreeswell with themea-
sured data shown in Fig. 12, although it should be noted
that the increase in experimental data in L/b is due to
the cracks penetrating from the edge.

6 Conclusion and future work

Themodel developed by Bahr et al. (2009) was applied
and adapted to predict the complex growth of the hier-
archical 3D crack pattern of a brittle plate under ther-
mal shock conditionswithout external constraints. This
model is based on the assumption that the cracks form
ideal hexagonal columns and that in this idealised crack
pattern, the merging of three columns into a larger col-
umn is the mechanism for increasing the crack spac-
ing. For cooling penetration, it was assumed that a 1D
stationary temperature field (Eq. (1)) exists far enough
away from the edges. Based on these assumptions, a 3D
FEM bifurcation analysis with the Fourier expansion
of the crack front (Anderssohn et al. 2018) was per-
formed. Besides the different type of temperature field,
the following differences and extensions are present in
the model used in this work compared to Bahr et al.
(2009) and Anderssohn et al. (2018).

The model no longer has infinite dimensions in the
z-direction but the finite thickness b. The temporal pen-
etration of the symmetrical temperature field Eq. (1),
the associated reduction of the temperature gradient

and thus the reduction of the mechanical stress, leads
to crack arrest and thus to a final crack length aend .
The final crack length was determined by evaluating
the change in the energy release rate as a function of
time (Eq. (20)). aend is themeasure of the damage to the
structure and can be used later for a residual strength
analysis. Because the plate can contract without hin-
drance, freedom from forces in the lateral direction of
the model is required.

Through a convergence study, which includes the
optimisation of the FE mesh and the influence of
the FDM step size, the computational effort could be
reduced. Furthermore, it was shown that the results
converge rapidly for an increasing number of Fourier
coefficients. To reduce the computational effort even
further, the different calculations were carried out with
only one Fourier coefficient ( j = 1).

Due to the linear nature of the problem and the use of
the characteristic lengths, describing the material and
the thermal load, it was effectively possible to deter-
mine the evolution of the crack spacing L/b over the
crack length a0/b by a parametric analysis.

The 3D model was verified by a comparison with
an existing 2D model by Bahr et al. (1988). As in Bahr
et al. (2009), the expected difference between 2D and
3D FE model in L/b was smaller than a factor of 2.
Due to the intense cooling at the edge of the speci-
mens and the associated formation of cracks through
the whole specimen, a validation of the 3D model by
experimental data was unfortunately not possible. In
further research, additional experimental investigations
are planned in which the specimen will be isolated at
the edge. It should be noted that due to the evaluation
by CT scan, the dimensions of the specimens are lim-
ited and specimens with larger dimensions cannot be
simply used.

Further investigations with the presented 3D model
are possible. For example, by modifying the FE mesh
towards very short cracks, the critical temperature dif-
ference ΔTc for thermal shock could be analysed at
which no crack growth occurs. It should be noted that a
good knowledge of the mechanical and thermal mate-
rial data is important for an accurate analysis. Con-
versely, it is possible to determine the critical stress
intensity factor KIC and the heat transfer coefficient
h using 3D FEM bifurcation analysis. Both values are
difficult to determine using other methods. For this, the
curves of a0/b and L/b must be known from thermal
shock experiments.
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Fig. 12 Comparison of the
normalised crack space L/b
over the normalised crack
length a0/b (up to the crack
stop) from the 2D and 3D
FEM bifurcation analysis
and the measured data of the
specimen (with a resolution
error of 1.4% according to
the manufacturer’s data of
the CT device). a:
ΔT = 450 K , no crack
growth occurs in the 3D
model for hb/κ = 0.5416,
experimental data 1 are
from Fig. 14a upper half
measured, experimental
data 2 are from Fig. 14b
lower half measured b:
ΔT = 650 K , experimental
data 1 are from Fig. 14c
lower half measured,
experimental data 2 are
from Fig. 14d lower half
measured c: ΔT = 850 K ,
experimental data 1 are
from Fig. 14e upper half
measured, experimental
data 2 are from Fig. 14f
lower half measured
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Fig. 13 Thermal shock crack patterns in Al2 O3 99.7% ceramic plates quenched at ΔT of a, b, c 450 K; d, e, f 650 K and g, h, i 850
K, whereby a, d, g are images of the cooled surface; c, f, i images from the the opposite cooled surface and b, e, h images from the
centre of the specimen at z = 3.5 mm; additionally, in b, e, h the positions of the cross-sectional views of Fig. 14 are shown with blue
dotted lines, where in Fig. 14 a is I, b is II, c is III, d is IV, e is V and f is VI

Fig. 14 Cross-sectional view of thermal shock crack patterns in Al2 O3 99.7% ceramic plates quenched at ΔT of a, b 450 K; c, d 650
K and e, f 850 K; the position of the cross sections are shown in Fig. 13 b, e, h
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Table 3 Evaluation of the cross-sectional view of Fig. 14 (e) upper half

Line number Intersections z (mm) Line width (mm) L (mm) a0 (mm) L/b a0/b

1 16 0 29.29 1.95 0 0.56 0

2 16 0.5 29.29 1.95 0.5 0.56 0.14

3 14 1 29.29 2.25 1 0.65 0.28

4 11 1.5 29.29 2.93 1.5 0.84 0.43

5 7 2 29.29 4.88 2 1.4 0.57

6 5 2.5 29.29 7.32 2.5 2.1 0.71

7 4 3 29.29 9.76 3 2.8 0.86

Fig. 15 Comparison of the numerically obtained results in the crack stop condition (Eq. (20)) for hb/κ = ∞ with the 2D and 3D FE
model
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