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Abstract A multiscale microstructured brittle dam-
age model is used to describe the behavior of con-
fined rock materials. Plane strain and triaxial tests con-
ducted at the laboratory scale are simulated in terms
of boundary value problems. Simulations reveal good
predictive qualities of the model to describe the macro-
scopic features of specimens at failure. Themicrostruc-
tures, oriented in different directions, allow the local-
ization of the macroscopic strain along straight lines,
emerging at the macroscale in the form of shear bands.
The microstructured material model, characterized by
recursive equidistant parallel cohesive-frictional faults,
is fully defined by six elastic and inelastic material con-
stants. The model was originally developed in a finite
kinematics framework to simulate the dynamic behav-
ior of confined brittle materials (Pandolfi et al. in J
Mech Phys Solids 54:1972–2003, 2006). In linearized
form, it has been extended and used for the simula-
tion of in-field excavations (De Bellis et al. in: Eng
Geol 215:10–24, 2016). The performance of the model
in predicting the behavior of small scale rock tests
in the laboratory, the object of the present study, has
never been investigated. Numerical simulations show
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that the model is able to capture several important
features observed in rocks, in particular the reduction
of the overall stiffness for increasing deterioration of
the material, fragile to ductile transition, strain local-
ization, shear band formation, and more general size-
effect.
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1 Introduction

Rocks are natural, inorganic solids, composed of two or
more minerals, that over geologic time undergo severe
transformation processes involved with the rock cycle
(ranging from igneous, sedimentary to metamorphic
rocks). Depending on the mechanical and environmen-
tal boundary conditions evolving in time, rocks can
be intact or characterized by the presence of discon-
tinuities (fractures, joints, cracks, bedding or foliation
planes) causedby the combined action of pressure, tem-
perature, strain localization, and fluid flow. Rock dis-
continuities can be induced by geological processes or
human activities, i.e. drilling, hydraulic fracturing, tun-
nelling and/or core handling. In either case, the result-
ing fractured rock masses often exhibit sets of near-
parallel, near-equally spaced fractures that are respon-
sible for extremely complex behaviours, whose study
is made more challenging by the coupling between
mechanics and fluid flows. The onset and development
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of discontinuities (that evolve according to, e. g., an
accumulation process) determine substantial changes
both in terms of stiffness and strength degradation
(Amitrano 2006) and in terms of porosity and perme-
ability changes. An ensuing feature of natural rocks
is the marked mechanical anisotropy associated with
the evolution of the microstructure, responsible for the
direct effects at the macroscopic scale (Hoek 1983;
Shao et al. 2005).

Both brittle and ductile behaviours are observed in
natural rock embankments (Paterson and Wong 2005).
In laboratory experiments, the transition from brittle to
ductile in the same rock may be obtained by increas-
ing the level of confinement (Horii and Nemat-Nasser
1986) or by inducingwith pre-cracks the onset of local-
ized mechanisms that develop within narrow zones
(Nikolic et al. 2015).

All these behaviors suggest the definition of
advanced numerical models, able to retain memory of
the evolving microstructure and to predict the over-
all non-linear response. In this respect, conventional
mechanical approaches, where the problem is mod-
elled at the structural scale adopting phenomenological
models for the material, may fail to be predictive under
different loading conditions, see, e. g., classical dam-
age and plasticity models (De Borst et al. 2012). Phe-
nomenological approaches are unable to describe the
exact mechanisms of degradation, since they are based
on strong simplifying assumptions. Thus, they capture
the correct mechanical response only with reference to
specific loading conditions (Bazant 1986; Cho et al.
1991; di Prisco et al. 2003).

On the other hand, fully micro-mechanical models
(Jing and Hudson 2002; Zhu and Shao 2017), possibly
relying on discrete (Lisjak and Grasselli 2014; Ingraf-
fea and Heuze 1980), continuous (Pande et al. 1979;
Riahi et al. 2010) or hybrid (Munjiza 2004) approaches,
provide an accurate description of mechanical and geo-
metrical features of the microstructure and are able to
predict its evolution, but, due to often prohibitively high
computational costs, their use is, in general, limited
to very small domains, of the order of the size of the
microstructure.

An alternative approach consists in making use of
multiscale models, which represent a fair compromise
between the contradictory requirements of describ-
ing the real complexity of the microstructure and of
keeping acceptable computational costs. Among dif-
ferent strategies successfully applied to rock mechan-

ics (Abou-Chakra Guery et al. 2009; Guo and Zhao
2014; Zeng et al. 2014; Guo and Zhao 2016; Liu et al.
2016; Wang and Sun 2018), here we adopt a multiscale
model of brittle damage, based on the explicit descrip-
tion of damaging microstructures consisting of recur-
sively nested parallel cohesive-frictional faults embed-
ded in an overall elastic matrix.

The brittle damage model has been developed orig-
inally within a finite kinematics framework (Pandolfi
et al. 2006), and it has been applied to grasp the transi-
tion from brittle to ductile behaviors of confined brittle
ceramics under dynamic loading. Numerical analyses
demonstrated that the model is particularly accurate
in simulating confined deviatoric stress states, which
is suggested to address applications concerning soil
and rock embankments. An obvious extension to con-
fined poro-mechanical problems was proposed later to
model hydraulic fracking phenomena in low perme-
ability shale gas and oil reservoirs (De Bellis et al.
2017; Caramiello et al. 2018). A key advantage of the
model is the possibility of evaluating, analytically, the
changes in permeability, directly related to the onset
and evolution of interconnected nested parallel faults.
The linearized version of the coupled model, presented
in De Bellis et al. (2016), was indeed used at the mate-
rial point level to reproduce hydro-mechanical triaxial
tests, considering different rocks available in the liter-
ature, and, in a finite element implementation, to sim-
ulate large scale field problems, e.g., deep excavations
in dry soils.

In this paper, we investigate the performance of the
linearized version of the model in reproducing labora-
tory experiments involving rocks in a plane or triaxial
strain state. We apply the model to plane strain and tri-
axial tests on hexahedrons made of brittle geological
materials (Yumlu and Ozbay 1995a). We demonstrate
that the model is particularly efficient in capturing the
global response in terms of load versus axial displace-
ment and in reproducing the failure patterns of con-
fined dry brittle materials under severe loading condi-
tions, albeit it is fed with a reduced number of material
parameters (six, two of which are elastic) and a rather
coarse discretization have been used.

The paper is organized as follows. In Sect. 2 we
briefly recall the mechanical features of the dry model.
InSect. 3wepresent numerical examples of plane strain
and triaxial loading of rock specimens and show the
performance of the brittle damage model. In Sect. 4
we highlight the advantages in using the multi-scale
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Brittle damage model simulations 59

brittle damagemodel and indicate possible applications
in geo-mechanics.

2 Mechanical features of the brittle damage model

The linearized brittle damage model adopted here is
presented first in De Bellis et al. (2016) in an extended
version addressing porous materials. The dry model
here considered is characterized by planar microstruc-
tures, consisting of nested families of equi-spaced
frictional-cohesive faults bounding an elastic matrix,
see Fig. 1a. In the case of a single family of faults, with
orientation N and spacing L , a displacement jump Δ

applied to each fault of the family leads to the discon-
tinuous or singular deformation component

εf = sym∇uf = 1

2 L
(Δ ⊗ N + N ⊗ Δ) .

where uf is the average displacement due to the fault
activity. If, additionally, the matrix undergoes a uni-
form deformation εm = sym∇um, we assume that the
total deformation decomposes additively into matrix
and discontinuous components

ε = sym∇u = εm + εf .

At the early stages of damage following the incep-
tionbefore the complete decohesion, faults are assumed
to show a cohesive behavior. The residual inelastic
bridging between the flanks of the crack is expressed
through a cohesive law T = T (Δ) that provides
the resisting tractions. The underlying thermodynamic
framework postulates the existence of a cohesive
energy density per unit surface, Φ(Δ, q), defined in
terms ofΔ and dependent on an appropriate set of inter-
nal variables q describing the current state of the faults.
A simple class of mixed-mode scalar cohesive laws
Φ = Φ(Δ, q) is obtained by introducing an effective
opening displacement Δ defined as Ortiz and Pandolfi
(1999)

Δ =
√

(1 − β2)(Δ · N)2 + β2|Δ|2 ,

where the material constant β assigns different weights
to the normal and tangential components ofΔ and |Δ| is
themagnitude ofΔ, see Fig. 1b. In a cohesive-frictional
material, β corresponds to the friction coefficient μ =
tan φ, where φ is the friction angle (De Bellis et al.
2016). In scalar terms, the effective cohesive traction
follows as

T = ∂Φ(Δ, q)

∂Δ
=

√
(1 − β−2)(T · N)2 + β−2|T |2 ,

and the cohesive tractions derive as Pandolfi et al.
(2006)

T = T
∂Δ

∂Δ
.

The irreversible nature of damage is enforced by
assumingunloading to the origin,which allows to intro-
duce only one internal variable storing the maximum
attained effective opening displacement q. The kinetic
equation necessary for the evolution of q is

q̇ =
{

Δ̇, if Δ = q and Δ̇ ≥ 0 first loading
0, unloading/reloading .

A typical cohesive law is the linear monotonic load-
ing cohesive envelope combined with unloading to the
origin, see Fig. 2 (Ortiz and Pandolfi 1999). The cohe-
sive envelope is a two parameter law, characterized by
the cohesive strength Tc and the critical energy release
rate, Gc, represented by the area enclosed by the enve-
lope. Thus the cohesive model is characterized by the
three parameters Tc, Gc and μ.

Upon the attainment of a critical opening displace-
ment Δc = 2Gc/Tc, faults lose cohesion completely
and cohesive tractions vanish, thus friction associated
with fault slidingmay remain the sole dissipationmech-
anism for the material. According to the classical fail-
ure criteria that generally apply to geomaterials, friction
operates at the fault level concurrently with cohesion
during closure, when the normal opening displacement

Fig. 1 a Schematic of the
assumed kinematics of
deformation between two
point P and Q, showing
elastic blocks of matrix
material bounded by
opening parallel faults. b
Decomposition of the
displacement jump Δ into
opening ΔN = Δ · N and
sliding ΔS = |Δ − ΔN N|
components
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Fig. 2 Normalized linearly
decreasing cohesive law
adopted in the brittle
damage model. a Effective
cohesive energy. b Effective
cohesive traction law

ΔN = Δ · N is null and only the sliding displacement
ΔS = Δ − ΔNN may be nonzero. Following the vari-
ational approach described in Pandolfi et al. (2002),
friction on the faults is accounted for by introducing
a dual kinetic potential per unit area Ψ ∗, and so the
frictional forces can be derived as

f = −∂Ψ ∗

∂Δ̇
.

A convenient rate-independent kinetic potential for
Coulomb friction can be taken of the form Pandolfi
et al. (2006)

Ψ ∗(Δ̇; εm,Δ) = μmax {0, −c · N} |Δ̇| ,
where |Δ̇| is the norm of the displacement jump rate
and c the contact tractions, leading to frictional forces
tangential to the fault plane.

The matrix is assumed to be linear elastic and
isotropic, characterized by the young modulus E and
the Poisson coefficient ν.

2.1 Variational update

By time discretization, it is possible to introduce a
functional that represents the incremental work-of-
deformation, useful to characterize variationally the
behavior of irreversible and frictionalmaterials at every
time step (Pandolfi et al. 2006; De Bellis et al. 2016).
An incremental process requires the evaluation of the
state variables at discrete times t0, . . ., tn+1 = tn +Δt .
At the time tn the state of the material is assumed to
be fully known from the previous steps. At the next
time tn+1, the total deformation εn+1 is assigned and
the new state of the material, given in particular by
the variables Δn+1 and qn+1, is sought. Note that, for

the sake of readability, in the following equations the
subscript n + 1 for the current variables is omitted.

Following the approach in Pandolfi et al. (2006), we
define an extended incremental work-of-deformation
En(ε

m,Δ, q), constrained with the impenetrability of
the closing faults and the irreversibility of the cohesive
damage. The functional is defined over the time interval
Δt as

En(ε
m,Δ, q) = Wm(εm) + 1

L
Φ(Δ, q)

+Δt

L
Ψ ∗

(
Δ − Δn

Δt
; ε,Δ

)
. (1)

The index n in En emphasizes the dependence on the
initial conditions. En splits additively into three terms:
(i) the strain energy density per unit of volume of the
matrix, Wm(εm), depends only on the strain in the
matrix and it is assumed to be convex and positive-
definite; (ii) the cohesive energy density per unit of
surface of the faults, Φ(Δ, q); (iii) the frictional dis-
sipation expended in the time interval Δt , expressed
through the time discretized potential Ψ ∗(Δ̇; εm,Δ)

(Pandolfi et al. 2002). By minimizing the constrained
functional, we obtain an incremental strain energy den-
sity Wn(εn+1), cf. (Ortiz and Pandolfi 1999)

Wn(ε) = inf
Δ, q

En(ε
m,Δ, q)

Δ · N ≥ 0;
q ≥ qn .

The equilibrium stress then follows from the optimized
potential as

σ = ∂Wn(ε)

∂ε
= ∂Wm(εm)

∂εm
.
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Fig. 3 Failure situations
occurring in the fault
inception of the brittle
damage model, visualized
in terms of Mohr’s circles. a
Case of a tensile maximum
stress, Rankine failure
criterion. b Case of an
overall compressive stress
state, Mohr–Coulomb
failure criterion

The current tangent stiffness of the material follows
directly as

Dσ = ∂2Wn(ε)

∂ε∂ε
= ∂2Wm(εm)

∂εm∂εm
.

Operatively, the constrained optimization is achieved
by introducing Lagrange multipliers as explained in
De Bellis et al. (2017).

2.2 Fault inception and orientation

Given the deformation εn+1 at time tn+1, in the case
of an undamaged material, the variational formulation
will establish whether the insertion of faults is ener-
getically favorable or not. In the numerical algorithm,
we compare two end states of the material, one with
newly inserted faults, and the other with no damage.
The correct end state will be associated with the low-
est incremental energy density Wn(εn+1). Clearly, the
insertion of faults corresponds to the attainment of an
irreversible condition, and the subsequent analysis will
always include the faults. The optimal energy is char-
acterized by the optimal orientation N of the faults,
obtained at once with the other state variables at time
tn+1, by considering the additional unit length con-
straint for the fault orientation |N| = 1. We recall here
the main results, while the complete discussion can be
found in De Bellis et al. (2016). The time-discretized
extended potential (1) is modified as

Wn(ε) = inf
Δ, q

En(ε
m,Δ, q)

Δ · N ≥ 0 ;
q ≥ qn ;
|N|2 = 1 .

By optimizing the constrained functional, the result-
ing set of nonlinear equations reflect two possible sit-

uations. The first situation is characterized by normal
opening of the faults, i. e., Δ = ΔN = Δ · N > 0
and ΔS = 0, see Fig. 3a showing the Mohr’s circles
for the critical stress state. The situation corresponds to
the attainment of the Rankine criterion for failure, and
it cannot occur if the stress in the matrix is compressive
in all directions. The optimality equations reduce to the
symmetric eigenvalue problem

σN = Λ N

The eigenvalue Λ is the maximum tensile principal
stress experienced by thematrix, themost energetically
favorable since it leads to the largest effective traction
T and to the least expenditure of cohesive energy. The
faults orient themselves so that N is aligned with the
direction of the opening.

The second situation is characterized by shear slid-
ing, and it occurs when the matrix is compressed in all
directions. In this case, the incipient faults are neces-
sarily closed and deform by sliding, thus Δ = ΔS and
ΔN = 0. The resulting optimality equations imply N
to be normal to the plane where the matrix shear stress
satisfies the Mohr-Coulomb failure criterion, see the
orientation αI in Fig. 3b showing the Mohr’s circles
for the critical stress state. The optimality equations
can be restated in the classical scalar form

τ = μTc − μσ, τ = M · σN, σ = N · σN ,

where M = Δ/|Δ| is the direction of the displace-
ment jumpandμTc defines thematerial cohesion (shear
resistance at null normal stress). In the sliding mode,
the incipient faults orient themselves along planes of
maximum shear stress for the matrix. The slidingmode
can be activated when the maximum shear planes are
under compression.

Finally, in cases in which both the opening and
sliding modes can operate, they are evaluated in turn
and the operative mode is chosen to be the energy-
minimizing one.
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Fig. 4 Concept of dislocation piling-up in the boundary layers,
for a fault family embedded into an outermost container. L is the
innermost fault family spacing, L1 is the outermost fault family
spacing, or the size of the container for the first family of faults

2.3 Length scale parameter and recursive faulting

The model described in the previous sections depends
on an assigned length L , which is the second geomet-
rical feature of the fault microstructure. The parameter
L can be computed variationally as part of the incre-
mental update in Eq. 1 if a suitable energetic contri-
bution is added. The additional energy can be thought
as the one necessary to accommodate the fault family
in order to satisfy the boundary conditions, see Fig. 4.
The satisfaction of the compatibility between the faults
and their container demands the presence of bound-
ary layers, located where the faults meet a confining
boundary, which have a finite thickness and penetrate
into the faulted region to a certain depth, see Fig. 4.
The corresponding misfit energy, accounting for dislo-
cations piling up at the borders, is of nonlocal type and
stored in the boundary layers (Pandolfi et al. 2006). The
length scale L of the microstructure results from the
balancing of the elastic-cohesive-frictional non-convex
energy functional and of the new scale-dependent non-
local term. The competition allows for the choice of
the most energetically favorable size of the microstruc-
tures. The resulting relaxed energy is tractable numer-
ically, since it eliminates any degeneracy of the non-
convex model. In particular, for the linearly decreas-
ing cohesive model chosen here, the fault separation L
results are defined analytically and are independent of
the opening displacement Δ:

L = L0 exp

[
1 − L1

G

Tc
2Δc

,

]

where L1 is the size of the container (e. g., the size of
the domain in field applications), G the shear modulus
and the length L0 represents an additional feature with
the potential to distinguish between ductile and brittle
behaviors (Pandolfi et al. 2006). Specifically, a small
value of the ratio L0/Δc corresponds to the formation
of numerous faults, that may reproduce a diffused dis-
placement jump leading to a ductile behavior, while
a large L0/Δc corresponds to the formation of a sin-
gle fault where the displacement jump is localized and
describes a brittle behavior, see Fig. 5. This modifica-
tion introduces a length scale in the model. The coef-
ficient L0 is the sixth parameter of the brittle damage
material.

More complex microstructures (recursive faulting)
can effectively be generated by applying the previ-
ous construction recursively. In the first level of recur-
sion, we simply replace in Eq. 1 the elastic strain-
energy density Wm(εm) of the matrix by the effec-
tive strain-energy density Wn(ε) of the first faulting
pattern. The substitution can be iterated, leading to a
recursive definition of Wn(εn+1). The recursion will
end when thematrix between the faults remains elastic,
thus Wn(ε) = W (ε). Note that the small deformation
tensor will result in the sum of the various contribu-
tions:

ε = sym∇u = εm + εf
1 + εf

2 + ... + εf
N

.

The level of recursion defines the rank of the
microstructure.

3 Numerical results

The brittle damage model has been implemented into
an in-house finite element code and has been used to
reproduce hydro-mechanical tests conducted in the lab-
oratory at the material point level, i.e., without mod-
elling the boundary value problem of the specimen and
only considering the constitutive response in terms of
stress-strain curves (De Bellis et al. 2016). While the
quality of themechanical response was good, there was
no possibility to capture the failure mechanism of the
specimen.

We are interested in verifying the ability of the brit-
tle damage model to provide a predictive response in
terms of failuremechanismwith reference to laboratory
tests conducted on samples of soil and rock materials.
Specifically, we consider the experiments documented
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Fig. 5 Ductile versus brittle
behavior explained by
means of the intrinsic length
scale parameter L0. The
same displacement jump Δ

may be spread over multiple
faults, leading to a diffused
deformation, or applied to a
single fault, leading to a
sharp separation between
the two cohesive surfaces

in the technical note (Yumlu and Ozbay 1995b), con-
sisting of plane strain and triaxial tests. The experimen-
tal campaign referred to has been focused on capturing
both global responses, in terms of stress-strain curves
and local responses, i.e. failure mechanisms, of differ-
ent rock specimens including coal, sandstone, norite
and quartzite. Special attention has been devoted to
investigating the influence of confinement, which may
result in significantly different responses ranging from
the brittle to the ductile regime. The triaxial experi-
ments were carried out in agreement with the stan-
dards prescribed by the International Society for Rock
Mechanics ISRM.

In the experiments, plane strain and triaxial condi-
tions were imposed using a stiff frame test rig, sand-
wiching the hexahedral specimen between two rigid
plates connected by bolts, parallel to the plane y-z.
Plates provided the confinement necessary to avoid
out-of-plane displacements in the x direction, in the
case of plane strain tests, and the desired pressure for
the fully triaxial tests. The confinement pressure on
the directions y and z is provided by means of two

additional plates; the rig was able to provide a confine-
ment pressure up to 10MPa. As specified in Yumlu and
Ozbay (1995b), the experimental setupwas only able to
approach plane strain conditions,which are indeed very
difficult to assign in experiments. In fact, the displace-
ment in the direction normal to the plane strain can be
determined only by considering the relative stiffness of
the frame and the rock specimen, so that, depending on
the rock type, only “quasi-plane strain” conditions can
be guaranteed. The experiments evinced that the results
obtained for norite and quartzite were strongly affected
by the setup, while a better constraint was achieved
for the sandstone and coal rock specimens, stiffer than
norite and quartzite. On these grounds, in the following
we will simulate only the sandstone experiments.

Material parameters for sandstone rock used in the
simulations are listed in Table 1, including the elas-
tic and frictional parameters available from Yumlu and
Ozbay (1995b) and the three additional parameters for
the brittle damage model, the latter calibrated with pre-
liminary calculations at the material point level.

Table 1 Material properties adopted in the numerical tests for the simulation of the sandstone experiments documented in Yumlu and
Ozbay (1995b)

E (GPa) ν φ ◦ Tc (MPa) Gc (J/m2) L0/Δc

29 0.26 68 128 900 120

The first three parameters are taken from the experimental data, the last three parameters have been calibrated with preliminary
calculations at the material point level
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Fig. 6 Schematic of the boundary conditions applied in the
numerical simulation in the plane x-z, for the a plane strain case
and b the triaxial case. In both cases, on the planes normal to the
y direction, a confinement pressure σc was applied

The laboratory experiments revealed significant dif-
ferences in the response of the rocks to plane strain
and triaxial conditions. The main discrepancies are:
(i) higher compressive strength in the z direction
observed in plane strain conditions; (ii) thoroughly dis-
tinct responses between plane strain and triaxial con-
ditions in the residual stage; (iii) earlier triggering of
the yielding stage, and ensuing deviation from the lin-
ear behaviour, observed in triaxial tests (Yumlu and
Ozbay 1995b). The experimentalists justify these dif-
ferences with the fact that, in plane strain conditions,
the principal stress in x direction increases because of
the constrained displacement. Other observed differ-
ences are related to the formation of shear bands. In
triaxial tests, localized deformations were noticed to
begin simultaneously with the onset of yielding, well
before the peak stress. By the way of contrast, in plane
strain tests, shear bands appeared abruptly in corre-
spondence to the attainment of the peak stress.

We are interested in verifying the performance of
the brittle damage model in the two cases. Hexahedral
specimens with dimensions 30× 30× 10 mm are used
for all the tests, and in all test three different confine-
ment stresses, σc = 3, 5, 8 MPa, are applied. Figure 6
visualizes the boundary conditions adopted in the x-
z plane for the simulations of plane strain and triaxial
tests, respectively. Results are reported in terms of devi-
atoric stress versus axial strain, defined as

σdev = Rz

A0
− σc ,

Fig. 7 Computational finite element mesh used in the plane
strain and triaxial simulations, comprising 40,817 nodes and
27,648 10-noded tetrahedral finite elements

where Rz is the total nodal reaction in direction z, A0 is
the area of the specimen normal to the z direction and
σc is the confinement pressure, applied to the specimen
surfaces normal to the y direction, and

εa = ua
H

,

where ua is the average relative displacement of the two
specimen surfaces in the z direction and H the length
of the specimen in direction z (3 mm). We also report
volumetric deformations, which are computed as

εv = ua
H

+ ux2 − ux1
D

+ uy2 − uy1

H
,

where ux2, ux1, and uy2, uy1, are the average displace-
ments on the two faces of the specimen normal to the
x and y directions, and H measures the dimension of
the specimen in y direction.

Numerical results are obtained using the mesh
shown in Fig. 7, selected after preliminary calculations
on coarser and finer meshes that confirmed the mesh-
independence of the multiscale model. The computa-
tional finite element mesh comprises 40,817 nodes and
27,648 10-noded tetrahedra.
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Fig. 8 Plane strain conditions, deviatoric stress versus axial
strain, comparison between experimental and numerical results

3.1 Plane strain conditions

We begin with the plane strain condition. Figure 8
compares experimental and numerical results, in terms
global curves of deviatoric stress versus axial strain,
for increasing levels of confinement, i. e., σc = 3, 5, 8

Fig. 9 Plane strain condition. Comparison between numerical
and experimental results. Numerical results show the contour
maps of the shear component of the distribution of the open-
ing displacement along the faults, following the formation of a
localized diagonal shear fracture, for σc = 5 MPa confinement.
Experimental results reveal the existence of a sharp crack

MPa. In keeping with the experimental results, numer-
ical simulations show that an increase in the confine-
ment level induces a stiffer response, accompanied by a
higher peak value and post-peak behaviors. In all cases
the numerical model is able to reproduce the initial lin-
ear response and the value of the peak stress in a very
satisfactory manner. The post-peak softening branch is
in general too steep, while the hardening branch is well
captured. Note that the model is not able to describe the
initial nonlinear response that is observed in the exper-
imental curve for a low confinement. This discrepancy
can be explained by the presence of irregularities on
the interface between the plates and the specimen that
are not described in the numerical model (Klerck et al.
2004).

In every plane strain specimen, experimental fail-
ure patterns testify the formation of a well marked
shear fracture on the x–z plane, running across the
full thickness in diagonal direction. As the confinement
increases, the fracture becomes straighter and the ends
reach the vertices of the x–z surface, so that the spec-
imen splits into two equal halves. Figure 9 compares
the numerical and experimental damage patterns for the
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Fig. 10 Formation of a macro-fault by combination of sliding
displacements along the microstructure

case σc = 5MPa. The numerical results are reported in
terms of the contour plot of the sliding displacement
ΔS , which develops only where the fracture is formed.
Experimental results show the formation of a sharp
crack in the same direction. It is interesting to observe
that the orientation of the faults at themicroscopic level
is very different from the macroscopic orientation of
the shear band. In fact, the shear band emerges as the
results of small sliding along the faults, see Fig. 10.

Numerical simulations were able to point out the
overall important phenomenon of dilatancy that was
not measured in the experimental work. Figure 11
shows the evolution of the volumetric strain with the
axial strain as observed in the numerical outcomes.
Regardless of the confinement level, in a fully elas-
tic compressive regime the model experiences volu-
metric compression up to the peak stress. At the onset
of fault inception and in the subsequent phases, the
model exhibits dilatancy, an increase of the volumet-
ric deformation progressing until the cohesive stage is
fully developed. Afterwards, when no further cohesive
dissipation is observed, the model keeps expanding at a
constant rate (which can be null). In keeping with com-
mon findings in rock mechanics, dilatancy is markedly
influenced by the level of the confinement: high con-
finement pressure reduces the compressive deforma-
tion but prevents the development of positive volumet-
ric deformations, so that dilatancy is observed only in
the case of lower confinements.

3.2 Triaxial conditions

We consider only the case with 5 MPa confinement.
Fig. 12 compares the experimental and numerical devi-
atoric stress versus the axial strain curve. A global
reduction of the tangent stiffness attributable to yield-

Fig. 11 Plane strain
condition. Numerical
evolution of the volumetric
strain vs axial strain at
different confinement levels
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Fig. 12 Triaxial conditions
for a confinement level of
σc= 5 MPa. Comparison
between numerical and
experimental global curves

ing is observed, both in experiment and simulation,well
before the attainment of the peak stress. The peak is
correctly captured as well as the post-peak softening
behavior. In contrast with the plane strain condition
results, triaxial tests show a final plateau with constant
deviatoric stress for increasing axial strain, although,
with respect to the experimental results, the numerical
plateau is characterized by a lower value of the resid-
ual stress. In terms of mechanical response, the brittle
damage model captures the complex behavior of the
sandstone. Figure 13 visualizes the contour map of the
sliding displacement component at the time of the for-
mation of a neat shear band, corresponding to the point
A in Fig. 12. The failure patterns resemble the ones
observed in the plane strain condition, in keeping with
the experimental results (Yumlu and Ozbay 1995b).
It is interesting to notice that, in the absence of the
plane strain boundary conditions, a slight out of plane
non-symmetric deformation is observed in the numer-
ical results, see the arrow in Fig. 13, which was not
observed under plane strain conditions.

4 Conclusions

In this paper, we presented new applications of a dry
brittle damage model in linearized version, by simulat-
ing laboratory tests on rocks documented in Yumlu and
Ozbay (1995b). The study has been carried out on sim-
ple and well-documented cases in order to reveal the

Fig. 13 Triaxial conditions for a confinement level of σc= 5
MPa. Sliding displacement map after the formation of a marked
diagonal shear band, i.e., point A in Fig. 12. The arrow points to
a out-of-plane deformation due to the triaxial conditions
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mechanical features of the brittle damage model and
to clarify the relevance of the underlying microstruc-
ture in the predictability of the model. We simulated
laboratory plane strain and triaxial tests on rock sam-
ples that were conceivedwith the goal of understanding
the effects of loading conditions and of the confining
pressure on peak and residual strengths (Peters et al.
1988).

Interestingly, the brittle damagemodel has been able
to capture all the distinctive features of the material
behavior in terms of stiffness, peak load, and post peak
behaviour under different values of confinement. Fur-
thermore the model was able to predict typical crack
patterns, characterized by well defined pseudo-planar
shear bands, observed in the experiments. As pointed
out in Labuz et al. (1996), in the case of plane strain
conditions, the failure patterns are marked and well
defined. For triaxial tests, the onset of fracture is antic-
ipated by more diffuse phenomena that can be ascribed
to yielding, which tends to localize in a shear band
leading to a localized rupture, see also (Besuelle 2001)
where Vosges sandstone was tested.

The model, in all the numerical tests, has been able
to describe the different responses of the sandstone,
reproducing both the overall mechanical response and
the failure patterns, in keeping with the typical brittle-
to-ductile transition manifested by geological materi-
als under confinement. Remarkably, all the results have
been obtained by using the same set of material param-
eters, with no need to tune them according to the par-
ticular loading condition examined. This property is
a natural outcome of the microstructured nature of the
model that can be characterized by several length scales
and does not suffer of mesh dependency when used in
discretized domains.

We conclude that the brittle damagemodel in the lin-
earized version is a very promising material model for
geomechanical problems, especially considering the
very small numbers of characterizing material param-
eters.

Possible applications in the fields of geomechanics
include fracking processes (Caramiello et al. 2018),
excavations, slope instability, geothermal heating and
cooling, and others.
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