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Abstract The realistic approximation of structural
behavior in a post fracture state by the phase-field
method requires information about the spatial orienta-
tion of the crack surface at the material point level. For
the directional phase-field split, this orientation is spec-
ified by the crack orientation vector, that is defined per-
pendicular to the crack surface.An alternative approach
to the determination of the orientation based on stan-
dard fracture mechanical arguments, i.e. in alignment
with the direction of the largest principle tensile strain
or stress, is investigated by considering the amount of
dissipated strain energy density during crack evolution.
In contrast to the application of gradient methods, the
analytical approach enables the determination of all
local maxima of strain energy density dissipation and,
in consequence, the identification of the global maxi-
mum, that is assumed to govern the orientation of an
evolving crack. Furthermore, the evaluation of the local
maxima provides a novel aspect in the discussion of
the phenomenon of crack branching. As the directional
split differentiates into crack driving contributions of
tension and shear stresses on the crack surface, a consis-
tent relation toMode I andMode II fracture is available
and a mode dependent fracture toughness can be con-
sidered. Consequently, the realistic simulation of rock-
like fracture is demonstrated. In addition, a numerical
investigation of �-convergence for an AT-2 type crack

C. Steinke · J. Storm · M. Kaliske (B)
Institute for Structural Analysis, Technische Universität
Dresden, Dresden, Germany
e-mail: Michael.Kaliske@tu-dresden.de

surface density is presented in a two-dimensional setup.
For the directional split, also the issues internal locking
as well as lateral phase-field evolution are addressed.

Keywords Brittle fracture · Phase-field method ·
Directional split · Crack orientation vector · Mode
dependent fracture toughness

1 Introduction

Abasic principle of structural design is the integrity and
stability of load bearing components. Here, an impor-
tant aspect is the prevention of crack evolution. From a
continuum mechanical viewpoint, cracks are a separa-
tion of previously sound bulkmaterial. In consequence,
the material’s capacity to transfer tensile stresses is lost
and the capability to transmit shear stresses is reduced
to interlocking and frictional effects.

From the computational point of view, the continu-
ous representation of a discrete crack’s topology, see
Fig. 1a, by the phase-field, see Fig. 1d, is a rather
novel approach. Previous approaches often involve the
explicit representation of the crack schematically visu-
alized in Fig. 1b, i.e. bymeans of an adaptive remeshing
strategy and the duplication of nodes, e.g. Ingraffea and
Saouma (1985), Miehe and Gürses (2007) and Ortiz
and Pandolfi (1999). A comprehensive overview on the
theory, implementation and analysis of this method in
combination with a material force approach to evaluate
dynamic crack propagation criteria is given in Özenç
(2016). Another approach is denoted as extended finite
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(a) (b) (c) (d)

Fig. 1 Approaches for the numerical approximation of a discrete crack topology via the method of b material forces, c eigenerosion
and d phase-field

element method (XFEM). Here, an enrichment of the
displacement field ansatz functions is employed to
account implicitly for the jump of displacements across
the crack face without an explicit representation of the
crack surface, see e.g.Belytschkoet al. (2001) andSong
and Belytschko (2009).

A variational description of brittle fracture is inves-
tigated in Francfort andMarigo (1998), considering the
variation of the crack domain. Through the regulariza-
tion of the fracture energy, inherent mesh dependency
and challenging adaptive meshing strategies are over-
come. An approach for the regularization is presented
in Schmidt et al. (2009) as eigenfracture. In Pandolfi
and Ortiz (2012), the method is implemented into an
element deletion scheme for the finite element method
(FEM) called eigenerosion, see Fig. 1c. The kinemat-
ics of a crack topology is obtained via the degradation
of the stiffness of individual finite elements. Recently,
an eigenfracture approach based on the framework of
representative crack elements is shown in Storm et al.
(2021) and a field crack mechanics approach in Morin
and Acharya (2021), which also make use of a crack
orientation vector.

Similar to eigenerosion, the phase-field method for
fracture introduces a regularization for the fracture
energy, which is related to the surface area of the crack

D� =
∫

�

k(x) dA = Gc�, (1)

where Gc denotes the fracture toughness. The numer-
ical approximation of Eq. (1), based on the ideas of
Mumford and Shah on image segmentation in Mum-
ford and Shah (1989), is discussed in Bourdin (2007)
and Bourdin et al. (2000). In essence, the crack surface
density γl is introduced in order to provide an approx-
imation of the crack surface by

Fig. 2 Regularized crack approximation �l of the sharp crack
� in a 1D domain

� ≈ �l =
∫

�

γl dV . (2)

The crack surface density γl(p) is a function of an addi-
tionally introduced field variable—the phase-field p,
which lends his name for the approach in general. In
analogy to standard phase-transition problems, e.g. the
evolution of austenite and martensite in metals or the
transition of chemicals between the different physical
states solid, fluid and gas, the crack is assumed to be
a different “phase” of the material. More precisely, a
sound solid is associated with p = 0 and the cracked
state (or phase) is represented by p = 1, see Fig. 2.
The numerical treatment of discontinuities is challeng-
ing and can lead to mesh dependency, localization and
convergence problems, see e.g. Bažant and Pijaudier-
Cabot (1988) and Pijaudier-Cabot and Bažant (1987)
for a similar problem within the theory of damage and
softening. A common approach to resolve the issue is
gradient enhancement, see e.g. Zreid (2018). The ques-
tion, whether the phase-field approach should be con-
sidered as a special type of a damage formulation, is
discussed e.g. in de Borst and Verhoosel (2016) and
Steinke et al. (2017).

The paper at hand is based on the developments,
findings and discussions published in Steinke (2021).
It aims at the further development of the phase-field
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method for crack approximation towards a realistic and
reliable approach, not only for the prediction of crack
patterns due to excessive loading, but also for the accu-
rate simulation of the post fracture structural response.
In Sect. 2, the basic theory of a phase-field method for
brittle fracture is outlined. Section 3 is focused on the
question, how the spatial orientation of the crack sur-
face can be defined for the directional split. Section 4 is
dedicated to numerical examples and the final section
closes the paper with conclusions.

2 The phase-field approach to brittle fracture in
the framework of the finite element method

2.1 Regularized crack surface

The phase-field method provides a regularized approx-
imation �l for the discrete crack � in terms of the vol-
ume integral given in Eq. (2) with a crack surface den-
sity

γl = 1

2l

(
p2 + l2|∇ p|2

)
(3)

of AT-2 type (Ambrosio and Tortorelli 1990). An addi-
tional field variable p as well as the regularization
length parameter l are considered. A fundamental fea-
ture of the crack set’s approximation by this ellipti-
cal functional is the continuous or smooth transition
between the sound and broken regions of the solid
shown in Fig. 2, that is governed by the gradient term
in Eq. (3). In analogy to the gradient enhancement of
damage, the regularization length parameter l governs
the width of the transition zone. The relation of the
regularization length to the discretization is discussed
for instance in Hofacker and Miehe (2011), Linse et al.
(2017) and Pandolfi et al. (2021).

AT-2 is a common choice in the computational
mechanics community, see e.g. Borden et al. (2012),
Hofacker et al. (2009) and Kuhn and Müller (2010),
due to the straight forward implementation and onset
of phase-field evolution at external loading. Neverthe-
less, the additional numerical effort to constrain the
phase-field evolution in AT-1 is rewarded by an initial
elastic phase before the phase-field evolution, which is
a better approximation for brittle fracture than the soft-
ening behavior of AT-2 prior to the crack, see Alessi
et al. (2018) and Tanné et al. (2018) for a discussion.
Furthermore, higher order functionals can be used for

the approximation of materials with anisotropic frac-
ture toughness and an enhanced approximation of �l at
the expense of higher order gradients, see e.g. Borden
et al. (2014).

By the continuous crack approximation, an explicit
representation of the actual crack topology is lost. This
results in additional effort necessary, if the position of
the crack tip, the location of branching or the angle
of kinking are required. A common strategy to visual-
ize the crack surfaces is their representation by isosur-
faces at a threshold value for the phase-field variable
pc, e.g. pc = 0.95, combined with the blanking out
of elements where p > pc. Numerical approaches to
evaluate the crack tip propagation speed are discussed
e.g. in Steinke et al. (2016).

2.2 Crack driving force

According to Griffith, the formation of crack surface
requires energy, that is dissipated from the strain energy
stored in the deformation of the structure. In the initial
considerations, a tensile force on the atomic structure
is assumed. As soon as the distance between the atoms
exceeds a critical value, the atomic bond is released
and a separation of the initially continuous body, i.e.
a crack, is obtained. In the framework of continuum
mechanics, the counterpart to force and separation in
the sense of Griffith are stresses and strains, respec-
tively. Furthermore, the energy associated with forces
acting along the separation distance has its local contin-
uum mechanical counterpart in the strain energy den-
sity at the material point. Hence, in a similar way as
γl is the representation of the regularized crack surface
�l at the material point level, the strain energy density
ψε is the local basis to obtain the phase-field analogue
of the structural level quantity energy release rate G.
Assuming linear elasticity, the strain energy density

ψε = λ

2
(ε : 1)2 + μ ε : ε (4)

is written in terms of the Lamé coefficients λ andμ, the
second order identity tensor 1 and the small strain ten-
sor ε. The additive decomposition of the strain energy
density

ψε = ψ+ + ψ− (5)

into crack driving and persistent components, ψ+ and
ψ−, respectively, is called the phase-field split. The
phase-field split allows for a definition of the specific
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energetic components that drive the crack evolution.
Furthermore, a thermodynamic consistent formulation
of the phase-field results in a strong link between the
split of the strain energy and the post fracture behavior
of the phase-field crack.

When proposing variational fracture for the phase-
field method in Francfort andMarigo (1998), Francfort
and Marigo considered the total strain energy density
to be available for the formation of the crack surface.
In a strict sense, the proof of �-convergence for the
phase-field functional, i.e. � ≈ �l for l → 0 is avail-
able for this split only.However, a�-convergence proof
for eigenfracture exists in Schmidt et al. (2009), which
takes a decomposition of the strain energy into account.
The decomposition of the strain energy has turned out
to be an essential part of phase-field and eigenfrac-
ture models in order to avoid nonphysical predictions
for deformation kinematics of cracks, e.g. crack face
interpenetration and lateral deformations in the post-
fracture state. Thus, the split implicitly defines the trac-
tion transfer through a crack and the contact state of
the crack surface. The energetic split further defines
the contributions to the crack driving force. With such
a split, nonphysical crack propagation at uniaxial or
hydrostatic pressure is overcome, which is observed in
the early phase-field formulations, see Bourdin et al.
(2000).

The question on the correct split has appeared with
its introduction to phase-field fracture. The most com-
mon volumetric deviatoric split and spectral decompo-
sition are adopted and modified in many phase-field
approaches. An overview on energy splits for phase-
field can be found in Storm et al. (2020). The vio-
lation of the crack boundary conditions, reported for
instance in May et al. (2015), Schlüter (2018) and oth-
ers, inspired the stress based directional split published
in Steinke and Kaliske (2018). The starting point is the
set of basic crack kinematics. These are defined via

(a) Compression (b) Tension (c) Shear

Fig. 3 Crack kinematics for ideal plane crack without friction
or interlocking

Fig. 4 Definition of the crack orientation vector r, the crack
coordinate system (CCS) and the decomposition of the stress
tensor with respect to the CCS

the structural response of a body with an ideal plane
crack without friction or interlocking on the surface at
tensile, compression and shear loading, see Fig. 3. A
perfectly plane and flawless crack surface of a closed
crack subjected to compression loading perpendicular
to the crack surface is assumed to transmit compres-
sion in a similar manner as if no crack is present at all.
Reversing the sign of the loading to apply tensile load-
ing yields the separation of the crack faces, i.e. crack
opening. Here, no stresses are assumed to be transmit-
ted and, therefore, no reaction force to a crack opening
displacement is expected. Finally, also shear stresses
vanish on the crack surface, if friction and interlock-
ing effects are excluded. Hence, shearing of the crack
faces against each other yields no resistance in terms
of a reaction force.

The key feature of the stress based directional
decomposition is the information about the orientation
of the crack surface. This information is provided in a
unique way by the crack orientation vector r perpen-
dicular to the crack surface, see Fig. 4. In combination
with vectors s and t, both perpendicular to r and to
each other, a Cartesian crack coordinate system (CCS)
is established. The decomposition of a linear elastic
ground stress tensor based on Eq. (4) with respect to
the CCS is visualized in Fig. 4. In order to approximate
the crack kinematics visualized in Fig. 3, the crack driv-
ing stress tensor

σ+ = 〈σ̂rr〉+
[
r ⊗ r + λ

λ + 2μ
(s ⊗ s + t ⊗ t)

]

+ σ̂rs (r ⊗ s + s ⊗ r) + σ̂rt (r ⊗ t + t ⊗ r)
(6)

includes the shear components on the crack surface as
well as the stress components perpendicular to the crack
surface with tensile magnitude by 〈•〉± = (•± |• |)/2.
Furthermore, the continuum description of the crack
kinematics originating from a discrete crack behavior
requires an additional correction term to account for
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Energetically motivated crack orientation vector 19

Poisson effects during crack opening, see Steinke and
Kaliske (2018). It can be shown, that Eq. (6) is identi-
cal to the recent development of a representative crack
element theory in case of isotropic linear elasticity at
small strains, see Storm et al. (2020).

The persistent stress tensor, being the counterpart to
the crack driving stress tensor, reads

σ− = 〈σ̂rr〉−r ⊗ r − λ

λ + 2μ
〈σ̂rr〉+ (s ⊗ s + t ⊗ t)

+ σ̂sss ⊗ s + σ̂ttt ⊗ t + σ̂st (s ⊗ t + t ⊗ s) ,

(7)

containing the remaining components of the total stress
tensor as well as the correction termwith negative sign.
This ensures, that linear elastic behavior is recovered
in case of no phase-field crack is present. In reverse
manner, the crack driving and persistent strain energy
densities are obtained from the stress and strain tensors
by

ψ+ = 1

2
σ+ : ε and ψ− = 1

2
σ− : ε. (8)

This ensures, that the amount of dissipated energy is
directly linked to the post fracture behavior of the
phase-field crack, which results in a thermodynamic
consistent formulation.

With the measures of the crack surface as well as the
crack driving strain energy in terms of their densities at
hand, the energetic link to describe the dissipation of
the latter into the evolution of the former is provided
by the total energy

E(u, p) =
∫

�

g(p)ψ+(u) + ψ−(u) + Gcγl(p) dV

(9)

of the solid domain �, where Gc denotes the fracture
toughness and the external forces are omitted for the
sake of simplicity. This leads to the governing partial
differential equations

div
(
g σ+ + σ−) = 0 (10)

and

Gc

l

(
l2∇2 p − p

)
− ∂g

∂p
ψ+ = 0 (11)

for the two-field problem, a standard quadratic degra-
dation function

g(p) = (1 − p)2 (12)

is used in the following.

2.3 Crack irreversibility

From the macroscopic point of view, crack formation
is an irreversible process and the irreversibility of frac-
ture is a basic assumption in linear elastic fracture
mechanics. A fundamental challenge of macroscopic
irreversibility in the context of the phase-field method
for fracture is the continuous approximation of the
crack surface itself. While irreversibility of a discrete
crack can be formulated as

�̇ ≥ 0 (13)

in a straight forward manner, the question remains,
whether this results in a similar constraint

ṗ ≥ 0 (14)

on the phase-field degree of freedom as well as postu-
lated in Miehe et al. (2010). Alternatively, a restriction
on the global evolution of the regularized surface

�̇l ≥ 0 (15)

could be required. It should be noted, that fulfilling
Eq. (14) implicitly results inEq. (15), but not vice versa.
Furthermore, both conditions are not a strict represen-
tation of the original constraint of Eq. (13).

The implementation of the constraint Eq. (14) can
be based on a history variableH, that is used in Eq. (11)
instead of the crack driving strain energy density ψ+.
While this approach is common in the theory of dam-
age, its application in the context of the phase-field
method for fracture is initially introduced by Miehe
et al. (2010). The implementation of this approach is
straight forward, as the history variable can be formu-
lated in terms of the material point level value of the
crack driving strain energy density ψ+. However, the
analysis of Linse et al. (2017) indicates, that the amount
of crack surface area is overestimated by this method.

An alternative approach is published by Bourdin
et al. (2000). They propose an additional boundary
condition on the phase-field degree of freedom, as
soon as a critical value is exceeded. In consequence,
the local ”healing” of the phase-field value is allowed
and the phase-field profile at the end of the evolu-
tion closely resembles the analytical solution, see Linse
et al. (2017). Therefore, the final amount of crack sur-
face obtained in their setup is very close to the expected
value. However, this result can be obtained only by
the violation of Eq. (14). In consequence, the energetic
counterpart of the crack surface, i.e. the strain energy,
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that is dissipated locally for the higher phase-field
value, can increase due to the increase of the degrada-
tion function for the decreasing phase-field value. From
the energetic point of view, strain energy is created from
crack surface locally. While the global energy balance
is not violated in this case due to the equivalence of
energetic contributions from strain and crack surface in
Eq. (9), a different problemarises. The energy is a scalar
value without direction. In contrast, the degradation
function affects a second order tensor in the definition
of the effective stress tensor in Eq. (10). As the crack
evolution is reversed locally, the energy of the crack
surface, that is without direction, is transformed into
an increase in the effective stress tensor. Let us assume
a volumetric deviatoric split. Furthermore, assume vol-
umetric expansion triggered the phase-field evolution
in the first place. Now, local healing permits the trans-
formation of this initial ”volumetric” strain energy into
deviatoric components. For a directional split, the same
applies to the interchange of tension and shear as well
as a change of the crack orientation during evolution.
However, a study on this issue is a non-trivial challenge,
that may have not been tackled yet, as the phase-field
community seems to be totally unaware of this hardly
realistic process. Nevertheless, this issue is not inves-
tigated in this paper any further.

In this work, the combination of both approaches,
that is already published in Steinke and Kaliske (2018),
is applied in order to benefit from the elegant simplic-
ity of a formulation with a damage-like history while
obtaining a proper profile for fully evolved cracks. A
critical value for the phase-field pc is defined. Based
on this value, a history variableH(t) is introduced, that
depends on the current solution time tn as well as on a
previous step of the simulation at time tn−1. The history
variable reads

H(tn) =
{

ψ+(tn) if p(tn) < pc
max

(H(tn−1), ψ
+(tn)

)
otherwise

(16)

and is used in the modified evolution equation for the
phase-field

Gc

l

(
2l2∇2 p − p

)
− ∂g

∂p
H = 0. (17)

2.4 Finite element aspects

The solution of multifield finite element equations sys-
tems based on the governing equations Eqs. (10) and

(17) is obtained within the parallel version of FEAP 8.5
(parFEAP) documented in Taylor (2017). ParFEAP’s
solution is based on a METIS Karypis and Kumar
(1998) partitioning of the discretization and the appli-
cation of parallel solvers provided by PETSC Balay
et al. (2019). Within this paper, the generalized mini-
mal residual algorithm published in Saad and Schultz
(1986)with a Jacobi preconditioner and amodified con-
jugate gradient approach published in van der Vorst
(1992) are applied.

A multifield equation system can be solved in a
monolithic or staggered scheme. In the monolithic
scheme, the increments of all DOF are obtained simul-
taneously. Therefore, the stiffness coupling terms are
of major importance. The staggered solution scheme
is based on an alternated solution for specific DOF.
In terms of the phase-field method, the increments of
the displacements are obtained at frozen phase-field
values and the increments of the phase-field are com-
puted for a frozen state of deformation. The alternated
solution is performed iteratively, until a convergence
criterion is met. Convergence criteria are e.g. no fur-
ther changes in the increments are obtained for all DOF
or the norm obtained for a post-processed monolithic
residuum is below the tolerance limit.

The application of the staggered solution scheme
to phase-field simulations is required for static crack
propagation, as the monolithic solution cannot obtain
convergence in the case of brutal phase-field evolution,
see Miehe et al. (2010). Instead, a staggered solution
is proposed in Miehe et al. (2010). Originally, a single
solution for each increment of the mechanical field and
the phase-field is motivated by very small load steps
during the crack evolution, which is replaced by the
staggered iterations in later phase-field approaches. In
transient simulations, the inertia, which is not affected
by the phase-field, acts as a stabilization to the solution
and the monolithic solution scheme is applicable, see
e.g. Borden (2012) and Steinke et al. (2016).

3 Crack orientation vector

A major ingredient of the directional split is a real-
istic definition of the crack orientation vector r. The
explicit definition of the crack orientation forms fur-
ther the basis of the generalization of the directional
split in the framework of representative crack elements,
see e.g. (Storm and Kaliske 2021; Storm et al. 2020,
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Energetically motivated crack orientation vector 21

Fig. 5 Representation of the crack orientation r at the crack tip
by the gradient type definition r = ∇ p/|∇ p|

2021; Yin et al. 2021). The definition r = ∇ p/|∇ p|
proposed in Strobl and Seelig (2015) seems an intu-
itive approach. It results in a realistic orientation in the
special case of the through crack discussed by Strobl
and Seelig. However, this definition fails both at the
crack tip as well as within fully degraded elements. At
the crack tip, the gradient of the phase-field does not
represent the actual orientation of the crack, see Fig. 5.
While this is the critical region, where crack propa-
gation is expected, the phase-field evolution is affected
by awrong decomposition of the stresses. Furthermore,
the stress free boundary of the crack surface requires an
approximation by at least one row of connected fully
degraded elements, see Steinke et al. (2016). However,
in a fully degraded element, i.e. all nodes having p = 1,
the gradient of the phase-field is not specified properly.
While this region is critical for the proper approxima-
tion of the crack kinematics, again the gradient defi-
nition fails to deliver a realistic approximation of the
crack.

In the following, two approaches to define the ori-
entation of a phase-field crack are proposed. The focus
during the development is on a realistic approxima-
tion of the actual crack orientation of the represented
discrete crack, especially during crack propagation. At
first, a definition based on an evaluation of the principal
stresses is proposed, that resembles closely to the prin-
cipal stress failure criterion of early fracture mechanics
theory. The second approach is based on an analytical
evaluation of the crack driving strain energy density at
the material point level.

3.1 Principal direction

The evaluation of the principal direction of stresses or
strains is well established in early approaches to model
fracture. Furthermore, it sustains a significant influence
on damage and failure simulation, see Gross and Seelig
(2011). Indeed, the formation of a crack surface per-

pendicular to the largest tensile strain or stress is an
intuitively realistic approach based on everyday life’s
observation.

In an isotropic linear elastic material, the principal
directions of strains and stresses are identical. A similar
conclusion is obtained for the strains and the effective
stress tensor for special cases, e.g. the spectral and volu-
metric deviatoric split, see Steinke (2021) for a detailed
investigation of the spectral split on this issue. How-
ever, an analogous derivation is hardly possible for the
directional split. The reason is the composition of the
stress tensors in Eqs. (6) and (7), which depend on the
crack orientation vector r, as well as the dependence
on the specific value of the degradation function. In
consequence, analytical conclusions on the principal
directions of the effective stress tensor of the direc-
tional split, i.e. whether or not they are identical to the
principal directions of the strain tensor, are not avail-
able. Rather, the principal directions of the strains are
evaluated and employed.

A general definition of the crack orientation vector
by a principal (strain) direction criterion can be pro-
vided by

r || n1, (18)

where n1 is the direction of the largest principal strain,
i.e. ε̂1 > ε̂2 holds. In combination with the irreversibil-
ity approach, the change of the crack orientation is for-
mulated in an explicit scheme by

r(tn+1) =
{
n1(tn) if ψ+(tn) ≥ H(tn−1)

r(tn) otherwise
. (19)

This enables the change of the crack orientation during
the evolution of the crack, while keeping the orienta-
tion of the evolved crack in unloading and reloading
situations.

3.2 Energetic crack orientation in two dimensions

The fracture toughness Gc is a measure for the mate-
rial inherent energetic barrier against crack evolution.
In combination with the crack surface density γl , the
resistance against crack propagation is quantitatively
specified at the material point level. In the phase-field
method, the crack driving component of the local strain
energy density is the energetic counterpart to that resis-
tance. Crack evolution is a result on the global level,
that is based on the local formulation and evaluation of
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driving force and resistance by Eq. (17). The specific
amount of crack driving strain energy density depends
on the state of strain. Furthermore, it strongly depends
on the orientation of the crack surface. In the previous
section, an intuitive alignment of the crack orientation
vector, i.e. along the direction of the largest principal
strain, is postulated. It can be shown, that in themajority
of possible strain states, this approach yields the maxi-
mum driving force for isotropic elastic material due to
maximization of the crack driving strain energy den-
sity with respect to the crack orientation vector. How-
ever, certain states of strain exhibit the maximum in the
crack driving strain energy density for a crack orienta-
tion, that is at a specific angle to the principle direction.
Also recent experimental observations in Rozen-Levy
et al. (2020) support the hypothesis that the principal of
maximum energy dissipation also applies to the prop-
agation of cracks.

In this section, an analytical approach to obtain the
maximumcrack driving component of the strain energy
density is proposed and evaluated for a linear elastic
material in a 2D setup. At the basis of known eigen-
vectors n1 and n2 of the 2D strain tensor ε, a principal
direction coordinate system (PCS) is established. The
representation of both eigenvectors in the RCS and the
PCS reads

n1 = x̂n1 x + ŷn1 y =
[
x̂n1
ŷn1

]
x

=
[
1
0

]
n

(20)

and

n2 = x̂n2 x + ŷn2 y =
[
x̂n2
ŷn2

]
x

=
[
0
1

]
n
, (21)

where the RCS and the PCS are indicated by subscripts
x and n, respectively. The representation of the base

Fig. 6 Relation between the reference coordinate system (RCS),
the principal direction coordinate system (PCS) and the crack
coordinate system (CCS)

vectors of the CCS in terms of the PCS reads

r = cos(α)n1 + sin(α)n2 =
[
cos(α)

sin(α)

]
n

(22)

and

s = −sin(α)n1 + cos(α)n2 =
[−sin(α)

cos(α)

]
n

.(23)

Here, an angle α between the principal direction n1 and
the crack orientation vector r is considered according
to Fig. 6.

In analogy to the base vectors, the strain tensor is
rewritten as

ε =
[

ε̂xx ε̂xy
ε̂yx ε̂yy

]
x

=
[

ε̂1 0
0 ε̂2

]
n
. (24)

A relation between the principal strains ε̂1 and ε̂2 is
introduced based on the local strain magnitude ε̂ by

ε̂1 = ε̂ and ε̂2 = m ε̂ → ε̂2

ε̂1
= m. (25)

By definition,

ε̂1 ≥ ε̂2 → m ≤ 1 (26)

holds, i.e. ε̂1 is themajor principal strain,n1 is themajor
principal strain direction and the spatial orientation of
r is defined in an unique manner, see Fig. 6.

The linear elastic ground stress tensor σ 0 of a linear
elastic material with strain energy density provided in
Eq. (4) is given in PCS representation by

σ 0 = λ
(
ε̂1 + ε̂2

) [
1 0
0 1

]
n

+ 2μ

[
ε̂1 0
0 ε̂2

]
n
. (27)

The tensor bases specified in Eqs. (6) and (7) are given
with respect to the representation of r and s in the PCS
by

r ⊗ r =
[

cos2(α) sin(α)cos(α)

sin(α)cos(α) sin2(α)

]
n
, (28)

s ⊗ s =
[

sin2(α) −sin(α)cos(α)

−sin(α)cos(α) cos2(α)

]
n

(29)

and

r ⊗ s =
[−sin(α)cos(α) cos2(α)

−sin2(α) sin(α)cos(α)

]
n

= (s ⊗ t)T .

(30)

The stress tensor components, relevant for the crack
driving strain energy density, read

σ̂ rr = σ 0 : (r ⊗ r)

= λ
(
ε̂1 + ε̂2

) + 2μ
(
ε̂1 cos

2(α) + ε̂2 sin
2(α)

) (31)
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and
σ̂ rs = σ 0 : (r ⊗ s) = σ̂ sr

= 2μ
(
ε̂2 − ε̂1

)
sin(α)cos(α).

(32)

The crack driving stress tensor σ+ contains compo-
nents related to tension on the crack surface

σ+
I = 〈σ̂ rr〉+ (r ⊗ r + k s ⊗ s) (33)

and contributions related to shear on the crack surface

σ+
II = σ̂ rs (r ⊗ s + s ⊗ r) (34)

in an additive decomposition, that reads

σ+ = σ+
I + σ+

II

=

⎡
⎢⎢⎣

〈σ̂ rr〉+
(
c2 + k s2

)
− (

σ̂ rs + σ̂ sr
)
sc

〈σ̂ rr〉+sc (1 − k)
+σ̂ rsc2 − σ̂ srs2

〈σ̂ rr〉+sc (1 − k)
−σ̂ rss2 + σ̂ src2

〈σ̂ rr〉+
(
s2 + k c2

)
+ (

σ̂ rs + σ̂ sr
)
sc

⎤
⎥⎥⎦
n

, (35)

where k = λ/(λ + 2μ). For brevity of notation, the
trigonometric functions are abbreviated by s = sin(α)

as well as c = cos(α).
Beside the comprehensive studyof all possible states

of strain, the concept of a modified F-criterion, see e.g.
Shen and Stephansson (1994), is considered as well,
i.e. a mode dependent fracture toughness is analyzed.
Therefore, also the crack driving energetic counterpart
has to be decomposed into components associated with
Mode I and Mode II. An application in the frame-
work of the phase-field method is published in Zhang
et al. (2017), where a volumetric deviatoric split is
employed. Thus, Mode I is associated with volumetric
expansion and Mode II is related to a deviatoric defor-
mation. While this results in a realistic approximation
of wing cracks and secondary cracks in pre-notched
sandstone specimens, the connection of the continuum
measures of volumetric and deviatoric strains to the
representation of Mode I and Mode II deformation is
ambiguous. In contrast, an association of the compo-
nents in a directional decomposition to the modes of
crack opening is much more straight forward. Here,
tensile components in r⊗r direction can be associated
with Mode I and shear components in r ⊗ s and s ⊗ r
direction are related to Mode II. Thus, ψ+ is decom-
posed into the Mode I crack driving strain energy den-
sity

ψ+
I = 1

2
〈A〉+ · B,where

A = λ
(
ε̂1 + ε̂2

) + 2μ
(
ε̂1c

2 + ε̂2s
2
)

B =
[
ε̂1

(
c2 + ks2

)
+ ε̂2

(
s2 + kc2

)]
(36)

and a Mode II crack driving strain energy density

ψ+
II = 2μ

(
ε̂2 − ε̂1

)2 s2 c2. (37)

A reference fracture toughness Ĝc is introduced in
order to specify the relations

Gc,I = Ĝc and Gc,II = n Ĝc → n = Gc,II

Gc,I
. (38)

Furthermore, the range of relations n investigated is
restricted to materials characterized by

Gc,II ≥ Gc,I > 0 → n ≥ 1. (39)

Then, in analogy to the modified F-criterion, mode
dependent driving forces are introduced via

FI = ψ+
I

Gc,I
(40)

and

FII = ψ+
II

Gc,II
. (41)

The total driving force for phase-field evolution reads

F = FI + FII

= με̂

Ĝc

(〈Am〉+ · Bm + Cm
)
, where

Am = ε̂
[
q(1 + m) + c2 + ms2

]
,

Bm =
[
(1 + mk) c2 + (k + m) s2

]
and

Cm = 2

n
ε̂(m − 1)2 s2 c2.

(42)

For short notation, two additional material parameters
are introduced as

q = λ

2μ
= ν

1 − 2ν
(43)

and

k = λ

λ + 2μ
= ν

1 − ν
, (44)

which are bounded due to the range of Poisson’s ratio
0 ≤ ν < 0.5 by 0 ≤ q and 0 ≤ k ≤ 1, respectively,
see Fig. 7 for a visualization of the valid ranges for q
and k in logarithmic scale.

The individual crack driving strain energy density
components are weighted by their corresponding frac-
ture toughnesses. Therefore, the phase-field evolution
equation Eq. (17) is rewritten as
1

l

(
l2∇2 p − p

)
+ 2(1 − p)H = 0, (45)
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Fig. 7 Material parameter q und k

where the history variable in Eq. (16) is adjusted by

H(tn) =
{
F(tn) if p(tn) < pc
max (H(tn−1),F(tn)) otherwise

. (46)

The mode dependent driving force F for the phase-
field evolution equation according to Eq. (42) is a func-
tion of the angle α. The application of the modified
F-criterion within the framework of the phase-field
method is based on the postulate ”phase-field evolution
due to local maximum of driving force at the material
point level governs the global energy dissipation realis-
tically”. Thus, an analytical discussion of the function
is necessary to find its maximum value and to obtain
the proper driving force for phase-field evolution at
each material point. To this end, the condition for an
extremum

0 = ∂F(α)

∂α

∣∣∣∣
α=α0

(47)

is analyzed in order to determine all possible α0. Then,
the second derivative condition

0 >
∂2F(α)

∂α2

∣∣∣∣
α=α0

(48)

is used in order to evaluate, whether F(α0) is a maxi-
mum.Thediscussion of equations, that contain trigono-
metric functions, results in an infinite number of pos-
sible solutions. However, in terms of the orientation
of the crack orientation vector r, the range for α0 can
be restricted to −90◦ ≤ α0 ≤ 90◦. In other words,
α0 = 0◦ represents the case, where the evolving crack
is aligned to the major principal strain and α0 = ±90◦
represents the case, where the evolving crack is aligned
to the minor principal strain. Detailed information on
the derivations are provided in Steinke (2021). In the
following, the results of the discussion are summarized
for the main aspects.

The investigation of small strain linear elasticity
with isotropic material behavior and fracture tough-
nesses results in the noteworthy aspect, that the ener-
getic level of the driving force for phase-field evolution
according to Eq. (42) at an angle α0 is exactly the same
as for its negative counterpart, i.e.

F(α0) = F(−α0). (49)

In this case, an energetical branching point is obtained,
i.e. the kinking angle of the crack is notwell defined due
to the continuummechanical approximation of the dis-
crete kinematics of the crack. At the level of the crack
driving stress tensor, the sign of the shear components
in its PCS representation is the opposite, i.e.

σ̂+
n1n2(α0) = −σ̂+

n1n2(−α0) and

σ̂+
n2n1(α0) = −σ̂+

n2n1(−α0).
(50)

This is a direct consequence of a basic assumption of
the directional split, i.e. the decomposition of the stress
tensor with respect to the orientation of a single crack.
In fact, having identified a point of branching energet-
ically, also the kinematics of a branched configuration
should be considered. First ideas to develop a suitable
approach are based on the framework of the represen-
tative crack element introduced in Storm et al. (2020).
However, a final solution is not available yet. Instead,
the intrinsic capability of the phase-field method to
obtain crack branching on a global level is exploited
and a unique local orientation of the crack is chosen.

In general, it should be noted, that the update of the
crack orientation vector is based on an explicit scheme
in this context. Furthermore, an interesting yet undis-
cussed aspect is the actualmeaning of a change of crack
orientation during its evolution. Due to the continuous
representation of the phase-field, intermediate states
between sound (p = 0) and broken (p = 1) are possi-
ble at thematerial point level. The local evolution of the
phase-field is a contribution to the global crack approx-
imation�l . However, it is always linked to a local crack
orientation vector r.

On the one hand, this results in the possibility, that
the orientation of the crack, which is a uniquely defined
property of every point on the surface of a discrete
crack, can vary over the profile of its continuous repre-
sentation. This could be interpreted as an actual viola-
tion of a proper approximation scheme.However, if two
or three dimensions are considered, it is hardly possible
to associate every point in the phase-field profile to the
discrete point on the crack surface it represents. Fur-
thermore, a major role for the realistic approximation
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of the crack kinematics is played by the fully degraded
state at p = 1 and the influence of the transition zone
is of only minor degree.

On the other hand, the local orientation may change
during the local evolution of the phase-field. The fun-
damental question is, whether the energy dissipated for
the local evolution in a specific direction can be trans-
ferred to the updated direction without modification.
From the viewpoint of a discrete crack, the answer is
definitely no, as a different crack orientation at the same
locationmore likely represents another crack at another
orientation, e.g. a point of crack branching. Therefore,
in the case of a discrete crack, tearing apart the mate-
rial in a different direction requires additional energy
because a different atomic bond has to be broken. It
could be concluded that the energy dissipated for the
initial direction in the first place cannot contribute to
the second crack with a different orientation.

Nevertheless, as already stated, kinematics for a
branched crack at the material point is not available yet
and only single cracks are considered. Furthermore, the
number of possible crack orientations at a single mate-
rial point is infinite and the computation and storage
of individual driving forces for each orientation is not
feasible.

Therefore, the level of energy dissipated in the ini-
tial direction is considered as the starting point for the
evolution in the new direction. If an energetic branch-
ing point is obtained, e.g. in the sense of Eq. (49), then
the new crack orientation is chosen such that the previ-
ous orientation has a minimum angle to the new crack
orientation. The same holds, if multiple energetically
equivalent orientations are obtained. Furthermore, the
change of crack orientation is allowed for the transition
zone only, i.e. as long as the phase-field is below a crit-
ical value pc. Together with the modified history vari-
able approach proposed in Eq. (46), a realistic approxi-
mation of the crack kinematics is obtained at the global
level with this approach.

Instead of a general analysis of Eq. (42) for an arbi-
trary state of strain, the strain state is categorized into
characteristics based on the magnitudes of the princi-
pal values and the analysis is realized in terms of a case
study. A positive local strain magnitude ε̂ > 0 specifies
a strain state, where the major principal strain ε̂1 is a
tensile strain. Then, based on the value of m, the strain
state can be verbally described as

– ε̂2 > 0 ↔ 0 < m ≤ 1 - biaxial tension,

– m = 1—volumetric tension,
– m < 1—dominant tension in n1 direction,

– ε̂2 = 0 ↔ m = 0—uniaxial tension in n1 direc-
tion,

– ε̂2 < 0 ↔ m < 0—biaxial tension compression,

– m > −1—dominant tension (in n1 direction),
– m = −1—pure shear and
– m < −1—dominant compression (in n2 direc-
tion).

Principal strains for a local strain magnitude of ε̂ =
0 cannot be determined and the relation according to
Eq. (25) cannot be applied. Due to ε̂ = ε̂1 ≥ ε̂2, only
uniaxial compression in n2 direction is possible in this
case.

A negative local strain magnitude ε̂ < 0 specifies
a strain state, where the major principal strain ε̂1 is a
compressive strain. Then, based on the value of m, the
following strain states are possible

– ε̂2 = ε̂1 → m = 1 - volumetric compression and
– ε̂2 < ε̂1 → m > 1 - biaxial compression.

Volumetric tension Astate of volumetric tension yields
a constant driving force of

F = ε̂2
μ

Ĝc

1

1 − 2ν

1

1 − ν
(51)

for phase-field crack evolution, which is independent
on the angle α, see Fig. 8.

Biaxial tension A state of biaxial tension with domi-
nant tension in n1 direction yields a maximum driving
force of

F = ε̂2
μ

Ĝc

[1 + ν(m − 1)]2
(1 − 2ν)(1 − ν)

(52)

for phase-field crack evolution at an angle of α = 0◦,
see Fig. 9.

Fig. 8 Phase-field driving force for a state of volumetric tension
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Fig. 9 Phase-field driving force and components for a state of
biaxial tension

Fig. 10 Phase-field driving force and components for a state of
uniaxial tension at n = 1

Uniaxial tension Astate of uniaxial tension inn1 direc-
tion yields the maximum finite amount of driving force
of

F = ε̂2
μ

Ĝc

1 − ν

1 − 2ν
(53)

for phase-field evolution at an angle of α = 0◦, see
Fig. 10 with n = 1.

Biaxial tension compression with dominant tension A
state of biaxial tension compressionwith dominant ten-
sion in n1 direction yields a maximum driving force for
phase-field evolution of

F = ε̂2
μ

Ĝc

[ν(m − 1) + 1]2
(1 − ν)(1 − 2ν)

(54)

at α = 0◦, if m > mdt ∨ (m = mdt ∧ n < ndt), where

ndt = 1 + 1

1 − 2ν
and (55)

mdt = (1 − n)(1 − ν)

1 − ν(1 − n)
. (56)

In addition, a maximum driving force for phase-field
evolution of

Fig. 11 Phase-field driving force and components for a state of
biaxial tension compression with dominant tension in n1 direc-
tion for m > mdt

Fig. 12 Phase-field driving force and components for a state of
biaxial tension compression with dominant tension in n1 direc-
tion for m < mdt

F = ε̂2
μ

2Ĝc

{
(1 + m)2

(1 − 2ν)[1 + (1 − n)(1 − 2ν)] + (1 − m)2

n

}

(57)

is obtained at an angle of

α = ±0.5 acos

{
n(1 + m)

(1 − m)[1 + (1 − n)(1 − 2ν)]
}
(58)

in the case of m < mdt ∧ n < ndt. The visualization
of the single and double maxima, that depend on the
combination of m and n, are given in Figs. 11 and 12,
respectively.

Pure shear A state of pure shear yields a maximum
driving force for phase-field evolution of

F = ε̂2
μ

Ĝc

1 − 2ν

1 − ν
(59)

at α = 0◦ ∧ n > ndt, see Fig. 13.
For n = ndt, a constant driving force identical to

Eq. (59) is obtained for the whole range of 0◦ ≤ α ≤
45◦, see Fig. 14.
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Fig. 13 Phase-field driving force and components for a state of
pure shear for n > ndt

Fig. 14 Phase-field driving force and components for a state of
pure shear for n = ndt

Fig. 15 Phase-field driving force and components for a state of
pure shear for n < ndt

In the case of n < ndt, which is visualized in Fig. 15,
themaximum driving force is obtained at α = 45◦ with

F = ε̂2
μ

Ĝc

2

n
. (60)

Biaxial tension compression with dominant compres-
sion A state of biaxial tension compression with dom-
inant compression in n2 direction yields a maximum
driving force for phase-field evolution of

F = ε̂2
μ

Ĝc

[1 + ν(m − 1)]2
(1 − ν)(1 − 2ν)

(61)

Fig. 16 Phase-field driving force and components for a state of
biaxial tension compression with dominant tension in n2 direc-
tion with m = mdc

Fig. 17 Phase-field driving force and components for a state of
uniaxial compression in n2 direction

at α = 0◦ for m > mdc with

mdc =
√
b2 − 4ac − b

2a
where

a = 2nν2 − (1 − ν)(1 − 2ν),

b = 4nν(1 − ν) + 2(1 − ν)(1 − 2ν) and

c = 2n(1 − ν)2 − (1 − ν)(1 − 2ν).

(62)

An energetic branching point is obtained at α = ±45◦
for m < mdc. In this case, the maximum driving force
reads

F = ε̂2
μ

Ĝc

(m − 1)2

2n
. (63)

An energetic triple branching point is obtained for
m = mdc, i.e. the driving forces are identical at α = 0◦
and α = ±45◦ and can be computed according to
Eqs. (61) or (63), see Fig. 16 for a visualization.

Uniaxial compression A state of uniaxial compression
in n2 direction yields the maximum finite amount of
driving force

F = ε̂22
μ

2nĜc
(64)
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Fig. 18 Phase-field driving force and components for a state of
biaxial compression

for phase-field evolution at an angle of α = ±45◦, see
Fig. 17.

Volumetric compression A state of volumetric com-
pression yields no driving force for phase-field crack
evolution.

Biaxial Compression A state of biaxial compression
with dominant compression in n2 direction yields the
maximum finite amount of driving force

F = ε̂2
μ

2nĜc
(m − 1)2 (65)

for phase-field evolution at an angle of α = 45◦, see
Fig. 18.

4 Numerical examples

4.1 Crack surface approximation

The approximation of the discrete crack surface� by its
regularized approximation �l is governed by Eq. (2).
In the following, characteristic 2D crack patterns are
studied with respect to the quality of this approxima-
tion. The focus is on the relation between the regular-
ization length l and the characteristic size of the finite
element discretization h, that is necessary for an ade-
quate approximation.

4.2 Single through crack

A rectangular patch of dimensions 1.0 m × 1.0 m
with a discrete, horizontal through crack � is investi-
gated, see Fig. 19. The crack’s approximation by �l

is based on a finite element solution with phase-field
boundary conditions at nodes located at the discrete
crack. In principle, the phase-field approximation of �

can be represented in two ways, i.e. as a single row of

Fig. 19 Geometry and position of the initial crack for single
through crack example

(b)

(a)

Fig. 20 Discretization for a row of nodes and b row of elements

nodes with p = 1 or as a row of elements, i.e. two
rows of nodes with p = 1, see e.g. Steinke (2021)
and Steinke et al. (2016) for a transient analysis of
the realistic approximation of crack kinematics as well
as the discussion in Sect. 4.5 for the static case. Fur-
thermore, finite element discretizations with triangu-
lar and quadrilateral elements with characteristic size
h = 5 mm are studied. The guidelines of the crack
approximation based on a row of nodes and details of
the discretization with triangles (SST) and quadrilater-
als (SSQ) are shown in Fig. 20a. The guidelines for the
crack approximation based on a row of elements and
the details of the discretization with triangles (SDT)
and quadrilaterals (SDQ) are given in Fig. 20b.

The phase-field distributions obtained by the finite
element simulation for SST and SDT are visualized in
Fig. 21 for different regularization length parameters l.
The differences between the representation of the crack
by a rowof nodes or a rowof elements is restricted to the
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Fig. 21 Phase-field for straight through crack with respect to
discretization and l

Fig. 22 Phase-field profile for SST with respect to the regular-
ization length l

location of the crack and the transition zone between
p = 1 and p = 0 is not affected.

A more detailed investigation is possible based on a
plot of the phase-field profile in y-direction, provided in
Figs. 22 and 23 for SST and SDT, respectively. First of
all, it should be noted, that negative phase-field values
are observed at the nodes directly adjacent to the node
with thephase-fieldboundary p = 1with l = h/5.This
is due to the fact, that the discretization with 2D finite
elements, which are based on linear shape functions,
is not fine enough to resolve the phase-field gradient
properly. In consequence, the nodes along the profile
exhibit oscillating positive andnegative phase-field val-
ues with fast decreasing amplitude. Furthermore, due
to the AT-2 functional studied here, the profile of the
phase-field is rather wide and does not fit into the patch
of height 1 m for l > 20h(= 10 cm). The close up
view on the profile for SDT in Fig. 23 also visualizes
the plateau of the phase-field values at p = 1 for the
row of elements. However, this does not influence the
gradient of the profile, which is entirely governed by
the value of the regularization length l.

The length of the discrete crack in this example is
given by � = 1.0 m. The amount of regularized crack
surface �l is computed based on Eq. (2) for an integra-
tion over the whole finite element domain. The result of

Fig. 23 Phase-field profile for SDT with respect to the regular-
ization length l

the study of the regularization length l = h/5 . . . 40h
is provided in Fig. 24. It should be noted, that a good
approximation of �/�l ≈ 1.0 is obtained both for SST
and SSQ at l > 2h. On the one hand, this indicates, that
the use of triangular or quadrilateral elements is equiv-
alent in terms of the regularized crack approximation.
On the other hand, this result confirms the conclusions
obtained in Hofacker (2013), i.e. the lower limit for the
regularization length l > 2h. In contrast, the results
obtained for the crack approximation based on a row
of elements, i.e. SDT and SDQ, are converging much
slower to the upper limit. Furthermore, the upper limit
in this case cannot be �/�l = 1.0 in principle, as the
plateau contribution is a fundamental violation of the
theoretical framework of crack approximation by the
phase-field. Nevertheless, the impact of the plateau on
the value of�l is decreasing with increasing l. In detail,
the error decreases from �/�l = 79.5% at l = 2h to
�/�l = 97.5% at l = 20h. A further increase of the
regularization length is not possible in this study due to
the excess width of the phase-field profile with respect
to the size of the specimen, see Fig. 22.

4.3 Crack tip approximation

A rectangular patch of dimensions 1.0 m × 1.0 m
with a discrete, horizontal crack of length� = 0.5 m is
investigated, see Fig. 25. Two alignments of the crack
are studied, i.e. an alignment to the left edge of the
specimen and an alignment at the center of the spec-
imen, in order to investigate the influence of one and
two crack tip approximations, respectively. The phase-
field approximation of the discrete crack is obtained
by phase-field boundary conditions p = 1 at the loca-
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Fig. 24 Quality of the crack surface approximation of a single
through crack with respect to the ratio between element size h
and regularization length l

(a) (b)

Fig. 25 Geometry and position of the initial crack for the half
crack example with a left alignment and b center alignment

tion of the crack. The left aligned crack is studied for a
regularized crack approximated by a row of nodes with
triangular elements (HLST) and quadrilateral elements
(HLSQ) as well as for an approximation by a row of
fully degraded triangular elements (HLDT) and quadri-
lateral elements (HLDQ). Accordingly, these cases are
studied for the centered alignment of the crack as well,
that are referred to by the abbreviations HCST, HCSQ,
HCDTandHCDQ, respectively. The finite element dis-
cretization of the single through crack example dis-
cussed in Sect. 4.2 is used, see Fig. 20.

The phase-field distribution for HCST and HLST is
visualized in Fig. 26. It should be noted, that for the
center aligned crack, the width available for the phase-
field profile of the crack tip is limited and the study
should be restricted to l ≤ 10h in this case.

Given the amount of discrete crack surface � =
0.5 m to be approximated in both cases of this exam-
ple, the quality of the crack surface approximation can
be analyzed with respect to the regularization length
parameter l, see Figs. 27 and 28. First of all, the dis-
cretization with triangular and quadrilateral elements

Fig. 26 Phase-field for half crackwith respect to alignement and
l

Fig. 27 Quality of the crack surface approximation of a half
crack at left alignment with respect to the ratio between element
size h and regularization length l

Fig. 28 Quality of the crack surface approximation of a half
crack at center alignment with respect to the ratio between ele-
ment size h and regularization length l

is identical in all cases. Thus, the choice of the ele-
ment type is of minor relevance for the approximation
of the crack surface again. Furthermore, a limit value
of �/�l cannot be observed. In contrast, the influence
of the crack tip approximation increases with increas-
ing regularization length. A conclusion of the exam-
ple discussed in Sect. 4.2 is the fact, that the discrete
length of the crack is already represented by the phase-
field profile in vertical direction with a very good accu-
racy. In contrast, the crack tip does not have a finite
length. However, it is approximated by a phase-field
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Fig. 29 Geometry of the branched crack example and guidelines
of the finite element discretization for different branching angles
α

profilewith semicircle shape, see Fig. 26, that increases
in radius with increasing regularization length. There-
fore, increasing the regularization length parameter
increases the error due to the semicircle crack tip
approximation. Interestingly, the approximation based
on a single row of nodes yields the most accurate result
at l = 2h with �/�l = 96.7% and �/�l = 98% for
HCST and HLST, respectively. In contrast, if the crack
is approximated by a row of fully degraded elements,
the most accurate results are obtained at l = 8h, where
�/�l = 86.2% for HCDT, and at l = 10h, where
�/�l = 90.1% for HLDT. Nevertheless, it should
be noted, that the profile of the crack tip is usually
small compared to an evolved crack and the impact
of its semicircle profile approximation decreases with
increasing total length of the crack.

4.4 Branched crack approximation

A branched crack configuration is examined in the
last example on the quality of the crack surface approx-
imation by the phase-field method. A rectangular patch
of dimensions 0.5 m × 1.0 m is joined to a semicircle
patch with radius 0.5 m, see Fig. 29. The discrete crack

Fig. 30 Phase-field contour plots wrt α and l

to be approximated consists of a horizontal straight
component of length 0.5 m and two branches of length
0.5 m each, i.e. the total length of the discrete crack is
� = 1.5 m. The angle between both branches is spec-
ified by 2α and studied for α = 5 . . . 85◦ in steps of
5◦. The semicircle shape is chosen in order to mini-
mize edge effects on the profile of the crack branches.
As already observed in the previous examples, the pro-
file perpendicular to the crack surface is essential for
a correct approximation. Hence, the semicircle shape
can decrease the impact of the edges on the profile for
small regularization length parameters by ensuring a
90◦ angle between the discrete crack and the speci-
men edges. However, especially for large l, the pro-
file is trimmed, which results in an underestimation of
the regularized crack surface in general. In this exam-
ple, only the crack approximation by a single row of
nodes and a discretization with triangular finite ele-
ments is investigated. The guidelines of the meshing
are the outer boundary of the specimen as well as the
location of the discrete crack. Furthermore, exemplary
discretizations of the branching point are visualized in
Fig. 29 for α = 10◦, α = 45◦ and α = 80◦.

As already discussed, the phase-field profile perpen-
dicular to the crack is crucial for a correct representa-
tion of the discrete crack � by its regularized approxi-
mation�l . Therefore, the optimal case for a phase-field
crack approximation is given by the initial example of
the straight through crack in Sect. 4.2. On the one hand,
the through crack does not have any crack tip that yields
a significant error for the regularized crack surface �l ,
see Sect. 4.3. On the other hand, the phase-field profile
is not disturbed, e.g. by edges or neighboring cracks,
and can formaflawless transition from the broken to the
sound region of the specimen, which results in a very
accurate approximation of the discrete crack surface.
In contrast, if a branched configuration is investigated,
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Fig. 31 Quality of the crack surface approximation of a half
crack at center alignment with respect to the ratio between ele-
ment size h and regularization length l

the vicinity of the branching point is a location of mul-
tiple supports of phase-field profiles overlapping and
influencing each other. Starting at the branching point
along the crack path in direction of the edges, the influ-
enceof the neighboring cracks on thephase-field profile
decreases. However, the decreased influence strongly
depends on the angle between the branches, see Fig. 30
for a visualization of phase-field profiles at α = 5◦,
α = 30◦ and α = 50◦ for exemplary regularization
lengths. While the individual branches can be identi-
fied clearly for α ≥ 30◦ even for large values of l,
the branches are merged and represented by a single
fat phase-field profile for small branching angles. The
overlapping results in an underestimation of the crack
surface in principle, see Fig. 31. The underestimation
is strongly influenced by the branching angle. Further-
more, a pronounced change is observed for α ≥ 30◦,
i.e. the influence of the branching angle is decreasing
significantly for this range. This also has an impact on
the choice of l/h for the best approximation of �. In
the range of α ≥ 30◦, an exact approximation with
�/�l = 100% is obtained for l = 2h. For smaller
branching angles α < 30◦, the optimal choice of the
regularization length is decreasing as well until l = h
for α = 5◦, which yields �/�l = 99.5%.

4.5 Kinematics of ideal plane cracks without friction

The crack kinematics for the special case of an ideal
plane crack surface without frictional effects is dis-
cussed in Sect. 2.2 and encompasses the three types
of structural deformation crack closure, crack open-
ing and crack face sliding. A realistic approximation

of cracks by the phase-field method must be able to
reproduce these features in a numerical setting. The
quality of the approximation is evaluated based on the
numerically obtained reaction forced at the structural
level as well as the local values of the stress tensor. In
the following, benchmark examples with initial phase-
field cracks at static and dynamic loading are presented
and analyzed in order to evaluate different phase-field
splits with respect to a realistic post fracture behavior.
The focus of the last two examples is on the specific
challenges arising from the implementation of a direc-
tional split in the framework of FEM.

4.5.1 Static investigation of crack kinematics

In the first example, a 2D single through crack is inves-
tigated, that is similar in geometry to the example stud-
ied in Sect. 4.1, i.e. a rectangular patch of dimensions
1.0 m×1.0 mwith a discrete, horizontal through crack
� halfway up in vertical direction is examined, see
Fig. 19. The through crack is approximated by an initial
phase-field crack represented by phase-field boundary
conditions p = 1 at a row of nodes or all nodes of a row
of elements, see the discretizations in Fig. 20 for SST
and SDT, respectively, where the nodes with a phase-
field boundary condition are indicated by a horizontal
thick line. In addition to the nodal phase-field bound-
aries at the location of the initial crack, displacement
boundaries ûx(t̄) = û · fx(t̄) and ûy(t̄) = û · fy(t̄)
are applied at the top edge of the specimen. Further-
more, the displacements at the lower edge are fixed in x-
and y-direction. The magnitude of the displacement is
û = 1 mmand the pseudo time dependent scaling func-
tions are visualized in Fig. 32. Initially, a horizontal dis-
placement is applied to investigate crack face sliding.

Fig. 32 Load specification function for the static investigation
of crack kinematics
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Table 1 Homogenized stiffnesses for crack kinematics with respect to the discretization and the phase-field split

Mesh Split Ko in N/m (opening) Kc in N/m (closing) Ks in N/m (sliding)

SDT Vol dev 40.7 × 10−3 29.3 × 109 16.7 × 10−3

Spec 10.9 × 10−3 31.3 × 109 7.4 × 109

Dir 29.2 × 10−3 31.2 × 109 73.1 × 10−3

SST Vol dev 25.2 × 109 30.6 × 109 6.9 × 109

Spec 25.2 × 109 31.4 × 109 7.9 × 109

Dir 25.2 × 109 31.4 × 109 7.1 × 109

Linear elastic 31.4 × 109 31.4 × 109 8.2 × 109

Without crack

Discrete crack 0 31.4 × 109 0

Then, the subsequent displacement in vertical direction
results in crack opening followed by crack closing.

The structural response is evaluated by a homoge-
nized stiffness

K = F

U
, (66)

that is computed based on the mean value of the dis-
placement U and the sum of the numerically obtained
reaction forces F at the upper edge in the specific
direction. The material parameters λ = 7.15 GPa and
μ = 12.71 GPa are used and lead to Ks = 8.184 GN/m
and Kc/o = 31.432 GN/m, for shear deformation and a
compressive/tensile (closing/opening) deformation in
vertical direction, respectively. It should be noted, that
these values are obtained with the SDTmesh, but with-
out a phase-field crack, i.e. they describe the linear elas-
tic behavior of a bulk rectangular patch with displace-
ment boundaries as mentioned above. These homoge-
nized stiffnesses provide a measure for the structural
response of the rectangular patch with respect to the
material parameters and serve as a comparative value
for the evaluation of the phase-field approximation.
According to the considerations on crack kinematics
visualized in Fig. 3 of Sect. 2.2, the stiffnesses are
estimated as Ks = 0 GN/m, Kc = 31.432 GN/m and
Ko = 0 GN/m for an actual discrete horizontal through
crack. The results for the homogenized stiffnesses are
summarized in Tab. 1 for the split and discretizations
investigated in this example.

The structural deformations obtained with the vol-
umetric deviatoric split are visualized with a deforma-
tion scaling factor of 50 in Fig. 33 and 34 for dis-
cretizations SDT and SST, respectively. The homog-
enized stiffnesses obtained are included in Tab. 1. It

(a) (b)

(c) (d)

Fig. 33 Structural deformation of SDT by a volumetric devia-
toric split with deformation scaling factor 50: a t̄ = 1, b t̄ = 3,
c t̄ = 5 and d close up view on the crack at t̄ = 3

should be noted, that the opening and sliding is pos-
sible without reaction forces for the volumetric devi-
atoric split in SDT only, i.e. a realistic post fracture
behavior is obtained, if the phase-field crack is approx-
imated by a row of elements with each node having
p = 1. The explanation of this phenomenon is obtained
by a detailed investigation of the finite element imple-
mentation of the phase-field method for a crack open-
ing, see Fig. 35. Let A and B the two parts of the
rectangular patch, that are separated by the horizontal
through crack. In the FEM discretization, these parts
are connected via finite elements with modified stiff-
ness according to the local phase-field values, that may
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be simplified as stiffness k in vertical direction, which
is actually a combination of components of the elemen-
tal stiffness matrices. For a crack opening deformation,
the split affects the correct identification of the strain
and stress components associated with the structural
opening direction. However, it is the degradation func-
tion g(p), that defines the amount of degradation of this
specific stiffness. As a fundamental aspect of finite ele-
ment implementation, the elemental stiffness is a result
of the numerical integration of the element volume, i.e.
the summation of contributions at the Gauss points of
the element according to basic finite element theory. If
the crack is approximated by a single row of nodes with
p = 1, then the Gauss point value of the phase-field
for the elements connected to those nodes is always
lower than one. Therefore, the element stiffness is only
partially degraded by g(p < 1) > 0 and a realistic
behavior cannot be simulated. While the explanation
and visualization of this feature in Fig. 35 is provided
for the crack opening deformation, an analogous argu-
mentation applies to the stiffness component for shear
deformation. Furthermore, it should be noted, that this
is a fundamental aspect of the phase-field implementa-
tion. Although the Gauss point value of the phase-field
is more close to p = 1 for an increased regulariza-
tion length l, a Gauss point value of p = 1 can only
be obtained, if all nodes associated with an element
exhibit p = 1.

The homogenized stiffness for crack closure is only
93.3% of the expected value for the volumetric devi-
atoric split. The reason is visualized in Fig. 33d and
is directly related to the volumetric deviatoric decom-
position of the strains. Lets assume the local strain for
crack closure is an uniaxial compressive strain in verti-
cal direction ofmagnitude ε̂yy, whichwould be the case
if the horizontal displacement of the upper and lower
edge of the specimen is free. According to the consid-
erations on crack kinematics visualized in Fig. 3, no
degradation should be applied in this case. However,
the volumetric deviatoric decomposition of a uniaxial
strain in vertical direction reads

ε =
[
0 0
0 −ε̂yy

]
=

[
− ε̂yy

2 0

0 − ε̂yy
2

]

︸ ︷︷ ︸
εV

+
[

ε̂yy
2 0

0 − ε̂yy
2

]

︸ ︷︷ ︸
εD

.

(67)

The volumetric component is compressive, i.e. it is not
associated with degradation in the volumetric devia-
toric split. In contrast, degradation is always applied

(a) (b)

(c)

Fig. 34 Structural deformation of SST by a volumetric devia-
toric split with deformation scaling factor 50: a t̄ = 1, b t̄ = 3
and c t̄ = 5

Fig. 35 Structural behavior influenced by the finite element
implementation of the phase-field method

to components related to the deviatoric part of the
strain. Therefore, a finite component of the initial uni-
axial strain is associated with degradation and a wrong
homogenized stiffness for crack closure is obtained.
While this is a fundamental feature of the volumet-
ric deviatoric split and applies to every element, an
additional aspect is observed at the edge of the spec-
imen, see Fig. 33d. The degradation of the deviatoric
component results in a degraded stiffness in horizon-
tal direction as well and the uniaxial strain becomes
biaxial with a horizontal strain magnitude ε̂xx. Then,
volumetric deviatoric decomposition reads

ε =
[

ε̂xx 0
0 −ε̂yy

]

=
[

ε̂xx−ε̂yy
2 0

0
ε̂xx−ε̂yy

2

]

︸ ︷︷ ︸
εV

+
[

ε̂xx+ε̂yy
2 0

0 − ε̂xx+ε̂yy
2

]

︸ ︷︷ ︸
εD

,
(68)
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(a) (b)

(c) (d)

Fig. 36 Structural deformation of SDT by a spectral split with
deformation scaling factor 50: a t̄ = 1 s, b t̄ = 3 s, c t̄ = 5 s and
d phase-field evolution for increased shear loading

i.e. the amount of deviatoric strain is increased. This
results in increased degradation of the horizontal stiff-
ness, which eventually yields an increase in the hor-
izontal strain up to the point of ε̂xx = ε̂yy, i.e. the
non-degraded volumetric components vanish totally.
While this is the reason for the defective horizontal
displacement shown in Fig. 33d, it also results in non-
convergent results for large amounts of crack closure
deformations for the volumetric deviatoric split.

The structural deformations obtained by the spec-
tral split are visualized with a deformation scaling fac-
tor of 50 in Figs. 36 for the SDT discretization. The
results with SST discretization are omitted, as they suf-
fer from the same fundamental deficiency discussed
above for the volumetric deviatoric split. The spectral
split exhibits realistic post fracture behavior in the case
of crack closure and crack opening, where the homog-
enized stiffnesses are identical to the expected ones
within the tolerances of a numerical approximation,
see Tab. 1. However, significant reaction forces are
obtained in the case of crack face sliding, that result
in a homogenized stiffness for shear deformation that
amounts to 91% of linear elastic behavior without a
crack. Again, the reason to the unrealistic post fracture
behavior is given by the decomposition of the strain
tensor. Let the structural shear deformation be sim-
plified by a strain tensor, that consists exclusively of
shear components of magnitude ε̂xy. Its decomposition
according to the spectral split reads

(a) (b)

(c)

Fig. 37 Structural deformation of SDTby a directional splitwith
deformation scaling factor 50: a t̄ = 1 s, b t̄ = 3 s, c t̄ = 5 s

ε =
[

0 ε̂xy
ε̂xy 0

]
x

=
[

ε̂1 0
0 −ε̂2

]
n
, (69)

i.e. it is considered to be a combination of a tensile prin-
cipal strain of magnitude ε̂1 and a compressive prin-
cipal strain of magnitude ε̂2. Furthermore, pure shear
results in ε̂1 = ε̂2. In the spectral split, tensile principal
strains are associated with degradation and compres-
sive principal strains are related to persistent compo-
nents of stress and strain energy density. Therefore,
the decomposition of the shear strain, that should be
totally degraded for a realistic post fracture behavior,
results in a significant amount of non-degraded contri-
butions to the elemental stiffness and the global struc-
tural response.

The structural deformations obtained with the direc-
tional split are visualized with a deformation scaling
factor of 50 in Fig. 37 for the SDTdiscretization.Due to
the explicit design of the split to approximate a realistic
post fracture behavior, both the structural deformations
are in good agreement with the expected behavior and
the homogenized stiffnesses provide values within the
tolerances of a numerical approximation, see Tab. 1.
It should be noted, that the fundamental deficiency
regarding a proper crack approximation within an SST
discretization is observed for the directional split as
well, as this is an aspect of the FEM implementation
rather than the phase-field split. In consequence, a row
of fully degraded elements is a basic requirement for
the approximation of an initial phase-field crack.
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Fig. 38 Setup of the 2D benchmark considering element type
and orientation for a realistic post fracture behavior

4.5.2 Type and orientation of finite elements

The realistic post fracture behavior of a 2D rectangular
patch with an initial phase-field crack and a directional
split is investigated with a special focus on the type
and the orientation of the finite elements applied for
the discretization. An initial crack � with orientation
r = [0, 1]T divides the specimen into two separate bod-
ies A and B. Three types of discretization are analyzed,
see Fig. 38. Two discretizations are based on quadri-
lateral elements with quadratic shape. In ETQ90, the
element edges are aligned with the surface of the initial
crack. In ETQ45, the element edges are at an angle of
45◦ to the surface of the initial crack. It should be noted,
that a continuous sequence of fully degraded elements
along the location of the initial crack requires a zig-zag
pattern of totally degraded elements, which results in a
significantly larger plateau of p = 1 in the phase-field
profile. The discretization ETT is based on triangular
elements. According to the results of previous exam-
ples in Sect. 4.5, a row of fully degraded elements is
considered to obtain a realistic post fracture behavior.
The elements investigated are indicated by thick black
lines in Fig. 38, where some nodes belong to body A
and some nodes to body B. The characteristic element
size is h = 5 mmandmaterial parameterλ = 8.89 GPa
and μ = 13.33 GPa are assumed.

The numerical integration of field quantities in finite
elements is based on Gaussean quadrature formulas
and is discussed in more detail e.g. in Zienkiewicz
(1977). A 2D quadrilateral element with linear shape
functions requires four Gauss points at the local coor-
dinates ξ ≈ ±0.577 and η ≈ ±0.577, see Figs. 39 and
40. The summation over the Gauss point contributions
is the basis for the computation of elemental quantities
in the FEM framework like the residual vector and the
stiffness matrix, where the definition of the crack driv-

Fig. 39 Gauss point locations and element deformation in
ETQ90

ing component of the stress tensor σ+ is crucial. The
elements under consideration in this example are indi-
cated by a thick line in Fig. 38. They are analyzed as
representatives of all elements that link the two bodies
A and B separated by the initial crack. The residual at
the nodes of these elements describes the local reaction
forces against a specific structural deformation at the
position of the specific element. The reaction force at
the structural level is the result of all the local reac-
tion forces obtained for the fully degraded elements.
A realistic post fracture behavior at crack opening and
crack face sliding deformation is characterized by no
reaction forces. Therefore, the contributions of the fully
degraded elements to the nodal residual in these cases
must be zero. This implies a similar constraint on all
Gauss points, as the residual vector is a result of the
summation over all Gauss point contributions of the
element.

The orientation of quadrilateral elements in ETQ90
is characterized by the element edges being parallel to
both theplaneof the initial crack aswell as the crackori-
entation. Therefore, the crack opening and crack face
sliding deformation at the global level are represented
by a vertical and horizontal deformation of the upper
edge of the element, respectively, see Fig. 39. In con-
sequence, a uniform state of strain is obtained, that is
identical for all Gauss points and reads

εo =
[
0 0
0 0.2

]
and εs =

[
0 0.1
0.1 0

]
, (70)

for a vertical displacement uy = 1 mmand a horizontal
displacement ux = 1 mm, respectively. The directional
decompositions of the associated ground stress tensors
read
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Fig. 40 Gauss point locations and element deformation in
ETQ45

σ o =
[
1.78 0
0 7.11

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

and

σ s =
[

0 2.67
2.67 0

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

.

(71)

In both cases, the total stress is associated with the
crack driving component of the stress tensor σ+. Thus,
at full degradation, i.e. g(p) = 0, the reaction forces
at the element level are zero and a realistic structural
behavior is obtained, see the example in Sect. 4.5.1.

Due to the discretization in ETQ45, nodes 1, 2 and
4 belong to the body A and node 3 belongs to body B.
Therefore, crack opening and crack face sliding defor-
mations result in a displacement of node 3 only, see
Fig. 40. A crack opening deformation yields the strain
tensors

εo,G1 =
[
0 0
0 0.06

]
, εo,G2 =

[
0 −0.04

−0.04 0.14

]
,

εo,G3 =
[
0 0
0 0.22

]
and εo,G4 =

[
0 0.04

0.04 0.14

]
,

(72)

at the Gauss points G1 to G4, respectively, which
results in the directional decompositions of the asso-
ciated ground stress tensors as

σ o,G1 =
[
2.13 0
0 0.53

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

,

σ o,G2 =
[

5.03 −1.09
−1.09 1.26

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

,

σ o,G3 =
[
7.93 0
0 1.98

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

and

σ o,G4 =
[
5.03 1.09
1.09 1.26

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

. (73)

As the persistent stress tensor contributions σ− are zero
at all Gauss points, the residual vector is zero as well
and a realistic structural response is obtained. For a
crack face sliding deformation, the strain tensors read

εs,G1 =
[

0 0.03
0.03 0

]
, εs,G2 =

[−0.08 0.07
0.07 0

]
,

εs,G3 =
[

0 0.11
0.11 0

]
and εs,G4 =

[
0.08 0.07
0.07 0

] (74)

and the directional decompositions of the associated
ground stress tensors are explicitly written as

σ s,G1 =
[

0 0.80
0.80 0

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

,

σ s,G2 =
[

0 1.89
1.89 0

]
GPa

︸ ︷︷ ︸
σ+

+
[−0.73 0

0 −2.90

]
GPa

︸ ︷︷ ︸
σ−

,

σ s,G3 =
[

0 2.97
2.97 0

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 0

]
GPa

︸ ︷︷ ︸
σ−

and

σ s,G4 =
[
0.73 1.89
1.89 0.18

]
GPa

︸ ︷︷ ︸
σ+

+
[
0 0
0 2.72

]
GPa

︸ ︷︷ ︸
σ−

.

(75)

For Gauss points 2 and 4, non-zero persistent stress
tensor contributions σ− are obtained, which causes
non-zero components in the residual vector of the
element. In consequence, a global crack face sliding
deformation, that is actually without resistance for an
ideal crack, results in significant reaction forces in the
finite element approximation. It should be noted, that
this behavior can be observed in every discretization,
that deviates from the perfect alignment of element
edges and crack orientation discussed as ETQ90. It is
a direct consequence of the bi-linear approximation of
the field variables inside the quadrilateral elements, that
is already pointed out in Sect. 2.4.

Linear shape functions within finite triangular ele-
ments result in a constant field of strain all over the
domain of the finite element. Thus, the numerical inte-
grationof the functionwith respect to the strainfield can
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Fig. 41 Gauss point location and element deformation in ETT

be obtained by a single Gauss point, see Fig. 41. How-
ever, it should be noted, that in a transient simulation,
the field of acceleration is not constant and the higher
order function requires additional Gauss points for a
proper numerical integration. Nevertheless, the strain
tensors due to crack opening and crack face sliding
deformations are constant all over the element and read

εo =
[
0 0
0 0.2

]
and εs =

[
0 0.1
0.1 0

]
, (76)

respectively. As they are similar to the strains obtained
in ETQ90, again, the realistic post fracture behavior is
obtained. Furthermore, the orientation of the triangular
element does not affect the strain field, as the strain field
is constant. Therefore, in contrast to discretizations
with quadrilateral elements, a realistic post fracture
behavior can be obtained regardless the discretization.
It should be noted, that this issue is present for 3D sim-
ulations as well, where brick element discretizations
exhibit a tri-linear field of strain and tetrahedral ele-
ments provide a constant field of strain. Nevertheless, a
constant approximation of strain results in a poor accu-
racy of the numerical results and a comparable accuracy
to the bi- and tri-linear approximation of quadrilater-
als and bricks, respectively, can be obtained only by an
increase of the discretization density. Fortunately, the
phase-field crack approximation requires a very high
discretization density as well and the application of tri-
angular and tetrahedral elements is a suitable approach
to obtain a realistic post fracture behavior in principle.

4.5.3 Distortion of the crack orientation vector

A rectangular patch of dimensions 1.0 m× 1.0 m with
an initial horizontal through crack�, dividing the spec-
imen into bodies A and B, is investigated. The ini-
tial crack is approximated by a row of fully degraded
elements and the whole specimen is discretized by a
mapped meshing with triangular elements with char-
acteristic size h ≈ 1 mm, see Fig. 42. The crack ori-

Fig. 42 Setup of the distortion of the crack orientation vector
benchmark example

(a) (b) (c)

Fig. 43 Crack orientation vector r deviated by a φ = 5◦, b
φ = 40◦ and c φ = 70◦

entation vector of all elements is set to r = [0, 1]T,
except for one fully degraded element indicated by a
thick edge inFig. 42. For this specific element, the crack
orientation vector is deviated from the vertical direc-
tion by the angle φ. Material parameters λ = 8.89 GPa
and μ = 13.33 GPa are assumed.

The investigations are focused on the impact of a
deviation of the crack orientation of a single element on
the post fracture behavior of the structure at crack open-
ing and crack face sliding deformations. During the
evolution of phase-field cracks, a deviation of the crack
orientation between neighboring elements is essential
to approximate crack kinking or branching. Further-
more, the deviation is observed as a result of the stress
field around the crack tip, see e.g. Steinke and Kaliske
(2018).

The phase-field profile is computed once at the
beginning of each simulation and the subsequent com-
putations are restricted to the mechanical DOF with
fixed crack orientation vectors for each element. A
crack opening deformation is obtained by a displace-
ment boundary of the upper edge in vertical direction
with amagnitude of uy = 1 cm.Analogously, the crack
face sliding deformation is studied for a displacement
boundary of the upper edge in horizontal direction with
a magnitude of ux = 1 cm. It should be noted, that
both cases result in a rigid body movement of body B,
regardless of the deviation angle φ, i.e. the impact on
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Fig. 44 Homogenized stiffness Ko/s with respect to the deviation
of the crack orientation

the displacement fields are minor and a contour plot of
the displacements is omitted. In contrast, the impact on
the stress fields and the reaction forces is significant.
Deviation angles of 0◦ ≤ φ ≤ 90◦ are analyzed and
three representative examples with φ = 5◦, φ = 40◦
and φ = 70◦ are discussed in more detail, see Fig. 43
for a visualization of the neighborhood of the element
with deviated crack orientation and Figs. 45, 46 and 47
for the contour plot of the stresses, respectively. The
structural response is evaluated based on the homoge-
nized stiffness according to Eq. (66).

A summary of the results with respect to the devi-
ation angle φ is visualized in Fig. 44. It is recapit-
ulated from Sect. 4.5.1, that the homogenized stiff-
nesses of a linear elastic specimen without a crack are
Ko = 31.43 × 109 N/m and Ks = 8.19 × 109 N/m
for crack opening and crack face sliding deformation,
respectively. These values are employed for an evalua-
tion of the numerical results with deviated crack orien-
tations. Furthermore, it should be considered, that the
actual discrete crack kinematics discussed in Sect. 2.2
require zero stiffness in both cases. At the structural
level, the homogenized stiffnesses obtained due to a
deviation of the crack orientation of a single element
are small for a crack opening deformation with a max-
imum of 2.67% of the linear elastic value at φ ≈ 70◦,
which is a very large angle of deviation anyway. In
contrast, the homogenized stiffnesses for a crack face
sliding deformation amount to 13.43% of the linear
elastic value at φ ≈ 40◦.

In the following, the stress fields for three represen-
tative angles of deviation φ are evaluated. Again, the
linear elastic response of the specimen without a crack
are considered for the evaluation of the stress fieldmag-
nitudes. Due to the displacement boundary conditions
in horizontal and vertical direction at the upper and
lower edge of the specimen, the linear elastic results

(a) (b) (c)

(d) (e) (f)

Fig. 45 Stress field contour plot for crack distortion angle φ =
5◦ with crack opening deformation: a σ̂xx, b σ̂yy and c σ̂xy and
with crack face sliding deformation: d σ̂xx, e σ̂yy and f σ̂xy

for the stress fields are not homogeneous. Thus, the
local linear elastic stress tensor in the element with the
deviation of the crack orientation are employed for an
evaluation and are computed as

σ o =
[
6.95 0.02
0.02 323.95

]
MPa and

σ s =
[

0.04 118.01
118.01 0.05

]
MPa

(77)

for crack opening and crack face sliding deformation
with magnitude 1 cm each, respectively.

A deviation angle of φ = 5◦ results in homoge-
nized stiffnesses Ko = 0.47 × 106 N/m and Ks =
62.51×106 N/m for crack opening and crack face slid-
ing deformation, respectively. Both values are small in
comparison to the stiffnesses obtained for a linear elas-
tic specimen without a crack, i.e. 0.0015% and 0.76%
for opening and sliding, respectively. Nevertheless, the
peak stress magnitude for σ̂xx amounts to more than
three times the linear elastic value for a crack open-
ing deformation, see Fig. 45a. Interestingly, a tensile
peak is observed at the left upper edge of the element
with the deviation of the crack orientation vector and
a peak compressive stress of identical magnitude is
observed at the right lower edge below the element
with the deviation of the crack orientation vector. At a
first guess, this looks like an inclusionof stresses,where
the positive and the negative magnitude neutralize each
other. However, the non-zero amount of homogenized
stiffness indicates a significant impact on the structural
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level, which is in contrast to a self-eliminating inclu-
sion of stress. A similar combination of positive and
negative peak values is observed for σ̂yy and σ̂xy at dif-
ferent positions, see Figs. 45b and c. While the shear
stress component σ̂xy is significantly higher than the
linear elastic reference value, too, the stresses in ver-
tical direction are negligible. It should be noted, that
the combination of tension and compression gives rise
to a significant amount of crack driving strain energy
density at the position of the tensile peak, that even-
tually leads to phase-field evolution perpendicular to
the initial crack, if the deformation is increased and
phase-field evolution is allowed. The results of an addi-
tional simulation for crack opening deformation with
non-fixed crack orientation and phase-field evolution
is shown in Fig. 48a. The lateral growth of the phase-
field is located at the position of the tensile peak. Fur-
thermore, the modified crack orientation vector in the
elements around the additional phase-field evolution
is provided. Instead of an explicit additional branch,
the phase-field crack widens and a diffusive pattern of
irregular crack orientations is obtained, that leads to
further stress inclusions. The crack face sliding defor-
mation gives rise to a very high amount of normal stress
in x-direction, see Fig. 45d, while the amount of σ̂yy
and σ̂xy is rather small. Nevertheless, the combinations
of positive and negative peak stresses in adjacent ele-
ments seem to be a characteristic pattern for a deviation
angle of φ = 5◦.

(a) (b) (c)

(d) (e) (f)

Fig. 46 Stress field contour plot for crack distortion angle φ =
40◦ with crack opening deformation: a) σ̂xx, a) σ̂yy and c) σ̂xy
and with crack face sliding deformation: d) σ̂xx, e) σ̂yy and f) σ̂xy

The deviation angle of φ = 40◦ results in homog-
enized stiffnesses Ko = 0.4 × 109 N/m and Ks =
1.1 × 109 N/m for crack opening and crack face slid-
ing deformation, respectively. The homogenized stiff-
ness for crack opening deformation is already at 1.27%
of the comparative value. However, the homogenized
stiffness for crack face sliding deformation exhibits its
maximum value of 13.43% in this case. In contrast to
the small deviation angle ofφ = 5◦, the combination of
tensile and compressive peaks in adjacent elements is
not observed for a crack opening deformation. Instead,
large peak stresses are obtained for the normal stress in
x-direction σ̂xx, i.e. ≈ 28 times the comparative value,
and for the shear stress σ̂xy, i.e. ≈ 104 times the com-
parative value, see Figs. 46a and c, respectively. Fur-
thermore, the vertical stress in y-direction σ̂yy amounts
to approximately the linear elastic comparative value,
see Fig. 46b, which results in additional phase-field
evolution for a very small crack opening deformation at
the position of themaximum tensile peak, if phase-field
evolution is considered, see Fig. 48b. For the crack face
sliding deformation, a stress inclusionwith aminor ten-
sile stress is observed for the stress component σ̂xx, see
Fig. 46d, that exhibits a peak value of≈ −104 time the
linear elastic comparative value. Furthermore, the ver-
tical stresses σ̂yy rise to≈ 1.5×104 of the comparative
value, see Fig. 46e. Additionally, the shear stresses σ̂xy
amounts to≈ 4.2 of the comparative value. It should be
noted, that the deformation applied for crack opening
and crack face sliding are similar for Figs. 46 and 45.
Nevertheless, the peak stress values of crack driving
stress components, i.e. tensile and shear stresses, are
significantly higher in the case of an increaseddeviation
angle of φ. Therefore, additional phase-field evolution
is triggered at smaller deformation, when the deviation
angle is higher.

The deviation angle of φ = 70◦ results in homog-
enized stiffnesses Ko = 0.83 × 109 N/m and Ks =
0.34×109 N/m for crack opening and crack face sliding
deformation, respectively. Thus, this deviation angle
results in the highest homogenized stiffness for crack
opening deformation with 2.67% of the linear elastic
comparative value. Compared to the previous results,
the homogenized stiffness for crack face sliding defor-
mation reduces to 4.15% of the linear elastic compar-
ative value. The horizontal stresses σ̂xx, visualized in
Fig. 47a, and the shear stresses σ̂xy, shown in Fig. 47c,
exhibit reduced magnitudes of ≈ 26 and ≈ −6 × 103

times of the linear elastic comparative values.However,
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(a) (b) (c)

(d) (e) (f)

Fig. 47 Stress field contour plot for crack distortion angle φ =
70◦ with crack opening deformation: a σ̂xx, b σ̂yy and c σ̂xy and
with crack face sliding deformation: d σ̂xx, e σ̂yy and f σ̂xy

the peak tensile stress in vertical direction σ̂yy amounts
to ≈ 1.9 times of comparative values, see Fig. 47b.
While this results in a high amount of crack driving
strain energy density in the case of crack opening defor-
mations, it should be noted, that it also coincides with
the maximum amount of homogenized stiffness. The
result of an additional simulation with phase-field evo-
lution is visualized in Fig. 48c in this case. It should
be noted, that in this case the additional phase-field
evolves above the initial crack because of the fact, that
the tensile peak of the vertical stresses σ̂yy is above the
initial crack, too, see Fig. 47b. The peak stress values
of horizontal and vertical stresses σ̂xx and σ̂yy, respec-
tively, are both compressive in the case of a crack face
sliding deformation. Furthermore, the peak shear stress
σ̂xy is only a relatively small≈ 1.4 times of the compar-
ative linear elastic value. Thus, a high angle φ of crack
orientation deviation is less significant in this case of
deformation.

4.6 Wing crack evolution

The major difference between a directional split with a
crack orientation aligned to the principal direction and
an energetically obtained crack orientation occurs for
states of strain, where the phase-field driving force is
dominated by shear stresses on the crack surface. The
experimental investigation of a pre-notched gypsum
specimen at compressive loading published in Bobet
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Fig. 48 Crack orientation vector r after phase-field evolution
for an initial deviation by a φ = 5◦ at uy = 15 cm, b φ = 40◦
at uy = 1 mm and c φ = 70◦ at uy = 1 mm

Fig. 49 Setup of the wing crack benchmark experiment

and Einstein (1998) is an example, where the impact of
mode dependent fracture toughnesses can be demon-
strated, see e.g. Bryant and Sun (2018). The geome-
try, boundary conditions and the location of the initial
notches are shown in Fig. 49. A horizontal deformation
ux is applied on the left edge in negative x-direction in
order to apply a compressive loading on the structure
with initial cracks �. In consequence, so-called wing
cracks evolve perpendicular to the initial notches at
first. The wing cracks are driven by tensile stresses and
exhibit Mode I crack opening deformation. However,
due to the change of the load bearing structure by the
wing crack evolution, the shear stresses at the tip of the
initial cracks increase and result in a secondary crack
evolution as a straight extension of the initial cracks. By
the applicationof amodedependent fracture toughness,
Bryant and Sun demonstrate in (2018), that the wing
cracks only evolve for aMode II fracture toughness sig-
nificantly higher than the fracture toughness forMode I.

The material parameters are λ = 1.111 GPa, μ =
2.591 GPa, ρ = 2300 kg/m3 and Gc = 50 J/m2. The
geometry is discretized by 758982 2D triangular ele-
ments with characteristic size h = 0.2 mm. The ini-
tial cracks are represented by a discrete gap of width
0.1 mm at the location of the initial cracks and the reg-
ularization length is specified as l = 1 mm. A horizon-
tal displacement ux(t) = ûx · fx of magnitude ûx =
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(a) (b) (c)

Fig. 50 Stress contour plot at ux = 50μm for a σ̂xx, b σ̂yy and
c σ̂xy

0.5 mm and time dependency fx according to Fig. 32 is
applied at the upper edge of the specimen. The pseudo
time step for the static simulation is constant with�t̄ =
10−2. The crack propagation is investigated for the
directional split with energetic crack orientation with
n = 1−100. The linear elastic result at displacement of
ux = 50μm is provided in Fig. 50 in terms of contour
plots for the stresses with a close up on the edge of an
initial crack. Significant shear stresses are observed at
the tip of the initial crack in Fig. 50c. In addition, large
tensile stresses in x- and y-direction are obtained along
the side of the initial crack surface, see Figs. 50a and b.

Iso-mode fracture toughness results with n = 1 are
provided in Fig. 51a. The larger shear stress at the tip
of the initial cracks results in phase-field evolution as
a straight extension of the initial crack. In between the
two initial cracks, their extensions propagate towards
each other andmerge. From the structural point of view,
the specimen loses its structural integrity due to the
shear crack propagating through the whole specimen
at ≈ 45◦ and a subsequent crack surface sliding defor-
mation. The relation between the reaction force Fx and
the displacement at the edge of the specimen is pro-
vided in Fig. 52. With the shear stress contributions at
maximum with n = 1, the lowest peak reaction force
is obtained. It should be noted, that the crack orienta-

(a)

(b)

Fig. 51 Phase-field profile and close up on crack tip for a n = 1
and b n = 100

tion is highly distorted around the phase-field cracks
and significant convergence problems are observed in
the numerical simulation for further phase-field evo-
lution and post-fracture deformation analysis. In con-
trast, decreasing the amount of phase-field driving force
from shear stress contribution by a large Mode II frac-
ture toughness with n = 100 prevents the shear crack
evolution. Instead, the typical wing cracks perpendicu-
lar to the initial cracks, as observed in the experiments,
are obtained, see Fig. 51b. It should be noted, that the
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Fig. 52 Relation between reaction force Fx and displacement
ux at x = 152.4mm

highly distorted crack orientation results in a significant
widening of the wing cracks, see the close up for ux =
0.53 mm and ux = 0.57 mm in Fig. 51b. In conse-
quence, no further propagation of the phase-field can be
obtained due to non-convergence of the results beyond
ux = 0.58 mm. Nevertheless, the aspect of wing crack
evolution is demonstrated in principle as a consequence
of considering a mode dependent fracture toughness
in the phase-field model. Furthermore, increasing the
Mode II fracture toughness yields a decrease in phase-
field driving force for this specific example, where
shear stresses are dominated. Therefore, also the peak
reaction force increases with increasing n, see Fig. 52.

5 Conclusion

The phase-fieldmethod is a powerful approachwith the
potential to become themost comprehensive numerical
technique for a realistic approximation of fracture evo-
lution and post fracture behavior. The elegant combina-
tion of the spatial description of the crack surface with
the governing physical principle of crack surface for-
mation, i.e. strain energy dissipation, already provides
an approach, that can model and predict the propaga-
tion of cracks along realistic and experimentally vali-
dated paths. Additional effort is necessary for the fur-
ther development towards a general description of post
fracture behavior close to reality. The analysis and dis-
cussion provided in this paper are intended to contribute
to this development, both via the development of the
directional split as well as providing benchmark sim-
ulations for the numerical evaluation of future phase-
field approaches.

The following developments and findings are pre-
sented and discussed:

– A modified irreversibility formulation combines
the straight forward implementation of a history
variable approach and the recovery of a crack-
like phase-field profile after phase-field evolution
similar to the application of additional phase-field
boundary conditions during the simulation.

– Three basic kinematics are formulated for the sim-
plification of an ideal plane and frictionless crack.
The compression of the crack faces against each
other results in contact force transmission. In con-
trast, crack opening and crack face sliding defor-
mations are possible without reaction forces. A
realistic phase-field model for crack approxima-
tion needs to be able to model these features. A
suitable approach is based on the identification of
stress and strain components normal to the crack
surface and shearing components on the crack sur-
face. For components perpendicular to the crack
surface, a further distinction between compressive
and tensile components is necessary.

– Standard phase-field splits, i.e. the volumetric devi-
atoric and the spectral split, exhibit deficiencies for
a realistic post fracture behavior. The introduction
of the directional split, that is based on a local vector
describing the spatial orientation of the crack, pro-
vides a phase-field split, that can approximate the
post fracture behavior of an idealized crack close
to reality.

– The alignment of the crack orientation vector along
the direction of the largest tensile principal strain
is a suitable approach for most of the strain states.

– The amount of crack driving strain energy density
depends on the local orientation of the crack orien-
tation vector. The decomposition of the crack driv-
ing strain energy density into components related
to Mode I and Mode II fracture and a relation with
mode dependent fracture toughnesses provide a
measure of the phase-field driving force. The phase-
field driving force can be formulatedwith respect to
the crack orientation for 2D and 3D strain states. A
maximization of the phase-field driving force with
respect to the crack orientation under consideration
of a mode dependent fracture toughness is derived
analytically for a 2D state of strain.

– The maximum of the phase-field driving force
exhibits a non-unique definition of the crack ori-
entation vector for specific states of strain. A non-
unique crack orientation vector is considered as
energetically branching. The constitutive behavior
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is different for the energetically equal crack orien-
tations. Thus, the new crack orientation is specified
such, that the previous orientation is at the smallest
angle with the new orientation.

– The quality of the crack surface approximation in
2D is best, when the crack is straight and the regu-
larization length l is small compared to the size of
the domain. For straight cracks, a good approxima-
tion is obtained for l ≥ 2h, where h is the charac-
teristic size of the finite elements. The phase-field
profile of a crack tip yields an additional artificial
amount of regularized crack surface. The impact
of this overestimation increases with increasing l
and is negligible, if l is small in comparison to the
domain and the overall length of the crack. The
regularized approximation of branching results in
overlapping phase-field profiles and an underesti-
mation of the regularized crack surface. Increasing
l yields more overlapping and increased underesti-
mation of the crack surface. Again, the impact of
overlapping is negligible, if l is small in comparison
to the domain and the overall length of the crack.

– For an initial straight crack, the volumetric devi-
atoric split, the spectral split and the directional
split are analyzed with respect to the approxima-
tion of the three basic crack kinematics of an ide-
alized crack. The volumetric deviatoric split fails
in modeling crack closing deformation in a real-
istic and numerically stable manner. The spectral
split cannot model crack face sliding deformations
realistically. The directional split exhibits perfect
agreement with the expected behavior, if the crack
orientation is constantly perpendicular to the crack
surface over the whole phase-field profile.

– The directional decomposition of stresses in a 2D
element with bi-linear shape functions yields per-
sistent components at the material point level in
case of a crack face sliding deformation, if the ele-
ment edges are not aligned to both the crack surface
and the crack orientation vector. A similar defect is
expected for 3D simulations with tri-linear shape
functions. A solution can be the application of con-
stant strain elements, i.e. triangles in 2D and tetra-
hedrals in 3D.

– The distortion of the crack orientation vector yields
artificial stress inclusions for crack opening and
crack face sliding deformations, that increase in
magnitude with increasing distortion angle. The
stress inclusions of tensile and shear kind can trig-

ger additional phase-field evolution, that results in
a lateral widening of the phase-field profile. In con-
sequence, artificial stiffnesses against the reaction
free crack kinematics crack opening and crack face
sliding are obtained and the convergence behavior
of the solution is affected in a negative manner.

– Experimentally observed wing cracks in rock-like
material require mode dependent fracture tough-
nesses Gc,I and Gc,II, where Gc,II must be signifi-
cantly larger than Gc,I. The directional split is suit-
able for the simulation of wing crack formation in
principle. However, the distortion of the crack ori-
entation vector and the evolution of lateral widen-
ing for the phase-field profile remain open issues in
this case.

Several recent approaches of fracture mechanics
make use of an explicit representation of the crack nor-
mal, for instance (Morin andAcharya 2021; Stormet al.
2020, 2021, 2022). Thus, there is a demand for realistic
predictions of the crack orientation in ongoing research
activities. The presented concept to determine the crack
orientation based on the principle of maximum energy
dissipation is supported by the experimental findings
in Rozen-Levy et al. (2020).
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